~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/core/dev.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *      NET3    Protocol independent device support routines.
  4  *
  5  *      Derived from the non IP parts of dev.c 1.0.19
  6  *              Authors:        Ross Biro
  7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  9  *
 10  *      Additional Authors:
 11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
 12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
 13  *              David Hinds <dahinds@users.sourceforge.net>
 14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
 15  *              Adam Sulmicki <adam@cfar.umd.edu>
 16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
 17  *
 18  *      Changes:
 19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
 20  *                                      to 2 if register_netdev gets called
 21  *                                      before net_dev_init & also removed a
 22  *                                      few lines of code in the process.
 23  *              Alan Cox        :       device private ioctl copies fields back.
 24  *              Alan Cox        :       Transmit queue code does relevant
 25  *                                      stunts to keep the queue safe.
 26  *              Alan Cox        :       Fixed double lock.
 27  *              Alan Cox        :       Fixed promisc NULL pointer trap
 28  *              ????????        :       Support the full private ioctl range
 29  *              Alan Cox        :       Moved ioctl permission check into
 30  *                                      drivers
 31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
 32  *              Alan Cox        :       100 backlog just doesn't cut it when
 33  *                                      you start doing multicast video 8)
 34  *              Alan Cox        :       Rewrote net_bh and list manager.
 35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
 36  *              Alan Cox        :       Took out transmit every packet pass
 37  *                                      Saved a few bytes in the ioctl handler
 38  *              Alan Cox        :       Network driver sets packet type before
 39  *                                      calling netif_rx. Saves a function
 40  *                                      call a packet.
 41  *              Alan Cox        :       Hashed net_bh()
 42  *              Richard Kooijman:       Timestamp fixes.
 43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
 44  *              Alan Cox        :       Device lock protection.
 45  *              Alan Cox        :       Fixed nasty side effect of device close
 46  *                                      changes.
 47  *              Rudi Cilibrasi  :       Pass the right thing to
 48  *                                      set_mac_address()
 49  *              Dave Miller     :       32bit quantity for the device lock to
 50  *                                      make it work out on a Sparc.
 51  *              Bjorn Ekwall    :       Added KERNELD hack.
 52  *              Alan Cox        :       Cleaned up the backlog initialise.
 53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
 54  *                                      1 device.
 55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
 56  *                                      is no device open function.
 57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
 58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
 59  *              Cyrus Durgin    :       Cleaned for KMOD
 60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
 61  *                                      A network device unload needs to purge
 62  *                                      the backlog queue.
 63  *      Paul Rusty Russell      :       SIOCSIFNAME
 64  *              Pekka Riikonen  :       Netdev boot-time settings code
 65  *              Andrew Morton   :       Make unregister_netdevice wait
 66  *                                      indefinitely on dev->refcnt
 67  *              J Hadi Salim    :       - Backlog queue sampling
 68  *                                      - netif_rx() feedback
 69  */
 70 
 71 #include <linux/uaccess.h>
 72 #include <linux/bitops.h>
 73 #include <linux/capability.h>
 74 #include <linux/cpu.h>
 75 #include <linux/types.h>
 76 #include <linux/kernel.h>
 77 #include <linux/hash.h>
 78 #include <linux/slab.h>
 79 #include <linux/sched.h>
 80 #include <linux/sched/mm.h>
 81 #include <linux/mutex.h>
 82 #include <linux/rwsem.h>
 83 #include <linux/string.h>
 84 #include <linux/mm.h>
 85 #include <linux/socket.h>
 86 #include <linux/sockios.h>
 87 #include <linux/errno.h>
 88 #include <linux/interrupt.h>
 89 #include <linux/if_ether.h>
 90 #include <linux/netdevice.h>
 91 #include <linux/etherdevice.h>
 92 #include <linux/ethtool.h>
 93 #include <linux/skbuff.h>
 94 #include <linux/kthread.h>
 95 #include <linux/bpf.h>
 96 #include <linux/bpf_trace.h>
 97 #include <net/net_namespace.h>
 98 #include <net/sock.h>
 99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258 
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272 
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302 
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314 
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331 
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341 
342         return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357 
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366 
367         __netdev_name_node_alt_destroy(name_node);
368 
369         return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375 
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384 
385         ASSERT_RTNL();
386 
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393 
394         dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403 
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412 
413         dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *      Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475 
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487 
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496 
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561 
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585 
586         spin_lock(&ptype_lock);
587 
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594 
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616 
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640 
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657 
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660 
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666 
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674 
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677 
678         return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690 
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698 
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703 
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707 
708         if (!ctx.dev)
709                 return ret;
710 
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716 
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736 
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757 
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778 
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807 
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831 
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851 
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873 
874         WARN_ON_ONCE(!rcu_read_lock_held());
875 
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878 
879         napi = napi_by_id(napi_id);
880 
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895 
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898 
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904 
905         strcpy(name, dev->name);
906 
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913 
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932 
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937 
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945 
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973 
974         ASSERT_RTNL();
975 
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003 
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035 
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038 
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048 
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053 
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061 
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071 
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077 
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081 
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085 
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099 
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strlcpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106 
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131 
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134 
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strlcpy(dev->name, name, IFNAMSIZ);
1141 
1142         return 0;
1143 }
1144 
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160 
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163 
1164         net = dev_net(dev);
1165 
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181 
1182         down_write(&devnet_rename_sem);
1183 
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188 
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190 
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196 
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199 
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202 
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211 
1212         up_write(&devnet_rename_sem);
1213 
1214         netdev_adjacent_rename_links(dev, oldname);
1215 
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219 
1220         synchronize_rcu();
1221 
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225 
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228 
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244 
1245         return err;
1246 }
1247 
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259 
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262 
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267 
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271 
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276 
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279 
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283 
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297 
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303 
1304         return ret;
1305 }
1306 
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318 
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333 
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340 
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359 
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int napi_threaded_poll(void *data);
1379 
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383 
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395 
1396         return err;
1397 }
1398 
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403 
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406 
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414 
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420 
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425 
1426         set_bit(__LINK_STATE_START, &dev->state);
1427 
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430 
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433 
1434         netpoll_poll_enable(dev);
1435 
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444 
1445         return ret;
1446 }
1447 
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464 
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467 
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471 
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474 
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478 
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482 
1483         ASSERT_RTNL();
1484         might_sleep();
1485 
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489 
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491 
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493 
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502 
1503         dev_deactivate_many(head);
1504 
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507 
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517 
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522 
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526 
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531 
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535 
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540 
1541         __dev_close_many(head);
1542 
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551 
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565 
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572 
1573 
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586 
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589 
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592 
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597 
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610 
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614 
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637 
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644 
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647 
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652 
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657 
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660 
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664 
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675 
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681 
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688 
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694 
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699 
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703 
1704 static int dev_boot_phase = 1;
1705 
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719 
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724 
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738 
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743 
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747 
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752 
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766 
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771 
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778 
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781 
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788 
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794 
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800 
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804 
1805         return 0;
1806 
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811 
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816 
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820 
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824 
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839 
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843 
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850 
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866 
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871 
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878 
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884 
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895 
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901 
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909 
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914 
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920 
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929 
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935 
1936         ASSERT_RTNL();
1937 
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947 
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960 
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967 
1968         ASSERT_RTNL();
1969 
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973 
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982 
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985 
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994 
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000 
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017 
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019 
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022 
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025 
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031 
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038 
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041 
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047 
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054 
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064 
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073 
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078 
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093 
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098 
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113 
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121 
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127 
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133 
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138 
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143 
2144         return ret;
2145 }
2146 
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152 
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176 
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181 
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191 
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199 
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209 
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214 
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219 
2220         return false;
2221 }
2222 
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238 
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245 
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251 
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257 
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263 
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268 
2269                 net_timestamp_set(skb2);
2270 
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276 
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284 
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289 
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304 
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322 
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329 
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333 
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342 
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348 
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354 
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358 
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362 
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369 
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375 
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380 
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384 
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389 
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396 
2397         return true;
2398 }
2399 
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407 
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410 
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415 
2416                 active |= i < 0;
2417         }
2418 
2419         return active;
2420 }
2421 
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429 
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431 
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434 
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441 
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445 
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450 
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457 
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463 
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466 
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469 
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471 
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475 
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480 
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487 
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493 
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498 
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501 
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512 
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517 
2518         return new_map;
2519 }
2520 
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528 
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533 
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539 
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551 
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557 
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565 
2566         mutex_lock(&xps_map_mutex);
2567 
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578 
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581 
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590 
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600 
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604 
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611 
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614 
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617 
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624 
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627 
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633 
2634                         skip_tc = true;
2635 
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639 
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651 
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656 
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662 
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668 
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674 
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679 
2680         old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685 
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692 
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695 
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699 
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705 
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711 
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714 
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721 
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735 
2736         mutex_unlock(&xps_map_mutex);
2737 
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747 
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751 
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774 
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805 
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836 
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840 
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860 
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868 
2869         dev->num_tc = -channel;
2870 
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883 
2884         disabling = txq < dev->real_num_tx_queues;
2885 
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888 
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892 
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897 
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900 
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903                 dev->real_num_tx_queues = txq;
2904 
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915 
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934 
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937 
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940 
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946 
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967 
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971 
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013 
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:        netdev to update
3017  * @segs:       max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025         dev->tso_max_segs = segs;
3026         if (segs < READ_ONCE(dev->gso_max_segs))
3027                 netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030 
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:         netdev to update
3034  * @from:       netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038         netif_set_tso_max_size(to, from->tso_max_size);
3039         netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042 
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051         cpumask_var_t cpus;
3052         int cpu, count = 0;
3053 
3054         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055                 return 1;
3056 
3057         cpumask_copy(cpus, cpu_online_mask);
3058         for_each_cpu(cpu, cpus) {
3059                 ++count;
3060                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061         }
3062         free_cpumask_var(cpus);
3063 
3064         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067 
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070         struct softnet_data *sd;
3071         unsigned long flags;
3072 
3073         local_irq_save(flags);
3074         sd = this_cpu_ptr(&softnet_data);
3075         q->next_sched = NULL;
3076         *sd->output_queue_tailp = q;
3077         sd->output_queue_tailp = &q->next_sched;
3078         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079         local_irq_restore(flags);
3080 }
3081 
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085                 __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088 
3089 struct dev_kfree_skb_cb {
3090         enum skb_free_reason reason;
3091 };
3092 
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095         return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097 
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100         rcu_read_lock();
3101         if (!netif_xmit_stopped(txq)) {
3102                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103 
3104                 __netif_schedule(q);
3105         }
3106         rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109 
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113                 struct Qdisc *q;
3114 
3115                 rcu_read_lock();
3116                 q = rcu_dereference(dev_queue->qdisc);
3117                 __netif_schedule(q);
3118                 rcu_read_unlock();
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122 
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125         unsigned long flags;
3126 
3127         if (unlikely(!skb))
3128                 return;
3129 
3130         if (likely(refcount_read(&skb->users) == 1)) {
3131                 smp_rmb();
3132                 refcount_set(&skb->users, 0);
3133         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134                 return;
3135         }
3136         get_kfree_skb_cb(skb)->reason = reason;
3137         local_irq_save(flags);
3138         skb->next = __this_cpu_read(softnet_data.completion_queue);
3139         __this_cpu_write(softnet_data.completion_queue, skb);
3140         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141         local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144 
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147         if (in_hardirq() || irqs_disabled())
3148                 __dev_kfree_skb_irq(skb, reason);
3149         else
3150                 dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153 
3154 
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164             netif_running(dev)) {
3165                 netif_tx_stop_all_queues(dev);
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169 
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179             netif_running(dev)) {
3180                 netif_tx_wake_all_queues(dev);
3181                 __netdev_watchdog_up(dev);
3182         }
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185 
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191                        const struct net_device *sb_dev,
3192                        struct sk_buff *skb)
3193 {
3194         u32 hash;
3195         u16 qoffset = 0;
3196         u16 qcount = dev->real_num_tx_queues;
3197 
3198         if (dev->num_tc) {
3199                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200 
3201                 qoffset = sb_dev->tc_to_txq[tc].offset;
3202                 qcount = sb_dev->tc_to_txq[tc].count;
3203                 if (unlikely(!qcount)) {
3204                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205                                              sb_dev->name, qoffset, tc);
3206                         qoffset = 0;
3207                         qcount = dev->real_num_tx_queues;
3208                 }
3209         }
3210 
3211         if (skb_rx_queue_recorded(skb)) {
3212                 hash = skb_get_rx_queue(skb);
3213                 if (hash >= qoffset)
3214                         hash -= qoffset;
3215                 while (unlikely(hash >= qcount))
3216                         hash -= qcount;
3217                 return hash + qoffset;
3218         }
3219 
3220         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222 
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225         static const netdev_features_t null_features;
3226         struct net_device *dev = skb->dev;
3227         const char *name = "";
3228 
3229         if (!net_ratelimit())
3230                 return;
3231 
3232         if (dev) {
3233                 if (dev->dev.parent)
3234                         name = dev_driver_string(dev->dev.parent);
3235                 else
3236                         name = netdev_name(dev);
3237         }
3238         skb_dump(KERN_WARNING, skb, false);
3239         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240              name, dev ? &dev->features : &null_features,
3241              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243 
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250         __wsum csum;
3251         int ret = 0, offset;
3252 
3253         if (skb->ip_summed == CHECKSUM_COMPLETE)
3254                 goto out_set_summed;
3255 
3256         if (unlikely(skb_is_gso(skb))) {
3257                 skb_warn_bad_offload(skb);
3258                 return -EINVAL;
3259         }
3260 
3261         /* Before computing a checksum, we should make sure no frag could
3262          * be modified by an external entity : checksum could be wrong.
