1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/skbuff.h> 4 #include <linux/export.h> 5 #include <linux/ip.h> 6 #include <linux/ipv6.h> 7 #include <linux/if_vlan.h> 8 #include <net/dsa.h> 9 #include <net/dst_metadata.h> 10 #include <net/ip.h> 11 #include <net/ipv6.h> 12 #include <net/gre.h> 13 #include <net/pptp.h> 14 #include <net/tipc.h> 15 #include <linux/igmp.h> 16 #include <linux/icmp.h> 17 #include <linux/sctp.h> 18 #include <linux/dccp.h> 19 #include <linux/if_tunnel.h> 20 #include <linux/if_pppox.h> 21 #include <linux/ppp_defs.h> 22 #include <linux/stddef.h> 23 #include <linux/if_ether.h> 24 #include <linux/mpls.h> 25 #include <linux/tcp.h> 26 #include <net/flow_dissector.h> 27 #include <scsi/fc/fc_fcoe.h> 28 #include <uapi/linux/batadv_packet.h> 29 #include <linux/bpf.h> 30 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 31 #include <net/netfilter/nf_conntrack_core.h> 32 #include <net/netfilter/nf_conntrack_labels.h> 33 #endif 34 35 static DEFINE_MUTEX(flow_dissector_mutex); 36 37 static void dissector_set_key(struct flow_dissector *flow_dissector, 38 enum flow_dissector_key_id key_id) 39 { 40 flow_dissector->used_keys |= (1 << key_id); 41 } 42 43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 44 const struct flow_dissector_key *key, 45 unsigned int key_count) 46 { 47 unsigned int i; 48 49 memset(flow_dissector, 0, sizeof(*flow_dissector)); 50 51 for (i = 0; i < key_count; i++, key++) { 52 /* User should make sure that every key target offset is withing 53 * boundaries of unsigned short. 54 */ 55 BUG_ON(key->offset > USHRT_MAX); 56 BUG_ON(dissector_uses_key(flow_dissector, 57 key->key_id)); 58 59 dissector_set_key(flow_dissector, key->key_id); 60 flow_dissector->offset[key->key_id] = key->offset; 61 } 62 63 /* Ensure that the dissector always includes control and basic key. 64 * That way we are able to avoid handling lack of these in fast path. 65 */ 66 BUG_ON(!dissector_uses_key(flow_dissector, 67 FLOW_DISSECTOR_KEY_CONTROL)); 68 BUG_ON(!dissector_uses_key(flow_dissector, 69 FLOW_DISSECTOR_KEY_BASIC)); 70 } 71 EXPORT_SYMBOL(skb_flow_dissector_init); 72 73 int skb_flow_dissector_prog_query(const union bpf_attr *attr, 74 union bpf_attr __user *uattr) 75 { 76 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 77 u32 prog_id, prog_cnt = 0, flags = 0; 78 struct bpf_prog *attached; 79 struct net *net; 80 81 if (attr->query.query_flags) 82 return -EINVAL; 83 84 net = get_net_ns_by_fd(attr->query.target_fd); 85 if (IS_ERR(net)) 86 return PTR_ERR(net); 87 88 rcu_read_lock(); 89 attached = rcu_dereference(net->flow_dissector_prog); 90 if (attached) { 91 prog_cnt = 1; 92 prog_id = attached->aux->id; 93 } 94 rcu_read_unlock(); 95 96 put_net(net); 97 98 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 99 return -EFAULT; 100 if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt))) 101 return -EFAULT; 102 103 if (!attr->query.prog_cnt || !prog_ids || !prog_cnt) 104 return 0; 105 106 if (copy_to_user(prog_ids, &prog_id, sizeof(u32))) 107 return -EFAULT; 108 109 return 0; 110 } 111 112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 113 struct bpf_prog *prog) 114 { 115 struct bpf_prog *attached; 116 struct net *net; 117 int ret = 0; 118 119 net = current->nsproxy->net_ns; 120 mutex_lock(&flow_dissector_mutex); 121 122 if (net == &init_net) { 123 /* BPF flow dissector in the root namespace overrides 124 * any per-net-namespace one. When attaching to root, 125 * make sure we don't have any BPF program attached 126 * to the non-root namespaces. 127 */ 128 struct net *ns; 129 130 for_each_net(ns) { 131 if (ns == &init_net) 132 continue; 133 if (rcu_access_pointer(ns->flow_dissector_prog)) { 134 ret = -EEXIST; 135 goto out; 136 } 137 } 138 } else { 139 /* Make sure root flow dissector is not attached 140 * when attaching to the non-root namespace. 141 */ 142 if (rcu_access_pointer(init_net.flow_dissector_prog)) { 143 ret = -EEXIST; 144 goto out; 145 } 146 } 147 148 attached = rcu_dereference_protected(net->flow_dissector_prog, 149 lockdep_is_held(&flow_dissector_mutex)); 150 if (attached == prog) { 151 /* The same program cannot be attached twice */ 152 ret = -EINVAL; 153 goto out; 154 } 155 rcu_assign_pointer(net->flow_dissector_prog, prog); 156 if (attached) 157 bpf_prog_put(attached); 158 out: 159 mutex_unlock(&flow_dissector_mutex); 160 return ret; 161 } 162 163 static int flow_dissector_bpf_prog_detach(struct net *net) 164 { 165 struct bpf_prog *attached; 166 167 mutex_lock(&flow_dissector_mutex); 168 attached = rcu_dereference_protected(net->flow_dissector_prog, 169 lockdep_is_held(&flow_dissector_mutex)); 170 if (!attached) { 171 mutex_unlock(&flow_dissector_mutex); 172 return -ENOENT; 173 } 174 RCU_INIT_POINTER(net->flow_dissector_prog, NULL); 175 bpf_prog_put(attached); 176 mutex_unlock(&flow_dissector_mutex); 177 return 0; 178 } 179 180 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 181 { 182 return flow_dissector_bpf_prog_detach(current->nsproxy->net_ns); 183 } 184 185 static void __net_exit flow_dissector_pernet_pre_exit(struct net *net) 186 { 187 /* We're not racing with attach/detach because there are no 188 * references to netns left when pre_exit gets called. 189 */ 190 if (rcu_access_pointer(net->flow_dissector_prog)) 191 flow_dissector_bpf_prog_detach(net); 192 } 193 194 static struct pernet_operations flow_dissector_pernet_ops __net_initdata = { 195 .pre_exit = flow_dissector_pernet_pre_exit, 196 }; 197 198 /** 199 * __skb_flow_get_ports - extract the upper layer ports and return them 200 * @skb: sk_buff to extract the ports from 201 * @thoff: transport header offset 202 * @ip_proto: protocol for which to get port offset 203 * @data: raw buffer pointer to the packet, if NULL use skb->data 204 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 205 * 206 * The function will try to retrieve the ports at offset thoff + poff where poff 207 * is the protocol port offset returned from proto_ports_offset 208 */ 209 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 210 void *data, int hlen) 211 { 212 int poff = proto_ports_offset(ip_proto); 213 214 if (!data) { 215 data = skb->data; 216 hlen = skb_headlen(skb); 217 } 218 219 if (poff >= 0) { 220 __be32 *ports, _ports; 221 222 ports = __skb_header_pointer(skb, thoff + poff, 223 sizeof(_ports), data, hlen, &_ports); 224 if (ports) 225 return *ports; 226 } 227 228 return 0; 229 } 230 EXPORT_SYMBOL(__skb_flow_get_ports); 231 232 static bool icmp_has_id(u8 type) 233 { 234 switch (type) { 235 case ICMP_ECHO: 236 case ICMP_ECHOREPLY: 237 case ICMP_TIMESTAMP: 238 case ICMP_TIMESTAMPREPLY: 239 case ICMPV6_ECHO_REQUEST: 240 case ICMPV6_ECHO_REPLY: 241 return true; 242 } 243 244 return false; 245 } 246 247 /** 248 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields 249 * @skb: sk_buff to extract from 250 * @key_icmp: struct flow_dissector_key_icmp to fill 251 * @data: raw buffer pointer to the packet 252 * @thoff: offset to extract at 253 * @hlen: packet header length 254 */ 255 void skb_flow_get_icmp_tci(const struct sk_buff *skb, 256 struct flow_dissector_key_icmp *key_icmp, 257 void *data, int thoff, int hlen) 258 { 259 struct icmphdr *ih, _ih; 260 261 ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); 262 if (!ih) 263 return; 264 265 key_icmp->type = ih->type; 266 key_icmp->code = ih->code; 267 268 /* As we use 0 to signal that the Id field is not present, 269 * avoid confusion with packets without such field 270 */ 271 if (icmp_has_id(ih->type)) 272 key_icmp->id = ih->un.echo.id ? : 1; 273 else 274 key_icmp->id = 0; 275 } 276 EXPORT_SYMBOL(skb_flow_get_icmp_tci); 277 278 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet 279 * using skb_flow_get_icmp_tci(). 