~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ceph/messenger.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #include <linux/ceph/ceph_debug.h>
  2 
  3 #include <linux/crc32c.h>
  4 #include <linux/ctype.h>
  5 #include <linux/highmem.h>
  6 #include <linux/inet.h>
  7 #include <linux/kthread.h>
  8 #include <linux/net.h>
  9 #include <linux/nsproxy.h>
 10 #include <linux/slab.h>
 11 #include <linux/socket.h>
 12 #include <linux/string.h>
 13 #ifdef  CONFIG_BLOCK
 14 #include <linux/bio.h>
 15 #endif  /* CONFIG_BLOCK */
 16 #include <linux/dns_resolver.h>
 17 #include <net/tcp.h>
 18 
 19 #include <linux/ceph/ceph_features.h>
 20 #include <linux/ceph/libceph.h>
 21 #include <linux/ceph/messenger.h>
 22 #include <linux/ceph/decode.h>
 23 #include <linux/ceph/pagelist.h>
 24 #include <linux/export.h>
 25 
 26 /*
 27  * Ceph uses the messenger to exchange ceph_msg messages with other
 28  * hosts in the system.  The messenger provides ordered and reliable
 29  * delivery.  We tolerate TCP disconnects by reconnecting (with
 30  * exponential backoff) in the case of a fault (disconnection, bad
 31  * crc, protocol error).  Acks allow sent messages to be discarded by
 32  * the sender.
 33  */
 34 
 35 /*
 36  * We track the state of the socket on a given connection using
 37  * values defined below.  The transition to a new socket state is
 38  * handled by a function which verifies we aren't coming from an
 39  * unexpected state.
 40  *
 41  *      --------
 42  *      | NEW* |  transient initial state
 43  *      --------
 44  *          | con_sock_state_init()
 45  *          v
 46  *      ----------
 47  *      | CLOSED |  initialized, but no socket (and no
 48  *      ----------  TCP connection)
 49  *       ^      \
 50  *       |       \ con_sock_state_connecting()
 51  *       |        ----------------------
 52  *       |                              \
 53  *       + con_sock_state_closed()       \
 54  *       |+---------------------------    \
 55  *       | \                          \    \
 56  *       |  -----------                \    \
 57  *       |  | CLOSING |  socket event;  \    \
 58  *       |  -----------  await close     \    \
 59  *       |       ^                        \   |
 60  *       |       |                         \  |
 61  *       |       + con_sock_state_closing() \ |
 62  *       |      / \                         | |
 63  *       |     /   ---------------          | |
 64  *       |    /                   \         v v
 65  *       |   /                    --------------
 66  *       |  /    -----------------| CONNECTING |  socket created, TCP
 67  *       |  |   /                 --------------  connect initiated
 68  *       |  |   | con_sock_state_connected()
 69  *       |  |   v
 70  *      -------------
 71  *      | CONNECTED |  TCP connection established
 72  *      -------------
 73  *
 74  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
 75  */
 76 
 77 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
 78 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
 79 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
 80 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
 81 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
 82 
 83 /*
 84  * connection states
 85  */
 86 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
 87 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
 88 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
 89 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
 90 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
 91 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
 92 
 93 /*
 94  * ceph_connection flag bits
 95  */
 96 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
 97                                        * messages on errors */
 98 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 99 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
102 
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105         switch (con_flag) {
106         case CON_FLAG_LOSSYTX:
107         case CON_FLAG_KEEPALIVE_PENDING:
108         case CON_FLAG_WRITE_PENDING:
109         case CON_FLAG_SOCK_CLOSED:
110         case CON_FLAG_BACKOFF:
111                 return true;
112         default:
113                 return false;
114         }
115 }
116 
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119         BUG_ON(!con_flag_valid(con_flag));
120 
121         clear_bit(con_flag, &con->flags);
122 }
123 
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126         BUG_ON(!con_flag_valid(con_flag));
127 
128         set_bit(con_flag, &con->flags);
129 }
130 
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133         BUG_ON(!con_flag_valid(con_flag));
134 
135         return test_bit(con_flag, &con->flags);
136 }
137 
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139                                         unsigned long con_flag)
140 {
141         BUG_ON(!con_flag_valid(con_flag));
142 
143         return test_and_clear_bit(con_flag, &con->flags);
144 }
145 
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147                                         unsigned long con_flag)
148 {
149         BUG_ON(!con_flag_valid(con_flag));
150 
151         return test_and_set_bit(con_flag, &con->flags);
152 }
153 
154 /* Slab caches for frequently-allocated structures */
155 
156 static struct kmem_cache        *ceph_msg_cache;
157 static struct kmem_cache        *ceph_msg_data_cache;
158 
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164 
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168 
169 /*
170  * When skipping (ignoring) a block of input we read it into a "skip
171  * buffer," which is this many bytes in size.
172  */
173 #define SKIP_BUF_SIZE   1024
174 
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179 
180 /*
181  * Nicely render a sockaddr as a string.  An array of formatted
182  * strings is used, to approximate reentrancy.
183  */
184 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
188 
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191 
192 static struct page *zero_page;          /* used in certain error cases */
193 
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196         int i;
197         char *s;
198         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200 
201         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202         s = addr_str[i];
203 
204         switch (ss->ss_family) {
205         case AF_INET:
206                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207                          ntohs(in4->sin_port));
208                 break;
209 
210         case AF_INET6:
211                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212                          ntohs(in6->sin6_port));
213                 break;
214 
215         default:
216                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217                          ss->ss_family);
218         }
219 
220         return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223 
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227         ceph_encode_addr(&msgr->my_enc_addr);
228 }
229 
230 /*
231  * work queue for all reading and writing to/from the socket.
232  */
233 static struct workqueue_struct *ceph_msgr_wq;
234 
235 static int ceph_msgr_slab_init(void)
236 {
237         BUG_ON(ceph_msg_cache);
238         ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
239         if (!ceph_msg_cache)
240                 return -ENOMEM;
241 
242         BUG_ON(ceph_msg_data_cache);
243         ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
244         if (ceph_msg_data_cache)
245                 return 0;
246 
247         kmem_cache_destroy(ceph_msg_cache);
248         ceph_msg_cache = NULL;
249 
250         return -ENOMEM;
251 }
252 
253 static void ceph_msgr_slab_exit(void)
254 {
255         BUG_ON(!ceph_msg_data_cache);
256         kmem_cache_destroy(ceph_msg_data_cache);
257         ceph_msg_data_cache = NULL;
258 
259         BUG_ON(!ceph_msg_cache);
260         kmem_cache_destroy(ceph_msg_cache);
261         ceph_msg_cache = NULL;
262 }
263 
264 static void _ceph_msgr_exit(void)
265 {
266         if (ceph_msgr_wq) {
267                 destroy_workqueue(ceph_msgr_wq);
268                 ceph_msgr_wq = NULL;
269         }
270 
271         BUG_ON(zero_page == NULL);
272         put_page(zero_page);
273         zero_page = NULL;
274 
275         ceph_msgr_slab_exit();
276 }
277 
278 int ceph_msgr_init(void)
279 {
280         if (ceph_msgr_slab_init())
281                 return -ENOMEM;
282 
283         BUG_ON(zero_page != NULL);
284         zero_page = ZERO_PAGE(0);
285         get_page(zero_page);
286 
287         /*
288          * The number of active work items is limited by the number of
289          * connections, so leave @max_active at default.
290          */
291         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
292         if (ceph_msgr_wq)
293                 return 0;
294 
295         pr_err("msgr_init failed to create workqueue\n");
296         _ceph_msgr_exit();
297 
298         return -ENOMEM;
299 }
300 EXPORT_SYMBOL(ceph_msgr_init);
301 
302 void ceph_msgr_exit(void)
303 {
304         BUG_ON(ceph_msgr_wq == NULL);
305 
306         _ceph_msgr_exit();
307 }
308 EXPORT_SYMBOL(ceph_msgr_exit);
309 
310 void ceph_msgr_flush(void)
311 {
312         flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315 
316 /* Connection socket state transition functions */
317 
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320         int old_state;
321 
322         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324                 printk("%s: unexpected old state %d\n", __func__, old_state);
325         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326              CON_SOCK_STATE_CLOSED);
327 }
328 
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331         int old_state;
332 
333         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335                 printk("%s: unexpected old state %d\n", __func__, old_state);
336         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337              CON_SOCK_STATE_CONNECTING);
338 }
339 
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342         int old_state;
343 
344         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346                 printk("%s: unexpected old state %d\n", __func__, old_state);
347         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348              CON_SOCK_STATE_CONNECTED);
349 }
350 
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353         int old_state;
354 
355         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357                         old_state != CON_SOCK_STATE_CONNECTED &&
358                         old_state != CON_SOCK_STATE_CLOSING))
359                 printk("%s: unexpected old state %d\n", __func__, old_state);
360         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361              CON_SOCK_STATE_CLOSING);
362 }
363 
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366         int old_state;
367 
368         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370                     old_state != CON_SOCK_STATE_CLOSING &&
371                     old_state != CON_SOCK_STATE_CONNECTING &&
372                     old_state != CON_SOCK_STATE_CLOSED))
373                 printk("%s: unexpected old state %d\n", __func__, old_state);
374         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375              CON_SOCK_STATE_CLOSED);
376 }
377 
378 /*
379  * socket callback functions
380  */
381 
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385         struct ceph_connection *con = sk->sk_user_data;
386         if (atomic_read(&con->msgr->stopping)) {
387                 return;
388         }
389 
390         if (sk->sk_state != TCP_CLOSE_WAIT) {
391                 dout("%s on %p state = %lu, queueing work\n", __func__,
392                      con, con->state);
393                 queue_con(con);
394         }
395 }
396 
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400         struct ceph_connection *con = sk->sk_user_data;
401 
402         /* only queue to workqueue if there is data we want to write,
403          * and there is sufficient space in the socket buffer to accept
404          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
405          * doesn't get called again until try_write() fills the socket
406          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407          * and net/core/stream.c:sk_stream_write_space().
408          */
409         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410                 if (sk_stream_is_writeable(sk)) {
411                         dout("%s %p queueing write work\n", __func__, con);
412                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413                         queue_con(con);
414                 }
415         } else {
416                 dout("%s %p nothing to write\n", __func__, con);
417         }
418 }
419 
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423         struct ceph_connection *con = sk->sk_user_data;
424 
425         dout("%s %p state = %lu sk_state = %u\n", __func__,
426              con, con->state, sk->sk_state);
427 
428         switch (sk->sk_state) {
429         case TCP_CLOSE:
430                 dout("%s TCP_CLOSE\n", __func__);
431         case TCP_CLOSE_WAIT:
432                 dout("%s TCP_CLOSE_WAIT\n", __func__);
433                 con_sock_state_closing(con);
434                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
435                 queue_con(con);
436                 break;
437         case TCP_ESTABLISHED:
438                 dout("%s TCP_ESTABLISHED\n", __func__);
439                 con_sock_state_connected(con);
440                 queue_con(con);
441                 break;
442         default:        /* Everything else is uninteresting */
443                 break;
444         }
445 }
446 
447 /*
448  * set up socket callbacks
449  */
450 static void set_sock_callbacks(struct socket *sock,
451                                struct ceph_connection *con)
452 {
453         struct sock *sk = sock->sk;
454         sk->sk_user_data = con;
455         sk->sk_data_ready = ceph_sock_data_ready;
456         sk->sk_write_space = ceph_sock_write_space;
457         sk->sk_state_change = ceph_sock_state_change;
458 }
459 
460 
461 /*
462  * socket helpers
463  */
464 
465 /*
466  * initiate connection to a remote socket.
467  */
468 static int ceph_tcp_connect(struct ceph_connection *con)
469 {
470         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
471         struct socket *sock;
472         int ret;
473 
474         BUG_ON(con->sock);
475         ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
476                                SOCK_STREAM, IPPROTO_TCP, &sock);
477         if (ret)
478                 return ret;
479         sock->sk->sk_allocation = GFP_NOFS;
480 
481 #ifdef CONFIG_LOCKDEP
482         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484 
485         set_sock_callbacks(sock, con);
486 
487         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488 
489         con_sock_state_connecting(con);
490         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491                                  O_NONBLOCK);
492         if (ret == -EINPROGRESS) {
493                 dout("connect %s EINPROGRESS sk_state = %u\n",
494                      ceph_pr_addr(&con->peer_addr.in_addr),
495                      sock->sk->sk_state);
496         } else if (ret < 0) {
497                 pr_err("connect %s error %d\n",
498                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
499                 sock_release(sock);
500                 return ret;
501         }
502 
503         if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504                 int optval = 1;
505 
506                 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507                                         (char *)&optval, sizeof(optval));
508                 if (ret)
509                         pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510                                ret);
511         }
512 
513         con->sock = sock;
514         return 0;
515 }
516 
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519         struct kvec iov = {buf, len};
520         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521         int r;
522 
523         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524         if (r == -EAGAIN)
525                 r = 0;
526         return r;
527 }
528 
529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530                      int page_offset, size_t length)
531 {
532         void *kaddr;
533         int ret;
534 
535         BUG_ON(page_offset + length > PAGE_SIZE);
536 
537         kaddr = kmap(page);
538         BUG_ON(!kaddr);
539         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540         kunmap(page);
541 
542         return ret;
543 }
544 
545 /*
546  * write something.  @more is true if caller will be sending more data
547  * shortly.