3263          */
3264         if (skb_has_shared_frag(skb)) {
3265                 ret = __skb_linearize(skb);
3266                 if (ret)
3267                         goto out;
3268         }
3269 
3270         offset = skb_checksum_start_offset(skb);
3271         ret = -EINVAL;
3272         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274                 goto out;
3275         }
3276         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277 
3278         offset += skb->csum_offset;
3279         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281                 goto out;
3282         }
3283         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284         if (ret)
3285                 goto out;
3286 
3287         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289         skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291         return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294 
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297         __le32 crc32c_csum;
3298         int ret = 0, offset, start;
3299 
3300         if (skb->ip_summed != CHECKSUM_PARTIAL)
3301                 goto out;
3302 
3303         if (unlikely(skb_is_gso(skb)))
3304                 goto out;
3305 
3306         /* Before computing a checksum, we should make sure no frag could
3307          * be modified by an external entity : checksum could be wrong.
3308          */
3309         if (unlikely(skb_has_shared_frag(skb))) {
3310                 ret = __skb_linearize(skb);
3311                 if (ret)
3312                         goto out;
3313         }
3314         start = skb_checksum_start_offset(skb);
3315         offset = start + offsetof(struct sctphdr, checksum);
3316         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317                 ret = -EINVAL;
3318                 goto out;
3319         }
3320 
3321         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322         if (ret)
3323                 goto out;
3324 
3325         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326                                                   skb->len - start, ~(__u32)0,
3327                                                   crc32c_csum_stub));
3328         *(__le32 *)(skb->data + offset) = crc32c_csum;
3329         skb->ip_summed = CHECKSUM_NONE;
3330         skb->csum_not_inet = 0;
3331 out:
3332         return ret;
3333 }
3334 
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337         __be16 type = skb->protocol;
3338 
3339         /* Tunnel gso handlers can set protocol to ethernet. */
3340         if (type == htons(ETH_P_TEB)) {
3341                 struct ethhdr *eth;
3342 
3343                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344                         return 0;
3345 
3346                 eth = (struct ethhdr *)skb->data;
3347                 type = eth->h_proto;
3348         }
3349 
3350         return __vlan_get_protocol(skb, type, depth);
3351 }
3352 
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357         if (tx_path)
3358                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3359                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3360 
3361         return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363 
3364 /**
3365  *      __skb_gso_segment - Perform segmentation on skb.
3366  *      @skb: buffer to segment
3367  *      @features: features for the output path (see dev->features)
3368  *      @tx_path: whether it is called in TX path
3369  *
3370  *      This function segments the given skb and returns a list of segments.
3371  *
3372  *      It may return NULL if the skb requires no segmentation.  This is
3373  *      only possible when GSO is used for verifying header integrity.
3374  *
3375  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378                                   netdev_features_t features, bool tx_path)
3379 {
3380         struct sk_buff *segs;
3381 
3382         if (unlikely(skb_needs_check(skb, tx_path))) {
3383                 int err;
3384 
3385                 /* We're going to init ->check field in TCP or UDP header */
3386                 err = skb_cow_head(skb, 0);
3387                 if (err < 0)
3388                         return ERR_PTR(err);
3389         }
3390 
3391         /* Only report GSO partial support if it will enable us to
3392          * support segmentation on this frame without needing additional
3393          * work.
3394          */
3395         if (features & NETIF_F_GSO_PARTIAL) {
3396                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397                 struct net_device *dev = skb->dev;
3398 
3399                 partial_features |= dev->features & dev->gso_partial_features;
3400                 if (!skb_gso_ok(skb, features | partial_features))
3401                         features &= ~NETIF_F_GSO_PARTIAL;
3402         }
3403 
3404         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406 
3407         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408         SKB_GSO_CB(skb)->encap_level = 0;
3409 
3410         skb_reset_mac_header(skb);
3411         skb_reset_mac_len(skb);
3412 
3413         segs = skb_mac_gso_segment(skb, features);
3414 
3415         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416                 skb_warn_bad_offload(skb);
3417 
3418         return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421 
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         netdev_err(dev, "hw csum failure\n");
3427         skb_dump(KERN_ERR, skb, true);
3428         dump_stack();
3429 }
3430 
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437 
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442         int i;
3443 
3444         if (!(dev->features & NETIF_F_HIGHDMA)) {
3445                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447 
3448                         if (PageHighMem(skb_frag_page(frag)))
3449                                 return 1;
3450                 }
3451         }
3452 #endif
3453         return 0;
3454 }
3455 
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461                                            netdev_features_t features,
3462                                            __be16 type)
3463 {
3464         if (eth_p_mpls(type))
3465                 features &= skb->dev->mpls_features;
3466 
3467         return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471                                            netdev_features_t features,
3472                                            __be16 type)
3473 {
3474         return features;
3475 }
3476 #endif
3477 
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479         netdev_features_t features)
3480 {
3481         __be16 type;
3482 
3483         type = skb_network_protocol(skb, NULL);
3484         features = net_mpls_features(skb, features, type);
3485 
3486         if (skb->ip_summed != CHECKSUM_NONE &&
3487             !can_checksum_protocol(features, type)) {
3488                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489         }
3490         if (illegal_highdma(skb->dev, skb))
3491                 features &= ~NETIF_F_SG;
3492 
3493         return features;
3494 }
3495 
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497                                           struct net_device *dev,
3498                                           netdev_features_t features)
3499 {
3500         return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503 
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505                                              struct net_device *dev,
3506                                              netdev_features_t features)
3507 {
3508         return vlan_features_check(skb, features);
3509 }
3510 
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512                                             struct net_device *dev,
3513                                             netdev_features_t features)
3514 {
3515         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516 
3517         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518                 return features & ~NETIF_F_GSO_MASK;
3519 
3520         if (!skb_shinfo(skb)->gso_type) {
3521                 skb_warn_bad_offload(skb);
3522                 return features & ~NETIF_F_GSO_MASK;
3523         }
3524 
3525         /* Support for GSO partial features requires software
3526          * intervention before we can actually process the packets
3527          * so we need to strip support for any partial features now
3528          * and we can pull them back in after we have partially
3529          * segmented the frame.
3530          */
3531         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532                 features &= ~dev->gso_partial_features;
3533 
3534         /* Make sure to clear the IPv4 ID mangling feature if the
3535          * IPv4 header has the potential to be fragmented.
3536          */
3537         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538                 struct iphdr *iph = skb->encapsulation ?
3539                                     inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541                 if (!(iph->frag_off & htons(IP_DF)))
3542                         features &= ~NETIF_F_TSO_MANGLEID;
3543         }
3544 
3545         return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550         struct net_device *dev = skb->dev;
3551         netdev_features_t features = dev->features;
3552 
3553         if (skb_is_gso(skb))
3554                 features = gso_features_check(skb, dev, features);
3555 
3556         /* If encapsulation offload request, verify we are testing
3557          * hardware encapsulation features instead of standard
3558          * features for the netdev
3559          */
3560         if (skb->encapsulation)
3561                 features &= dev->hw_enc_features;
3562 
3563         if (skb_vlan_tagged(skb))
3564                 features = netdev_intersect_features(features,
3565                                                      dev->vlan_features |
3566                                                      NETIF_F_HW_VLAN_CTAG_TX |
3567                                                      NETIF_F_HW_VLAN_STAG_TX);
3568 
3569         if (dev->netdev_ops->ndo_features_check)
3570                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571                                                                 features);
3572         else
3573                 features &= dflt_features_check(skb, dev, features);
3574 
3575         return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580                     struct netdev_queue *txq, bool more)
3581 {
3582         unsigned int len;
3583         int rc;
3584 
3585         if (dev_nit_active(dev))
3586                 dev_queue_xmit_nit(skb, dev);
3587 
3588         len = skb->len;
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593         return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601 
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604 
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611 
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618 
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639 
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642 
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650 
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658 
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663 
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667 
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670 
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682 
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698 
3699         skb = validate_xmit_xfrm(skb, features, again);
3700 
3701         return skb;
3702 
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         dev_core_stats_tx_dropped_inc(dev);
3707         return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713 
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717 
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720 
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724 
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750 
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753 
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758 
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765 
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770 
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774 
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778 
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784 
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790 
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799 
3800         qdisc_calculate_pkt_len(skb, q);
3801 
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812 
3813                                 goto no_lock_out;
3814                         }
3815 
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820 
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824 
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827 
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list_reason(to_free,
3831                                               SKB_DROP_REASON_QDISC_DROP);
3832                 return rc;
3833         }
3834 
3835         /*
3836          * Heuristic to force contended enqueues to serialize on a
3837          * separate lock before trying to get qdisc main lock.
3838          * This permits qdisc->running owner to get the lock more
3839          * often and dequeue packets faster.
3840          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841          * and then other tasks will only enqueue packets. The packets will be
3842          * sent after the qdisc owner is scheduled again. To prevent this
3843          * scenario the task always serialize on the lock.
3844          */
3845         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846         if (unlikely(contended))
3847                 spin_lock(&q->busylock);
3848 
3849         spin_lock(root_lock);
3850         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851                 __qdisc_drop(skb, &to_free);
3852                 rc = NET_XMIT_DROP;
3853         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854                    qdisc_run_begin(q)) {
3855                 /*
3856                  * This is a work-conserving queue; there are no old skbs
3857                  * waiting to be sent out; and the qdisc is not running -
3858                  * xmit the skb directly.