280 */ 281 static void __skb_flow_dissect_icmp(const struct sk_buff *skb, 282 struct flow_dissector *flow_dissector, 283 void *target_container, 284 void *data, int thoff, int hlen) 285 { 286 struct flow_dissector_key_icmp *key_icmp; 287 288 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) 289 return; 290 291 key_icmp = skb_flow_dissector_target(flow_dissector, 292 FLOW_DISSECTOR_KEY_ICMP, 293 target_container); 294 295 skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); 296 } 297 298 void skb_flow_dissect_meta(const struct sk_buff *skb, 299 struct flow_dissector *flow_dissector, 300 void *target_container) 301 { 302 struct flow_dissector_key_meta *meta; 303 304 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) 305 return; 306 307 meta = skb_flow_dissector_target(flow_dissector, 308 FLOW_DISSECTOR_KEY_META, 309 target_container); 310 meta->ingress_ifindex = skb->skb_iif; 311 } 312 EXPORT_SYMBOL(skb_flow_dissect_meta); 313 314 static void 315 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type, 316 struct flow_dissector *flow_dissector, 317 void *target_container) 318 { 319 struct flow_dissector_key_control *ctrl; 320 321 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) 322 return; 323 324 ctrl = skb_flow_dissector_target(flow_dissector, 325 FLOW_DISSECTOR_KEY_ENC_CONTROL, 326 target_container); 327 ctrl->addr_type = type; 328 } 329 330 void 331 skb_flow_dissect_ct(const struct sk_buff *skb, 332 struct flow_dissector *flow_dissector, 333 void *target_container, 334 u16 *ctinfo_map, 335 size_t mapsize) 336 { 337 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 338 struct flow_dissector_key_ct *key; 339 enum ip_conntrack_info ctinfo; 340 struct nf_conn_labels *cl; 341 struct nf_conn *ct; 342 343 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) 344 return; 345 346 ct = nf_ct_get(skb, &ctinfo); 347 if (!ct) 348 return; 349 350 key = skb_flow_dissector_target(flow_dissector, 351 FLOW_DISSECTOR_KEY_CT, 352 target_container); 353 354 if (ctinfo < mapsize) 355 key->ct_state = ctinfo_map[ctinfo]; 356 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) 357 key->ct_zone = ct->zone.id; 358 #endif 359 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 360 key->ct_mark = ct->mark; 361 #endif 362 363 cl = nf_ct_labels_find(ct); 364 if (cl) 365 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); 366 #endif /* CONFIG_NF_CONNTRACK */ 367 } 368 EXPORT_SYMBOL(skb_flow_dissect_ct); 369 370 void 371 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 372 struct flow_dissector *flow_dissector, 373 void *target_container) 374 { 375 struct ip_tunnel_info *info; 376 struct ip_tunnel_key *key; 377 378 /* A quick check to see if there might be something to do. */ 379 if (!dissector_uses_key(flow_dissector, 380 FLOW_DISSECTOR_KEY_ENC_KEYID) && 381 !dissector_uses_key(flow_dissector, 382 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && 383 !dissector_uses_key(flow_dissector, 384 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && 385 !dissector_uses_key(flow_dissector, 386 FLOW_DISSECTOR_KEY_ENC_CONTROL) && 387 !dissector_uses_key(flow_dissector, 388 FLOW_DISSECTOR_KEY_ENC_PORTS) && 389 !dissector_uses_key(flow_dissector, 390 FLOW_DISSECTOR_KEY_ENC_IP) && 391 !dissector_uses_key(flow_dissector, 392 FLOW_DISSECTOR_KEY_ENC_OPTS)) 393 return; 394 395 info = skb_tunnel_info(skb); 396 if (!info) 397 return; 398 399 key = &info->key; 400 401 switch (ip_tunnel_info_af(info)) { 402 case AF_INET: 403 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS, 404 flow_dissector, 405 target_container); 406 if (dissector_uses_key(flow_dissector, 407 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { 408 struct flow_dissector_key_ipv4_addrs *ipv4; 409 410 ipv4 = skb_flow_dissector_target(flow_dissector, 411 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, 412 target_container); 413 ipv4->src = key->u.ipv4.src; 414 ipv4->dst = key->u.ipv4.dst; 415 } 416 break; 417 case AF_INET6: 418 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS, 419 flow_dissector, 420 target_container); 421 if (dissector_uses_key(flow_dissector, 422 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { 423 struct flow_dissector_key_ipv6_addrs *ipv6; 424 425 ipv6 = skb_flow_dissector_target(flow_dissector, 426 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, 427 target_container); 428 ipv6->src = key->u.ipv6.src; 429 ipv6->dst = key->u.ipv6.dst; 430 } 431 break; 432 } 433 434 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 435 struct flow_dissector_key_keyid *keyid; 436 437 keyid = skb_flow_dissector_target(flow_dissector, 438 FLOW_DISSECTOR_KEY_ENC_KEYID, 439 target_container); 440 keyid->keyid = tunnel_id_to_key32(key->tun_id); 441 } 442 443 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 444 struct flow_dissector_key_ports *tp; 445 446 tp = skb_flow_dissector_target(flow_dissector, 447 FLOW_DISSECTOR_KEY_ENC_PORTS, 448 target_container); 449 tp->src = key->tp_src; 450 tp->dst = key->tp_dst; 451 } 452 453 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { 454 struct flow_dissector_key_ip *ip; 455 456 ip = skb_flow_dissector_target(flow_dissector, 457 FLOW_DISSECTOR_KEY_ENC_IP, 458 target_container); 459 ip->tos = key->tos; 460 ip->ttl = key->ttl; 461 } 462 463 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { 464 struct flow_dissector_key_enc_opts *enc_opt; 465 466 enc_opt = skb_flow_dissector_target(flow_dissector, 467 FLOW_DISSECTOR_KEY_ENC_OPTS, 468 target_container); 469 470 if (info->options_len) { 471 enc_opt->len = info->options_len; 472 ip_tunnel_info_opts_get(enc_opt->data, info); 473 enc_opt->dst_opt_type = info->key.tun_flags & 474 TUNNEL_OPTIONS_PRESENT; 475 } 476 } 477 } 478 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); 479 480 static enum flow_dissect_ret 481 __skb_flow_dissect_mpls(const struct sk_buff *skb, 482 struct flow_dissector *flow_dissector, 483 void *target_container, void *data, int nhoff, int hlen) 484 { 485 struct flow_dissector_key_keyid *key_keyid; 486 struct mpls_label *hdr, _hdr[2]; 487 u32 entry, label; 488 489 if (!dissector_uses_key(flow_dissector, 490 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && 491 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) 492 return FLOW_DISSECT_RET_OUT_GOOD; 493 494 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 495 hlen, &_hdr); 496 if (!hdr) 497 return FLOW_DISSECT_RET_OUT_BAD; 498 499 entry = ntohl(hdr[0].entry); 500 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; 501 502 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { 503 struct flow_dissector_key_mpls *key_mpls; 504 505 key_mpls = skb_flow_dissector_target(flow_dissector, 506 FLOW_DISSECTOR_KEY_MPLS, 507 target_container); 508 key_mpls->mpls_label = label; 509 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK) 510 >> MPLS_LS_TTL_SHIFT; 511 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK) 512 >> MPLS_LS_TC_SHIFT; 513 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK) 514 >> MPLS_LS_S_SHIFT; 515 } 516 517 if (label == MPLS_LABEL_ENTROPY) { 518 key_keyid = skb_flow_dissector_target(flow_dissector, 519 FLOW_DISSECTOR_KEY_MPLS_ENTROPY, 520 target_container); 521 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK); 522 } 523 return FLOW_DISSECT_RET_OUT_GOOD; 524 } 525 526 static enum flow_dissect_ret 527 __skb_flow_dissect_arp(const struct sk_buff *skb, 528 struct flow_dissector *flow_dissector, 529 void *target_container, void *data, int nhoff, int hlen) 530 { 531 struct flow_dissector_key_arp *key_arp; 532 struct { 533 unsigned char ar_sha[ETH_ALEN]; 534 unsigned char ar_sip[4]; 535 unsigned char ar_tha[ETH_ALEN]; 536 unsigned char ar_tip[4]; 537 } *arp_eth, _arp_eth; 538 const struct arphdr *arp; 539 struct arphdr _arp; 540 541 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) 542 return FLOW_DISSECT_RET_OUT_GOOD; 543 544 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, 545 hlen, &_arp); 546 if (!arp) 547 return FLOW_DISSECT_RET_OUT_BAD; 548 549 if (arp->ar_hrd != htons(ARPHRD_ETHER) || 550 arp->ar_pro != htons(ETH_P_IP) || 551 arp->ar_hln != ETH_ALEN || 552 arp->ar_pln != 4 || 553 (arp->ar_op != htons(ARPOP_REPLY) && 554 arp->ar_op != htons(ARPOP_REQUEST))) 555 return FLOW_DISSECT_RET_OUT_BAD; 556 557 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), 558 sizeof(_arp_eth), data, 559 hlen, &_arp_eth); 560 if (!arp_eth) 561 return FLOW_DISSECT_RET_OUT_BAD; 562 563 key_arp = skb_flow_dissector_target(flow_dissector, 564 FLOW_DISSECTOR_KEY_ARP, 565 target_container); 566 567 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); 568 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); 569 570 /* Only store the lower byte of the opcode; 571 * this covers ARPOP_REPLY and ARPOP_REQUEST. 572 */ 573 key_arp->op = ntohs(arp->ar_op) & 0xff; 574 575 ether_addr_copy(key_arp->sha, arp_eth->ar_sha); 576 ether_addr_copy(key_arp->tha, arp_eth->ar_tha); 577 578 return FLOW_DISSECT_RET_OUT_GOOD; 579 } 580 581 static enum flow_dissect_ret 582 __skb_flow_dissect_gre(const struct sk_buff *skb, 583 struct flow_dissector_key_control *key_control, 584 struct flow_dissector *flow_dissector, 585 void *target_container, void *data, 586 __be16 *p_proto, int *p_nhoff, int *p_hlen, 587 unsigned int flags) 588 { 589 struct flow_dissector_key_keyid *key_keyid; 590 struct gre_base_hdr *hdr, _hdr; 591 int offset = 0; 592 u16 gre_ver; 593 594 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), 595 data, *p_hlen, &_hdr); 596 if (!hdr) 597 return FLOW_DISSECT_RET_OUT_BAD; 598 599 /* Only look inside GRE without routing */ 600 if (hdr->flags & GRE_ROUTING) 601 return FLOW_DISSECT_RET_OUT_GOOD; 602 603 /* Only look inside GRE for version 0 and 1 */ 604 gre_ver = ntohs(hdr->flags & GRE_VERSION); 605 if (gre_ver > 1) 606 return FLOW_DISSECT_RET_OUT_GOOD; 607 608 *p_proto = hdr->protocol; 609 if (gre_ver) { 610 /* Version1 must be PPTP, and check the flags */ 611 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) 612 return FLOW_DISSECT_RET_OUT_GOOD; 613 } 614 615 offset += sizeof(struct gre_base_hdr); 616 617 if (hdr->flags & GRE_CSUM) 618 offset += sizeof_field(struct gre_full_hdr, csum) + 619 sizeof_field(struct gre_full_hdr, reserved1); 620 621 if (hdr->flags & GRE_KEY) { 622 const __be32 *keyid; 623 __be32 _keyid; 624 625 keyid = __skb_header_pointer(skb, *p_nhoff + offset, 626 sizeof(_keyid), 627 data, *p_hlen, &_keyid); 628 if (!keyid) 629 return FLOW_DISSECT_RET_OUT_BAD; 630 631 if (dissector_uses_key(flow_dissector, 632 FLOW_DISSECTOR_KEY_GRE_KEYID)) { 633 key_keyid = skb_flow_dissector_target(flow_dissector, 634 FLOW_DISSECTOR_KEY_GRE_KEYID, 635 target_container); 636 if (gre_ver == 0) 637 key_keyid->keyid = *keyid; 638 else 639 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; 640 } 641 offset += sizeof_field(struct gre_full_hdr, key); 642 } 643 644 if (hdr->flags & GRE_SEQ) 645 offset += sizeof_field(struct pptp_gre_header, seq); 646 647 if (gre_ver == 0) { 648 if (*p_proto == htons(ETH_P_TEB)) { 649 const struct ethhdr *eth; 650 struct ethhdr _eth; 651 652 eth = __skb_header_pointer(skb, *p_nhoff + offset, 653 sizeof(_eth), 654 data, *p_hlen, &_eth); 655 if (!eth) 656 return FLOW_DISSECT_RET_OUT_BAD; 657 *p_proto = eth->h_proto; 658 offset += sizeof(*eth); 659 660 /* Cap headers that we access via pointers at the 661 * end of the Ethernet header as our maximum alignment 662 * at that point is only 2 bytes. 663 */ 664 if (NET_IP_ALIGN) 665 *p_hlen = *p_nhoff + offset; 666 } 667 } else { /* version 1, must be PPTP */ 668 u8 _ppp_hdr[PPP_HDRLEN]; 669 u8 *ppp_hdr; 670 671 if (hdr->flags & GRE_ACK) 672 offset += sizeof_field(struct pptp_gre_header, ack); 673 674 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, 675 sizeof(_ppp_hdr), 676 data, *p_hlen, _ppp_hdr); 677 if (!ppp_hdr) 678 return FLOW_DISSECT_RET_OUT_BAD; 679 680 switch (PPP_PROTOCOL(ppp_hdr)) { 681 case PPP_IP: 682 *p_proto = htons(ETH_P_IP); 683 break; 684 case PPP_IPV6: 685 *p_proto = htons(ETH_P_IPV6); 686 break; 687 default: 688 /* Could probably catch some more like MPLS */ 689 break; 690 } 691 692 offset += PPP_HDRLEN; 693 } 694 695 *p_nhoff += offset; 696 key_control->flags |= FLOW_DIS_ENCAPSULATION; 697 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 698 return FLOW_DISSECT_RET_OUT_GOOD; 699 700 return FLOW_DISSECT_RET_PROTO_AGAIN; 701 } 702 703 /** 704 * __skb_flow_dissect_batadv() - dissect batman-adv header 705 * @skb: sk_buff to with the batman-adv header 706 * @key_control: flow dissectors control key 707 * @data: raw buffer pointer to the packet, if NULL use skb->data 708 * @p_proto: pointer used to update the protocol to process next 709 * @p_nhoff: pointer used to update inner network header offset 710 * @hlen: packet header length 711 * @flags: any combination of FLOW_DISSECTOR_F_* 712 * 713 * ETH_P_BATMAN packets are tried to be dissected. Only 714 * &struct batadv_unicast packets are actually processed because they contain an 715 * inner ethernet header and are usually followed by actual network header. This 716 * allows the flow dissector to continue processing the packet. 