548  */
549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550                      size_t kvlen, size_t len, int more)
551 {
552         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553         int r;
554 
555         if (more)
556                 msg.msg_flags |= MSG_MORE;
557         else
558                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
559 
560         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561         if (r == -EAGAIN)
562                 r = 0;
563         return r;
564 }
565 
566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567                      int offset, size_t size, bool more)
568 {
569         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570         int ret;
571 
572         ret = kernel_sendpage(sock, page, offset, size, flags);
573         if (ret == -EAGAIN)
574                 ret = 0;
575 
576         return ret;
577 }
578 
579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580                      int offset, size_t size, bool more)
581 {
582         int ret;
583         struct kvec iov;
584 
585         /* sendpage cannot properly handle pages with page_count == 0,
586          * we need to fallback to sendmsg if that's the case */
587         if (page_count(page) >= 1)
588                 return __ceph_tcp_sendpage(sock, page, offset, size, more);
589 
590         iov.iov_base = kmap(page) + offset;
591         iov.iov_len = size;
592         ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593         kunmap(page);
594 
595         return ret;
596 }
597 
598 /*
599  * Shutdown/close the socket for the given connection.
600  */
601 static int con_close_socket(struct ceph_connection *con)
602 {
603         int rc = 0;
604 
605         dout("con_close_socket on %p sock %p\n", con, con->sock);
606         if (con->sock) {
607                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608                 sock_release(con->sock);
609                 con->sock = NULL;
610         }
611 
612         /*
613          * Forcibly clear the SOCK_CLOSED flag.  It gets set
614          * independent of the connection mutex, and we could have
615          * received a socket close event before we had the chance to
616          * shut the socket down.
617          */
618         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619 
620         con_sock_state_closed(con);
621         return rc;
622 }
623 
624 /*
625  * Reset a connection.  Discard all incoming and outgoing messages
626  * and clear *_seq state.
627  */
628 static void ceph_msg_remove(struct ceph_msg *msg)
629 {
630         list_del_init(&msg->list_head);
631 
632         ceph_msg_put(msg);
633 }
634 static void ceph_msg_remove_list(struct list_head *head)
635 {
636         while (!list_empty(head)) {
637                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
638                                                         list_head);
639                 ceph_msg_remove(msg);
640         }
641 }
642 
643 static void reset_connection(struct ceph_connection *con)
644 {
645         /* reset connection, out_queue, msg_ and connect_seq */
646         /* discard existing out_queue and msg_seq */
647         dout("reset_connection %p\n", con);
648         ceph_msg_remove_list(&con->out_queue);
649         ceph_msg_remove_list(&con->out_sent);
650 
651         if (con->in_msg) {
652                 BUG_ON(con->in_msg->con != con);
653                 ceph_msg_put(con->in_msg);
654                 con->in_msg = NULL;
655         }
656 
657         con->connect_seq = 0;
658         con->out_seq = 0;
659         if (con->out_msg) {
660                 BUG_ON(con->out_msg->con != con);
661                 ceph_msg_put(con->out_msg);
662                 con->out_msg = NULL;
663         }
664         con->in_seq = 0;
665         con->in_seq_acked = 0;
666 
667         con->out_skip = 0;
668 }
669 
670 /*
671  * mark a peer down.  drop any open connections.
672  */
673 void ceph_con_close(struct ceph_connection *con)
674 {
675         mutex_lock(&con->mutex);
676         dout("con_close %p peer %s\n", con,
677              ceph_pr_addr(&con->peer_addr.in_addr));
678         con->state = CON_STATE_CLOSED;
679 
680         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
681         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
682         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
683         con_flag_clear(con, CON_FLAG_BACKOFF);
684 
685         reset_connection(con);
686         con->peer_global_seq = 0;
687         cancel_con(con);
688         con_close_socket(con);
689         mutex_unlock(&con->mutex);
690 }
691 EXPORT_SYMBOL(ceph_con_close);
692 
693 /*
694  * Reopen a closed connection, with a new peer address.
695  */
696 void ceph_con_open(struct ceph_connection *con,
697                    __u8 entity_type, __u64 entity_num,
698                    struct ceph_entity_addr *addr)
699 {
700         mutex_lock(&con->mutex);
701         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
702 
703         WARN_ON(con->state != CON_STATE_CLOSED);
704         con->state = CON_STATE_PREOPEN;
705 
706         con->peer_name.type = (__u8) entity_type;
707         con->peer_name.num = cpu_to_le64(entity_num);
708 
709         memcpy(&con->peer_addr, addr, sizeof(*addr));
710         con->delay = 0;      /* reset backoff memory */
711         mutex_unlock(&con->mutex);
712         queue_con(con);
713 }
714 EXPORT_SYMBOL(ceph_con_open);
715 
716 /*
717  * return true if this connection ever successfully opened
718  */
719 bool ceph_con_opened(struct ceph_connection *con)
720 {
721         return con->connect_seq > 0;
722 }
723 
724 /*
725  * initialize a new connection.
726  */
727 void ceph_con_init(struct ceph_connection *con, void *private,
728         const struct ceph_connection_operations *ops,
729         struct ceph_messenger *msgr)
730 {
731         dout("con_init %p\n", con);
732         memset(con, 0, sizeof(*con));
733         con->private = private;
734         con->ops = ops;
735         con->msgr = msgr;
736 
737         con_sock_state_init(con);
738 
739         mutex_init(&con->mutex);
740         INIT_LIST_HEAD(&con->out_queue);
741         INIT_LIST_HEAD(&con->out_sent);
742         INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
743 
744         con->state = CON_STATE_CLOSED;
745 }
746 EXPORT_SYMBOL(ceph_con_init);
747 
748 
749 /*
750  * We maintain a global counter to order connection attempts.  Get
751  * a unique seq greater than @gt.
752  */
753 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
754 {
755         u32 ret;
756 
757         spin_lock(&msgr->global_seq_lock);
758         if (msgr->global_seq < gt)
759                 msgr->global_seq = gt;
760         ret = ++msgr->global_seq;
761         spin_unlock(&msgr->global_seq_lock);
762         return ret;
763 }
764 
765 static void con_out_kvec_reset(struct ceph_connection *con)
766 {
767         BUG_ON(con->out_skip);
768 
769         con->out_kvec_left = 0;
770         con->out_kvec_bytes = 0;
771         con->out_kvec_cur = &con->out_kvec[0];
772 }
773 
774 static void con_out_kvec_add(struct ceph_connection *con,
775                                 size_t size, void *data)
776 {
777         int index = con->out_kvec_left;
778 
779         BUG_ON(con->out_skip);
780         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781 
782         con->out_kvec[index].iov_len = size;
783         con->out_kvec[index].iov_base = data;
784         con->out_kvec_left++;
785         con->out_kvec_bytes += size;
786 }
787 
788 /*
789  * Chop off a kvec from the end.  Return residual number of bytes for
790  * that kvec, i.e. how many bytes would have been written if the kvec
791  * hadn't been nuked.
792  */
793 static int con_out_kvec_skip(struct ceph_connection *con)
794 {
795         int off = con->out_kvec_cur - con->out_kvec;
796         int skip = 0;
797 
798         if (con->out_kvec_bytes > 0) {
799                 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
800                 BUG_ON(con->out_kvec_bytes < skip);
801                 BUG_ON(!con->out_kvec_left);
802                 con->out_kvec_bytes -= skip;
803                 con->out_kvec_left--;
804         }
805 
806         return skip;
807 }
808 
809 #ifdef CONFIG_BLOCK
810 
811 /*
812  * For a bio data item, a piece is whatever remains of the next
813  * entry in the current bio iovec, or the first entry in the next
814  * bio in the list.
815  */
816 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
817                                         size_t length)
818 {
819         struct ceph_msg_data *data = cursor->data;
820         struct bio *bio;
821 
822         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
823 
824         bio = data->bio;
825         BUG_ON(!bio);
826 
827         cursor->resid = min(length, data->bio_length);
828         cursor->bio = bio;
829         cursor->bvec_iter = bio->bi_iter;
830         cursor->last_piece =
831                 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
832 }
833 
834 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
835                                                 size_t *page_offset,
836                                                 size_t *length)
837 {
838         struct ceph_msg_data *data = cursor->data;
839         struct bio *bio;
840         struct bio_vec bio_vec;
841 
842         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843 
844         bio = cursor->bio;
845         BUG_ON(!bio);
846 
847         bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
848 
849         *page_offset = (size_t) bio_vec.bv_offset;
850         BUG_ON(*page_offset >= PAGE_SIZE);
851         if (cursor->last_piece) /* pagelist offset is always 0 */
852                 *length = cursor->resid;
853         else
854                 *length = (size_t) bio_vec.bv_len;
855         BUG_ON(*length > cursor->resid);
856         BUG_ON(*page_offset + *length > PAGE_SIZE);
857 
858         return bio_vec.bv_page;
859 }
860 
861 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
862                                         size_t bytes)
863 {
864         struct bio *bio;
865         struct bio_vec bio_vec;
866 
867         BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
868 
869         bio = cursor->bio;
870         BUG_ON(!bio);
871 
872         bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
873 
874         /* Advance the cursor offset */
875 
876         BUG_ON(cursor->resid < bytes);
877         cursor->resid -= bytes;
878 
879         bio_advance_iter(bio, &cursor->bvec_iter, bytes);
880 
881         if (bytes < bio_vec.bv_len)
882                 return false;   /* more bytes to process in this segment */
883 
884         /* Move on to the next segment, and possibly the next bio */
885 
886         if (!cursor->bvec_iter.bi_size) {
887                 bio = bio->bi_next;
888                 cursor->bio = bio;
889                 if (bio)
890                         cursor->bvec_iter = bio->bi_iter;
891                 else
892                         memset(&cursor->bvec_iter, 0,
893                                sizeof(cursor->bvec_iter));
894         }
895 
896         if (!cursor->last_piece) {
897                 BUG_ON(!cursor->resid);
898                 BUG_ON(!bio);
899                 /* A short read is OK, so use <= rather than == */
900                 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
901                         cursor->last_piece = true;
902         }
903 
904         return true;
905 }
906 #endif /* CONFIG_BLOCK */
907 
908 /*
909  * For a page array, a piece comes from the first page in the array
910  * that has not already been fully consumed.
911  */
912 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
913                                         size_t length)
914 {
915         struct ceph_msg_data *data = cursor->data;
916         int page_count;
917 
918         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
919 
920         BUG_ON(!data->pages);
921         BUG_ON(!data->length);
922 
923         cursor->resid = min(length, data->length);
924         page_count = calc_pages_for(data->alignment, (u64)data->length);
925         cursor->page_offset = data->alignment & ~PAGE_MASK;
926         cursor->page_index = 0;
927         BUG_ON(page_count > (int)USHRT_MAX);
928         cursor->page_count = (unsigned short)page_count;
929         BUG_ON(length > SIZE_MAX - cursor->page_offset);
930         cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
931 }
932 
933 static struct page *
934 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
935                                         size_t *page_offset, size_t *length)
936 {
937         struct ceph_msg_data *data = cursor->data;
938 
939         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940 
941         BUG_ON(cursor->page_index >= cursor->page_count);
942         BUG_ON(cursor->page_offset >= PAGE_SIZE);
943 
944         *page_offset = cursor->page_offset;
945         if (cursor->last_piece)
946                 *length = cursor->resid;
947         else
948                 *length = PAGE_SIZE - *page_offset;
949 
950         return data->pages[cursor->page_index];
951 }
952 
953 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
954                                                 size_t bytes)
955 {
956         BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
957 
958         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
959 
960         /* Advance the cursor page offset */
961 
962         cursor->resid -= bytes;
963         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
964         if (!bytes || cursor->page_offset)
965                 return false;   /* more bytes to process in the current page */
966 
967         if (!cursor->resid)
968                 return false;   /* no more data */
969 
970         /* Move on to the next page; offset is already at 0 */
971 
972         BUG_ON(cursor->page_index >= cursor->page_count);
973         cursor->page_index++;
974         cursor->last_piece = cursor->resid <= PAGE_SIZE;
975 
976         return true;
977 }
978 
979 /*
980  * For a pagelist, a piece is whatever remains to be consumed in the
981  * first page in the list, or the front of the next page.