3859                  */
3860 
3861                 qdisc_bstats_update(q, skb);
3862 
3863                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864                         if (unlikely(contended)) {
3865                                 spin_unlock(&q->busylock);
3866                                 contended = false;
3867                         }
3868                         __qdisc_run(q);
3869                 }
3870 
3871                 qdisc_run_end(q);
3872                 rc = NET_XMIT_SUCCESS;
3873         } else {
3874                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875                 if (qdisc_run_begin(q)) {
3876                         if (unlikely(contended)) {
3877                                 spin_unlock(&q->busylock);
3878                                 contended = false;
3879                         }
3880                         __qdisc_run(q);
3881                         qdisc_run_end(q);
3882                 }
3883         }
3884         spin_unlock(root_lock);
3885         if (unlikely(to_free))
3886                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887         if (unlikely(contended))
3888                 spin_unlock(&q->busylock);
3889         return rc;
3890 }
3891 
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895         const struct netprio_map *map;
3896         const struct sock *sk;
3897         unsigned int prioidx;
3898 
3899         if (skb->priority)
3900                 return;
3901         map = rcu_dereference_bh(skb->dev->priomap);
3902         if (!map)
3903                 return;
3904         sk = skb_to_full_sk(skb);
3905         if (!sk)
3906                 return;
3907 
3908         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909 
3910         if (prioidx < map->priomap_len)
3911                 skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916 
3917 /**
3918  *      dev_loopback_xmit - loop back @skb
3919  *      @net: network namespace this loopback is happening in
3920  *      @sk:  sk needed to be a netfilter okfn
3921  *      @skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925         skb_reset_mac_header(skb);
3926         __skb_pull(skb, skb_network_offset(skb));
3927         skb->pkt_type = PACKET_LOOPBACK;
3928         if (skb->ip_summed == CHECKSUM_NONE)
3929                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3930         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931         skb_dst_force(skb);
3932         netif_rx(skb);
3933         return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936 
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943         struct tcf_result cl_res;
3944 
3945         if (!miniq)
3946                 return skb;
3947 
3948         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949         tc_skb_cb(skb)->mru = 0;
3950         tc_skb_cb(skb)->post_ct = false;
3951         mini_qdisc_bstats_cpu_update(miniq, skb);
3952 
3953         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954         case TC_ACT_OK:
3955         case TC_ACT_RECLASSIFY:
3956                 skb->tc_index = TC_H_MIN(cl_res.classid);
3957                 break;
3958         case TC_ACT_SHOT:
3959                 mini_qdisc_qstats_cpu_drop(miniq);
3960                 *ret = NET_XMIT_DROP;
3961                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962                 return NULL;
3963         case TC_ACT_STOLEN:
3964         case TC_ACT_QUEUED:
3965         case TC_ACT_TRAP:
3966                 *ret = NET_XMIT_SUCCESS;
3967                 consume_skb(skb);
3968                 return NULL;
3969         case TC_ACT_REDIRECT:
3970                 /* No need to push/pop skb's mac_header here on egress! */
3971                 skb_do_redirect(skb);
3972                 *ret = NET_XMIT_SUCCESS;
3973                 return NULL;
3974         default:
3975                 break;
3976         }
3977 #endif /* CONFIG_NET_CLS_ACT */
3978 
3979         return skb;
3980 }
3981 
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985         int qm = skb_get_queue_mapping(skb);
3986 
3987         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989 
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994 
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001 
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004                                struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007         struct xps_map *map;
4008         int queue_index = -1;
4009 
4010         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011                 return queue_index;
4012 
4013         tci *= dev_maps->num_tc;
4014         tci += tc;
4015 
4016         map = rcu_dereference(dev_maps->attr_map[tci]);
4017         if (map) {
4018                 if (map->len == 1)
4019                         queue_index = map->queues[0];
4020                 else
4021                         queue_index = map->queues[reciprocal_scale(
4022                                                 skb_get_hash(skb), map->len)];
4023                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4024                         queue_index = -1;
4025         }
4026         return queue_index;
4027 }
4028 #endif
4029 
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031                          struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034         struct xps_dev_maps *dev_maps;
4035         struct sock *sk = skb->sk;
4036         int queue_index = -1;
4037 
4038         if (!static_key_false(&xps_needed))
4039                 return -1;
4040 
4041         rcu_read_lock();
4042         if (!static_key_false(&xps_rxqs_needed))
4043                 goto get_cpus_map;
4044 
4045         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046         if (dev_maps) {
4047                 int tci = sk_rx_queue_get(sk);
4048 
4049                 if (tci >= 0)
4050                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051                                                           tci);
4052         }
4053 
4054 get_cpus_map:
4055         if (queue_index < 0) {
4056                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057                 if (dev_maps) {
4058                         unsigned int tci = skb->sender_cpu - 1;
4059 
4060                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061                                                           tci);
4062                 }
4063         }
4064         rcu_read_unlock();
4065 
4066         return queue_index;
4067 #else
4068         return -1;
4069 #endif
4070 }
4071 
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073                      struct net_device *sb_dev)
4074 {
4075         return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078 
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080                        struct net_device *sb_dev)
4081 {
4082         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085 
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087                      struct net_device *sb_dev)
4088 {
4089         struct sock *sk = skb->sk;
4090         int queue_index = sk_tx_queue_get(sk);
4091 
4092         sb_dev = sb_dev ? : dev;
4093 
4094         if (queue_index < 0 || skb->ooo_okay ||
4095             queue_index >= dev->real_num_tx_queues) {
4096                 int new_index = get_xps_queue(dev, sb_dev, skb);
4097 
4098                 if (new_index < 0)
4099                         new_index = skb_tx_hash(dev, sb_dev, skb);
4100 
4101                 if (queue_index != new_index && sk &&
4102                     sk_fullsock(sk) &&
4103                     rcu_access_pointer(sk->sk_dst_cache))
4104                         sk_tx_queue_set(sk, new_index);
4105 
4106                 queue_index = new_index;
4107         }
4108 
4109         return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112 
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114                                          struct sk_buff *skb,
4115                                          struct net_device *sb_dev)
4116 {
4117         int queue_index = 0;
4118 
4119 #ifdef CONFIG_XPS
4120         u32 sender_cpu = skb->sender_cpu - 1;
4121 
4122         if (sender_cpu >= (u32)NR_CPUS)
4123                 skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125 
4126         if (dev->real_num_tx_queues != 1) {
4127                 const struct net_device_ops *ops = dev->netdev_ops;
4128 
4129                 if (ops->ndo_select_queue)
4130                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131                 else
4132                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133 
4134                 queue_index = netdev_cap_txqueue(dev, queue_index);
4135         }
4136 
4137         skb_set_queue_mapping(skb, queue_index);
4138         return netdev_get_tx_queue(dev, queue_index);
4139 }
4140 
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:        buffer to transmit
4144  * @sb_dev:     suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0                          - buffer successfully transmitted
4159  * * positive qdisc return code - NET_XMIT_DROP etc.
4160  * * negative errno             - other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164         struct net_device *dev = skb->dev;
4165         struct netdev_queue *txq = NULL;
4166         struct Qdisc *q;
4167         int rc = -ENOMEM;
4168         bool again = false;
4169 
4170         skb_reset_mac_header(skb);
4171         skb_assert_len(skb);
4172 
4173         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4174                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4175 
4176         /* Disable soft irqs for various locks below. Also
4177          * stops preemption for RCU.
4178          */
4179         rcu_read_lock_bh();
4180 
4181         skb_update_prio(skb);
4182 
4183         qdisc_pkt_len_init(skb);
4184 #ifdef CONFIG_NET_CLS_ACT
4185         skb->tc_at_ingress = 0;
4186 #endif
4187 #ifdef CONFIG_NET_EGRESS
4188         if (static_branch_unlikely(&egress_needed_key)) {
4189                 if (nf_hook_egress_active()) {
4190                         skb = nf_hook_egress(skb, &rc, dev);
4191                         if (!skb)
4192                                 goto out;
4193                 }
4194 
4195                 netdev_xmit_skip_txqueue(false);
4196 
4197                 nf_skip_egress(skb, true);
4198                 skb = sch_handle_egress(skb, &rc, dev);
4199                 if (!skb)
4200                         goto out;
4201                 nf_skip_egress(skb, false);
4202 
4203                 if (netdev_xmit_txqueue_skipped())
4204                         txq = netdev_tx_queue_mapping(dev, skb);
4205         }
4206 #endif
4207         /* If device/qdisc don't need skb->dst, release it right now while
4208          * its hot in this cpu cache.
4209          */
4210         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211                 skb_dst_drop(skb);
4212         else
4213                 skb_dst_force(skb);
4214 
4215         if (!txq)
4216                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4217 
4218         q = rcu_dereference_bh(txq->qdisc);
4219 
4220         trace_net_dev_queue(skb);
4221         if (q->enqueue) {
4222                 rc = __dev_xmit_skb(skb, q, dev, txq);
4223                 goto out;
4224         }
4225 
4226         /* The device has no queue. Common case for software devices:
4227          * loopback, all the sorts of tunnels...
4228 
4229          * Really, it is unlikely that netif_tx_lock protection is necessary
4230          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4231          * counters.)
4232          * However, it is possible, that they rely on protection
4233          * made by us here.
4234 
4235          * Check this and shot the lock. It is not prone from deadlocks.
4236          *Either shot noqueue qdisc, it is even simpler 8)
4237          */
4238         if (dev->flags & IFF_UP) {
4239                 int cpu = smp_processor_id(); /* ok because BHs are off */
4240 
4241                 /* Other cpus might concurrently change txq->xmit_lock_owner
4242                  * to -1 or to their cpu id, but not to our id.
4243                  */
4244                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4245                         if (dev_xmit_recursion())
4246                                 goto recursion_alert;
4247 
4248                         skb = validate_xmit_skb(skb, dev, &again);
4249                         if (!skb)
4250                                 goto out;
4251 
4252                         HARD_TX_LOCK(dev, txq, cpu);
4253 
4254                         if (!netif_xmit_stopped(txq)) {
4255                                 dev_xmit_recursion_inc();
4256                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4257                                 dev_xmit_recursion_dec();
4258                                 if (dev_xmit_complete(rc)) {
4259                                         HARD_TX_UNLOCK(dev, txq);
4260                                         goto out;
4261                                 }
4262                         }
4263                         HARD_TX_UNLOCK(dev, txq);
4264                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4265                                              dev->name);
4266                 } else {
4267                         /* Recursion is detected! It is possible,
4268                          * unfortunately
4269                          */
4270 recursion_alert:
4271                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4272                                              dev->name);
4273                 }
4274         }
4275 
4276         rc = -ENETDOWN;
4277         rcu_read_unlock_bh();
4278 
4279         dev_core_stats_tx_dropped_inc(dev);
4280         kfree_skb_list(skb);
4281         return rc;
4282 out:
4283         rcu_read_unlock_bh();
4284         return rc;
4285 }
4286 EXPORT_SYMBOL(__dev_queue_xmit);
4287 
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290         struct net_device *dev = skb->dev;
4291         struct sk_buff *orig_skb = skb;
4292         struct netdev_queue *txq;
4293         int ret = NETDEV_TX_BUSY;
4294         bool again = false;
4295 
4296         if (unlikely(!netif_running(dev) ||
4297                      !netif_carrier_ok(dev)))
4298                 goto drop;
4299 
4300         skb = validate_xmit_skb_list(skb, dev, &again);
4301         if (skb != orig_skb)
4302                 goto drop;
4303 
4304         skb_set_queue_mapping(skb, queue_id);
4305         txq = skb_get_tx_queue(dev, skb);
4306 
4307         local_bh_disable();
4308 
4309         dev_xmit_recursion_inc();
4310         HARD_TX_LOCK(dev, txq, smp_processor_id());
4311         if (!netif_xmit_frozen_or_drv_stopped(txq))
4312                 ret = netdev_start_xmit(skb, dev, txq, false);
4313         HARD_TX_UNLOCK(dev, txq);
4314         dev_xmit_recursion_dec();
4315 
4316         local_bh_enable();
4317         return ret;
4318 drop:
4319         dev_core_stats_tx_dropped_inc(dev);
4320         kfree_skb_list(skb);
4321         return NET_XMIT_DROP;
4322 }
4323 EXPORT_SYMBOL(__dev_direct_xmit);
4324 
4325 /*************************************************************************
4326  *                      Receiver routines
4327  *************************************************************************/
4328 
4329 int netdev_max_backlog __read_mostly = 1000;
4330 EXPORT_SYMBOL(netdev_max_backlog);
4331 
4332 int netdev_tstamp_prequeue __read_mostly = 1;
4333 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 
4343 /* Called with irq disabled */
4344 static inline void ____napi_schedule(struct softnet_data *sd,
4345                                      struct napi_struct *napi)
4346 {
4347         struct task_struct *thread;
4348 
4349         lockdep_assert_irqs_disabled();
4350 
4351         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352                 /* Paired with smp_mb__before_atomic() in
4353                  * napi_enable()/dev_set_threaded().