717 * 718 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, 719 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, 720 * otherwise FLOW_DISSECT_RET_OUT_BAD 721 */ 722 static enum flow_dissect_ret 723 __skb_flow_dissect_batadv(const struct sk_buff *skb, 724 struct flow_dissector_key_control *key_control, 725 void *data, __be16 *p_proto, int *p_nhoff, int hlen, 726 unsigned int flags) 727 { 728 struct { 729 struct batadv_unicast_packet batadv_unicast; 730 struct ethhdr eth; 731 } *hdr, _hdr; 732 733 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, 734 &_hdr); 735 if (!hdr) 736 return FLOW_DISSECT_RET_OUT_BAD; 737 738 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) 739 return FLOW_DISSECT_RET_OUT_BAD; 740 741 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) 742 return FLOW_DISSECT_RET_OUT_BAD; 743 744 *p_proto = hdr->eth.h_proto; 745 *p_nhoff += sizeof(*hdr); 746 747 key_control->flags |= FLOW_DIS_ENCAPSULATION; 748 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 749 return FLOW_DISSECT_RET_OUT_GOOD; 750 751 return FLOW_DISSECT_RET_PROTO_AGAIN; 752 } 753 754 static void 755 __skb_flow_dissect_tcp(const struct sk_buff *skb, 756 struct flow_dissector *flow_dissector, 757 void *target_container, void *data, int thoff, int hlen) 758 { 759 struct flow_dissector_key_tcp *key_tcp; 760 struct tcphdr *th, _th; 761 762 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) 763 return; 764 765 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); 766 if (!th) 767 return; 768 769 if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) 770 return; 771 772 key_tcp = skb_flow_dissector_target(flow_dissector, 773 FLOW_DISSECTOR_KEY_TCP, 774 target_container); 775 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); 776 } 777 778 static void 779 __skb_flow_dissect_ports(const struct sk_buff *skb, 780 struct flow_dissector *flow_dissector, 781 void *target_container, void *data, int nhoff, 782 u8 ip_proto, int hlen) 783 { 784 enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX; 785 struct flow_dissector_key_ports *key_ports; 786 787 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 788 dissector_ports = FLOW_DISSECTOR_KEY_PORTS; 789 else if (dissector_uses_key(flow_dissector, 790 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 791 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE; 792 793 if (dissector_ports == FLOW_DISSECTOR_KEY_MAX) 794 return; 795 796 key_ports = skb_flow_dissector_target(flow_dissector, 797 dissector_ports, 798 target_container); 799 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, 800 data, hlen); 801 } 802 803 static void 804 __skb_flow_dissect_ipv4(const struct sk_buff *skb, 805 struct flow_dissector *flow_dissector, 806 void *target_container, void *data, const struct iphdr *iph) 807 { 808 struct flow_dissector_key_ip *key_ip; 809 810 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 811 return; 812 813 key_ip = skb_flow_dissector_target(flow_dissector, 814 FLOW_DISSECTOR_KEY_IP, 815 target_container); 816 key_ip->tos = iph->tos; 817 key_ip->ttl = iph->ttl; 818 } 819 820 static void 821 __skb_flow_dissect_ipv6(const struct sk_buff *skb, 822 struct flow_dissector *flow_dissector, 823 void *target_container, void *data, const struct ipv6hdr *iph) 824 { 825 struct flow_dissector_key_ip *key_ip; 826 827 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 828 return; 829 830 key_ip = skb_flow_dissector_target(flow_dissector, 831 FLOW_DISSECTOR_KEY_IP, 832 target_container); 833 key_ip->tos = ipv6_get_dsfield(iph); 834 key_ip->ttl = iph->hop_limit; 835 } 836 837 /* Maximum number of protocol headers that can be parsed in 838 * __skb_flow_dissect 839 */ 840 #define MAX_FLOW_DISSECT_HDRS 15 841 842 static bool skb_flow_dissect_allowed(int *num_hdrs) 843 { 844 ++*num_hdrs; 845 846 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); 847 } 848 849 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, 850 struct flow_dissector *flow_dissector, 851 void *target_container) 852 { 853 struct flow_dissector_key_ports *key_ports = NULL; 854 struct flow_dissector_key_control *key_control; 855 struct flow_dissector_key_basic *key_basic; 856 struct flow_dissector_key_addrs *key_addrs; 857 struct flow_dissector_key_tags *key_tags; 858 859 key_control = skb_flow_dissector_target(flow_dissector, 860 FLOW_DISSECTOR_KEY_CONTROL, 861 target_container); 862 key_control->thoff = flow_keys->thoff; 863 if (flow_keys->is_frag) 864 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 865 if (flow_keys->is_first_frag) 866 key_control->flags |= FLOW_DIS_FIRST_FRAG; 867 if (flow_keys->is_encap) 868 key_control->flags |= FLOW_DIS_ENCAPSULATION; 869 870 key_basic = skb_flow_dissector_target(flow_dissector, 871 FLOW_DISSECTOR_KEY_BASIC, 872 target_container); 873 key_basic->n_proto = flow_keys->n_proto; 874 key_basic->ip_proto = flow_keys->ip_proto; 875 876 if (flow_keys->addr_proto == ETH_P_IP && 877 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 878 key_addrs = skb_flow_dissector_target(flow_dissector, 879 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 880 target_container); 881 key_addrs->v4addrs.src = flow_keys->ipv4_src; 882 key_addrs->v4addrs.dst = flow_keys->ipv4_dst; 883 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 884 } else if (flow_keys->addr_proto == ETH_P_IPV6 && 885 dissector_uses_key(flow_dissector, 886 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 887 key_addrs = skb_flow_dissector_target(flow_dissector, 888 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 889 target_container); 890 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src, 891 sizeof(key_addrs->v6addrs)); 892 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 893 } 894 895 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 896 key_ports = skb_flow_dissector_target(flow_dissector, 897 FLOW_DISSECTOR_KEY_PORTS, 898 target_container); 899 else if (dissector_uses_key(flow_dissector, 900 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 901 key_ports = skb_flow_dissector_target(flow_dissector, 902 FLOW_DISSECTOR_KEY_PORTS_RANGE, 903 target_container); 904 905 if (key_ports) { 906 key_ports->src = flow_keys->sport; 907 key_ports->dst = flow_keys->dport; 908 } 909 910 if (dissector_uses_key(flow_dissector, 911 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 912 key_tags = skb_flow_dissector_target(flow_dissector, 913 FLOW_DISSECTOR_KEY_FLOW_LABEL, 914 target_container); 915 key_tags->flow_label = ntohl(flow_keys->flow_label); 916 } 917 } 918 919 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 920 __be16 proto, int nhoff, int hlen, unsigned int flags) 921 { 922 struct bpf_flow_keys *flow_keys = ctx->flow_keys; 923 u32 result; 924 925 /* Pass parameters to the BPF program */ 926 memset(flow_keys, 0, sizeof(*flow_keys)); 927 flow_keys->n_proto = proto; 928 flow_keys->nhoff = nhoff; 929 flow_keys->thoff = flow_keys->nhoff; 930 931 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != 932 (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); 933 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != 934 (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 935 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != 936 (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); 937 flow_keys->flags = flags; 938 939 preempt_disable(); 940 result = BPF_PROG_RUN(prog, ctx); 941 preempt_enable(); 942 943 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); 944 flow_keys->thoff = clamp_t(u16, flow_keys->thoff, 945 flow_keys->nhoff, hlen); 946 947 return result == BPF_OK; 948 } 949 950 /** 951 * __skb_flow_dissect - extract the flow_keys struct and return it 952 * @net: associated network namespace, derived from @skb if NULL 953 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified 954 * @flow_dissector: list of keys to dissect 955 * @target_container: target structure to put dissected values into 956 * @data: raw buffer pointer to the packet, if NULL use skb->data 957 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol 958 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) 959 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 960 * @flags: flags that control the dissection process, e.g. 961 * FLOW_DISSECTOR_F_STOP_AT_ENCAP. 962 * 963 * The function will try to retrieve individual keys into target specified 964 * by flow_dissector from either the skbuff or a raw buffer specified by the 965 * rest parameters. 966 * 967 * Caller must take care of zeroing target container memory. 968 */ 969 bool __skb_flow_dissect(const struct net *net, 970 const struct sk_buff *skb, 971 struct flow_dissector *flow_dissector, 972 void *target_container, 973 void *data, __be16 proto, int nhoff, int hlen, 974 unsigned int flags) 975 { 976 struct flow_dissector_key_control *key_control; 977 struct flow_dissector_key_basic *key_basic; 978 struct flow_dissector_key_addrs *key_addrs; 979 struct flow_dissector_key_tags *key_tags; 980 struct flow_dissector_key_vlan *key_vlan; 981 struct bpf_prog *attached = NULL; 982 enum flow_dissect_ret fdret; 983 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; 984 int num_hdrs = 0; 985 u8 ip_proto = 0; 986 bool ret; 987 988 if (!data) { 989 data = skb->data; 990 proto = skb_vlan_tag_present(skb) ? 991 skb->vlan_proto : skb->protocol; 992 nhoff = skb_network_offset(skb); 993 hlen = skb_headlen(skb); 994 #if IS_ENABLED(CONFIG_NET_DSA) 995 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && 996 proto == htons(ETH_P_XDSA))) { 997 const struct dsa_device_ops *ops; 998 int offset = 0; 999 1000 ops = skb->dev->dsa_ptr->tag_ops; 1001 if (ops->flow_dissect && 1002 !ops->flow_dissect(skb, &proto, &offset)) { 1003 hlen -= offset; 1004 nhoff += offset; 1005 } 1006 } 1007 #endif 1008 } 1009 1010 /* It is ensured by skb_flow_dissector_init() that control key will 1011 * be always present. 1012 */ 1013 key_control = skb_flow_dissector_target(flow_dissector, 1014 FLOW_DISSECTOR_KEY_CONTROL, 1015 target_container); 1016 1017 /* It is ensured by skb_flow_dissector_init() that basic key will 1018 * be always present. 1019 */ 1020 key_basic = skb_flow_dissector_target(flow_dissector, 1021 FLOW_DISSECTOR_KEY_BASIC, 1022 target_container); 1023 1024 if (skb) { 1025 if (!net) { 1026 if (skb->dev) 1027 net = dev_net(skb->dev); 1028 else if (skb->sk) 1029 net = sock_net(skb->sk); 1030 } 1031 } 1032 1033 WARN_ON_ONCE(!net); 1034 if (net) { 1035 rcu_read_lock(); 1036 attached = rcu_dereference(init_net.flow_dissector_prog); 1037 1038 if (!attached) 1039 attached = rcu_dereference(net->flow_dissector_prog); 1040 1041 if (attached) { 1042 struct bpf_flow_keys flow_keys; 1043 struct bpf_flow_dissector ctx = { 1044 .flow_keys = &flow_keys, 1045 .data = data, 1046 .data_end = data + hlen, 1047 }; 1048 __be16 n_proto = proto; 1049 1050 if (skb) { 1051 ctx.skb = skb; 1052 /* we can't use 'proto' in the skb case 1053 * because it might be set to skb->vlan_proto 1054 * which has been pulled from the data 1055 */ 1056 n_proto = skb->protocol; 1057 } 1058 1059 ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff, 1060 hlen, flags); 1061 __skb_flow_bpf_to_target(&flow_keys, flow_dissector, 1062 target_container); 1063 rcu_read_unlock(); 1064 return ret; 1065 } 1066 rcu_read_unlock(); 1067 } 1068 1069 if (dissector_uses_key(flow_dissector, 1070 FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 1071 struct ethhdr *eth = eth_hdr(skb); 1072 struct flow_dissector_key_eth_addrs *key_eth_addrs; 1073 1074 key_eth_addrs = skb_flow_dissector_target(flow_dissector, 1075 FLOW_DISSECTOR_KEY_ETH_ADDRS, 1076 target_container); 1077 memcpy(key_eth_addrs, ð->h_dest, sizeof(*key_eth_addrs)); 1078 } 1079 1080 proto_again: 1081 fdret = FLOW_DISSECT_RET_CONTINUE; 1082 1083 switch (proto) { 1084 case htons(ETH_P_IP): { 1085 const struct iphdr *iph; 1086 struct iphdr _iph; 1087 1088 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1089 if (!iph || iph->ihl < 5) { 1090 fdret = FLOW_DISSECT_RET_OUT_BAD; 1091 break; 1092 } 1093 1094 nhoff += iph->ihl * 4; 1095 1096 ip_proto = iph->protocol; 1097 1098 if (dissector_uses_key(flow_dissector, 1099 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 1100 key_addrs = skb_flow_dissector_target(flow_dissector, 1101 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1102 target_container); 1103 1104 memcpy(&key_addrs->v4addrs, &iph->saddr, 1105 sizeof(key_addrs->v4addrs)); 1106 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 1107 } 1108 1109 if (ip_is_fragment(iph)) { 1110 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1111 1112 if (iph->frag_off & htons(IP_OFFSET)) { 1113 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1114 break; 1115 } else { 1116 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1117 if (!