982  */
983 static void
984 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
985                                         size_t length)
986 {
987         struct ceph_msg_data *data = cursor->data;
988         struct ceph_pagelist *pagelist;
989         struct page *page;
990 
991         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
992 
993         pagelist = data->pagelist;
994         BUG_ON(!pagelist);
995 
996         if (!length)
997                 return;         /* pagelist can be assigned but empty */
998 
999         BUG_ON(list_empty(&pagelist->head));
1000         page = list_first_entry(&pagelist->head, struct page, lru);
1001 
1002         cursor->resid = min(length, pagelist->length);
1003         cursor->page = page;
1004         cursor->offset = 0;
1005         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1006 }
1007 
1008 static struct page *
1009 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1010                                 size_t *page_offset, size_t *length)
1011 {
1012         struct ceph_msg_data *data = cursor->data;
1013         struct ceph_pagelist *pagelist;
1014 
1015         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1016 
1017         pagelist = data->pagelist;
1018         BUG_ON(!pagelist);
1019 
1020         BUG_ON(!cursor->page);
1021         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1022 
1023         /* offset of first page in pagelist is always 0 */
1024         *page_offset = cursor->offset & ~PAGE_MASK;
1025         if (cursor->last_piece)
1026                 *length = cursor->resid;
1027         else
1028                 *length = PAGE_SIZE - *page_offset;
1029 
1030         return cursor->page;
1031 }
1032 
1033 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1034                                                 size_t bytes)
1035 {
1036         struct ceph_msg_data *data = cursor->data;
1037         struct ceph_pagelist *pagelist;
1038 
1039         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1040 
1041         pagelist = data->pagelist;
1042         BUG_ON(!pagelist);
1043 
1044         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1045         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1046 
1047         /* Advance the cursor offset */
1048 
1049         cursor->resid -= bytes;
1050         cursor->offset += bytes;
1051         /* offset of first page in pagelist is always 0 */
1052         if (!bytes || cursor->offset & ~PAGE_MASK)
1053                 return false;   /* more bytes to process in the current page */
1054 
1055         if (!cursor->resid)
1056                 return false;   /* no more data */
1057 
1058         /* Move on to the next page */
1059 
1060         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1061         cursor->page = list_next_entry(cursor->page, lru);
1062         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1063 
1064         return true;
1065 }
1066 
1067 /*
1068  * Message data is handled (sent or received) in pieces, where each
1069  * piece resides on a single page.  The network layer might not
1070  * consume an entire piece at once.  A data item's cursor keeps
1071  * track of which piece is next to process and how much remains to
1072  * be processed in that piece.  It also tracks whether the current
1073  * piece is the last one in the data item.
1074  */
1075 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1076 {
1077         size_t length = cursor->total_resid;
1078 
1079         switch (cursor->data->type) {
1080         case CEPH_MSG_DATA_PAGELIST:
1081                 ceph_msg_data_pagelist_cursor_init(cursor, length);
1082                 break;
1083         case CEPH_MSG_DATA_PAGES:
1084                 ceph_msg_data_pages_cursor_init(cursor, length);
1085                 break;
1086 #ifdef CONFIG_BLOCK
1087         case CEPH_MSG_DATA_BIO:
1088                 ceph_msg_data_bio_cursor_init(cursor, length);
1089                 break;
1090 #endif /* CONFIG_BLOCK */
1091         case CEPH_MSG_DATA_NONE:
1092         default:
1093                 /* BUG(); */
1094                 break;
1095         }
1096         cursor->need_crc = true;
1097 }
1098 
1099 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1100 {
1101         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1102         struct ceph_msg_data *data;
1103 
1104         BUG_ON(!length);
1105         BUG_ON(length > msg->data_length);
1106         BUG_ON(list_empty(&msg->data));
1107 
1108         cursor->data_head = &msg->data;
1109         cursor->total_resid = length;
1110         data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1111         cursor->data = data;
1112 
1113         __ceph_msg_data_cursor_init(cursor);
1114 }
1115 
1116 /*
1117  * Return the page containing the next piece to process for a given
1118  * data item, and supply the page offset and length of that piece.
1119  * Indicate whether this is the last piece in this data item.
1120  */
1121 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1122                                         size_t *page_offset, size_t *length,
1123                                         bool *last_piece)
1124 {
1125         struct page *page;
1126 
1127         switch (cursor->data->type) {
1128         case CEPH_MSG_DATA_PAGELIST:
1129                 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1130                 break;
1131         case CEPH_MSG_DATA_PAGES:
1132                 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1133                 break;
1134 #ifdef CONFIG_BLOCK
1135         case CEPH_MSG_DATA_BIO:
1136                 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1137                 break;
1138 #endif /* CONFIG_BLOCK */
1139         case CEPH_MSG_DATA_NONE:
1140         default:
1141                 page = NULL;
1142                 break;
1143         }
1144         BUG_ON(!page);
1145         BUG_ON(*page_offset + *length > PAGE_SIZE);
1146         BUG_ON(!*length);
1147         if (last_piece)
1148                 *last_piece = cursor->last_piece;
1149 
1150         return page;
1151 }
1152 
1153 /*
1154  * Returns true if the result moves the cursor on to the next piece
1155  * of the data item.
1156  */
1157 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1158                                 size_t bytes)
1159 {
1160         bool new_piece;
1161 
1162         BUG_ON(bytes > cursor->resid);
1163         switch (cursor->data->type) {
1164         case CEPH_MSG_DATA_PAGELIST:
1165                 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1166                 break;
1167         case CEPH_MSG_DATA_PAGES:
1168                 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1169                 break;
1170 #ifdef CONFIG_BLOCK
1171         case CEPH_MSG_DATA_BIO:
1172                 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1173                 break;
1174 #endif /* CONFIG_BLOCK */
1175         case CEPH_MSG_DATA_NONE:
1176         default:
1177                 BUG();
1178                 break;
1179         }
1180         cursor->total_resid -= bytes;
1181 
1182         if (!cursor->resid && cursor->total_resid) {
1183                 WARN_ON(!cursor->last_piece);
1184                 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1185                 cursor->data = list_next_entry(cursor->data, links);
1186                 __ceph_msg_data_cursor_init(cursor);
1187                 new_piece = true;
1188         }
1189         cursor->need_crc = new_piece;
1190 
1191         return new_piece;
1192 }
1193 
1194 static size_t sizeof_footer(struct ceph_connection *con)
1195 {
1196         return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1197             sizeof(struct ceph_msg_footer) :
1198             sizeof(struct ceph_msg_footer_old);
1199 }
1200 
1201 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1202 {
1203         BUG_ON(!msg);
1204         BUG_ON(!data_len);
1205 
1206         /* Initialize data cursor */
1207 
1208         ceph_msg_data_cursor_init(msg, (size_t)data_len);
1209 }
1210 
1211 /*
1212  * Prepare footer for currently outgoing message, and finish things
1213  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1214  */
1215 static void prepare_write_message_footer(struct ceph_connection *con)
1216 {
1217         struct ceph_msg *m = con->out_msg;
1218 
1219         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220 
1221         dout("prepare_write_message_footer %p\n", con);
1222         con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1223         if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224                 if (con->ops->sign_message)
1225                         con->ops->sign_message(m);
1226                 else
1227                         m->footer.sig = 0;
1228         } else {
1229                 m->old_footer.flags = m->footer.flags;
1230         }
1231         con->out_more = m->more_to_follow;
1232         con->out_msg_done = true;
1233 }
1234 
1235 /*
1236  * Prepare headers for the next outgoing message.
1237  */
1238 static void prepare_write_message(struct ceph_connection *con)
1239 {
1240         struct ceph_msg *m;
1241         u32 crc;
1242 
1243         con_out_kvec_reset(con);
1244         con->out_msg_done = false;
1245 
1246         /* Sneak an ack in there first?  If we can get it into the same
1247          * TCP packet that's a good thing. */
1248         if (con->in_seq > con->in_seq_acked) {
1249                 con->in_seq_acked = con->in_seq;
1250                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1251                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1252                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1253                         &con->out_temp_ack);
1254         }
1255 
1256         BUG_ON(list_empty(&con->out_queue));
1257         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1258         con->out_msg = m;
1259         BUG_ON(m->con != con);
1260 
1261         /* put message on sent list */
1262         ceph_msg_get(m);
1263         list_move_tail(&m->list_head, &con->out_sent);
1264 
1265         /*
1266          * only assign outgoing seq # if we haven't sent this message
1267          * yet.  if it is requeued, resend with it's original seq.
1268          */
1269         if (m->needs_out_seq) {
1270                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1271                 m->needs_out_seq = false;
1272         }
1273         WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1274 
1275         dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276              m, con->out_seq, le16_to_cpu(m->hdr.type),
1277              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1278              m->data_length);
1279         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1280 
1281         /* tag + hdr + front + middle */
1282         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1283         con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1284         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1285 
1286         if (m->middle)
1287                 con_out_kvec_add(con, m->middle->vec.iov_len,
1288                         m->middle->vec.iov_base);
1289 
1290         /* fill in hdr crc and finalize hdr */
1291         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1292         con->out_msg->hdr.crc = cpu_to_le32(crc);
1293         memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1294 
1295         /* fill in front and middle crc, footer */
1296         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1297         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1298         if (m->middle) {
1299                 crc = crc32c(0, m->middle->vec.iov_base,
1300                                 m->middle->vec.iov_len);
1301                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1302         } else
1303                 con->out_msg->footer.middle_crc = 0;
1304         dout("%s front_crc %u middle_crc %u\n", __func__,
1305              le32_to_cpu(con->out_msg->footer.front_crc),
1306              le32_to_cpu(con->out_msg->footer.middle_crc));
1307         con->out_msg->footer.flags = 0;
1308 
1309         /* is there a data payload? */
1310         con->out_msg->footer.data_crc = 0;
1311         if (m->data_length) {
1312                 prepare_message_data(con->out_msg, m->data_length);
1313                 con->out_more = 1;  /* data + footer will follow */
1314         } else {
1315                 /* no, queue up footer too and be done */
1316                 prepare_write_message_footer(con);
1317         }
1318 
1319         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1320 }
1321 
1322 /*
1323  * Prepare an ack.
1324  */
1325 static void prepare_write_ack(struct ceph_connection *con)
1326 {
1327         dout("prepare_write_ack %p %llu -> %llu\n", con,
1328              con->in_seq_acked, con->in_seq);
1329         con->in_seq_acked = con->in_seq;
1330 
1331         con_out_kvec_reset(con);
1332 
1333         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1334 
1335         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1336         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1337                                 &con->out_temp_ack);
1338 
1339         con->out_more = 1;  /* more will follow.. eventually.. */
1340         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341 }
1342 
1343 /*
1344  * Prepare to share the seq during handshake
1345  */
1346 static void prepare_write_seq(struct ceph_connection *con)
1347 {
1348         dout("prepare_write_seq %p %llu -> %llu\n", con,
1349              con->in_seq_acked, con->in_seq);
1350         con->in_seq_acked = con->in_seq;
1351 
1352         con_out_kvec_reset(con);
1353 
1354         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356                          &con->out_temp_ack);
1357 
1358         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359 }
1360 
1361 /*
1362  * Prepare to write keepalive byte.
1363  */
1364 static void prepare_write_keepalive(struct ceph_connection *con)
1365 {
1366         dout("prepare_write_keepalive %p\n", con);
1367         con_out_kvec_reset(con);
1368         if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1369                 struct timespec now = CURRENT_TIME;
1370 
1371                 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1372                 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1373                 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1374                                  &con->out_temp_keepalive2);
1375         } else {
1376                 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1377         }
1378         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380 
1381 /*
1382  * Connection negotiation.
1383  */
1384 
1385 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1386                                                 int *auth_proto)
1387 {
1388         struct ceph_auth_handshake *auth;
1389 
1390         if (!con->ops->get_authorizer) {
1391                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1392                 con->out_connect.authorizer_len = 0;
1393                 return NULL;
1394         }
1395 
1396         /* Can't hold the mutex while getting authorizer */
1397         mutex_unlock(&con->mutex);
1398         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1399         mutex_lock(&con->mutex);
1400 
1401         if (IS_ERR(auth))
1402                 return auth;
1403         if (con->state != CON_STATE_NEGOTIATING)
1404                 return ERR_PTR(-EAGAIN);
1405 
1406         con->auth_reply_buf = auth->authorizer_reply_buf;
1407         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1408         return auth;
1409 }
1410 
1411 /*
1412  * We connected to a peer and are saying hello.