4354                  * Use READ_ONCE() to guarantee a complete
4355                  * read on napi->thread. Only call
4356                  * wake_up_process() when it's not NULL.
4357                  */
4358                 thread = READ_ONCE(napi->thread);
4359                 if (thread) {
4360                         /* Avoid doing set_bit() if the thread is in
4361                          * INTERRUPTIBLE state, cause napi_thread_wait()
4362                          * makes sure to proceed with napi polling
4363                          * if the thread is explicitly woken from here.
4364                          */
4365                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367                         wake_up_process(thread);
4368                         return;
4369                 }
4370         }
4371 
4372         list_add_tail(&napi->poll_list, &sd->poll_list);
4373         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375 
4376 #ifdef CONFIG_RPS
4377 
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383 
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388 
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391             struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393         if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395                 struct netdev_rx_queue *rxqueue;
4396                 struct rps_dev_flow_table *flow_table;
4397                 struct rps_dev_flow *old_rflow;
4398                 u32 flow_id;
4399                 u16 rxq_index;
4400                 int rc;
4401 
4402                 /* Should we steer this flow to a different hardware queue? */
4403                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404                     !(dev->features & NETIF_F_NTUPLE))
4405                         goto out;
4406                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407                 if (rxq_index == skb_get_rx_queue(skb))
4408                         goto out;
4409 
4410                 rxqueue = dev->_rx + rxq_index;
4411                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412                 if (!flow_table)
4413                         goto out;
4414                 flow_id = skb_get_hash(skb) & flow_table->mask;
4415                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                                                         rxq_index, flow_id);
4417                 if (rc < 0)
4418                         goto out;
4419                 old_rflow = rflow;
4420                 rflow = &flow_table->flows[flow_id];
4421                 rflow->filter = rc;
4422                 if (old_rflow->filter == rflow->filter)
4423                         old_rflow->filter = RPS_NO_FILTER;
4424         out:
4425 #endif
4426                 rflow->last_qtail =
4427                         per_cpu(softnet_data, next_cpu).input_queue_head;
4428         }
4429 
4430         rflow->cpu = next_cpu;
4431         return rflow;
4432 }
4433 
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                        struct rps_dev_flow **rflowp)
4441 {
4442         const struct rps_sock_flow_table *sock_flow_table;
4443         struct netdev_rx_queue *rxqueue = dev->_rx;
4444         struct rps_dev_flow_table *flow_table;
4445         struct rps_map *map;
4446         int cpu = -1;
4447         u32 tcpu;
4448         u32 hash;
4449 
4450         if (skb_rx_queue_recorded(skb)) {
4451                 u16 index = skb_get_rx_queue(skb);
4452 
4453                 if (unlikely(index >= dev->real_num_rx_queues)) {
4454                         WARN_ONCE(dev->real_num_rx_queues > 1,
4455                                   "%s received packet on queue %u, but number "
4456                                   "of RX queues is %u\n",
4457                                   dev->name, index, dev->real_num_rx_queues);
4458                         goto done;
4459                 }
4460                 rxqueue += index;
4461         }
4462 
4463         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464 
4465         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466         map = rcu_dereference(rxqueue->rps_map);
4467         if (!flow_table && !map)
4468                 goto done;
4469 
4470         skb_reset_network_header(skb);
4471         hash = skb_get_hash(skb);
4472         if (!hash)
4473                 goto done;
4474 
4475         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476         if (flow_table && sock_flow_table) {
4477                 struct rps_dev_flow *rflow;
4478                 u32 next_cpu;
4479                 u32 ident;
4480 
4481                 /* First check into global flow table if there is a match */
4482                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483                 if ((ident ^ hash) & ~rps_cpu_mask)
4484                         goto try_rps;
4485 
4486                 next_cpu = ident & rps_cpu_mask;
4487 
4488                 /* OK, now we know there is a match,
4489                  * we can look at the local (per receive queue) flow table
4490                  */
4491                 rflow = &flow_table->flows[hash & flow_table->mask];
4492                 tcpu = rflow->cpu;
4493 
4494                 /*
4495                  * If the desired CPU (where last recvmsg was done) is
4496                  * different from current CPU (one in the rx-queue flow
4497                  * table entry), switch if one of the following holds:
4498                  *   - Current CPU is unset (>= nr_cpu_ids).
4499                  *   - Current CPU is offline.
4500                  *   - The current CPU's queue tail has advanced beyond the
4501                  *     last packet that was enqueued using this table entry.
4502                  *     This guarantees that all previous packets for the flow
4503                  *     have been dequeued, thus preserving in order delivery.
4504                  */
4505                 if (unlikely(tcpu != next_cpu) &&
4506                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508                       rflow->last_qtail)) >= 0)) {
4509                         tcpu = next_cpu;
4510                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511                 }
4512 
4513                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514                         *rflowp = rflow;
4515                         cpu = tcpu;
4516                         goto done;
4517                 }
4518         }
4519 
4520 try_rps:
4521 
4522         if (map) {
4523                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524                 if (cpu_online(tcpu)) {
4525                         cpu = tcpu;
4526                         goto done;
4527                 }
4528         }
4529 
4530 done:
4531         return cpu;
4532 }
4533 
4534 #ifdef CONFIG_RFS_ACCEL
4535 
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548                          u32 flow_id, u16 filter_id)
4549 {
4550         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551         struct rps_dev_flow_table *flow_table;
4552         struct rps_dev_flow *rflow;
4553         bool expire = true;
4554         unsigned int cpu;
4555 
4556         rcu_read_lock();
4557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558         if (flow_table && flow_id <= flow_table->mask) {
4559                 rflow = &flow_table->flows[flow_id];
4560                 cpu = READ_ONCE(rflow->cpu);
4561                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563                            rflow->last_qtail) <
4564                      (int)(10 * flow_table->mask)))
4565                         expire = false;
4566         }
4567         rcu_read_unlock();
4568         return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571 
4572 #endif /* CONFIG_RFS_ACCEL */
4573 
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577         struct softnet_data *sd = data;
4578 
4579         ____napi_schedule(sd, &sd->backlog);
4580         sd->received_rps++;
4581 }
4582 
4583 #endif /* CONFIG_RPS */
4584 
4585 /* Called from hardirq (IPI) context */
4586 static void trigger_rx_softirq(void *data)
4587 {
4588         struct softnet_data *sd = data;
4589 
4590         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591         smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 }
4593 
4594 /*
4595  * Check if this softnet_data structure is another cpu one
4596  * If yes, queue it to our IPI list and return 1
4597  * If no, return 0
4598  */
4599 static int napi_schedule_rps(struct softnet_data *sd)
4600 {
4601         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602 
4603 #ifdef CONFIG_RPS
4604         if (sd != mysd) {
4605                 sd->rps_ipi_next = mysd->rps_ipi_list;
4606                 mysd->rps_ipi_list = sd;
4607 
4608                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609                 return 1;
4610         }
4611 #endif /* CONFIG_RPS */
4612         __napi_schedule_irqoff(&mysd->backlog);
4613         return 0;
4614 }
4615 
4616 #ifdef CONFIG_NET_FLOW_LIMIT
4617 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618 #endif
4619 
4620 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621 {
4622 #ifdef CONFIG_NET_FLOW_LIMIT
4623         struct sd_flow_limit *fl;
4624         struct softnet_data *sd;
4625         unsigned int old_flow, new_flow;
4626 
4627         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4628                 return false;
4629 
4630         sd = this_cpu_ptr(&softnet_data);
4631 
4632         rcu_read_lock();
4633         fl = rcu_dereference(sd->flow_limit);
4634         if (fl) {
4635                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636                 old_flow = fl->history[fl->history_head];
4637                 fl->history[fl->history_head] = new_flow;
4638 
4639                 fl->history_head++;
4640                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641 
4642                 if (likely(fl->buckets[old_flow]))
4643                         fl->buckets[old_flow]--;
4644 
4645                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646                         fl->count++;
4647                         rcu_read_unlock();
4648                         return true;
4649                 }
4650         }
4651         rcu_read_unlock();
4652 #endif
4653         return false;
4654 }
4655 
4656 /*
4657  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658  * queue (may be a remote CPU queue).
4659  */
4660 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661                               unsigned int *qtail)
4662 {
4663         enum skb_drop_reason reason;
4664         struct softnet_data *sd;
4665         unsigned long flags;
4666         unsigned int qlen;
4667 
4668         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669         sd = &per_cpu(softnet_data, cpu);
4670 
4671         rps_lock_irqsave(sd, &flags);
4672         if (!netif_running(skb->dev))
4673                 goto drop;
4674         qlen = skb_queue_len(&sd->input_pkt_queue);
4675         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4676                 if (qlen) {
4677 enqueue:
4678                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4679                         input_queue_tail_incr_save(sd, qtail);
4680                         rps_unlock_irq_restore(sd, &flags);
4681                         return NET_RX_SUCCESS;
4682                 }
4683 
4684                 /* Schedule NAPI for backlog device
4685                  * We can use non atomic operation since we own the queue lock
4686                  */
4687                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688                         napi_schedule_rps(sd);
4689                 goto enqueue;
4690         }
4691         reason = SKB_DROP_REASON_CPU_BACKLOG;
4692 
4693 drop:
4694         sd->dropped++;
4695         rps_unlock_irq_restore(sd, &flags);
4696 
4697         dev_core_stats_rx_dropped_inc(skb->dev);
4698         kfree_skb_reason(skb, reason);
4699         return NET_RX_DROP;
4700 }
4701 
4702 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703 {
4704         struct net_device *dev = skb->dev;
4705         struct netdev_rx_queue *rxqueue;
4706 
4707         rxqueue = dev->_rx;
4708 
4709         if (skb_rx_queue_recorded(skb)) {
4710                 u16 index = skb_get_rx_queue(skb);
4711 
4712                 if (unlikely(index >= dev->real_num_rx_queues)) {
4713                         WARN_ONCE(dev->real_num_rx_queues > 1,
4714                                   "%s received packet on queue %u, but number "
4715                                   "of RX queues is %u\n",
4716                                   dev->name, index, dev->real_num_rx_queues);
4717 
4718                         return rxqueue; /* Return first rxqueue */
4719                 }
4720                 rxqueue += index;
4721         }
4722         return rxqueue;
4723 }
4724 
4725 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726                              struct bpf_prog *xdp_prog)
4727 {
4728         void *orig_data, *orig_data_end, *hard_start;
4729         struct netdev_rx_queue *rxqueue;
4730         bool orig_bcast, orig_host;
4731         u32 mac_len, frame_sz;
4732         __be16 orig_eth_type;
4733         struct ethhdr *eth;
4734         u32 metalen, act;
4735         int off;
4736 
4737         /* The XDP program wants to see the packet starting at the MAC
4738          * header.