(flags & 1118 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { 1119 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1120 break; 1121 } 1122 } 1123 } 1124 1125 __skb_flow_dissect_ipv4(skb, flow_dissector, 1126 target_container, data, iph); 1127 1128 break; 1129 } 1130 case htons(ETH_P_IPV6): { 1131 const struct ipv6hdr *iph; 1132 struct ipv6hdr _iph; 1133 1134 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1135 if (!iph) { 1136 fdret = FLOW_DISSECT_RET_OUT_BAD; 1137 break; 1138 } 1139 1140 ip_proto = iph->nexthdr; 1141 nhoff += sizeof(struct ipv6hdr); 1142 1143 if (dissector_uses_key(flow_dissector, 1144 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 1145 key_addrs = skb_flow_dissector_target(flow_dissector, 1146 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1147 target_container); 1148 1149 memcpy(&key_addrs->v6addrs, &iph->saddr, 1150 sizeof(key_addrs->v6addrs)); 1151 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1152 } 1153 1154 if ((dissector_uses_key(flow_dissector, 1155 FLOW_DISSECTOR_KEY_FLOW_LABEL) || 1156 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && 1157 ip6_flowlabel(iph)) { 1158 __be32 flow_label = ip6_flowlabel(iph); 1159 1160 if (dissector_uses_key(flow_dissector, 1161 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 1162 key_tags = skb_flow_dissector_target(flow_dissector, 1163 FLOW_DISSECTOR_KEY_FLOW_LABEL, 1164 target_container); 1165 key_tags->flow_label = ntohl(flow_label); 1166 } 1167 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { 1168 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1169 break; 1170 } 1171 } 1172 1173 __skb_flow_dissect_ipv6(skb, flow_dissector, 1174 target_container, data, iph); 1175 1176 break; 1177 } 1178 case htons(ETH_P_8021AD): 1179 case htons(ETH_P_8021Q): { 1180 const struct vlan_hdr *vlan = NULL; 1181 struct vlan_hdr _vlan; 1182 __be16 saved_vlan_tpid = proto; 1183 1184 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && 1185 skb && skb_vlan_tag_present(skb)) { 1186 proto = skb->protocol; 1187 } else { 1188 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), 1189 data, hlen, &_vlan); 1190 if (!vlan) { 1191 fdret = FLOW_DISSECT_RET_OUT_BAD; 1192 break; 1193 } 1194 1195 proto = vlan->h_vlan_encapsulated_proto; 1196 nhoff += sizeof(*vlan); 1197 } 1198 1199 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { 1200 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; 1201 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { 1202 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; 1203 } else { 1204 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1205 break; 1206 } 1207 1208 if (dissector_uses_key(flow_dissector, dissector_vlan)) { 1209 key_vlan = skb_flow_dissector_target(flow_dissector, 1210 dissector_vlan, 1211 target_container); 1212 1213 if (!vlan) { 1214 key_vlan->vlan_id = skb_vlan_tag_get_id(skb); 1215 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); 1216 } else { 1217 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & 1218 VLAN_VID_MASK; 1219 key_vlan->vlan_priority = 1220 (ntohs(vlan->h_vlan_TCI) & 1221 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1222 } 1223 key_vlan->vlan_tpid = saved_vlan_tpid; 1224 } 1225 1226 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1227 break; 1228 } 1229 case htons(ETH_P_PPP_SES): { 1230 struct { 1231 struct pppoe_hdr hdr; 1232 __be16 proto; 1233 } *hdr, _hdr; 1234 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); 1235 if (!hdr) { 1236 fdret = FLOW_DISSECT_RET_OUT_BAD; 1237 break; 1238 } 1239 1240 proto = hdr->proto; 1241 nhoff += PPPOE_SES_HLEN; 1242 switch (proto) { 1243 case htons(PPP_IP): 1244 proto = htons(ETH_P_IP); 1245 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1246 break; 1247 case htons(PPP_IPV6): 1248 proto = htons(ETH_P_IPV6); 1249 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1250 break; 1251 default: 1252 fdret = FLOW_DISSECT_RET_OUT_BAD; 1253 break; 1254 } 1255 break; 1256 } 1257 case htons(ETH_P_TIPC): { 1258 struct tipc_basic_hdr *hdr, _hdr; 1259 1260 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), 1261 data, hlen, &_hdr); 1262 if (!hdr) { 1263 fdret = FLOW_DISSECT_RET_OUT_BAD; 1264 break; 1265 } 1266 1267 if (dissector_uses_key(flow_dissector, 1268 FLOW_DISSECTOR_KEY_TIPC)) { 1269 key_addrs = skb_flow_dissector_target(flow_dissector, 1270 FLOW_DISSECTOR_KEY_TIPC, 1271 target_container); 1272 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); 1273 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; 1274 } 1275 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1276 break; 1277 } 1278 1279 case htons(ETH_P_MPLS_UC): 1280 case htons(ETH_P_MPLS_MC): 1281 fdret = __skb_flow_dissect_mpls(skb, flow_dissector, 1282 target_container, data, 1283 nhoff, hlen); 1284 break; 1285 case htons(ETH_P_FCOE): 1286 if ((hlen - nhoff) < FCOE_HEADER_LEN) { 1287 fdret = FLOW_DISSECT_RET_OUT_BAD; 1288 break; 1289 } 1290 1291 nhoff += FCOE_HEADER_LEN; 1292 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1293 break; 1294 1295 case htons(ETH_P_ARP): 1296 case htons(ETH_P_RARP): 1297 fdret = __skb_flow_dissect_arp(skb, flow_dissector, 1298 target_container, data, 1299 nhoff, hlen); 1300 break; 1301 1302 case htons(ETH_P_BATMAN): 1303 fdret = __skb_flow_dissect_batadv(skb, key_control, data, 1304 &proto, &nhoff, hlen, flags); 1305 break; 1306 1307 default: 1308 fdret = FLOW_DISSECT_RET_OUT_BAD; 1309 break; 1310 } 1311 1312 /* Process result of proto processing */ 1313 switch (fdret) { 1314 case FLOW_DISSECT_RET_OUT_GOOD: 1315 goto out_good; 1316 case FLOW_DISSECT_RET_PROTO_AGAIN: 1317 if (skb_flow_dissect_allowed(&num_hdrs)) 1318 goto proto_again; 1319 goto out_good; 1320 case FLOW_DISSECT_RET_CONTINUE: 1321 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1322 break; 1323 case FLOW_DISSECT_RET_OUT_BAD: 1324 default: 1325 goto out_bad; 1326 } 1327 1328 ip_proto_again: 1329 fdret = FLOW_DISSECT_RET_CONTINUE; 1330 1331 switch (ip_proto) { 1332 case IPPROTO_GRE: 1333 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, 1334 target_container, data, 1335 &proto, &nhoff, &hlen, flags); 1336 break; 1337 1338 case NEXTHDR_HOP: 1339 case NEXTHDR_ROUTING: 1340 case NEXTHDR_DEST: { 1341 u8 _opthdr[2], *opthdr; 1342 1343 if (proto != htons(ETH_P_IPV6)) 1344 break; 1345 1346 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), 1347 data, hlen, &_opthdr); 1348 if (!opthdr) { 1349 fdret = FLOW_DISSECT_RET_OUT_BAD; 1350 break; 1351 } 1352 1353 ip_proto = opthdr[0]; 1354 nhoff += (opthdr[1] + 1) << 3; 1355 1356 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1357 break; 1358 } 1359 case NEXTHDR_FRAGMENT: { 1360 struct frag_hdr _fh, *fh; 1361 1362 if (proto != htons(ETH_P_IPV6)) 1363 break; 1364 1365 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), 1366 data, hlen, &_fh); 1367 1368 if (!fh) { 1369 fdret = FLOW_DISSECT_RET_OUT_BAD; 1370 break; 1371 } 1372 1373 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1374 1375 nhoff += sizeof(_fh); 1376 ip_proto = fh->nexthdr; 1377 1378 if (!