1413  */
1414 static void prepare_write_banner(struct ceph_connection *con)
1415 {
1416         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1417         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1418                                         &con->msgr->my_enc_addr);
1419 
1420         con->out_more = 0;
1421         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1422 }
1423 
1424 static int prepare_write_connect(struct ceph_connection *con)
1425 {
1426         unsigned int global_seq = get_global_seq(con->msgr, 0);
1427         int proto;
1428         int auth_proto;
1429         struct ceph_auth_handshake *auth;
1430 
1431         switch (con->peer_name.type) {
1432         case CEPH_ENTITY_TYPE_MON:
1433                 proto = CEPH_MONC_PROTOCOL;
1434                 break;
1435         case CEPH_ENTITY_TYPE_OSD:
1436                 proto = CEPH_OSDC_PROTOCOL;
1437                 break;
1438         case CEPH_ENTITY_TYPE_MDS:
1439                 proto = CEPH_MDSC_PROTOCOL;
1440                 break;
1441         default:
1442                 BUG();
1443         }
1444 
1445         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1446              con->connect_seq, global_seq, proto);
1447 
1448         con->out_connect.features =
1449             cpu_to_le64(from_msgr(con->msgr)->supported_features);
1450         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1451         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1452         con->out_connect.global_seq = cpu_to_le32(global_seq);
1453         con->out_connect.protocol_version = cpu_to_le32(proto);
1454         con->out_connect.flags = 0;
1455 
1456         auth_proto = CEPH_AUTH_UNKNOWN;
1457         auth = get_connect_authorizer(con, &auth_proto);
1458         if (IS_ERR(auth))
1459                 return PTR_ERR(auth);
1460 
1461         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1462         con->out_connect.authorizer_len = auth ?
1463                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1464 
1465         con_out_kvec_add(con, sizeof (con->out_connect),
1466                                         &con->out_connect);
1467         if (auth && auth->authorizer_buf_len)
1468                 con_out_kvec_add(con, auth->authorizer_buf_len,
1469                                         auth->authorizer_buf);
1470 
1471         con->out_more = 0;
1472         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1473 
1474         return 0;
1475 }
1476 
1477 /*
1478  * write as much of pending kvecs to the socket as we can.
1479  *  1 -> done
1480  *  0 -> socket full, but more to do
1481  * <0 -> error
1482  */
1483 static int write_partial_kvec(struct ceph_connection *con)
1484 {
1485         int ret;
1486 
1487         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1488         while (con->out_kvec_bytes > 0) {
1489                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1490                                        con->out_kvec_left, con->out_kvec_bytes,
1491                                        con->out_more);
1492                 if (ret <= 0)
1493                         goto out;
1494                 con->out_kvec_bytes -= ret;
1495                 if (con->out_kvec_bytes == 0)
1496                         break;            /* done */
1497 
1498                 /* account for full iov entries consumed */
1499                 while (ret >= con->out_kvec_cur->iov_len) {
1500                         BUG_ON(!con->out_kvec_left);
1501                         ret -= con->out_kvec_cur->iov_len;
1502                         con->out_kvec_cur++;
1503                         con->out_kvec_left--;
1504                 }
1505                 /* and for a partially-consumed entry */
1506                 if (ret) {
1507                         con->out_kvec_cur->iov_len -= ret;
1508                         con->out_kvec_cur->iov_base += ret;
1509                 }
1510         }
1511         con->out_kvec_left = 0;
1512         ret = 1;
1513 out:
1514         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1515              con->out_kvec_bytes, con->out_kvec_left, ret);
1516         return ret;  /* done! */
1517 }
1518 
1519 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1520                                 unsigned int page_offset,
1521                                 unsigned int length)
1522 {
1523         char *kaddr;
1524 
1525         kaddr = kmap(page);
1526         BUG_ON(kaddr == NULL);
1527         crc = crc32c(crc, kaddr + page_offset, length);
1528         kunmap(page);
1529 
1530         return crc;
1531 }
1532 /*
1533  * Write as much message data payload as we can.  If we finish, queue
1534  * up the footer.
1535  *  1 -> done, footer is now queued in out_kvec[].
1536  *  0 -> socket full, but more to do
1537  * <0 -> error
1538  */
1539 static int write_partial_message_data(struct ceph_connection *con)
1540 {
1541         struct ceph_msg *msg = con->out_msg;
1542         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1543         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1544         u32 crc;
1545 
1546         dout("%s %p msg %p\n", __func__, con, msg);
1547 
1548         if (list_empty(&msg->data))
1549                 return -EINVAL;
1550 
1551         /*
1552          * Iterate through each page that contains data to be
1553          * written, and send as much as possible for each.
1554          *
1555          * If we are calculating the data crc (the default), we will
1556          * need to map the page.  If we have no pages, they have
1557          * been revoked, so use the zero page.
1558          */
1559         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1560         while (cursor->resid) {
1561                 struct page *page;
1562                 size_t page_offset;
1563                 size_t length;
1564                 bool last_piece;
1565                 bool need_crc;
1566                 int ret;
1567 
1568                 page = ceph_msg_data_next(cursor, &page_offset, &length,
1569                                           &last_piece);
1570                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1571                                         length, !last_piece);
1572                 if (ret <= 0) {
1573                         if (do_datacrc)
1574                                 msg->footer.data_crc = cpu_to_le32(crc);
1575 
1576                         return ret;
1577                 }
1578                 if (do_datacrc && cursor->need_crc)
1579                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1580                 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1581         }
1582 
1583         dout("%s %p msg %p done\n", __func__, con, msg);
1584 
1585         /* prepare and queue up footer, too */
1586         if (do_datacrc)
1587                 msg->footer.data_crc = cpu_to_le32(crc);
1588         else
1589                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1590         con_out_kvec_reset(con);
1591         prepare_write_message_footer(con);
1592 
1593         return 1;       /* must return > 0 to indicate success */
1594 }
1595 
1596 /*
1597  * write some zeros
1598  */
1599 static int write_partial_skip(struct ceph_connection *con)
1600 {
1601         int ret;
1602 
1603         dout("%s %p %d left\n", __func__, con, con->out_skip);
1604         while (con->out_skip > 0) {
1605                 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1606 
1607                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1608                 if (ret <= 0)
1609                         goto out;
1610                 con->out_skip -= ret;
1611         }
1612         ret = 1;
1613 out:
1614         return ret;
1615 }
1616 
1617 /*
1618  * Prepare to read connection handshake, or an ack.
1619  */
1620 static void prepare_read_banner(struct ceph_connection *con)
1621 {
1622         dout("prepare_read_banner %p\n", con);
1623         con->in_base_pos = 0;
1624 }
1625 
1626 static void prepare_read_connect(struct ceph_connection *con)
1627 {
1628         dout("prepare_read_connect %p\n", con);
1629         con->in_base_pos = 0;
1630 }
1631 
1632 static void prepare_read_ack(struct ceph_connection *con)
1633 {
1634         dout("prepare_read_ack %p\n", con);
1635         con->in_base_pos = 0;
1636 }
1637 
1638 static void prepare_read_seq(struct ceph_connection *con)
1639 {
1640         dout("prepare_read_seq %p\n", con);
1641         con->in_base_pos = 0;
1642         con->in_tag = CEPH_MSGR_TAG_SEQ;
1643 }
1644 
1645 static void prepare_read_tag(struct ceph_connection *con)
1646 {
1647         dout("prepare_read_tag %p\n", con);
1648         con->in_base_pos = 0;
1649         con->in_tag = CEPH_MSGR_TAG_READY;
1650 }
1651 
1652 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1653 {
1654         dout("prepare_read_keepalive_ack %p\n", con);
1655         con->in_base_pos = 0;
1656 }
1657 
1658 /*
1659  * Prepare to read a message.
1660  */
1661 static int prepare_read_message(struct ceph_connection *con)
1662 {
1663         dout("prepare_read_message %p\n", con);
1664         BUG_ON(con->in_msg != NULL);
1665         con->in_base_pos = 0;
1666         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1667         return 0;
1668 }
1669 
1670 
1671 static int read_partial(struct ceph_connection *con,
1672                         int end, int size, void *object)
1673 {
1674         while (con->in_base_pos < end) {
1675                 int left = end - con->in_base_pos;
1676                 int have = size - left;
1677                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1678                 if (ret <= 0)
1679                         return ret;
1680                 con->in_base_pos += ret;
1681         }
1682         return 1;
1683 }
1684 
1685 
1686 /*
1687  * Read all or part of the connect-side handshake on a new connection
1688  */
1689 static int read_partial_banner(struct ceph_connection *con)
1690 {
1691         int size;
1692         int end;
1693         int ret;
1694 
1695         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1696 
1697         /* peer's banner */
1698         size = strlen(CEPH_BANNER);
1699         end = size;
1700         ret = read_partial(con, end, size, con->in_banner);
1701         if (ret <= 0)
1702                 goto out;
1703 
1704         size = sizeof (con->actual_peer_addr);
1705         end += size;
1706         ret = read_partial(con, end, size, &con->actual_peer_addr);
1707         if (ret <= 0)
1708                 goto out;
1709 
1710         size = sizeof (con->peer_addr_for_me);
1711         end += size;
1712         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1713         if (ret <= 0)
1714                 goto out;
1715 
1716 out:
1717         return ret;
1718 }
1719 
1720 static int read_partial_connect(struct ceph_connection *con)
1721 {
1722         int size;
1723         int end;
1724         int ret;
1725 
1726         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1727 
1728         size = sizeof (con->in_reply);
1729         end = size;
1730         ret = read_partial(con, end, size, &con->in_reply);
1731         if (ret <= 0)
1732                 goto out;
1733 
1734         size = le32_to_cpu(con->in_reply.authorizer_len);
1735         end += size;
1736         ret = read_partial(con, end, size, con->auth_reply_buf);
1737         if (ret <= 0)
1738                 goto out;
1739 
1740         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1741              con, (int)con->in_reply.tag,
1742              le32_to_cpu(con->in_reply.connect_seq),
1743              le32_to_cpu(con->in_reply.global_seq));
1744 out:
1745         return ret;
1746 
1747 }
1748 
1749 /*
1750  * Verify the hello banner looks okay.
1751  */
1752 static int verify_hello(struct ceph_connection *con)
1753 {
1754         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1755                 pr_err("connect to %s got bad banner\n",
1756                        ceph_pr_addr(&con->peer_addr.in_addr));
1757                 con->error_msg = "protocol error, bad banner";
1758                 return -1;
1759         }
1760         return 0;
1761 }
1762 
1763 static bool addr_is_blank(struct sockaddr_storage *ss)
1764 {
1765         struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1766         struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1767 
1768         switch (ss->ss_family) {
1769         case AF_INET:
1770                 return addr->s_addr == htonl(INADDR_ANY);
1771         case AF_INET6:
1772                 return ipv6_addr_any(addr6);
1773         default:
1774                 return true;
1775         }
1776 }
1777 
1778 static int addr_port(struct sockaddr_storage *ss)
1779 {
1780         switch (ss->ss_family) {
1781         case AF_INET:
1782                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1783         case AF_INET6:
1784                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1785         }
1786         return 0;
1787 }
1788 
1789 static void addr_set_port(struct sockaddr_storage *ss, int p)
1790 {
1791         switch (ss->ss_family) {
1792         case AF_INET:
1793                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1794                 break;
1795         case AF_INET6:
1796                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1797                 break;
1798         }
1799 }
1800 
1801 /*
1802  * Unlike other *_pton function semantics, zero indicates success.
1803  */
1804 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1805                 char delim, const char **ipend)
1806 {
1807         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1808         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1809 
1810         memset(ss, 0, sizeof(*ss));
1811 
1812         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1813                 ss->ss_family = AF_INET;
1814                 return 0;
1815         }
1816 
1817         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1818                 ss->ss_family = AF_INET6;
1819                 return 0;
1820         }
1821 
1822         return -EINVAL;
1823 }
1824 
1825 /*
1826  * Extract hostname string and resolve using kernel DNS facility.
1827  */
1828 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1829 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1830                 struct sockaddr_storage *ss, char delim, const char **ipend)
1831 {
1832         const char *end, *delim_p;
1833         char *colon_p, *ip_addr = NULL;
1834         int ip_len, ret;
1835 
1836         /*
1837          * The end of the hostname occurs immediately preceding the delimiter or
1838          * the port marker (':') where the delimiter takes precedence.