4739          */
4740         mac_len = skb->data - skb_mac_header(skb);
4741         hard_start = skb->data - skb_headroom(skb);
4742 
4743         /* SKB "head" area always have tailroom for skb_shared_info */
4744         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746 
4747         rxqueue = netif_get_rxqueue(skb);
4748         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750                          skb_headlen(skb) + mac_len, true);
4751 
4752         orig_data_end = xdp->data_end;
4753         orig_data = xdp->data;
4754         eth = (struct ethhdr *)xdp->data;
4755         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757         orig_eth_type = eth->h_proto;
4758 
4759         act = bpf_prog_run_xdp(xdp_prog, xdp);
4760 
4761         /* check if bpf_xdp_adjust_head was used */
4762         off = xdp->data - orig_data;
4763         if (off) {
4764                 if (off > 0)
4765                         __skb_pull(skb, off);
4766                 else if (off < 0)
4767                         __skb_push(skb, -off);
4768 
4769                 skb->mac_header += off;
4770                 skb_reset_network_header(skb);
4771         }
4772 
4773         /* check if bpf_xdp_adjust_tail was used */
4774         off = xdp->data_end - orig_data_end;
4775         if (off != 0) {
4776                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777                 skb->len += off; /* positive on grow, negative on shrink */
4778         }
4779 
4780         /* check if XDP changed eth hdr such SKB needs update */
4781         eth = (struct ethhdr *)xdp->data;
4782         if ((orig_eth_type != eth->h_proto) ||
4783             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784                                                   skb->dev->dev_addr)) ||
4785             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786                 __skb_push(skb, ETH_HLEN);
4787                 skb->pkt_type = PACKET_HOST;
4788                 skb->protocol = eth_type_trans(skb, skb->dev);
4789         }
4790 
4791         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792          * before calling us again on redirect path. We do not call do_redirect
4793          * as we leave that up to the caller.
4794          *
4795          * Caller is responsible for managing lifetime of skb (i.e. calling
4796          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797          */
4798         switch (act) {
4799         case XDP_REDIRECT:
4800         case XDP_TX:
4801                 __skb_push(skb, mac_len);
4802                 break;
4803         case XDP_PASS:
4804                 metalen = xdp->data - xdp->data_meta;
4805                 if (metalen)
4806                         skb_metadata_set(skb, metalen);
4807                 break;
4808         }
4809 
4810         return act;
4811 }
4812 
4813 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814                                      struct xdp_buff *xdp,
4815                                      struct bpf_prog *xdp_prog)
4816 {
4817         u32 act = XDP_DROP;
4818 
4819         /* Reinjected packets coming from act_mirred or similar should
4820          * not get XDP generic processing.
4821          */
4822         if (skb_is_redirected(skb))
4823                 return XDP_PASS;
4824 
4825         /* XDP packets must be linear and must have sufficient headroom
4826          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827          * native XDP provides, thus we need to do it here as well.
4828          */
4829         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832                 int troom = skb->tail + skb->data_len - skb->end;
4833 
4834                 /* In case we have to go down the path and also linearize,
4835                  * then lets do the pskb_expand_head() work just once here.
4836                  */
4837                 if (pskb_expand_head(skb,
4838                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840                         goto do_drop;
4841                 if (skb_linearize(skb))
4842                         goto do_drop;
4843         }
4844 
4845         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846         switch (act) {
4847         case XDP_REDIRECT:
4848         case XDP_TX:
4849         case XDP_PASS:
4850                 break;
4851         default:
4852                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853                 fallthrough;
4854         case XDP_ABORTED:
4855                 trace_xdp_exception(skb->dev, xdp_prog, act);
4856                 fallthrough;
4857         case XDP_DROP:
4858         do_drop:
4859                 kfree_skb(skb);
4860                 break;
4861         }
4862 
4863         return act;
4864 }
4865 
4866 /* When doing generic XDP we have to bypass the qdisc layer and the
4867  * network taps in order to match in-driver-XDP behavior. This also means
4868  * that XDP packets are able to starve other packets going through a qdisc,
4869  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4870  * queues, so they do not have this starvation issue.
4871  */
4872 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4873 {
4874         struct net_device *dev = skb->dev;
4875         struct netdev_queue *txq;
4876         bool free_skb = true;
4877         int cpu, rc;
4878 
4879         txq = netdev_core_pick_tx(dev, skb, NULL);
4880         cpu = smp_processor_id();
4881         HARD_TX_LOCK(dev, txq, cpu);
4882         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4883                 rc = netdev_start_xmit(skb, dev, txq, 0);
4884                 if (dev_xmit_complete(rc))
4885                         free_skb = false;
4886         }
4887         HARD_TX_UNLOCK(dev, txq);
4888         if (free_skb) {
4889                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4890                 dev_core_stats_tx_dropped_inc(dev);
4891                 kfree_skb(skb);
4892         }
4893 }
4894 
4895 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4896 
4897 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4898 {
4899         if (xdp_prog) {
4900                 struct xdp_buff xdp;
4901                 u32 act;
4902                 int err;
4903 
4904                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4905                 if (act != XDP_PASS) {
4906                         switch (act) {
4907                         case XDP_REDIRECT:
4908                                 err = xdp_do_generic_redirect(skb->dev, skb,
4909                                                               &xdp, xdp_prog);
4910                                 if (err)
4911                                         goto out_redir;
4912                                 break;
4913                         case XDP_TX:
4914                                 generic_xdp_tx(skb, xdp_prog);
4915                                 break;
4916                         }
4917                         return XDP_DROP;
4918                 }
4919         }
4920         return XDP_PASS;
4921 out_redir:
4922         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4923         return XDP_DROP;
4924 }
4925 EXPORT_SYMBOL_GPL(do_xdp_generic);
4926 
4927 static int netif_rx_internal(struct sk_buff *skb)
4928 {
4929         int ret;
4930 
4931         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4932 
4933         trace_netif_rx(skb);
4934 
4935 #ifdef CONFIG_RPS
4936         if (static_branch_unlikely(&rps_needed)) {
4937                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4938                 int cpu;
4939 
4940                 rcu_read_lock();
4941 
4942                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4943                 if (cpu < 0)
4944                         cpu = smp_processor_id();
4945 
4946                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947 
4948                 rcu_read_unlock();
4949         } else
4950 #endif
4951         {
4952                 unsigned int qtail;
4953 
4954                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4955         }
4956         return ret;
4957 }
4958 
4959 /**
4960  *      __netif_rx      -       Slightly optimized version of netif_rx
4961  *      @skb: buffer to post
4962  *
4963  *      This behaves as netif_rx except that it does not disable bottom halves.
4964  *      As a result this function may only be invoked from the interrupt context
4965  *      (either hard or soft interrupt).
4966  */
4967 int __netif_rx(struct sk_buff *skb)
4968 {
4969         int ret;
4970 
4971         lockdep_assert_once(hardirq_count() | softirq_count());
4972 
4973         trace_netif_rx_entry(skb);
4974         ret = netif_rx_internal(skb);
4975         trace_netif_rx_exit(ret);
4976         return ret;
4977 }
4978 EXPORT_SYMBOL(__netif_rx);
4979 
4980 /**
4981  *      netif_rx        -       post buffer to the network code
4982  *      @skb: buffer to post
4983  *
4984  *      This function receives a packet from a device driver and queues it for
4985  *      the upper (protocol) levels to process via the backlog NAPI device. It
4986  *      always succeeds. The buffer may be dropped during processing for
4987  *      congestion control or by the protocol layers.
4988  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4989  *      driver should use NAPI and GRO.
4990  *      This function can used from interrupt and from process context. The
4991  *      caller from process context must not disable interrupts before invoking
4992  *      this function.
4993  *
4994  *      return values:
4995  *      NET_RX_SUCCESS  (no congestion)
4996  *      NET_RX_DROP     (packet was dropped)
4997  *
4998  */
4999 int netif_rx(struct sk_buff *skb)
5000 {
5001         bool need_bh_off = !(hardirq_count() | softirq_count());
5002         int ret;
5003 
5004         if (need_bh_off)
5005                 local_bh_disable();
5006         trace_netif_rx_entry(skb);
5007         ret = netif_rx_internal(skb);
5008         trace_netif_rx_exit(ret);
5009         if (need_bh_off)
5010                 local_bh_enable();
5011         return ret;
5012 }
5013 EXPORT_SYMBOL(netif_rx);
5014 
5015 static __latent_entropy void net_tx_action(struct softirq_action *h)
5016 {
5017         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5018 
5019         if (sd->completion_queue) {
5020                 struct sk_buff *clist;
5021 
5022                 local_irq_disable();
5023                 clist = sd->completion_queue;
5024                 sd->completion_queue = NULL;
5025                 local_irq_enable();
5026 
5027                 while (clist) {
5028                         struct sk_buff *skb = clist;
5029 
5030                         clist = clist->next;
5031 
5032                         WARN_ON(refcount_read(&skb->users));
5033                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5034                                 trace_consume_skb(skb);
5035                         else
5036                                 trace_kfree_skb(skb, net_tx_action,
5037                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5038 
5039                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5040                                 __kfree_skb(skb);
5041                         else
5042                                 __kfree_skb_defer(skb);
5043                 }
5044         }
5045 
5046         if (sd->output_queue) {
5047                 struct Qdisc *head;
5048 
5049                 local_irq_disable();
5050                 head = sd->output_queue;
5051                 sd->output_queue = NULL;
5052                 sd->output_queue_tailp = &sd->output_queue;
5053                 local_irq_enable();
5054 
5055                 rcu_read_lock();
5056 
5057                 while (head) {
5058                         struct Qdisc *q = head;
5059                         spinlock_t *root_lock = NULL;
5060 
5061                         head = head->next_sched;
5062 
5063                         /* We need to make sure head->next_sched is read
5064                          * before clearing __QDISC_STATE_SCHED
5065                          */
5066                         smp_mb__before_atomic();
5067 
5068                         if (!(q->flags & TCQ_F_NOLOCK)) {
5069                                 root_lock = qdisc_lock(q);
5070                                 spin_lock(root_lock);
5071                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5072                                                      &q->state))) {
5073                                 /* There is a synchronize_net() between
5074                                  * STATE_DEACTIVATED flag being set and
5075                                  * qdisc_reset()/some_qdisc_is_busy() in
5076                                  * dev_deactivate(), so we can safely bail out
5077                                  * early here to avoid data race between
5078                                  * qdisc_deactivate() and some_qdisc_is_busy()
5079                                  * for lockless qdisc.
5080                                  */
5081                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5082                                 continue;
5083                         }
5084 
5085                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5086                         qdisc_run(q);
5087                         if (root_lock)
5088                                 spin_unlock(root_lock);
5089                 }
5090 
5091                 rcu_read_unlock();
5092         }
5093 
5094         xfrm_dev_backlog(sd);
5095 }
5096 
5097 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5098 /* This hook is defined here for ATM LANE */
5099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5100                              unsigned char *addr) __read_mostly;
5101 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5102 #endif
5103 
5104 static inline struct sk_buff *
5105 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5106                    struct net_device *orig_dev, bool *another)
5107 {
5108 #ifdef CONFIG_NET_CLS_ACT
5109         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5110         struct tcf_result cl_res;
5111 
5112         /* If there's at least one ingress present somewhere (so
5113          * we get here via enabled static key), remaining devices
5114          * that are not configured with an ingress qdisc will bail
5115          * out here.