(fh->frag_off & htons(IP6_OFFSET))) { 1379 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1380 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { 1381 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1382 break; 1383 } 1384 } 1385 1386 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1387 break; 1388 } 1389 case IPPROTO_IPIP: 1390 proto = htons(ETH_P_IP); 1391 1392 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1393 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1394 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1395 break; 1396 } 1397 1398 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1399 break; 1400 1401 case IPPROTO_IPV6: 1402 proto = htons(ETH_P_IPV6); 1403 1404 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1405 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1406 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1407 break; 1408 } 1409 1410 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1411 break; 1412 1413 1414 case IPPROTO_MPLS: 1415 proto = htons(ETH_P_MPLS_UC); 1416 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1417 break; 1418 1419 case IPPROTO_TCP: 1420 __skb_flow_dissect_tcp(skb, flow_dissector, target_container, 1421 data, nhoff, hlen); 1422 break; 1423 1424 case IPPROTO_ICMP: 1425 case IPPROTO_ICMPV6: 1426 __skb_flow_dissect_icmp(skb, flow_dissector, target_container, 1427 data, nhoff, hlen); 1428 break; 1429 1430 default: 1431 break; 1432 } 1433 1434 if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) 1435 __skb_flow_dissect_ports(skb, flow_dissector, target_container, 1436 data, nhoff, ip_proto, hlen); 1437 1438 /* Process result of IP proto processing */ 1439 switch (fdret) { 1440 case FLOW_DISSECT_RET_PROTO_AGAIN: 1441 if (skb_flow_dissect_allowed(&num_hdrs)) 1442 goto proto_again; 1443 break; 1444 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1445 if (skb_flow_dissect_allowed(&num_hdrs)) 1446 goto ip_proto_again; 1447 break; 1448 case FLOW_DISSECT_RET_OUT_GOOD: 1449 case FLOW_DISSECT_RET_CONTINUE: 1450 break; 1451 case FLOW_DISSECT_RET_OUT_BAD: 1452 default: 1453 goto out_bad; 1454 } 1455 1456 out_good: 1457 ret = true; 1458 1459 out: 1460 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); 1461 key_basic->n_proto = proto; 1462 key_basic->ip_proto = ip_proto; 1463 1464 return ret; 1465 1466 out_bad: 1467 ret = false; 1468 goto out; 1469 } 1470 EXPORT_SYMBOL(__skb_flow_dissect); 1471 1472 static siphash_key_t hashrnd __read_mostly; 1473 static __always_inline void __flow_hash_secret_init(void) 1474 { 1475 net_get_random_once(&hashrnd, sizeof(hashrnd)); 1476 } 1477 1478 static const void *flow_keys_hash_start(const struct flow_keys *flow) 1479 { 1480 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); 1481 return &flow->FLOW_KEYS_HASH_START_FIELD; 1482 } 1483 1484 static inline size_t flow_keys_hash_length(const struct flow_keys *flow) 1485 { 1486 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); 1487 1488 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); 1489 1490 switch (flow->control.addr_type) { 1491 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1492 diff -= sizeof(flow->addrs.v4addrs); 1493 break; 1494 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1495 diff -= sizeof(flow->addrs.v6addrs); 1496 break; 1497 case FLOW_DISSECTOR_KEY_TIPC: 1498 diff -= sizeof(flow->addrs.tipckey); 1499 break; 1500 } 1501 return sizeof(*flow) - diff; 1502 } 1503 1504 __be32 flow_get_u32_src(const struct flow_keys *flow) 1505 { 1506 switch (flow->control.addr_type) { 1507 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1508 return flow->addrs.v4addrs.src; 1509 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1510 return (__force __be32)ipv6_addr_hash( 1511 &flow->addrs.v6addrs.src); 1512 case FLOW_DISSECTOR_KEY_TIPC: 1513 return flow->addrs.tipckey.key; 1514 default: 1515 return 0; 1516 } 1517 } 1518 EXPORT_SYMBOL(flow_get_u32_src); 1519 1520 __be32 flow_get_u32_dst(const struct flow_keys *flow) 1521 { 1522 switch (flow->control.addr_type) { 1523 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1524 return flow->addrs.v4addrs.dst; 1525 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1526 return (__force __be32)ipv6_addr_hash( 1527 &flow->addrs.v6addrs.dst); 1528 default: 1529 return 0; 1530 } 1531 } 1532 EXPORT_SYMBOL(flow_get_u32_dst); 1533 1534 /* Sort the source and destination IP (and the ports if the IP are the same), 1535 * to have consistent hash within the two directions 1536 */ 1537 static inline void __flow_hash_consistentify(struct flow_keys *keys) 1538 { 1539 int addr_diff, i; 1540 1541 switch (keys->control.addr_type) { 1542 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1543 addr_diff = (__force u32)keys->addrs.v4addrs.dst - 1544 (__force u32)keys->addrs.v4addrs.src; 1545 if ((addr_diff < 0) || 1546 (addr_diff == 0 && 1547 ((__force u16)keys->ports.dst < 1548 (__force u16)keys->ports.src))) { 1549 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); 1550 swap(keys->ports.src, keys->ports.dst); 1551 } 1552 break; 1553 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1554 addr_diff = memcmp(&keys->addrs.v6addrs.dst, 1555 &keys->addrs.v6addrs.src, 1556 sizeof(keys->addrs.v6addrs.dst)); 1557 if ((addr_diff < 0) || 1558 (addr_diff == 0 && 1559 ((__force u16)keys->ports.dst < 1560 (__force u16)keys->ports.src))) { 1561 for (i = 0; i < 4; i++) 1562 swap(keys->addrs.v6addrs.src.s6_addr32[i], 1563 keys->addrs.v6addrs.dst.s6_addr32[i]); 1564 swap(keys->ports.src, keys->ports.dst); 1565 } 1566 break; 1567 } 1568 } 1569 1570 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, 1571 const siphash_key_t *keyval) 1572 { 1573 u32 hash; 1574 1575 __flow_hash_consistentify(keys); 1576 1577 hash = siphash(flow_keys_hash_start(keys), 1578 flow_keys_hash_length(keys), keyval); 1579 if (!hash) 1580 hash = 1; 1581 1582 return hash; 1583 } 1584 1585 u32 flow_hash_from_keys(struct flow_keys *keys) 1586 { 1587 __flow_hash_secret_init(); 1588 return __flow_hash_from_keys(keys, &hashrnd); 1589 } 1590 EXPORT_SYMBOL(flow_hash_from_keys); 1591 1592 static inline u32 ___skb_get_hash(const struct sk_buff *skb, 1593 struct flow_keys *keys, 1594 const siphash_key_t *keyval) 1595 { 1596 skb_flow_dissect_flow_keys(skb, keys, 1597 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1598 1599 return __flow_hash_from_keys(keys, keyval); 1600 } 1601 1602 struct _flow_keys_digest_data { 1603 __be16 n_proto; 1604 u8 ip_proto; 1605 u8 padding; 1606 __be32 ports; 1607 __be32 src; 1608 __be32 dst; 1609 }; 1610 1611 void make_flow_keys_digest(struct flow_keys_digest *digest, 1612 const struct flow_keys *flow) 1613 { 1614 struct _flow_keys_digest_data *data = 1615 (struct _flow_keys_digest_data *)digest; 1616 1617 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); 1618 1619 memset(digest, 0, sizeof(*digest)); 1620 1621 data->n_proto = flow->basic.n_proto; 1622 data->ip_proto = flow->basic.ip_proto; 1623 data->ports = flow->ports.ports; 1624 data->src = flow->addrs.v4addrs.src; 1625 data->dst = flow->addrs.v4addrs.dst; 1626 } 1627 EXPORT_SYMBOL(make_flow_keys_digest); 1628 1629 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; 1630 1631 u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1632 { 1633 struct flow_keys keys; 1634 1635 __flow_hash_secret_init(); 1636 1637 memset(&keys, 0, sizeof(keys)); 1638 __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric, 1639 &keys, NULL, 0, 0, 0, 1640 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1641 1642 return __flow_hash_from_keys(&keys, &hashrnd); 1643 } 1644 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric); 1645 1646 /** 1647 * __skb_get_hash: calculate a flow hash 1648 * @skb: sk_buff to calculate flow hash from 1649 * 1650 * This function calculates a flow hash based on src/dst addresses 1651 * and src/dst port numbers. Sets hash in skb to non-zero hash value 1652 * on success, zero indicates no valid hash. Also, sets l4_hash in skb 1653 * if hash is a canonical 4-tuple hash over transport ports. 1654 */ 1655 void __skb_get_hash(struct sk_buff *skb) 1656 { 1657 struct flow_keys keys; 1658 u32 hash; 1659 1660 __flow_hash_secret_init(); 1661 1662 hash = ___skb_get_hash(skb, &keys, &hashrnd); 1663 1664 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1665 } 1666 EXPORT_SYMBOL(__skb_get_hash); 1667 1668 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1669 const siphash_key_t *perturb) 1670 { 1671 struct flow_keys keys; 1672 1673 return ___skb_get_hash(skb, &keys, perturb); 1674 } 1675 EXPORT_SYMBOL(skb_get_hash_perturb); 1676 1677 u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1678 const struct flow_keys_basic *keys, int hlen) 1679 { 1680 u32 poff = keys->control.thoff; 1681 1682 /* skip L4 headers for fragments after the first */ 1683 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && 1684 !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) 1685 return poff; 1686 1687 switch (keys->basic.ip_proto) { 1688 case IPPROTO_TCP: { 1689 /* access doff as u8 to avoid unaligned access */ 1690 const u8 *doff; 1691 u8 _doff; 1692 1693 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), 1694 data, hlen, &_doff); 1695 if (!doff) 1696 return poff; 1697 1698 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); 1699 break; 1700 } 1701 case IPPROTO_UDP: 1702 case IPPROTO_UDPLITE: 1703 poff += sizeof(struct udphdr); 1704 break; 1705 /* For the rest, we do not really care about header 1706 * extensions at this point for now. 1707 */ 1708 case IPPROTO_ICMP: 1709 poff += sizeof(struct icmphdr); 1710 break; 1711 case IPPROTO_ICMPV6: 1712 poff += sizeof(struct icmp6hdr); 1713 break; 1714 case IPPROTO_IGMP: 1715 poff += sizeof(struct igmphdr); 1716 break; 1717 case IPPROTO_DCCP: 1718 poff += sizeof(struct dccp_hdr); 1719 break; 1720 case IPPROTO_SCTP: 1721 poff += sizeof(struct sctphdr); 1722 break; 1723 } 1724 1725 return poff; 1726 } 1727 1728 /** 1729 * skb_get_poff - get the offset to the payload 1730 * @skb: sk_buff to get the payload offset from 1731 * 1732 * The function will get the offset to the payload as far as it could 1733 * be dissected. The main user is currently BPF, so that we can dynamically 1734 * truncate packets without needing to push actual payload to the user 1735 * space and can analyze headers only, instead. 1736 */ 1737 u32 skb_get_poff(const struct sk_buff *skb) 1738 { 1739 struct flow_keys_basic keys; 1740 1741 if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 1742 NULL, 0, 0, 0, 0)) 1743 return 0; 1744 1745 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); 1746 } 1747 1748 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) 1749 { 1750 memset(keys, 0, sizeof(*keys)); 1751 1752 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, 1753 sizeof(keys->addrs.v6addrs.src)); 1754 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, 1755 sizeof(keys->addrs.v6addrs.dst)); 1756 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1757 keys->ports.src = fl6->fl6_sport; 1758 keys->ports.dst = fl6->fl6_dport; 1759 keys->keyid.keyid = fl6->fl6_gre_key; 1760 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 1761 keys->basic.ip_proto = fl6->flowi6_proto; 1762 1763 return flow_hash_from_keys(keys); 1764 } 1765 EXPORT_SYMBOL(__get_hash_from_flowi6); 1766 1767 static const struct flow_dissector_key flow_keys_dissector_keys[] = { 1768 { 1769 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1770 .offset = offsetof(struct flow_keys, control), 1771 }, 1772 { 1773 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1774 .offset = offsetof(struct flow_keys, basic), 1775 }, 1776 { 1777 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1778 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1779 }, 1780 { 1781 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1782 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1783 }, 1784 { 1785 .key_id = FLOW_DISSECTOR_KEY_TIPC, 1786 .offset = offsetof(struct flow_keys, addrs.tipckey), 1787 }, 1788 { 1789 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1790 .offset = offsetof(struct flow_keys, ports), 1791 }, 1792 { 1793 .key_id = FLOW_DISSECTOR_KEY_VLAN, 1794 .offset = offsetof(struct flow_keys, vlan), 1795 }, 1796 { 1797 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, 1798 .offset = offsetof(struct flow_keys, tags), 1799 }, 1800 { 1801 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, 1802 .offset = offsetof(struct flow_keys, keyid), 1803 }, 1804 }; 1805 1806 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { 1807 { 1808 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1809 .offset = offsetof(struct flow_keys, control), 1810 }, 1811 { 1812 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1813 .offset = offsetof(struct flow_keys, basic), 1814 }, 1815 { 1816 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1817 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1818 }, 1819 { 1820 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1821 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1822 }, 1823 { 1824 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1825 .offset = offsetof(struct flow_keys, ports), 1826 }, 1827 }; 1828 1829 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { 1830 { 1831 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1832 .offset = offsetof(struct flow_keys, control), 1833 }, 1834 { 1835 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1836 .offset = offsetof(struct flow_keys, basic), 1837 }, 1838 }; 1839 1840 struct flow_dissector flow_keys_dissector __read_mostly; 1841 EXPORT_SYMBOL(flow_keys_dissector); 1842 1843 struct flow_dissector flow_keys_basic_dissector __read_mostly; 1844 EXPORT_SYMBOL(flow_keys_basic_dissector); 1845 1846 static int __init init_default_flow_dissectors(void) 1847 { 1848 skb_flow_dissector_init(&flow_keys_dissector, 1849 flow_keys_dissector_keys, 1850 ARRAY_SIZE(flow_keys_dissector_keys)); 1851 skb_flow_dissector_init(&flow_keys_dissector_symmetric, 1852 flow_keys_dissector_symmetric_keys, 1853 ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); 1854 skb_flow_dissector_init(&flow_keys_basic_dissector, 1855 flow_keys_basic_dissector_keys, 1856 ARRAY_SIZE(flow_keys_basic_dissector_keys)); 1857 1858 return register_pernet_subsys(&flow_dissector_pernet_ops); 1859 } 1860 core_initcall(init_default_flow_dissectors); 1861
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.