1839          */
1840         delim_p = memchr(name, delim, namelen);
1841         colon_p = memchr(name, ':', namelen);
1842 
1843         if (delim_p && colon_p)
1844                 end = delim_p < colon_p ? delim_p : colon_p;
1845         else if (!delim_p && colon_p)
1846                 end = colon_p;
1847         else {
1848                 end = delim_p;
1849                 if (!end) /* case: hostname:/ */
1850                         end = name + namelen;
1851         }
1852 
1853         if (end <= name)
1854                 return -EINVAL;
1855 
1856         /* do dns_resolve upcall */
1857         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1858         if (ip_len > 0)
1859                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1860         else
1861                 ret = -ESRCH;
1862 
1863         kfree(ip_addr);
1864 
1865         *ipend = end;
1866 
1867         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1868                         ret, ret ? "failed" : ceph_pr_addr(ss));
1869 
1870         return ret;
1871 }
1872 #else
1873 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1874                 struct sockaddr_storage *ss, char delim, const char **ipend)
1875 {
1876         return -EINVAL;
1877 }
1878 #endif
1879 
1880 /*
1881  * Parse a server name (IP or hostname). If a valid IP address is not found
1882  * then try to extract a hostname to resolve using userspace DNS upcall.
1883  */
1884 static int ceph_parse_server_name(const char *name, size_t namelen,
1885                         struct sockaddr_storage *ss, char delim, const char **ipend)
1886 {
1887         int ret;
1888 
1889         ret = ceph_pton(name, namelen, ss, delim, ipend);
1890         if (ret)
1891                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1892 
1893         return ret;
1894 }
1895 
1896 /*
1897  * Parse an ip[:port] list into an addr array.  Use the default
1898  * monitor port if a port isn't specified.
1899  */
1900 int ceph_parse_ips(const char *c, const char *end,
1901                    struct ceph_entity_addr *addr,
1902                    int max_count, int *count)
1903 {
1904         int i, ret = -EINVAL;
1905         const char *p = c;
1906 
1907         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1908         for (i = 0; i < max_count; i++) {
1909                 const char *ipend;
1910                 struct sockaddr_storage *ss = &addr[i].in_addr;
1911                 int port;
1912                 char delim = ',';
1913 
1914                 if (*p == '[') {
1915                         delim = ']';
1916                         p++;
1917                 }
1918 
1919                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1920                 if (ret)
1921                         goto bad;
1922                 ret = -EINVAL;
1923 
1924                 p = ipend;
1925 
1926                 if (delim == ']') {
1927                         if (*p != ']') {
1928                                 dout("missing matching ']'\n");
1929                                 goto bad;
1930                         }
1931                         p++;
1932                 }
1933 
1934                 /* port? */
1935                 if (p < end && *p == ':') {
1936                         port = 0;
1937                         p++;
1938                         while (p < end && *p >= '' && *p <= '9') {
1939                                 port = (port * 10) + (*p - '');
1940                                 p++;
1941                         }
1942                         if (port == 0)
1943                                 port = CEPH_MON_PORT;
1944                         else if (port > 65535)
1945                                 goto bad;
1946                 } else {
1947                         port = CEPH_MON_PORT;
1948                 }
1949 
1950                 addr_set_port(ss, port);
1951 
1952                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1953 
1954                 if (p == end)
1955                         break;
1956                 if (*p != ',')
1957                         goto bad;
1958                 p++;
1959         }
1960 
1961         if (p != end)
1962                 goto bad;
1963 
1964         if (count)
1965                 *count = i + 1;
1966         return 0;
1967 
1968 bad:
1969         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1970         return ret;
1971 }
1972 EXPORT_SYMBOL(ceph_parse_ips);
1973 
1974 static int process_banner(struct ceph_connection *con)
1975 {
1976         dout("process_banner on %p\n", con);
1977 
1978         if (verify_hello(con) < 0)
1979                 return -1;
1980 
1981         ceph_decode_addr(&con->actual_peer_addr);
1982         ceph_decode_addr(&con->peer_addr_for_me);
1983 
1984         /*
1985          * Make sure the other end is who we wanted.  note that the other
1986          * end may not yet know their ip address, so if it's 0.0.0.0, give
1987          * them the benefit of the doubt.
1988          */
1989         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1990                    sizeof(con->peer_addr)) != 0 &&
1991             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1992               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1993                 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1994                         ceph_pr_addr(&con->peer_addr.in_addr),
1995                         (int)le32_to_cpu(con->peer_addr.nonce),
1996                         ceph_pr_addr(&con->actual_peer_addr.in_addr),
1997                         (int)le32_to_cpu(con->actual_peer_addr.nonce));
1998                 con->error_msg = "wrong peer at address";
1999                 return -1;
2000         }
2001 
2002         /*
2003          * did we learn our address?
2004          */
2005         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2006                 int port = addr_port(&con->msgr->inst.addr.in_addr);
2007 
2008                 memcpy(&con->msgr->inst.addr.in_addr,
2009                        &con->peer_addr_for_me.in_addr,
2010                        sizeof(con->peer_addr_for_me.in_addr));
2011                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2012                 encode_my_addr(con->msgr);
2013                 dout("process_banner learned my addr is %s\n",
2014                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2015         }
2016 
2017         return 0;
2018 }
2019 
2020 static int process_connect(struct ceph_connection *con)
2021 {
2022         u64 sup_feat = from_msgr(con->msgr)->supported_features;
2023         u64 req_feat = from_msgr(con->msgr)->required_features;
2024         u64 server_feat = ceph_sanitize_features(
2025                                 le64_to_cpu(con->in_reply.features));
2026         int ret;
2027 
2028         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2029 
2030         if (con->auth_reply_buf) {
2031                 /*
2032                  * Any connection that defines ->get_authorizer()
2033                  * should also define ->verify_authorizer_reply().
2034                  * See get_connect_authorizer().
2035                  */
2036                 ret = con->ops->verify_authorizer_reply(con, 0);
2037                 if (ret < 0) {
2038                         con->error_msg = "bad authorize reply";
2039                         return ret;
2040                 }
2041         }
2042 
2043         switch (con->in_reply.tag) {
2044         case CEPH_MSGR_TAG_FEATURES:
2045                 pr_err("%s%lld %s feature set mismatch,"
2046                        " my %llx < server's %llx, missing %llx\n",
2047                        ENTITY_NAME(con->peer_name),
2048                        ceph_pr_addr(&con->peer_addr.in_addr),
2049                        sup_feat, server_feat, server_feat & ~sup_feat);
2050                 con->error_msg = "missing required protocol features";
2051                 reset_connection(con);
2052                 return -1;
2053 
2054         case CEPH_MSGR_TAG_BADPROTOVER:
2055                 pr_err("%s%lld %s protocol version mismatch,"
2056                        " my %d != server's %d\n",
2057                        ENTITY_NAME(con->peer_name),
2058                        ceph_pr_addr(&con->peer_addr.in_addr),
2059                        le32_to_cpu(con->out_connect.protocol_version),
2060                        le32_to_cpu(con->in_reply.protocol_version));
2061                 con->error_msg = "protocol version mismatch";
2062                 reset_connection(con);
2063                 return -1;
2064 
2065         case CEPH_MSGR_TAG_BADAUTHORIZER:
2066                 con->auth_retry++;
2067                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2068                      con->auth_retry);
2069                 if (con->auth_retry == 2) {
2070                         con->error_msg = "connect authorization failure";
2071                         return -1;
2072                 }
2073                 con_out_kvec_reset(con);
2074                 ret = prepare_write_connect(con);
2075                 if (ret < 0)
2076                         return ret;
2077                 prepare_read_connect(con);
2078                 break;
2079 
2080         case CEPH_MSGR_TAG_RESETSESSION:
2081                 /*
2082                  * If we connected with a large connect_seq but the peer
2083                  * has no record of a session with us (no connection, or
2084                  * connect_seq == 0), they will send RESETSESION to indicate
2085                  * that they must have reset their session, and may have
2086                  * dropped messages.
2087                  */
2088                 dout("process_connect got RESET peer seq %u\n",
2089                      le32_to_cpu(con->in_reply.connect_seq));
2090                 pr_err("%s%lld %s connection reset\n",
2091                        ENTITY_NAME(con->peer_name),
2092                        ceph_pr_addr(&con->peer_addr.in_addr));
2093                 reset_connection(con);
2094                 con_out_kvec_reset(con);
2095                 ret = prepare_write_connect(con);
2096                 if (ret < 0)
2097                         return ret;
2098                 prepare_read_connect(con);
2099 
2100                 /* Tell ceph about it. */
2101                 mutex_unlock(&con->mutex);
2102                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2103                 if (con->ops->peer_reset)
2104                         con->ops->peer_reset(con);
2105                 mutex_lock(&con->mutex);
2106                 if (con->state != CON_STATE_NEGOTIATING)
2107                         return -EAGAIN;
2108                 break;
2109 
2110         case CEPH_MSGR_TAG_RETRY_SESSION:
2111                 /*
2112                  * If we sent a smaller connect_seq than the peer has, try
2113                  * again with a larger value.
2114                  */
2115                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2116                      le32_to_cpu(con->out_connect.connect_seq),
2117                      le32_to_cpu(con->in_reply.connect_seq));
2118                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2119                 con_out_kvec_reset(con);
2120                 ret = prepare_write_connect(con);
2121                 if (ret < 0)
2122                         return ret;
2123                 prepare_read_connect(con);
2124                 break;
2125 
2126         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2127                 /*
2128                  * If we sent a smaller global_seq than the peer has, try
2129                  * again with a larger value.
2130                  */
2131                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2132                      con->peer_global_seq,
2133                      le32_to_cpu(con->in_reply.global_seq));
2134                 get_global_seq(con->msgr,
2135                                le32_to_cpu(con->in_reply.global_seq));
2136                 con_out_kvec_reset(con);
2137                 ret = prepare_write_connect(con);
2138                 if (ret < 0)
2139                         return ret;
2140                 prepare_read_connect(con);
2141                 break;
2142 
2143         case CEPH_MSGR_TAG_SEQ:
2144         case CEPH_MSGR_TAG_READY:
2145                 if (req_feat & ~server_feat) {
2146                         pr_err("%s%lld %s protocol feature mismatch,"
2147                                " my required %llx > server's %llx, need %llx\n",
2148                                ENTITY_NAME(con->peer_name),
2149                                ceph_pr_addr(&con->peer_addr.in_addr),
2150                                req_feat, server_feat, req_feat & ~server_feat);
2151                         con->error_msg = "missing required protocol features";
2152                         reset_connection(con);
2153                         return -1;
2154                 }
2155 
2156                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2157                 con->state = CON_STATE_OPEN;
2158                 con->auth_retry = 0;    /* we authenticated; clear flag */
2159                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2160                 con->connect_seq++;
2161                 con->peer_features = server_feat;
2162                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2163                      con->peer_global_seq,
2164                      le32_to_cpu(con->in_reply.connect_seq),
2165                      con->connect_seq);
2166                 WARN_ON(con->connect_seq !=
2167                         le32_to_cpu(con->in_reply.connect_seq));
2168 
2169                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2170                         con_flag_set(con, CON_FLAG_LOSSYTX);
2171 
2172                 con->delay = 0;      /* reset backoff memory */
2173 
2174                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2175                         prepare_write_seq(con);
2176                         prepare_read_seq(con);
2177                 } else {
2178                         prepare_read_tag(con);
2179                 }
2180                 break;
2181 
2182         case CEPH_MSGR_TAG_WAIT:
2183                 /*
2184                  * If there is a connection race (we are opening
2185                  * connections to each other), one of us may just have
2186                  * to WAIT.  This shouldn't happen if we are the
2187                  * client.
2188                  */
2189                 con->error_msg = "protocol error, got WAIT as client";
2190                 return -1;
2191 
2192         default:
2193                 con->error_msg = "protocol error, garbage tag during connect";
2194                 return -1;
2195         }
2196         return 0;
2197 }
2198 
2199 
2200 /*
2201  * read (part of) an ack
2202  */
2203 static int read_partial_ack(struct ceph_connection *con)
2204 {
2205         int size = sizeof (con->in_temp_ack);
2206         int end = size;
2207 
2208         return read_partial(con, end, size, &con->in_temp_ack);
2209 }
2210 
2211 /*
2212  * We can finally discard anything that's been acked.