5116          */
5117         if (!miniq)
5118                 return skb;
5119 
5120         if (*pt_prev) {
5121                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5122                 *pt_prev = NULL;
5123         }
5124 
5125         qdisc_skb_cb(skb)->pkt_len = skb->len;
5126         tc_skb_cb(skb)->mru = 0;
5127         tc_skb_cb(skb)->post_ct = false;
5128         skb->tc_at_ingress = 1;
5129         mini_qdisc_bstats_cpu_update(miniq, skb);
5130 
5131         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5132         case TC_ACT_OK:
5133         case TC_ACT_RECLASSIFY:
5134                 skb->tc_index = TC_H_MIN(cl_res.classid);
5135                 break;
5136         case TC_ACT_SHOT:
5137                 mini_qdisc_qstats_cpu_drop(miniq);
5138                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5139                 *ret = NET_RX_DROP;
5140                 return NULL;
5141         case TC_ACT_STOLEN:
5142         case TC_ACT_QUEUED:
5143         case TC_ACT_TRAP:
5144                 consume_skb(skb);
5145                 *ret = NET_RX_SUCCESS;
5146                 return NULL;
5147         case TC_ACT_REDIRECT:
5148                 /* skb_mac_header check was done by cls/act_bpf, so
5149                  * we can safely push the L2 header back before
5150                  * redirecting to another netdev
5151                  */
5152                 __skb_push(skb, skb->mac_len);
5153                 if (skb_do_redirect(skb) == -EAGAIN) {
5154                         __skb_pull(skb, skb->mac_len);
5155                         *another = true;
5156                         break;
5157                 }
5158                 *ret = NET_RX_SUCCESS;
5159                 return NULL;
5160         case TC_ACT_CONSUMED:
5161                 *ret = NET_RX_SUCCESS;
5162                 return NULL;
5163         default:
5164                 break;
5165         }
5166 #endif /* CONFIG_NET_CLS_ACT */
5167         return skb;
5168 }
5169 
5170 /**
5171  *      netdev_is_rx_handler_busy - check if receive handler is registered
5172  *      @dev: device to check
5173  *
5174  *      Check if a receive handler is already registered for a given device.
5175  *      Return true if there one.
5176  *
5177  *      The caller must hold the rtnl_mutex.
5178  */
5179 bool netdev_is_rx_handler_busy(struct net_device *dev)
5180 {
5181         ASSERT_RTNL();
5182         return dev && rtnl_dereference(dev->rx_handler);
5183 }
5184 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5185 
5186 /**
5187  *      netdev_rx_handler_register - register receive handler
5188  *      @dev: device to register a handler for
5189  *      @rx_handler: receive handler to register
5190  *      @rx_handler_data: data pointer that is used by rx handler
5191  *
5192  *      Register a receive handler for a device. This handler will then be
5193  *      called from __netif_receive_skb. A negative errno code is returned
5194  *      on a failure.
5195  *
5196  *      The caller must hold the rtnl_mutex.
5197  *
5198  *      For a general description of rx_handler, see enum rx_handler_result.
5199  */
5200 int netdev_rx_handler_register(struct net_device *dev,
5201                                rx_handler_func_t *rx_handler,
5202                                void *rx_handler_data)
5203 {
5204         if (netdev_is_rx_handler_busy(dev))
5205                 return -EBUSY;
5206 
5207         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5208                 return -EINVAL;
5209 
5210         /* Note: rx_handler_data must be set before rx_handler */
5211         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5212         rcu_assign_pointer(dev->rx_handler, rx_handler);
5213 
5214         return 0;
5215 }
5216 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5217 
5218 /**
5219  *      netdev_rx_handler_unregister - unregister receive handler
5220  *      @dev: device to unregister a handler from
5221  *
5222  *      Unregister a receive handler from a device.
5223  *
5224  *      The caller must hold the rtnl_mutex.
5225  */
5226 void netdev_rx_handler_unregister(struct net_device *dev)
5227 {
5228 
5229         ASSERT_RTNL();
5230         RCU_INIT_POINTER(dev->rx_handler, NULL);
5231         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5232          * section has a guarantee to see a non NULL rx_handler_data
5233          * as well.
5234          */
5235         synchronize_net();
5236         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5237 }
5238 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5239 
5240 /*
5241  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5242  * the special handling of PFMEMALLOC skbs.
5243  */
5244 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5245 {
5246         switch (skb->protocol) {
5247         case htons(ETH_P_ARP):
5248         case htons(ETH_P_IP):
5249         case htons(ETH_P_IPV6):
5250         case htons(ETH_P_8021Q):
5251         case htons(ETH_P_8021AD):
5252                 return true;
5253         default:
5254                 return false;
5255         }
5256 }
5257 
5258 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5259                              int *ret, struct net_device *orig_dev)
5260 {
5261         if (nf_hook_ingress_active(skb)) {
5262                 int ingress_retval;
5263 
5264                 if (*pt_prev) {
5265                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5266                         *pt_prev = NULL;
5267                 }
5268 
5269                 rcu_read_lock();
5270                 ingress_retval = nf_hook_ingress(skb);
5271                 rcu_read_unlock();
5272                 return ingress_retval;
5273         }
5274         return 0;
5275 }
5276 
5277 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5278                                     struct packet_type **ppt_prev)
5279 {
5280         struct packet_type *ptype, *pt_prev;
5281         rx_handler_func_t *rx_handler;
5282         struct sk_buff *skb = *pskb;
5283         struct net_device *orig_dev;
5284         bool deliver_exact = false;
5285         int ret = NET_RX_DROP;
5286         __be16 type;
5287 
5288         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5289 
5290         trace_netif_receive_skb(skb);
5291 
5292         orig_dev = skb->dev;
5293 
5294         skb_reset_network_header(skb);
5295         if (!skb_transport_header_was_set(skb))
5296                 skb_reset_transport_header(skb);
5297         skb_reset_mac_len(skb);
5298 
5299         pt_prev = NULL;
5300 
5301 another_round:
5302         skb->skb_iif = skb->dev->ifindex;
5303 
5304         __this_cpu_inc(softnet_data.processed);
5305 
5306         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5307                 int ret2;
5308 
5309                 migrate_disable();
5310                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5311                 migrate_enable();
5312 
5313                 if (ret2 != XDP_PASS) {
5314                         ret = NET_RX_DROP;
5315                         goto out;
5316                 }
5317         }
5318 
5319         if (eth_type_vlan(skb->protocol)) {
5320                 skb = skb_vlan_untag(skb);
5321                 if (unlikely(!skb))
5322                         goto out;
5323         }
5324 
5325         if (skb_skip_tc_classify(skb))
5326                 goto skip_classify;
5327 
5328         if (pfmemalloc)
5329                 goto skip_taps;
5330 
5331         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5332                 if (pt_prev)
5333                         ret = deliver_skb(skb, pt_prev, orig_dev);
5334                 pt_prev = ptype;
5335         }
5336 
5337         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5338                 if (pt_prev)
5339                         ret = deliver_skb(skb, pt_prev, orig_dev);
5340                 pt_prev = ptype;
5341         }
5342 
5343 skip_taps:
5344 #ifdef CONFIG_NET_INGRESS
5345         if (static_branch_unlikely(&ingress_needed_key)) {
5346                 bool another = false;
5347 
5348                 nf_skip_egress(skb, true);
5349                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5350                                          &another);
5351                 if (another)
5352                         goto another_round;
5353                 if (!skb)
5354                         goto out;
5355 
5356                 nf_skip_egress(skb, false);
5357                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5358                         goto out;
5359         }
5360 #endif
5361         skb_reset_redirect(skb);
5362 skip_classify:
5363         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5364                 goto drop;
5365 
5366         if (skb_vlan_tag_present(skb)) {
5367                 if (pt_prev) {
5368                         ret = deliver_skb(skb, pt_prev, orig_dev);
5369                         pt_prev = NULL;
5370                 }
5371                 if (vlan_do_receive(&skb))
5372                         goto another_round;
5373                 else if (unlikely(!skb))
5374                         goto out;
5375         }
5376 
5377         rx_handler = rcu_dereference(skb->dev->rx_handler);
5378         if (rx_handler) {
5379                 if (pt_prev) {
5380                         ret = deliver_skb(skb, pt_prev, orig_dev);
5381                         pt_prev = NULL;
5382                 }
5383                 switch (rx_handler(&skb)) {
5384                 case RX_HANDLER_CONSUMED:
5385                         ret = NET_RX_SUCCESS;
5386                         goto out;
5387                 case RX_HANDLER_ANOTHER:
5388                         goto another_round;
5389                 case RX_HANDLER_EXACT:
5390                         deliver_exact = true;
5391                         break;
5392                 case RX_HANDLER_PASS:
5393                         break;
5394                 default:
5395                         BUG();
5396                 }
5397         }
5398 
5399         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5400 check_vlan_id:
5401                 if (skb_vlan_tag_get_id(skb)) {
5402                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5403                          * find vlan device.
5404                          */
5405                         skb->pkt_type = PACKET_OTHERHOST;
5406                 } else if (eth_type_vlan(skb->protocol)) {
5407                         /* Outer header is 802.1P with vlan 0, inner header is
5408                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5409                          * not find vlan dev for vlan id 0.
5410                          */
5411                         __vlan_hwaccel_clear_tag(skb);
5412                         skb = skb_vlan_untag(skb);
5413                         if (unlikely(!skb))
5414                                 goto out;
5415                         if (vlan_do_receive(&skb))
5416                                 /* After stripping off 802.1P header with vlan 0
5417                                  * vlan dev is found for inner header.
5418                                  */
5419                                 goto another_round;
5420                         else if (unlikely(!skb))
5421                                 goto out;
5422                         else
5423                                 /* We have stripped outer 802.1P vlan 0 header.
5424                                  * But could not find vlan dev.
5425                                  * check again for vlan id to set OTHERHOST.
5426                                  */
5427                                 goto check_vlan_id;
5428                 }
5429                 /* Note: we might in the future use prio bits
5430                  * and set skb->priority like in vlan_do_receive()
5431                  * For the time being, just ignore Priority Code Point
5432                  */
5433                 __vlan_hwaccel_clear_tag(skb);
5434         }
5435 
5436         type = skb->protocol;
5437 
5438         /* deliver only exact match when indicated */
5439         if (likely(!deliver_exact)) {
5440                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441                                        &ptype_base[ntohs(type) &
5442                                                    PTYPE_HASH_MASK]);
5443         }
5444 
5445         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446                                &orig_dev->ptype_specific);
5447 
5448         if (unlikely(skb->dev != orig_dev)) {
5449                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5450                                        &skb->dev->ptype_specific);
5451         }
5452 
5453         if (pt_prev) {
5454                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5455                         goto drop;
5456                 *ppt_prev = pt_prev;
5457         } else {
5458 drop:
5459                 if (!deliver_exact)
5460                         dev_core_stats_rx_dropped_inc(skb->dev);
5461                 else
5462                         dev_core_stats_rx_nohandler_inc(skb->dev);
5463                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5464                 /* Jamal, now you will not able to escape explaining
5465                  * me how you were going to use this. :-)
5466                  */
5467                 ret = NET_RX_DROP;
5468         }
5469 
5470 out:
5471         /* The invariant here is that if *ppt_prev is not NULL
5472          * then skb should also be non-NULL.
5473          *
5474          * Apparently *ppt_prev assignment above holds this invariant due to
5475          * skb dereferencing near it.
5476          */
5477         *pskb = skb;
5478         return ret;
5479 }
5480 
5481 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5482 {
5483         struct net_device *orig_dev = skb->dev;
5484         struct packet_type *pt_prev = NULL;
5485         int ret;
5486 
5487         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5488         if (pt_prev)
5489                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5490                                          skb->dev, pt_prev, orig_dev);
5491         return ret;
5492 }
5493 
5494 /**
5495  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5496  *      @skb: buffer to process
5497  *
5498  *      More direct receive version of netif_receive_skb().  It should
5499  *      only be used by callers that have a need to skip RPS and Generic XDP.
5500  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5501  *
5502  *      This function may only be called from softirq context and interrupts
5503  *      should be enabled.
5504  *
5505  *      Return values (usually ignored):
5506  *      NET_RX_SUCCESS: no congestion
5507  *      NET_RX_DROP: packet was dropped
5508  */
5509 int netif_receive_skb_core(struct sk_buff *skb)
5510 {
5511         int ret;
5512 
5513         rcu_read_lock();
5514         ret = __netif_receive_skb_one_core(skb, false);
5515         rcu_read_unlock();
5516 
5517         return ret;
5518 }
5519 EXPORT_SYMBOL(netif_receive_skb_core);
5520 
5521 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5522                                                   struct packet_type *pt_prev,
5523                                                   struct net_device *orig_dev)
5524 {
5525         struct sk_buff *skb, *next;
5526 
5527         if (!pt_prev)
5528                 return;
5529         if (list_empty(head))
5530                 return;
5531         if (pt_prev->list_func != NULL)
5532                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5533                                    ip_list_rcv, head, pt_prev, orig_dev);
5534         else
5535                 list_for_each_entry_safe(skb, next, head, list) {
5536                         skb_list_del_init(skb);
5537                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5538                 }
5539 }
5540 
5541 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5542 {
5543         /* Fast-path assumptions:
5544          * - There is no RX handler.
5545          * - Only one packet_type matches.
5546          * If either of these fails, we will end up doing some per-packet
5547          * processing in-line, then handling the 'last ptype' for the whole
5548          * sublist.  This can't cause out-of-order delivery to any single ptype,
5549          * because the 'last ptype' must be constant across the sublist, and all
5550          * other ptypes are handled per-packet.
5551          */
5552         /* Current (common) ptype of sublist */
5553         struct packet_type *pt_curr = NULL;
5554         /* Current (common) orig_dev of sublist */
5555         struct net_device *od_curr = NULL;
5556         struct list_head sublist;
5557         struct sk_buff *skb, *next;
5558 
5559         INIT_LIST_HEAD(&sublist);
5560         list_for_each_entry_safe(skb, next, head, list) {
5561                 struct net_device *orig_dev = skb->dev;
5562                 struct packet_type *pt_prev = NULL;
5563 
5564                 skb_list_del_init(skb);
5565                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5566                 if (!pt_prev)
5567                         continue;
5568                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5569                         /* dispatch old sublist */
5570                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5571                         /* start new sublist */
5572                         INIT_LIST_HEAD(&sublist);
5573                         pt_curr = pt_prev;
5574                         od_curr = orig_dev;
5575                 }
5576                 list_add_tail(&skb->list, &sublist);
5577         }
5578 
5579         /* dispatch final sublist */
5580         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5581 }
5582 
5583 static int __netif_receive_skb(struct sk_buff *skb)
5584 {
5585         int ret;
5586 
5587         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5588                 unsigned int noreclaim_flag;
5589 
5590                 /*
5591                  * PFMEMALLOC skbs are special, they should
5592                  * - be delivered to SOCK_MEMALLOC sockets only
5593                  * - stay away from userspace
5594                  * - have bounded memory usage
5595                  *
5596                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5597                  * context down to all allocation sites.
5598                  */
5599                 noreclaim_flag = memalloc_noreclaim_save();
5600                 ret = __netif_receive_skb_one_core(skb, true);
5601                 memalloc_noreclaim_restore(noreclaim_flag);
5602         } else
5603                 ret = __netif_receive_skb_one_core(skb, false);
5604 
5605         return ret;
5606 }
5607 
5608 static void __netif_receive_skb_list(struct list_head *head)
5609 {
5610         unsigned long noreclaim_flag = 0;
5611         struct sk_buff *skb, *next;
5612         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5613 
5614         list_for_each_entry_safe(skb, next, head, list) {
5615                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5616                         struct list_head sublist;
5617 
5618                         /* Handle the previous sublist */
5619                         list_cut_before(&sublist, head, &skb->list);
5620                         if (!list_empty(&sublist))
5621                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5622                         pfmemalloc = !pfmemalloc;
5623                         /* See comments in __netif_receive_skb */
5624                         if (pfmemalloc)
5625                                 noreclaim_flag = memalloc_noreclaim_save();
5626                         else
5627                                 memalloc_noreclaim_restore(noreclaim_flag);
5628                 }
5629         }
5630         /* Handle the remaining sublist */
5631         if (!list_empty(head))
5632                 __netif_receive_skb_list_core(head, pfmemalloc);
5633         /* Restore pflags */
5634         if (pfmemalloc)
5635                 memalloc_noreclaim_restore(noreclaim_flag);
5636 }
5637 
5638 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5639 {
5640         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5641         struct bpf_prog *new = xdp->prog;
5642         int ret = 0;
5643 
5644         switch (xdp->command) {
5645         case XDP_SETUP_PROG:
5646                 rcu_assign_pointer(dev->xdp_prog, new);
5647                 if (old)
5648                         bpf_prog_put(old);
5649 
5650                 if (old && !new) {
5651                         static_branch_dec(&generic_xdp_needed_key);
5652                 } else if (new && !old) {
5653                         static_branch_inc(&generic_xdp_needed_key);
5654                         dev_disable_lro(dev);
5655                         dev_disable_gro_hw(dev);
5656                 }
5657                 break;
5658 
5659         default:
5660                 ret = -EINVAL;
5661                 break;
5662         }
5663 
5664         return ret;
5665 }
5666 
5667 static int netif_receive_skb_internal(struct sk_buff *skb)
5668 {
5669         int ret;
5670 
5671         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5672 
5673         if (skb_defer_rx_timestamp(skb))
5674                 return NET_RX_SUCCESS;
5675 
5676         rcu_read_lock();
5677 #ifdef CONFIG_RPS
5678         if (static_branch_unlikely(&rps_needed)) {
5679                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5680                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5681 
5682                 if (cpu >= 0) {
5683                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5684                         rcu_read_unlock();
5685                         return ret;
5686                 }
5687         }
5688 #endif
5689         ret = __netif_receive_skb(skb);
5690         rcu_read_unlock();
5691         return ret;
5692 }
5693 
5694 void netif_receive_skb_list_internal(struct list_head *head)
5695 {
5696         struct sk_buff *skb, *next;
5697         struct list_head sublist;
5698 
5699         INIT_LIST_HEAD(&sublist);
5700         list_for_each_entry_safe(skb, next, head, list) {
5701                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5702                 skb_list_del_init(skb);
5703                 if (!skb_defer_rx_timestamp(skb))
5704                         list_add_tail(&skb->list, &sublist);
5705         }
5706         list_splice_init(&sublist, head);
5707 
5708         rcu_read_lock();
5709 #ifdef CONFIG_RPS
5710         if (static_branch_unlikely(&rps_needed)) {
5711                 list_for_each_entry_safe(skb, next, head, list) {
5712                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5713                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5714 
5715                         if (cpu >= 0) {
5716                                 /* Will be handled, remove from list */
5717                                 skb_list_del_init(skb);
5718                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5719                         }
5720                 }
5721         }
5722 #endif
5723         __netif_receive_skb_list(head);
5724         rcu_read_unlock();
5725 }
5726 
5727 /**
5728  *      netif_receive_skb - process receive buffer from network
5729  *      @skb: buffer to process
5730  *
5731  *      netif_receive_skb() is the main receive data processing function.
5732  *      It always succeeds. The buffer may be dropped during processing
5733  *      for congestion control or by the protocol layers.
5734  *
5735  *      This function may only be called from softirq context and interrupts
5736  *      should be enabled.
5737  *
5738  *      Return values (usually ignored):
5739  *      NET_RX_SUCCESS: no congestion
5740  *      NET_RX_DROP: packet was dropped
5741  */
5742 int netif_receive_skb(struct sk_buff *skb)
5743 {
5744         int ret;
5745 
5746         trace_netif_receive_skb_entry(skb);
5747 
5748         ret = netif_receive_skb_internal(skb);
5749         trace_netif_receive_skb_exit(ret);
5750 
5751         return ret;
5752 }
5753 EXPORT_SYMBOL(netif_receive_skb);
5754 
5755 /**
5756  *      netif_receive_skb_list - process many receive buffers from network
5757  *      @head: list of skbs to process.
5758  *
5759  *      Since return value of netif_receive_skb() is normally ignored, and
5760  *      wouldn't be meaningful for a list, this function returns void.
5761  *
5762  *      This function may only be called from softirq context and interrupts
5763  *      should be enabled.
5764  */
5765 void netif_receive_skb_list(struct list_head *head)
5766 {
5767         struct sk_buff *skb;
5768 
5769         if (list_empty(head))
5770                 return;
5771         if (trace_netif_receive_skb_list_entry_enabled()) {
5772                 list_for_each_entry(skb, head, list)
5773                         trace_netif_receive_skb_list_entry(skb);
5774         }
5775         netif_receive_skb_list_internal(head);
5776         trace_netif_receive_skb_list_exit(0);
5777 }
5778 EXPORT_SYMBOL(netif_receive_skb_list);
5779 
5780 static DEFINE_PER_CPU(struct work_struct, flush_works);
5781 
5782 /* Network device is going away, flush any packets still pending */
5783 static void flush_backlog(struct work_struct *work)
5784 {
5785         struct sk_buff *skb, *tmp;
5786         struct softnet_data *sd;
5787 
5788         local_bh_disable();
5789         sd = this_cpu_ptr(&softnet_data);
5790 
5791         rps_lock_irq_disable(sd);
5792         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5793                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794                         __skb_unlink(skb, &sd->input_pkt_queue);
5795                         dev_kfree_skb_irq(skb);
5796                         input_queue_head_incr(sd);
5797                 }
5798         }
5799         rps_unlock_irq_enable(sd);
5800 
5801         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5802                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5803                         __skb_unlink(skb, &sd->process_queue);
5804                         kfree_skb(skb);
5805                         input_queue_head_incr(sd);
5806                 }
5807         }
5808         local_bh_enable();
5809 }
5810 
5811 static bool flush_required(int cpu)
5812 {
5813 #if IS_ENABLED(CONFIG_RPS)
5814         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5815         bool do_flush;
5816 
5817         rps_lock_irq_disable(sd);
5818 
5819         /* as insertion into process_queue happens with the rps lock held,
5820          * process_queue access may race only with dequeue
5821          */
5822         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5823                    !skb_queue_empty_lockless(&sd->process_queue);
5824         rps_unlock_irq_enable(sd);
5825 
5826         return do_flush;
5827 #endif
5828         /* without RPS we can't safely check input_pkt_queue: during a
5829          * concurrent remote skb_queue_splice() we can detect as empty both
5830          * input_pkt_queue and process_queue even if the latter could end-up
5831          * containing a lot of packets.
5832          */
5833         return true;
5834 }
5835 
5836 static void flush_all_backlogs(void)
5837 {
5838         static cpumask_t flush_cpus;
5839         unsigned int cpu;
5840 
5841         /* since we are under rtnl lock protection we can use static data
5842          * for the cpumask and avoid allocating on stack the possibly
5843          * large mask
5844          */
5845         ASSERT_RTNL();
5846 
5847         cpus_read_lock();
5848 
5849         cpumask_clear(&flush_cpus);
5850         for_each_online_cpu(cpu) {
5851                 if (flush_required(cpu)) {
5852                         queue_work_on(cpu, system_highpri_wq,
5853                                       per_cpu_ptr(&flush_works, cpu));
5854                         cpumask_set_cpu(cpu, &flush_cpus);
5855                 }
5856         }
5857 
5858         /* we can have in flight packet[s] on the cpus we are not flushing,
5859          * synchronize_net() in unregister_netdevice_many() will take care of
5860          * them
5861          */
5862         for_each_cpu(cpu, &flush_cpus)
5863                 flush_work(per_cpu_ptr(&flush_works, cpu));
5864 
5865         cpus_read_unlock();
5866 }
5867 
5868 static void net_rps_send_ipi(struct softnet_data *remsd)
5869 {
5870 #ifdef CONFIG_RPS
5871         while (remsd) {
5872                 struct softnet_data *next = remsd->rps_ipi_next;
5873 
5874                 if (cpu_online(remsd->cpu))
5875                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5876                 remsd = next;
5877         }
5878 #endif
5879 }
5880 
5881 /*
5882  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5883  * Note: called with local irq disabled, but exits with local irq enabled.