2213  */
2214 static void process_ack(struct ceph_connection *con)
2215 {
2216         struct ceph_msg *m;
2217         u64 ack = le64_to_cpu(con->in_temp_ack);
2218         u64 seq;
2219 
2220         while (!list_empty(&con->out_sent)) {
2221                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2222                                      list_head);
2223                 seq = le64_to_cpu(m->hdr.seq);
2224                 if (seq > ack)
2225                         break;
2226                 dout("got ack for seq %llu type %d at %p\n", seq,
2227                      le16_to_cpu(m->hdr.type), m);
2228                 m->ack_stamp = jiffies;
2229                 ceph_msg_remove(m);
2230         }
2231         prepare_read_tag(con);
2232 }
2233 
2234 
2235 static int read_partial_message_section(struct ceph_connection *con,
2236                                         struct kvec *section,
2237                                         unsigned int sec_len, u32 *crc)
2238 {
2239         int ret, left;
2240 
2241         BUG_ON(!section);
2242 
2243         while (section->iov_len < sec_len) {
2244                 BUG_ON(section->iov_base == NULL);
2245                 left = sec_len - section->iov_len;
2246                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2247                                        section->iov_len, left);
2248                 if (ret <= 0)
2249                         return ret;
2250                 section->iov_len += ret;
2251         }
2252         if (section->iov_len == sec_len)
2253                 *crc = crc32c(0, section->iov_base, section->iov_len);
2254 
2255         return 1;
2256 }
2257 
2258 static int read_partial_msg_data(struct ceph_connection *con)
2259 {
2260         struct ceph_msg *msg = con->in_msg;
2261         struct ceph_msg_data_cursor *cursor = &msg->cursor;
2262         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2263         struct page *page;
2264         size_t page_offset;
2265         size_t length;
2266         u32 crc = 0;
2267         int ret;
2268 
2269         BUG_ON(!msg);
2270         if (list_empty(&msg->data))
2271                 return -EIO;
2272 
2273         if (do_datacrc)
2274                 crc = con->in_data_crc;
2275         while (cursor->resid) {
2276                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2277                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2278                 if (ret <= 0) {
2279                         if (do_datacrc)
2280                                 con->in_data_crc = crc;
2281 
2282                         return ret;
2283                 }
2284 
2285                 if (do_datacrc)
2286                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2287                 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2288         }
2289         if (do_datacrc)
2290                 con->in_data_crc = crc;
2291 
2292         return 1;       /* must return > 0 to indicate success */
2293 }
2294 
2295 /*
2296  * read (part of) a message.
2297  */
2298 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2299 
2300 static int read_partial_message(struct ceph_connection *con)
2301 {
2302         struct ceph_msg *m = con->in_msg;
2303         int size;
2304         int end;
2305         int ret;
2306         unsigned int front_len, middle_len, data_len;
2307         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2308         bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2309         u64 seq;
2310         u32 crc;
2311 
2312         dout("read_partial_message con %p msg %p\n", con, m);
2313 
2314         /* header */
2315         size = sizeof (con->in_hdr);
2316         end = size;
2317         ret = read_partial(con, end, size, &con->in_hdr);
2318         if (ret <= 0)
2319                 return ret;
2320 
2321         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2322         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2323                 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2324                        crc, con->in_hdr.crc);
2325                 return -EBADMSG;
2326         }
2327 
2328         front_len = le32_to_cpu(con->in_hdr.front_len);
2329         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2330                 return -EIO;
2331         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2332         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2333                 return -EIO;
2334         data_len = le32_to_cpu(con->in_hdr.data_len);
2335         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2336                 return -EIO;
2337 
2338         /* verify seq# */
2339         seq = le64_to_cpu(con->in_hdr.seq);
2340         if ((s64)seq - (s64)con->in_seq < 1) {
2341                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2342                         ENTITY_NAME(con->peer_name),
2343                         ceph_pr_addr(&con->peer_addr.in_addr),
2344                         seq, con->in_seq + 1);
2345                 con->in_base_pos = -front_len - middle_len - data_len -
2346                         sizeof_footer(con);
2347                 con->in_tag = CEPH_MSGR_TAG_READY;
2348                 return 1;
2349         } else if ((s64)seq - (s64)con->in_seq > 1) {
2350                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2351                        seq, con->in_seq + 1);
2352                 con->error_msg = "bad message sequence # for incoming message";
2353                 return -EBADE;
2354         }
2355 
2356         /* allocate message? */
2357         if (!con->in_msg) {
2358                 int skip = 0;
2359 
2360                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2361                      front_len, data_len);
2362                 ret = ceph_con_in_msg_alloc(con, &skip);
2363                 if (ret < 0)
2364                         return ret;
2365 
2366                 BUG_ON(!con->in_msg ^ skip);
2367                 if (skip) {
2368                         /* skip this message */
2369                         dout("alloc_msg said skip message\n");
2370                         con->in_base_pos = -front_len - middle_len - data_len -
2371                                 sizeof_footer(con);
2372                         con->in_tag = CEPH_MSGR_TAG_READY;
2373                         con->in_seq++;
2374                         return 1;
2375                 }
2376 
2377                 BUG_ON(!con->in_msg);
2378                 BUG_ON(con->in_msg->con != con);
2379                 m = con->in_msg;
2380                 m->front.iov_len = 0;    /* haven't read it yet */
2381                 if (m->middle)
2382                         m->middle->vec.iov_len = 0;
2383 
2384                 /* prepare for data payload, if any */
2385 
2386                 if (data_len)
2387                         prepare_message_data(con->in_msg, data_len);
2388         }
2389 
2390         /* front */
2391         ret = read_partial_message_section(con, &m->front, front_len,
2392                                            &con->in_front_crc);
2393         if (ret <= 0)
2394                 return ret;
2395 
2396         /* middle */
2397         if (m->middle) {
2398                 ret = read_partial_message_section(con, &m->middle->vec,
2399                                                    middle_len,
2400                                                    &con->in_middle_crc);
2401                 if (ret <= 0)
2402                         return ret;
2403         }
2404 
2405         /* (page) data */
2406         if (data_len) {
2407                 ret = read_partial_msg_data(con);
2408                 if (ret <= 0)
2409                         return ret;
2410         }
2411 
2412         /* footer */
2413         size = sizeof_footer(con);
2414         end += size;
2415         ret = read_partial(con, end, size, &m->footer);
2416         if (ret <= 0)
2417                 return ret;
2418 
2419         if (!need_sign) {
2420                 m->footer.flags = m->old_footer.flags;
2421                 m->footer.sig = 0;
2422         }
2423 
2424         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2425              m, front_len, m->footer.front_crc, middle_len,
2426              m->footer.middle_crc, data_len, m->footer.data_crc);
2427 
2428         /* crc ok? */
2429         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2430                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2431                        m, con->in_front_crc, m->footer.front_crc);
2432                 return -EBADMSG;
2433         }
2434         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2435                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2436                        m, con->in_middle_crc, m->footer.middle_crc);
2437                 return -EBADMSG;
2438         }
2439         if (do_datacrc &&
2440             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2441             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2442                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2443                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2444                 return -EBADMSG;
2445         }
2446 
2447         if (need_sign && con->ops->check_message_signature &&
2448             con->ops->check_message_signature(m)) {
2449                 pr_err("read_partial_message %p signature check failed\n", m);
2450                 return -EBADMSG;
2451         }
2452 
2453         return 1; /* done! */
2454 }
2455 
2456 /*
2457  * Process message.  This happens in the worker thread.  The callback should
2458  * be careful not to do anything that waits on other incoming messages or it
2459  * may deadlock.
2460  */
2461 static void process_message(struct ceph_connection *con)
2462 {
2463         struct ceph_msg *msg = con->in_msg;
2464 
2465         BUG_ON(con->in_msg->con != con);
2466         con->in_msg = NULL;
2467 
2468         /* if first message, set peer_name */
2469         if (con->peer_name.type == 0)
2470                 con->peer_name = msg->hdr.src;
2471 
2472         con->in_seq++;
2473         mutex_unlock(&con->mutex);
2474 
2475         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2476              msg, le64_to_cpu(msg->hdr.seq),
2477              ENTITY_NAME(msg->hdr.src),
2478              le16_to_cpu(msg->hdr.type),
2479              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2480              le32_to_cpu(msg->hdr.front_len),
2481              le32_to_cpu(msg->hdr.data_len),
2482              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2483         con->ops->dispatch(con, msg);
2484 
2485         mutex_lock(&con->mutex);
2486 }
2487 
2488 static int read_keepalive_ack(struct ceph_connection *con)
2489 {
2490         struct ceph_timespec ceph_ts;
2491         size_t size = sizeof(ceph_ts);
2492         int ret = read_partial(con, size, size, &ceph_ts);
2493         if (ret <= 0)
2494                 return ret;
2495         ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2496         prepare_read_tag(con);
2497         return 1;
2498 }
2499 
2500 /*
2501  * Write something to the socket.  Called in a worker thread when the
2502  * socket appears to be writeable and we have something ready to send.
2503  */
2504 static int try_write(struct ceph_connection *con)
2505 {
2506         int ret = 1;
2507 
2508         dout("try_write start %p state %lu\n", con, con->state);
2509 
2510 more:
2511         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2512 
2513         /* open the socket first? */
2514         if (con->state == CON_STATE_PREOPEN) {
2515                 BUG_ON(con->sock);
2516                 con->state = CON_STATE_CONNECTING;
2517 
2518                 con_out_kvec_reset(con);
2519                 prepare_write_banner(con);
2520                 prepare_read_banner(con);
2521 
2522                 BUG_ON(con->in_msg);
2523                 con->in_tag = CEPH_MSGR_TAG_READY;
2524                 dout("try_write initiating connect on %p new state %lu\n",
2525                      con, con->state);
2526                 ret = ceph_tcp_connect(con);
2527                 if (ret < 0) {
2528                         con->error_msg = "connect error";
2529                         goto out;
2530                 }
2531         }
2532 
2533 more_kvec:
2534         /* kvec data queued? */
2535         if (con->out_kvec_left) {
2536                 ret = write_partial_kvec(con);
2537                 if (ret <= 0)
2538                         goto out;
2539         }
2540         if (con->out_skip) {
2541                 ret = write_partial_skip(con);
2542                 if (ret <= 0)
2543                         goto out;
2544         }
2545 
2546         /* msg pages? */
2547         if (con->out_msg) {
2548                 if (con->out_msg_done) {
2549                         ceph_msg_put(con->out_msg);
2550                         con->out_msg = NULL;   /* we're done with this one */
2551                         goto do_next;
2552                 }
2553 
2554                 ret = write_partial_message_data(con);
2555                 if (ret == 1)
2556                         goto more_kvec;  /* we need to send the footer, too! */
2557                 if (ret == 0)
2558                         goto out;
2559                 if (ret < 0) {
2560                         dout("try_write write_partial_message_data err %d\n",
2561                              ret);
2562                         goto out;
2563                 }
2564         }
2565 
2566 do_next:
2567         if (con->state == CON_STATE_OPEN) {
2568                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2569                         prepare_write_keepalive(con);
2570                         goto more;
2571                 }
2572                 /* is anything else pending? */
2573                 if (!list_empty(&con->out_queue)) {
2574                         prepare_write_message(con);
2575                         goto more;
2576                 }
2577                 if (con->in_seq > con->in_seq_acked) {
2578                         prepare_write_ack(con);
2579                         goto more;
2580                 }
2581         }
2582 
2583         /* Nothing to do! */
2584         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2585         dout("try_write nothing else to write.\n");
2586         ret = 0;
2587 out:
2588         dout("try_write done on %p ret %d\n", con, ret);
2589         return ret;
2590 }
2591 
2592 
2593 
2594 /*
2595  * Read what we can from the socket.
2596  */
2597 static int try_read(struct ceph_connection *con)
2598 {
2599         int ret = -1;
2600 
2601 more:
2602         dout("try_read start on %p state %lu\n", con, con->state);
2603         if (con->state != CON_STATE_CONNECTING &&
2604             con->state != CON_STATE_NEGOTIATING &&
2605             con->state != CON_STATE_OPEN)
2606                 return 0;
2607 
2608         BUG_ON(!con->sock);
2609 
2610         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2611              con->in_base_pos);
2612 
2613         if (con->state == CON_STATE_CONNECTING) {
2614                 dout("try_read connecting\n");
2615                 ret = read_partial_banner(con);
2616                 if (ret <= 0)
2617                         goto out;
2618                 ret = process_banner(con);
2619                 if (ret < 0)
2620                         goto out;
2621 
2622                 con->state = CON_STATE_NEGOTIATING;
2623 
2624                 /*
2625                  * Received banner is good, exchange connection info.
2626                  * Do not reset out_kvec, as sending our banner raced
2627                  * with receiving peer banner after connect completed.
2628                  */
2629                 ret = prepare_write_connect(con);
2630                 if (ret < 0)
2631                         goto out;
2632                 prepare_read_connect(con);
2633 
2634                 /* Send connection info before awaiting response */
2635                 goto out;
2636         }
2637 
2638         if (con->state == CON_STATE_NEGOTIATING) {
2639                 dout("try_read negotiating\n");
2640                 ret = read_partial_connect(con);
2641                 if (ret <= 0)
2642                         goto out;
2643                 ret = process_connect(con);
2644                 if (ret < 0)
2645                         goto out;
2646                 goto more;
2647         }
2648 
2649         WARN_ON(con->state != CON_STATE_OPEN);
2650 
2651         if (con->in_base_pos < 0) {
2652                 /*
2653                  * skipping + discarding content.
2654                  *
2655                  * FIXME: there must be a better way to do this!
2656                  */
2657                 static char buf[SKIP_BUF_SIZE];
2658                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2659 
2660                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2661                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2662                 if (ret <= 0)
2663                         goto out;
2664                 con->in_base_pos += ret;
2665                 if (con->in_base_pos)
2666                         goto more;
2667         }
2668         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2669                 /*
2670                  * what's next?
2671                  */
2672                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2673                 if (ret <= 0)
2674                         goto out;
2675                 dout("try_read got tag %d\n", (int)con->in_tag);
2676                 switch (con->in_tag) {
2677                 case CEPH_MSGR_TAG_MSG:
2678                         prepare_read_message(con);
2679                         break;
2680                 case CEPH_MSGR_TAG_ACK:
2681                         prepare_read_ack(con);
2682                         break;
2683                 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2684                         prepare_read_keepalive_ack(con);
2685                         break;
2686                 case CEPH_MSGR_TAG_CLOSE:
2687                         con_close_socket(con);
2688                         con->state = CON_STATE_CLOSED;
2689                         goto out;
2690                 default:
2691                         goto bad_tag;
2692                 }
2693         }
2694         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2695                 ret = read_partial_message(con);
2696                 if (ret <= 0) {
2697                         switch (ret) {
2698                         case -EBADMSG:
2699                                 con->error_msg = "bad crc/signature";
2700                                 /* fall through */
2701                         case -EBADE:
2702                                 ret = -EIO;
2703                                 break;
2704                         case -EIO:
2705                                 con->error_msg = "io error";
2706                                 break;
2707                         }
2708                         goto out;
2709                 }
2710                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2711                         goto more;
2712                 process_message(con);
2713                 if (con->state == CON_STATE_OPEN)
2714                         prepare_read_tag(con);
2715                 goto more;
2716         }
2717         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2718             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2719                 /*
2720                  * the final handshake seq exchange is semantically
2721                  * equivalent to an ACK
2722                  */
2723                 ret = read_partial_ack(con);
2724                 if (ret <= 0)
2725                         goto out;
2726                 process_ack(con);
2727                 goto more;
2728         }
2729         if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2730                 ret = read_keepalive_ack(con);
2731                 if (ret <= 0)
2732                         goto out;
2733                 goto more;
2734         }
2735 
2736 out:
2737         dout("try_read done on %p ret %d\n", con, ret);
2738         return ret;
2739 
2740 bad_tag:
2741         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2742         con->error_msg = "protocol error, garbage tag";
2743         ret = -1;
2744         goto out;
2745 }
2746 
2747 
2748 /*
2749  * Atomically queue work on a connection after the specified delay.
2750  * Bump @con reference to avoid races with connection teardown.
2751  * Returns 0 if work was queued, or an error code otherwise.
2752  */
2753 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2754 {
2755         if (!con->ops->get(con)) {
2756                 dout("%s %p ref count 0\n", __func__, con);
2757                 return -ENOENT;
2758         }
2759 
2760         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2761                 dout("%s %p - already queued\n", __func__, con);
2762                 con->ops->put(con);
2763                 return -EBUSY;
2764         }
2765 
2766         dout("%s %p %lu\n", __func__, con, delay);
2767         return 0;
2768 }
2769 
2770 static void queue_con(struct ceph_connection *con)
2771 {
2772         (void) queue_con_delay(con, 0);
2773 }
2774 
2775 static void cancel_con(struct ceph_connection *con)
2776 {
2777         if (cancel_delayed_work(&con->work)) {
2778                 dout("%s %p\n", __func__, con);
2779                 con->ops->put(con);
2780         }
2781 }
2782 
2783 static bool con_sock_closed(struct ceph_connection *con)
2784 {
2785         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2786                 return false;
2787 
2788 #define CASE(x)                                                         \
2789         case CON_STATE_ ## x:                                           \
2790                 con->error_msg = "socket closed (con state " #x ")";    \
2791                 break;
2792 
2793         switch (con->state) {
2794         CASE(CLOSED);
2795         CASE(PREOPEN);
2796         CASE(CONNECTING);
2797         CASE(NEGOTIATING);
2798         CASE(OPEN);
2799         CASE(STANDBY);
2800         default:
2801                 pr_warn("%s con %p unrecognized state %lu\n",
2802                         __func__, con, con->state);
2803                 con->error_msg = "unrecognized con state";
2804                 BUG();
2805                 break;
2806         }
2807 #undef CASE
2808 
2809         return true;
2810 }
2811 
2812 static bool con_backoff(struct ceph_connection *con)
2813 {
2814         int ret;
2815 
2816         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2817                 return false;
2818 
2819         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2820         if (ret) {
2821                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2822                         con, con->delay);
2823                 BUG_ON(ret == -ENOENT);
2824                 con_flag_set(con, CON_FLAG_BACKOFF);
2825         }
2826 
2827         return true;
2828 }
2829 
2830 /* Finish fault handling; con->mutex must *not* be held here */
2831 
2832 static void con_fault_finish(struct ceph_connection *con)
2833 {
2834         dout("%s %p\n", __func__, con);
2835 
2836         /*
2837          * in case we faulted due to authentication, invalidate our
2838          * current tickets so that we can get new ones.
2839          */
2840         if (con->auth_retry) {
2841                 dout("auth_retry %d, invalidating\n", con->auth_retry);
2842                 if (con->ops->invalidate_authorizer)
2843                         con->ops->invalidate_authorizer(con);
2844                 con->auth_retry = 0;
2845         }
2846 
2847         if (con->ops->fault)
2848                 con->ops->fault(con);
2849 }
2850 
2851 /*
2852  * Do some work on a connection.  Drop a connection ref when we're done.
2853  */
2854 static void ceph_con_workfn(struct work_struct *work)
2855 {
2856         struct ceph_connection *con = container_of(work, struct ceph_connection,
2857                                                    work.work);
2858         bool fault;
2859 
2860         mutex_lock(&con->mutex);
2861         while (true) {
2862                 int ret;
2863 
2864                 if ((fault = con_sock_closed(con))) {
2865                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2866                         break;
2867                 }
2868                 if (con_backoff(con)) {
2869                         dout("%s: con %p BACKOFF\n", __func__, con);
2870                         break;
2871                 }
2872                 if (con->state == CON_STATE_STANDBY) {
2873                         dout("%s: con %p STANDBY\n", __func__, con);
2874                         break;
2875                 }
2876                 if (con->state == CON_STATE_CLOSED) {
2877                         dout("%s: con %p CLOSED\n", __func__, con);
2878                         BUG_ON(con->sock);
2879                         break;
2880                 }
2881                 if (con->state == CON_STATE_PREOPEN) {
2882                         dout("%s: con %p PREOPEN\n", __func__, con);
2883                         BUG_ON(con->sock);
2884                 }
2885 
2886                 ret = try_read(con);
2887                 if (ret < 0) {
2888                         if (ret == -EAGAIN)
2889                                 continue;
2890                         if (!con->error_msg)
2891                                 con->error_msg = "socket error on read";
2892                         fault = true;
2893                         break;
2894                 }
2895 
2896                 ret = try_write(con);
2897                 if (ret < 0) {
2898                         if (ret == -EAGAIN)
2899                                 continue;
2900                         if (!con->error_msg)
2901                                 con->error_msg = "socket error on write";
2902                         fault = true;
2903                 }
2904 
2905                 break;  /* If we make it to here, we're done */
2906         }
2907         if (fault)
2908                 con_fault(con);
2909         mutex_unlock(&con->mutex);
2910 
2911         if (fault)
2912                 con_fault_finish(con);
2913 
2914         con->ops->put(con);
2915 }
2916 
2917 /*
2918  * Generic error/fault handler.  A retry mechanism is used with
2919  * exponential backoff
2920  */
2921 static void con_fault(struct ceph_connection *con)
2922 {
2923         dout("fault %p state %lu to peer %s\n",
2924              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2925 
2926         pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2927                 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2928         con->error_msg = NULL;
2929 
2930         WARN_ON(con->state != CON_STATE_CONNECTING &&
2931                con->state != CON_STATE_NEGOTIATING &&
2932                con->state != CON_STATE_OPEN);
2933 
2934         con_close_socket(con);
2935 
2936         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2937                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2938                 con->state = CON_STATE_CLOSED;
2939                 return;
2940         }
2941 
2942         if (con->in_msg) {
2943                 BUG_ON(con->in_msg->con != con);
2944                 ceph_msg_put(con->in_msg);
2945                 con->in_msg = NULL;
2946         }
2947 
2948         /* Requeue anything that hasn't been acked */
2949         list_splice_init(&con->out_sent, &con->out_queue);
2950 
2951         /* If there are no messages queued or keepalive pending, place
2952          * the connection in a STANDBY state */
2953         if (list_empty(&con->out_queue) &&
2954             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2955                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2956                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2957                 con->state = CON_STATE_STANDBY;
2958         } else {
2959                 /* retry after a delay. */
2960                 con->state = CON_STATE_PREOPEN;
2961                 if (con->delay == 0)
2962                         con->delay = BASE_DELAY_INTERVAL;
2963                 else if (con->delay < MAX_DELAY_INTERVAL)
2964                         con->delay *= 2;
2965                 con_flag_set(con, CON_FLAG_BACKOFF);
2966                 queue_con(con);
2967         }
2968 }
2969 
2970 
2971 
2972 /*
2973  * initialize a new messenger instance
2974  */
2975 void ceph_messenger_init(struct ceph_messenger *msgr,
2976                          struct ceph_entity_addr *myaddr)
2977 {
2978         spin_lock_init(&msgr->global_seq_lock);
2979 
2980         if (myaddr)
2981                 msgr->inst.addr = *myaddr;
2982 
2983         /* select a random nonce */
2984         msgr->inst.addr.type = 0;
2985         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2986         encode_my_addr(msgr);
2987 
2988         atomic_set(&msgr->stopping, 0);
2989         write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2990 
2991         dout("%s %p\n", __func__, msgr);
2992 }
2993 EXPORT_SYMBOL(ceph_messenger_init);
2994 
2995 void ceph_messenger_fini(struct ceph_messenger *msgr)
2996 {
2997         put_net(read_pnet(&msgr->net));
2998 }
2999 EXPORT_SYMBOL(ceph_messenger_fini);
3000 
3001 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3002 {
3003         if (msg->con)
3004                 msg->con->ops->put(msg->con);
3005 
3006         msg->con = con ? con->ops->get(con) : NULL;
3007         BUG_ON(msg->con != con);
3008 }
3009 
3010 static void clear_standby(struct ceph_connection *con)
3011 {
3012         /* come back from STANDBY? */
3013         if (con->state == CON_STATE_STANDBY) {
3014                 dout("clear_standby %p and ++connect_seq\n", con);
3015                 con->state = CON_STATE_PREOPEN;
3016                 con->connect_seq++;
3017                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3018                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3019         }
3020 }
3021 
3022 /*
3023  * Queue up an outgoing message on the given connection.