5884  */
5885 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5886 {
5887 #ifdef CONFIG_RPS
5888         struct softnet_data *remsd = sd->rps_ipi_list;
5889 
5890         if (remsd) {
5891                 sd->rps_ipi_list = NULL;
5892 
5893                 local_irq_enable();
5894 
5895                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5896                 net_rps_send_ipi(remsd);
5897         } else
5898 #endif
5899                 local_irq_enable();
5900 }
5901 
5902 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5903 {
5904 #ifdef CONFIG_RPS
5905         return sd->rps_ipi_list != NULL;
5906 #else
5907         return false;
5908 #endif
5909 }
5910 
5911 static int process_backlog(struct napi_struct *napi, int quota)
5912 {
5913         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5914         bool again = true;
5915         int work = 0;
5916 
5917         /* Check if we have pending ipi, its better to send them now,
5918          * not waiting net_rx_action() end.
5919          */
5920         if (sd_has_rps_ipi_waiting(sd)) {
5921                 local_irq_disable();
5922                 net_rps_action_and_irq_enable(sd);
5923         }
5924 
5925         napi->weight = READ_ONCE(dev_rx_weight);
5926         while (again) {
5927                 struct sk_buff *skb;
5928 
5929                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5930                         rcu_read_lock();
5931                         __netif_receive_skb(skb);
5932                         rcu_read_unlock();
5933                         input_queue_head_incr(sd);
5934                         if (++work >= quota)
5935                                 return work;
5936 
5937                 }
5938 
5939                 rps_lock_irq_disable(sd);
5940                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5941                         /*
5942                          * Inline a custom version of __napi_complete().
5943                          * only current cpu owns and manipulates this napi,
5944                          * and NAPI_STATE_SCHED is the only possible flag set
5945                          * on backlog.
5946                          * We can use a plain write instead of clear_bit(),
5947                          * and we dont need an smp_mb() memory barrier.
5948                          */
5949                         napi->state = 0;
5950                         again = false;
5951                 } else {
5952                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5953                                                    &sd->process_queue);
5954                 }
5955                 rps_unlock_irq_enable(sd);
5956         }
5957 
5958         return work;
5959 }
5960 
5961 /**
5962  * __napi_schedule - schedule for receive
5963  * @n: entry to schedule
5964  *
5965  * The entry's receive function will be scheduled to run.
5966  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5967  */
5968 void __napi_schedule(struct napi_struct *n)
5969 {
5970         unsigned long flags;
5971 
5972         local_irq_save(flags);
5973         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5974         local_irq_restore(flags);
5975 }
5976 EXPORT_SYMBOL(__napi_schedule);
5977 
5978 /**
5979  *      napi_schedule_prep - check if napi can be scheduled
5980  *      @n: napi context
5981  *
5982  * Test if NAPI routine is already running, and if not mark
5983  * it as running.  This is used as a condition variable to
5984  * insure only one NAPI poll instance runs.  We also make
5985  * sure there is no pending NAPI disable.
5986  */
5987 bool napi_schedule_prep(struct napi_struct *n)
5988 {
5989         unsigned long val, new;
5990 
5991         do {
5992                 val = READ_ONCE(n->state);
5993                 if (unlikely(val & NAPIF_STATE_DISABLE))
5994                         return false;
5995                 new = val | NAPIF_STATE_SCHED;
5996 
5997                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5998                  * This was suggested by Alexander Duyck, as compiler
5999                  * emits better code than :
6000                  * if (val & NAPIF_STATE_SCHED)
6001                  *     new |= NAPIF_STATE_MISSED;
6002                  */
6003                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6004                                                    NAPIF_STATE_MISSED;
6005         } while (cmpxchg(&n->state, val, new) != val);
6006 
6007         return !(val & NAPIF_STATE_SCHED);
6008 }
6009 EXPORT_SYMBOL(napi_schedule_prep);
6010 
6011 /**
6012  * __napi_schedule_irqoff - schedule for receive
6013  * @n: entry to schedule
6014  *
6015  * Variant of __napi_schedule() assuming hard irqs are masked.
6016  *
6017  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6018  * because the interrupt disabled assumption might not be true
6019  * due to force-threaded interrupts and spinlock substitution.
6020  */
6021 void __napi_schedule_irqoff(struct napi_struct *n)
6022 {
6023         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6024                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6025         else
6026                 __napi_schedule(n);
6027 }
6028 EXPORT_SYMBOL(__napi_schedule_irqoff);
6029 
6030 bool napi_complete_done(struct napi_struct *n, int work_done)
6031 {
6032         unsigned long flags, val, new, timeout = 0;
6033         bool ret = true;
6034 
6035         /*
6036          * 1) Don't let napi dequeue from the cpu poll list
6037          *    just in case its running on a different cpu.
6038          * 2) If we are busy polling, do nothing here, we have
6039          *    the guarantee we will be called later.
6040          */
6041         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6042                                  NAPIF_STATE_IN_BUSY_POLL)))
6043                 return false;
6044 
6045         if (work_done) {
6046                 if (n->gro_bitmask)
6047                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6048                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6049         }
6050         if (n->defer_hard_irqs_count > 0) {
6051                 n->defer_hard_irqs_count--;
6052                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6053                 if (timeout)
6054                         ret = false;
6055         }
6056         if (n->gro_bitmask) {
6057                 /* When the NAPI instance uses a timeout and keeps postponing
6058                  * it, we need to bound somehow the time packets are kept in
6059                  * the GRO layer
6060                  */
6061                 napi_gro_flush(n, !!timeout);
6062         }
6063 
6064         gro_normal_list(n);
6065 
6066         if (unlikely(!list_empty(&n->poll_list))) {
6067                 /* If n->poll_list is not empty, we need to mask irqs */
6068                 local_irq_save(flags);
6069                 list_del_init(&n->poll_list);
6070                 local_irq_restore(flags);
6071         }
6072 
6073         do {
6074                 val = READ_ONCE(n->state);
6075 
6076                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6077 
6078                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6079                               NAPIF_STATE_SCHED_THREADED |
6080                               NAPIF_STATE_PREFER_BUSY_POLL);
6081 
6082                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6083                  * because we will call napi->poll() one more time.
6084                  * This C code was suggested by Alexander Duyck to help gcc.
6085                  */
6086                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6087                                                     NAPIF_STATE_SCHED;
6088         } while (cmpxchg(&n->state, val, new) != val);
6089 
6090         if (unlikely(val & NAPIF_STATE_MISSED)) {
6091                 __napi_schedule(n);
6092                 return false;
6093         }
6094 
6095         if (timeout)
6096                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6097                               HRTIMER_MODE_REL_PINNED);
6098         return ret;
6099 }
6100 EXPORT_SYMBOL(napi_complete_done);
6101 
6102 /* must be called under rcu_read_lock(), as we dont take a reference */
6103 static struct napi_struct *napi_by_id(unsigned int napi_id)
6104 {
6105         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6106         struct napi_struct *napi;
6107 
6108         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6109                 if (napi->napi_id == napi_id)
6110                         return napi;
6111 
6112         return NULL;
6113 }
6114 
6115 #if defined(CONFIG_NET_RX_BUSY_POLL)
6116 
6117 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6118 {
6119         if (!skip_schedule) {
6120                 gro_normal_list(napi);
6121                 __napi_schedule(napi);
6122                 return;
6123         }
6124 
6125         if (napi->gro_bitmask) {
6126                 /* flush too old packets
6127                  * If HZ < 1000, flush all packets.
6128                  */
6129                 napi_gro_flush(napi, HZ >= 1000);
6130         }
6131 
6132         gro_normal_list(napi);
6133         clear_bit(NAPI_STATE_SCHED, &napi->state);
6134 }
6135 
6136 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6137                            u16 budget)
6138 {
6139         bool skip_schedule = false;
6140         unsigned long timeout;
6141         int rc;
6142 
6143         /* Busy polling means there is a high chance device driver hard irq
6144          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6145          * set in napi_schedule_prep().
6146          * Since we are about to call napi->poll() once more, we can safely
6147          * clear NAPI_STATE_MISSED.
6148          *
6149          * Note: x86 could use a single "lock and ..." instruction
6150          * to perform these two clear_bit()
6151          */
6152         clear_bit(NAPI_STATE_MISSED, &napi->state);
6153         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6154 
6155         local_bh_disable();
6156 
6157         if (prefer_busy_poll) {
6158                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6159                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6160                 if (napi->defer_hard_irqs_count && timeout) {
6161                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6162                         skip_schedule = true;
6163                 }
6164         }
6165 
6166         /* All we really want here is to re-enable device interrupts.
6167          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6168          */
6169         rc = napi->poll(napi, budget);
6170         /* We can't gro_normal_list() here, because napi->poll() might have
6171          * rearmed the napi (napi_complete_done()) in which case it could
6172          * already be running on another CPU.
6173          */
6174         trace_napi_poll(napi, rc, budget);
6175         netpoll_poll_unlock(have_poll_lock);
6176         if (rc == budget)
6177                 __busy_poll_stop(napi, skip_schedule);
6178         local_bh_enable();
6179 }
6180 
6181 void napi_busy_loop(unsigned int napi_id,
6182                     bool (*loop_end)(void *, unsigned long),
6183                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6184 {
6185         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6186         int (*napi_poll)(struct napi_struct *napi, int budget);
6187         void *have_poll_lock = NULL;
6188         struct napi_struct *napi;
6189 
6190 restart:
6191         napi_poll = NULL;
6192 
6193         rcu_read_lock();
6194 
6195         napi = napi_by_id(napi_id);
6196         if (!napi)
6197                 goto out;
6198 
6199         preempt_disable();
6200         for (;;) {
6201                 int work = 0;
6202 
6203                 local_bh_disable();
6204                 if (!napi_poll) {
6205                         unsigned long val = READ_ONCE(napi->state);
6206 
6207                         /* If multiple threads are competing for this napi,
6208                          * we avoid dirtying napi->state as much as we can.
6209                          */
6210                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6211                                    NAPIF_STATE_IN_BUSY_POLL)) {
6212                                 if (prefer_busy_poll)
6213                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6214                                 goto count;
6215                         }
6216                         if (cmpxchg(&napi->state, val,
6217                                     val | NAPIF_STATE_IN_BUSY_POLL |
6218                                           NAPIF_STATE_SCHED) != val) {
6219                                 if (prefer_busy_poll)
6220                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6221                                 goto count;
6222                         }
6223                         have_poll_lock = netpoll_poll_lock(napi);
6224                         napi_poll = napi->poll;
6225                 }
6226                 work = napi_poll(napi, budget);
6227                 trace_napi_poll(napi, work, budget);
6228                 gro_normal_list(napi);
6229 count:
6230                 if (work > 0)
6231                         __NET_ADD_STATS(dev_net(napi->dev),
6232                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6233                 local_bh_enable();
6234 
6235                 if (!loop_end || loop_end(loop_end_arg, start_time))
6236                         break;
6237 
6238                 if (unlikely(need_resched())) {
6239                         if (napi_poll)
6240                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6241                         preempt_enable();
6242                         rcu_read_unlock();
6243                         cond_resched();
6244                         if (loop_end(loop_end_arg, start_time))
6245                                 return;
6246                         goto restart;
6247                 }
6248                 cpu_relax();
6249         }
6250         if (napi_poll)
6251                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
<