3024  */
3025 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3026 {
3027         /* set src+dst */
3028         msg->hdr.src = con->msgr->inst.name;
3029         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3030         msg->needs_out_seq = true;
3031 
3032         mutex_lock(&con->mutex);
3033 
3034         if (con->state == CON_STATE_CLOSED) {
3035                 dout("con_send %p closed, dropping %p\n", con, msg);
3036                 ceph_msg_put(msg);
3037                 mutex_unlock(&con->mutex);
3038                 return;
3039         }
3040 
3041         msg_con_set(msg, con);
3042 
3043         BUG_ON(!list_empty(&msg->list_head));
3044         list_add_tail(&msg->list_head, &con->out_queue);
3045         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3046              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3047              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3048              le32_to_cpu(msg->hdr.front_len),
3049              le32_to_cpu(msg->hdr.middle_len),
3050              le32_to_cpu(msg->hdr.data_len));
3051 
3052         clear_standby(con);
3053         mutex_unlock(&con->mutex);
3054 
3055         /* if there wasn't anything waiting to send before, queue
3056          * new work */
3057         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3058                 queue_con(con);
3059 }
3060 EXPORT_SYMBOL(ceph_con_send);
3061 
3062 /*
3063  * Revoke a message that was previously queued for send
3064  */
3065 void ceph_msg_revoke(struct ceph_msg *msg)
3066 {
3067         struct ceph_connection *con = msg->con;
3068 
3069         if (!con) {
3070                 dout("%s msg %p null con\n", __func__, msg);
3071                 return;         /* Message not in our possession */
3072         }
3073 
3074         mutex_lock(&con->mutex);
3075         if (!list_empty(&msg->list_head)) {
3076                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3077                 list_del_init(&msg->list_head);
3078                 msg->hdr.seq = 0;
3079 
3080                 ceph_msg_put(msg);
3081         }
3082         if (con->out_msg == msg) {
3083                 BUG_ON(con->out_skip);
3084                 /* footer */
3085                 if (con->out_msg_done) {
3086                         con->out_skip += con_out_kvec_skip(con);
3087                 } else {
3088                         BUG_ON(!msg->data_length);
3089                         con->out_skip += sizeof_footer(con);
3090                 }
3091                 /* data, middle, front */
3092                 if (msg->data_length)
3093                         con->out_skip += msg->cursor.total_resid;
3094                 if (msg->middle)
3095                         con->out_skip += con_out_kvec_skip(con);
3096                 con->out_skip += con_out_kvec_skip(con);
3097 
3098                 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3099                      __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3100                 msg->hdr.seq = 0;
3101                 con->out_msg = NULL;
3102                 ceph_msg_put(msg);
3103         }
3104 
3105         mutex_unlock(&con->mutex);
3106 }
3107 
3108 /*
3109  * Revoke a message that we may be reading data into
3110  */
3111 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3112 {
3113         struct ceph_connection *con = msg->con;
3114 
3115         if (!con) {
3116                 dout("%s msg %p null con\n", __func__, msg);
3117                 return;         /* Message not in our possession */
3118         }
3119 
3120         mutex_lock(&con->mutex);
3121         if (con->in_msg == msg) {
3122                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3123                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3124                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3125 
3126                 /* skip rest of message */
3127                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3128                 con->in_base_pos = con->in_base_pos -
3129                                 sizeof(struct ceph_msg_header) -
3130                                 front_len -
3131                                 middle_len -
3132                                 data_len -
3133                                 sizeof(struct ceph_msg_footer);
3134                 ceph_msg_put(con->in_msg);
3135                 con->in_msg = NULL;
3136                 con->in_tag = CEPH_MSGR_TAG_READY;
3137                 con->in_seq++;
3138         } else {
3139                 dout("%s %p in_msg %p msg %p no-op\n",
3140                      __func__, con, con->in_msg, msg);
3141         }
3142         mutex_unlock(&con->mutex);
3143 }
3144 
3145 /*
3146  * Queue a keepalive byte to ensure the tcp connection is alive.
3147  */
3148 void ceph_con_keepalive(struct ceph_connection *con)
3149 {
3150         dout("con_keepalive %p\n", con);
3151         mutex_lock(&con->mutex);
3152         clear_standby(con);
3153         mutex_unlock(&con->mutex);
3154         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3155             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3156                 queue_con(con);
3157 }
3158 EXPORT_SYMBOL(ceph_con_keepalive);
3159 
3160 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3161                                unsigned long interval)
3162 {
3163         if (interval > 0 &&
3164             (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3165                 struct timespec now = CURRENT_TIME;
3166                 struct timespec ts;
3167                 jiffies_to_timespec(interval, &ts);
3168                 ts = timespec_add(con->last_keepalive_ack, ts);
3169                 return timespec_compare(&now, &ts) >= 0;
3170         }
3171         return false;
3172 }
3173 
3174 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3175 {
3176         struct ceph_msg_data *data;
3177 
3178         if (WARN_ON(!ceph_msg_data_type_valid(type)))
3179                 return NULL;
3180 
3181         data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3182         if (data)
3183                 data->type = type;
3184         INIT_LIST_HEAD(&data->links);
3185 
3186         return data;
3187 }
3188 
3189 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3190 {
3191         if (!data)
3192                 return;
3193 
3194         WARN_ON(!list_empty(&data->links));
3195         if (data->type == CEPH_MSG_DATA_PAGELIST)
3196                 ceph_pagelist_release(data->pagelist);
3197         kmem_cache_free(ceph_msg_data_cache, data);
3198 }
3199 
3200 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3201                 size_t length, size_t alignment)
3202 {
3203         struct ceph_msg_data *data;
3204 
3205         BUG_ON(!pages);
3206         BUG_ON(!length);
3207 
3208         data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3209         BUG_ON(!data);
3210         data->pages = pages;
3211         data->length = length;
3212         data->alignment = alignment & ~PAGE_MASK;
3213 
3214         list_add_tail(&data->links, &msg->data);
3215         msg->data_length += length;
3216 }
3217 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3218 
3219 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3220                                 struct ceph_pagelist *pagelist)
3221 {
3222         struct ceph_msg_data *data;
3223 
3224         BUG_ON(!pagelist);
3225         BUG_ON(!pagelist->length);
3226 
3227         data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3228         BUG_ON(!data);
3229         data->pagelist = pagelist;
3230 
3231         list_add_tail(&data->links, &msg->data);
3232         msg->data_length += pagelist->length;
3233 }
3234 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3235 
3236 #ifdef  CONFIG_BLOCK
3237 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3238                 size_t length)
3239 {
3240         struct ceph_msg_data *data;
3241 
3242         BUG_ON(!bio);
3243 
3244         data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3245         BUG_ON(!data);
3246         data->bio = bio;
3247         data->bio_length = length;
3248 
3249         list_add_tail(&data->links, &msg->data);
3250         msg->data_length += length;
3251 }
3252 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3253 #endif  /* CONFIG_BLOCK */
3254 
3255 /*
3256  * construct a new message with given type, size
3257  * the new msg has a ref count of 1.
3258  */
3259 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3260                               bool can_fail)
3261 {
3262         struct ceph_msg *m;
3263 
3264         m = kmem_cache_zalloc(ceph_msg_cache, flags);
3265         if (m == NULL)
3266                 goto out;
3267 
3268         m->hdr.type = cpu_to_le16(type);
3269         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3270         m->hdr.front_len = cpu_to_le32(front_len);
3271 
3272         INIT_LIST_HEAD(&m->list_head);
3273         kref_init(&m->kref);
3274         INIT_LIST_HEAD(&m->data);
3275 
3276         /* front */
3277         if (front_len) {
3278                 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3279                 if (m->front.iov_base == NULL) {
3280                         dout("ceph_msg_new can't allocate %d bytes\n",
3281                              front_len);
3282                         goto out2;
3283                 }
3284         } else {
3285                 m->front.iov_base = NULL;
3286         }
3287         m->front_alloc_len = m->front.iov_len = front_len;
3288 
3289         dout("ceph_msg_new %p front %d\n", m, front_len);
3290         return m;
3291 
3292 out2:
3293         ceph_msg_put(m);
3294 out:
3295         if (!can_fail) {
3296                 pr_err("msg_new can't create type %d front %d\n", type,
3297                        front_len);
3298                 WARN_ON(1);
3299         } else {
3300                 dout("msg_new can't create type %d front %d\n", type,
3301                      front_len);
3302         }
3303         return NULL;
3304 }
3305 EXPORT_SYMBOL(ceph_msg_new);
3306 
3307 /*
3308  * Allocate "middle" portion of a message, if it is needed and wasn't
3309  * allocated by alloc_msg.  This allows us to read a small fixed-size
3310  * per-type header in the front and then gracefully fail (i.e.,
3311  * propagate the error to the caller based on info in the front) when
3312  * the middle is too large.
3313  */
3314 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3315 {
3316         int type = le16_to_cpu(msg->hdr.type);
3317         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3318 
3319         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3320              ceph_msg_type_name(type), middle_len);
3321         BUG_ON(!middle_len);
3322         BUG_ON(msg->middle);
3323 
3324         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3325         if (!msg->middle)
3326                 return -ENOMEM;
3327         return 0;
3328 }
3329 
3330 /*
3331  * Allocate a message for receiving an incoming message on a
3332  * connection, and save the result in con->in_msg.  Uses the
3333  * connection's private alloc_msg op if available.
3334  *
3335  * Returns 0 on success, or a negative error code.
3336  *
3337  * On success, if we set *skip = 1:
3338  *  - the next message should be skipped and ignored.
3339  *  - con->in_msg == NULL
3340  * or if we set *skip = 0:
3341  *  - con->in_msg is non-null.
3342  * On error (ENOMEM, EAGAIN, ...),
3343  *  - con->in_msg == NULL
3344  */
3345 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3346 {
3347         struct ceph_msg_header *hdr = &con->in_hdr;
3348         int middle_len = le32_to_cpu(hdr->middle_len);
3349         struct ceph_msg *msg;
3350         int ret = 0;
3351 
3352         BUG_ON(con->in_msg != NULL);
3353         BUG_ON(!con->ops->alloc_msg);
3354 
3355         mutex_unlock(&con->mutex);
3356         msg = con->ops->alloc_msg(con, hdr, skip);
3357         mutex_lock(&con->mutex);
3358         if (con->state != CON_STATE_OPEN) {
3359                 if (msg)
3360                         ceph_msg_put(msg);
3361                 return -EAGAIN;
3362         }
3363         if (msg) {
3364                 BUG_ON(*skip);
3365                 msg_con_set(msg, con);
3366                 con->in_msg = msg;
3367         } else {
3368                 /*
3369                  * Null message pointer means either we should skip
3370                  * this message or we couldn't allocate memory.  The
3371                  * former is not an error.
3372                  */
3373                 if (*skip)
3374                         return 0;
3375 
3376                 con->error_msg = "error allocating memory for incoming message";
3377                 return -ENOMEM;
3378         }
3379         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3380 
3381         if (middle_len && !con->in_msg->middle) {
3382                 ret = ceph_alloc_middle(con, con->in_msg);
3383                 if (ret < 0) {
3384                         ceph_msg_put(con->in_msg);
3385                         con->in_msg = NULL;
3386                 }
3387         }
3388 
3389         return ret;
3390 }
3391 
3392 
3393 /*
3394  * Free a generically kmalloc'd message.
3395  */
3396 static void ceph_msg_free(struct ceph_msg *m)
3397 {
3398         dout("%s %p\n", __func__, m);
3399         kvfree(m->front.iov_base);
3400         kmem_cache_free(ceph_msg_cache, m);
3401 }
3402 
3403 static void ceph_msg_release(struct kref *kref)
3404 {
3405         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3406         struct ceph_msg_data *data, *next;
3407 
3408         dout("%s %p\n", __func__, m);
3409         WARN_ON(!list_empty(&m->list_head));
3410 
3411         msg_con_set(m, NULL);
3412 
3413         /* drop middle, data, if any */
3414         if (m->middle) {
3415                 ceph_buffer_put(m->middle);
3416                 m->middle = NULL;
3417         }
3418 
3419         list_for_each_entry_safe(data, next, &m->data, links) {
3420                 list_del_init(&data->links);
3421                 ceph_msg_data_destroy(data);
3422         }
3423         m->data_length = 0;
3424 
3425         if (m->pool)
3426                 ceph_msgpool_put(m->pool, m);
3427         else
3428                 ceph_msg_free(m);
3429 }
3430 
3431 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3432 {
3433         dout("%s %p (was %d)\n", __func__, msg,
3434              atomic_read(&msg->kref.refcount));
3435         kref_get(&msg->kref);
3436         return msg;
3437 }
3438 EXPORT_SYMBOL(ceph_msg_get);
3439 
3440 void ceph_msg_put(struct ceph_msg *msg)
3441 {
3442         dout("%s %p (was %d)\n", __func__, msg,
3443              atomic_read(&msg->kref.refcount));
3444         kref_put(&msg->kref, ceph_msg_release);
3445 }
3446 EXPORT_SYMBOL(ceph_msg_put);
3447 
3448 void ceph_msg_dump(struct ceph_msg *msg)
3449 {
3450         pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3451                  msg->front_alloc_len, msg->data_length);
3452         print_hex_dump(KERN_DEBUG, "header: ",
3453                        DUMP_PREFIX_OFFSET, 16, 1,
3454                        &msg->hdr, sizeof(msg->hdr), true);
3455         print_hex_dump(KERN_DEBUG, " front: ",
3456                        DUMP_PREFIX_OFFSET, 16, 1,
3457                        msg->front.iov_base, msg->front.iov_len, true);
3458         if (msg->middle)
3459                 print_hex_dump(KERN_DEBUG, "middle: ",
3460                                DUMP_PREFIX_OFFSET, 16, 1,
3461                                msg->middle->vec.iov_base,
3462                                msg->middle->vec.iov_len, true);
3463         print_hex_dump(KERN_DEBUG, "footer: ",
3464                        DUMP_PREFIX_OFFSET, 16, 1,
3465                        &msg->footer, sizeof(msg->footer), true);
3466 }
3467 EXPORT_SYMBOL(ceph_msg_dump);
3468 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp