~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/core/sock.c

Version: ~ [ linux-5.9-rc6 ] ~ [ linux-5.8.10 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.66 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.146 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.198 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.236 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.236 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Generic socket support routines. Memory allocators, socket lock/release
  7  *              handler for protocols to use and generic option handler.
  8  *
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Florian La Roche, <flla@stud.uni-sb.de>
 13  *              Alan Cox, <A.Cox@swansea.ac.uk>
 14  *
 15  * Fixes:
 16  *              Alan Cox        :       Numerous verify_area() problems
 17  *              Alan Cox        :       Connecting on a connecting socket
 18  *                                      now returns an error for tcp.
 19  *              Alan Cox        :       sock->protocol is set correctly.
 20  *                                      and is not sometimes left as 0.
 21  *              Alan Cox        :       connect handles icmp errors on a
 22  *                                      connect properly. Unfortunately there
 23  *                                      is a restart syscall nasty there. I
 24  *                                      can't match BSD without hacking the C
 25  *                                      library. Ideas urgently sought!
 26  *              Alan Cox        :       Disallow bind() to addresses that are
 27  *                                      not ours - especially broadcast ones!!
 28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
 29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
 30  *                                      instead they leave that for the DESTROY timer.
 31  *              Alan Cox        :       Clean up error flag in accept
 32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
 33  *                                      was buggy. Put a remove_sock() in the handler
 34  *                                      for memory when we hit 0. Also altered the timer
 35  *                                      code. The ACK stuff can wait and needs major
 36  *                                      TCP layer surgery.
 37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
 38  *                                      and fixed timer/inet_bh race.
 39  *              Alan Cox        :       Added zapped flag for TCP
 40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
 41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
 42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
 43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
 44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
 45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
 46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
 47  *      Pauline Middelink       :       identd support
 48  *              Alan Cox        :       Fixed connect() taking signals I think.
 49  *              Alan Cox        :       SO_LINGER supported
 50  *              Alan Cox        :       Error reporting fixes
 51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
 52  *              Alan Cox        :       inet sockets don't set sk->type!
 53  *              Alan Cox        :       Split socket option code
 54  *              Alan Cox        :       Callbacks
 55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
 56  *              Alex            :       Removed restriction on inet fioctl
 57  *              Alan Cox        :       Splitting INET from NET core
 58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
 59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
 60  *              Alan Cox        :       Split IP from generic code
 61  *              Alan Cox        :       New kfree_skbmem()
 62  *              Alan Cox        :       Make SO_DEBUG superuser only.
 63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
 64  *                                      (compatibility fix)
 65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
 66  *              Alan Cox        :       Allocator for a socket is settable.
 67  *              Alan Cox        :       SO_ERROR includes soft errors.
 68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
 69  *              Alan Cox        :       Generic socket allocation to make hooks
 70  *                                      easier (suggested by Craig Metz).
 71  *              Michael Pall    :       SO_ERROR returns positive errno again
 72  *              Steve Whitehouse:       Added default destructor to free
 73  *                                      protocol private data.
 74  *              Steve Whitehouse:       Added various other default routines
 75  *                                      common to several socket families.
 76  *              Chris Evans     :       Call suser() check last on F_SETOWN
 77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
 78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
 79  *              Andi Kleen      :       Fix write_space callback
 80  *              Chris Evans     :       Security fixes - signedness again
 81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
 82  *
 83  * To Fix:
 84  *
 85  *
 86  *              This program is free software; you can redistribute it and/or
 87  *              modify it under the terms of the GNU General Public License
 88  *              as published by the Free Software Foundation; either version
 89  *              2 of the License, or (at your option) any later version.
 90  */
 91 
 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 93 
 94 #include <linux/capability.h>
 95 #include <linux/errno.h>
 96 #include <linux/errqueue.h>
 97 #include <linux/types.h>
 98 #include <linux/socket.h>
 99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
121 
122 #include <linux/uaccess.h>
123 
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136 
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139 
140 #include <trace/events/sock.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159                    struct user_namespace *user_ns, int cap)
160 {
161         return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162                 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177         return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192         return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 /*
197  * Each address family might have different locking rules, so we have
198  * one slock key per address family and separate keys for internal and
199  * userspace sockets.
200  */
201 static struct lock_class_key af_family_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205 
206 /*
207  * Make lock validator output more readable. (we pre-construct these
208  * strings build-time, so that runtime initialization of socket
209  * locks is fast):
210  */
211 
212 #define _sock_locks(x)                                            \
213   x "AF_UNSPEC",        x "AF_UNIX"     ,       x "AF_INET"     , \
214   x "AF_AX25"  ,        x "AF_IPX"      ,       x "AF_APPLETALK", \
215   x "AF_NETROM",        x "AF_BRIDGE"   ,       x "AF_ATMPVC"   , \
216   x "AF_X25"   ,        x "AF_INET6"    ,       x "AF_ROSE"     , \
217   x "AF_DECnet",        x "AF_NETBEUI"  ,       x "AF_SECURITY" , \
218   x "AF_KEY"   ,        x "AF_NETLINK"  ,       x "AF_PACKET"   , \
219   x "AF_ASH"   ,        x "AF_ECONET"   ,       x "AF_ATMSVC"   , \
220   x "AF_RDS"   ,        x "AF_SNA"      ,       x "AF_IRDA"     , \
221   x "AF_PPPOX" ,        x "AF_WANPIPE"  ,       x "AF_LLC"      , \
222   x "27"       ,        x "28"          ,       x "AF_CAN"      , \
223   x "AF_TIPC"  ,        x "AF_BLUETOOTH",       x "IUCV"        , \
224   x "AF_RXRPC" ,        x "AF_ISDN"     ,       x "AF_PHONET"   , \
225   x "AF_IEEE802154",    x "AF_CAIF"     ,       x "AF_ALG"      , \
226   x "AF_NFC"   ,        x "AF_VSOCK"    ,       x "AF_KCM"      , \
227   x "AF_QIPCRTR",       x "AF_SMC"      ,       x "AF_MAX"
228 
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230         _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233         _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236         _sock_locks("clock-")
237 };
238 
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240         _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243         _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246         _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249   "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
250   "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
251   "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
252   "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
253   "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
254   "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
255   "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
256   "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
257   "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
258   "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
259   "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
260   "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
261   "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
262   "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
263   "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
264 };
265 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
266   "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
267   "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
268   "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
269   "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
270   "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
271   "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
272   "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
273   "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
274   "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
275   "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
276   "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
277   "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
278   "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
279   "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
280   "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
281 };
282 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
283   "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
284   "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
285   "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
286   "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
287   "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
288   "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
289   "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
290   "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
291   "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
292   "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
293   "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
294   "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
295   "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
296   "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
297   "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock and sk queues locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 static struct lock_class_key af_rlock_keys[AF_MAX];
306 static struct lock_class_key af_wlock_keys[AF_MAX];
307 static struct lock_class_key af_elock_keys[AF_MAX];
308 static struct lock_class_key af_kern_callback_keys[AF_MAX];
309 
310 /* Run time adjustable parameters. */
311 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
312 EXPORT_SYMBOL(sysctl_wmem_max);
313 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
314 EXPORT_SYMBOL(sysctl_rmem_max);
315 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
316 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
317 
318 /* Maximal space eaten by iovec or ancillary data plus some space */
319 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
320 EXPORT_SYMBOL(sysctl_optmem_max);
321 
322 int sysctl_tstamp_allow_data __read_mostly = 1;
323 
324 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
325 EXPORT_SYMBOL_GPL(memalloc_socks);
326 
327 /**
328  * sk_set_memalloc - sets %SOCK_MEMALLOC
329  * @sk: socket to set it on
330  *
331  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
332  * It's the responsibility of the admin to adjust min_free_kbytes
333  * to meet the requirements
334  */
335 void sk_set_memalloc(struct sock *sk)
336 {
337         sock_set_flag(sk, SOCK_MEMALLOC);
338         sk->sk_allocation |= __GFP_MEMALLOC;
339         static_key_slow_inc(&memalloc_socks);
340 }
341 EXPORT_SYMBOL_GPL(sk_set_memalloc);
342 
343 void sk_clear_memalloc(struct sock *sk)
344 {
345         sock_reset_flag(sk, SOCK_MEMALLOC);
346         sk->sk_allocation &= ~__GFP_MEMALLOC;
347         static_key_slow_dec(&memalloc_socks);
348 
349         /*
350          * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
351          * progress of swapping. SOCK_MEMALLOC may be cleared while
352          * it has rmem allocations due to the last swapfile being deactivated
353          * but there is a risk that the socket is unusable due to exceeding
354          * the rmem limits. Reclaim the reserves and obey rmem limits again.
355          */
356         sk_mem_reclaim(sk);
357 }
358 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
359 
360 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
361 {
362         int ret;
363         unsigned int noreclaim_flag;
364 
365         /* these should have been dropped before queueing */
366         BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
367 
368         noreclaim_flag = memalloc_noreclaim_save();
369         ret = sk->sk_backlog_rcv(sk, skb);
370         memalloc_noreclaim_restore(noreclaim_flag);
371 
372         return ret;
373 }
374 EXPORT_SYMBOL(__sk_backlog_rcv);
375 
376 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
377 {
378         struct timeval tv;
379 
380         if (optlen < sizeof(tv))
381                 return -EINVAL;
382         if (copy_from_user(&tv, optval, sizeof(tv)))
383                 return -EFAULT;
384         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
385                 return -EDOM;
386 
387         if (tv.tv_sec < 0) {
388                 static int warned __read_mostly;
389 
390                 *timeo_p = 0;
391                 if (warned < 10 && net_ratelimit()) {
392                         warned++;
393                         pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
394                                 __func__, current->comm, task_pid_nr(current));
395                 }
396                 return 0;
397         }
398         *timeo_p = MAX_SCHEDULE_TIMEOUT;
399         if (tv.tv_sec == 0 && tv.tv_usec == 0)
400                 return 0;
401         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
402                 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
403         return 0;
404 }
405 
406 static void sock_warn_obsolete_bsdism(const char *name)
407 {
408         static int warned;
409         static char warncomm[TASK_COMM_LEN];
410         if (strcmp(warncomm, current->comm) && warned < 5) {
411                 strcpy(warncomm,  current->comm);
412                 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
413                         warncomm, name);
414                 warned++;
415         }
416 }
417 
418 static bool sock_needs_netstamp(const struct sock *sk)
419 {
420         switch (sk->sk_family) {
421         case AF_UNSPEC:
422         case AF_UNIX:
423                 return false;
424         default:
425                 return true;
426         }
427 }
428 
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431         if (sk->sk_flags & flags) {
432                 sk->sk_flags &= ~flags;
433                 if (sock_needs_netstamp(sk) &&
434                     !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
435                         net_disable_timestamp();
436         }
437 }
438 
439 
440 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
441 {
442         unsigned long flags;
443         struct sk_buff_head *list = &sk->sk_receive_queue;
444 
445         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446                 atomic_inc(&sk->sk_drops);
447                 trace_sock_rcvqueue_full(sk, skb);
448                 return -ENOMEM;
449         }
450 
451         if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
452                 atomic_inc(&sk->sk_drops);
453                 return -ENOBUFS;
454         }
455 
456         skb->dev = NULL;
457         skb_set_owner_r(skb, sk);
458 
459         /* we escape from rcu protected region, make sure we dont leak
460          * a norefcounted dst
461          */
462         skb_dst_force(skb);
463 
464         spin_lock_irqsave(&list->lock, flags);
465         sock_skb_set_dropcount(sk, skb);
466         __skb_queue_tail(list, skb);
467         spin_unlock_irqrestore(&list->lock, flags);
468 
469         if (!sock_flag(sk, SOCK_DEAD))
470                 sk->sk_data_ready(sk);
471         return 0;
472 }
473 EXPORT_SYMBOL(__sock_queue_rcv_skb);
474 
475 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
476 {
477         int err;
478 
479         err = sk_filter(sk, skb);
480         if (err)
481                 return err;
482 
483         return __sock_queue_rcv_skb(sk, skb);
484 }
485 EXPORT_SYMBOL(sock_queue_rcv_skb);
486 
487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
488                      const int nested, unsigned int trim_cap, bool refcounted)
489 {
490         int rc = NET_RX_SUCCESS;
491 
492         if (sk_filter_trim_cap(sk, skb, trim_cap))
493                 goto discard_and_relse;
494 
495         skb->dev = NULL;
496 
497         if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
498                 atomic_inc(&sk->sk_drops);
499                 goto discard_and_relse;
500         }
501         if (nested)
502                 bh_lock_sock_nested(sk);
503         else
504                 bh_lock_sock(sk);
505         if (!sock_owned_by_user(sk)) {
506                 /*
507                  * trylock + unlock semantics:
508                  */
509                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
510 
511                 rc = sk_backlog_rcv(sk, skb);
512 
513                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
514         } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
515                 bh_unlock_sock(sk);
516                 atomic_inc(&sk->sk_drops);
517                 goto discard_and_relse;
518         }
519 
520         bh_unlock_sock(sk);
521 out:
522         if (refcounted)
523                 sock_put(sk);
524         return rc;
525 discard_and_relse:
526         kfree_skb(skb);
527         goto out;
528 }
529 EXPORT_SYMBOL(__sk_receive_skb);
530 
531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
532 {
533         struct dst_entry *dst = __sk_dst_get(sk);
534 
535         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
536                 sk_tx_queue_clear(sk);
537                 sk->sk_dst_pending_confirm = 0;
538                 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
539                 dst_release(dst);
540                 return NULL;
541         }
542 
543         return dst;
544 }
545 EXPORT_SYMBOL(__sk_dst_check);
546 
547 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
548 {
549         struct dst_entry *dst = sk_dst_get(sk);
550 
551         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
552                 sk_dst_reset(sk);
553                 dst_release(dst);
554                 return NULL;
555         }
556 
557         return dst;
558 }
559 EXPORT_SYMBOL(sk_dst_check);
560 
561 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
562                                 int optlen)
563 {
564         int ret = -ENOPROTOOPT;
565 #ifdef CONFIG_NETDEVICES
566         struct net *net = sock_net(sk);
567         char devname[IFNAMSIZ];
568         int index;
569 
570         /* Sorry... */
571         ret = -EPERM;
572         if (!ns_capable(net->user_ns, CAP_NET_RAW))
573                 goto out;
574 
575         ret = -EINVAL;
576         if (optlen < 0)
577                 goto out;
578 
579         /* Bind this socket to a particular device like "eth0",
580          * as specified in the passed interface name. If the
581          * name is "" or the option length is zero the socket
582          * is not bound.
583          */
584         if (optlen > IFNAMSIZ - 1)
585                 optlen = IFNAMSIZ - 1;
586         memset(devname, 0, sizeof(devname));
587 
588         ret = -EFAULT;
589         if (copy_from_user(devname, optval, optlen))
590                 goto out;
591 
592         index = 0;
593         if (devname[0] != '\0') {
594                 struct net_device *dev;
595 
596                 rcu_read_lock();
597                 dev = dev_get_by_name_rcu(net, devname);
598                 if (dev)
599                         index = dev->ifindex;
600                 rcu_read_unlock();
601                 ret = -ENODEV;
602                 if (!dev)
603                         goto out;
604         }
605 
606         lock_sock(sk);
607         sk->sk_bound_dev_if = index;
608         sk_dst_reset(sk);
609         release_sock(sk);
610 
611         ret = 0;
612 
613 out:
614 #endif
615 
616         return ret;
617 }
618 
619 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
620                                 int __user *optlen, int len)
621 {
622         int ret = -ENOPROTOOPT;
623 #ifdef CONFIG_NETDEVICES
624         struct net *net = sock_net(sk);
625         char devname[IFNAMSIZ];
626 
627         if (sk->sk_bound_dev_if == 0) {
628                 len = 0;
629                 goto zero;
630         }
631 
632         ret = -EINVAL;
633         if (len < IFNAMSIZ)
634                 goto out;
635 
636         ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
637         if (ret)
638                 goto out;
639 
640         len = strlen(devname) + 1;
641 
642         ret = -EFAULT;
643         if (copy_to_user(optval, devname, len))
644                 goto out;
645 
646 zero:
647         ret = -EFAULT;
648         if (put_user(len, optlen))
649                 goto out;
650 
651         ret = 0;
652 
653 out:
654 #endif
655 
656         return ret;
657 }
658 
659 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
660 {
661         if (valbool)
662                 sock_set_flag(sk, bit);
663         else
664                 sock_reset_flag(sk, bit);
665 }
666 
667 bool sk_mc_loop(struct sock *sk)
668 {
669         if (dev_recursion_level())
670                 return false;
671         if (!sk)
672                 return true;
673         switch (sk->sk_family) {
674         case AF_INET:
675                 return inet_sk(sk)->mc_loop;
676 #if IS_ENABLED(CONFIG_IPV6)
677         case AF_INET6:
678                 return inet6_sk(sk)->mc_loop;
679 #endif
680         }
681         WARN_ON(1);
682         return true;
683 }
684 EXPORT_SYMBOL(sk_mc_loop);
685 
686 /*
687  *      This is meant for all protocols to use and covers goings on
688  *      at the socket level. Everything here is generic.
689  */
690 
691 int sock_setsockopt(struct socket *sock, int level, int optname,
692                     char __user *optval, unsigned int optlen)
693 {
694         struct sock *sk = sock->sk;
695         int val;
696         int valbool;
697         struct linger ling;
698         int ret = 0;
699 
700         /*
701          *      Options without arguments
702          */
703 
704         if (optname == SO_BINDTODEVICE)
705                 return sock_setbindtodevice(sk, optval, optlen);
706 
707         if (optlen < sizeof(int))
708                 return -EINVAL;
709 
710         if (get_user(val, (int __user *)optval))
711                 return -EFAULT;
712 
713         valbool = val ? 1 : 0;
714 
715         lock_sock(sk);
716 
717         switch (optname) {
718         case SO_DEBUG:
719                 if (val && !capable(CAP_NET_ADMIN))
720                         ret = -EACCES;
721                 else
722                         sock_valbool_flag(sk, SOCK_DBG, valbool);
723                 break;
724         case SO_REUSEADDR:
725                 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
726                 break;
727         case SO_REUSEPORT:
728                 sk->sk_reuseport = valbool;
729                 break;
730         case SO_TYPE:
731         case SO_PROTOCOL:
732         case SO_DOMAIN:
733         case SO_ERROR:
734                 ret = -ENOPROTOOPT;
735                 break;
736         case SO_DONTROUTE:
737                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
738                 break;
739         case SO_BROADCAST:
740                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
741                 break;
742         case SO_SNDBUF:
743                 /* Don't error on this BSD doesn't and if you think
744                  * about it this is right. Otherwise apps have to
745                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
746                  * are treated in BSD as hints
747                  */
748                 val = min_t(u32, val, sysctl_wmem_max);
749 set_sndbuf:
750                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
751                 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
752                 /* Wake up sending tasks if we upped the value. */
753                 sk->sk_write_space(sk);
754                 break;
755 
756         case SO_SNDBUFFORCE:
757                 if (!capable(CAP_NET_ADMIN)) {
758                         ret = -EPERM;
759                         break;
760                 }
761                 goto set_sndbuf;
762 
763         case SO_RCVBUF:
764                 /* Don't error on this BSD doesn't and if you think
765                  * about it this is right. Otherwise apps have to
766                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
767                  * are treated in BSD as hints
768                  */
769                 val = min_t(u32, val, sysctl_rmem_max);
770 set_rcvbuf:
771                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
772                 /*
773                  * We double it on the way in to account for
774                  * "struct sk_buff" etc. overhead.   Applications
775                  * assume that the SO_RCVBUF setting they make will
776                  * allow that much actual data to be received on that
777                  * socket.
778                  *
779                  * Applications are unaware that "struct sk_buff" and
780                  * other overheads allocate from the receive buffer
781                  * during socket buffer allocation.
782                  *
783                  * And after considering the possible alternatives,
784                  * returning the value we actually used in getsockopt
785                  * is the most desirable behavior.
786                  */
787                 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
788                 break;
789 
790         case SO_RCVBUFFORCE:
791                 if (!capable(CAP_NET_ADMIN)) {
792                         ret = -EPERM;
793                         break;
794                 }
795                 goto set_rcvbuf;
796 
797         case SO_KEEPALIVE:
798                 if (sk->sk_prot->keepalive)
799                         sk->sk_prot->keepalive(sk, valbool);
800                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
801                 break;
802 
803         case SO_OOBINLINE:
804                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
805                 break;
806 
807         case SO_NO_CHECK:
808                 sk->sk_no_check_tx = valbool;
809                 break;
810 
811         case SO_PRIORITY:
812                 if ((val >= 0 && val <= 6) ||
813                     ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
814                         sk->sk_priority = val;
815                 else
816                         ret = -EPERM;
817                 break;
818 
819         case SO_LINGER:
820                 if (optlen < sizeof(ling)) {
821                         ret = -EINVAL;  /* 1003.1g */
822                         break;
823                 }
824                 if (copy_from_user(&ling, optval, sizeof(ling))) {
825                         ret = -EFAULT;
826                         break;
827                 }
828                 if (!ling.l_onoff)
829                         sock_reset_flag(sk, SOCK_LINGER);
830                 else {
831 #if (BITS_PER_LONG == 32)
832                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
833                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
834                         else
835 #endif
836                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
837                         sock_set_flag(sk, SOCK_LINGER);
838                 }
839                 break;
840 
841         case SO_BSDCOMPAT:
842                 sock_warn_obsolete_bsdism("setsockopt");
843                 break;
844 
845         case SO_PASSCRED:
846                 if (valbool)
847                         set_bit(SOCK_PASSCRED, &sock->flags);
848                 else
849                         clear_bit(SOCK_PASSCRED, &sock->flags);
850                 break;
851 
852         case SO_TIMESTAMP:
853         case SO_TIMESTAMPNS:
854                 if (valbool)  {
855                         if (optname == SO_TIMESTAMP)
856                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
857                         else
858                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
859                         sock_set_flag(sk, SOCK_RCVTSTAMP);
860                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
861                 } else {
862                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
863                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
864                 }
865                 break;
866 
867         case SO_TIMESTAMPING:
868                 if (val & ~SOF_TIMESTAMPING_MASK) {
869                         ret = -EINVAL;
870                         break;
871                 }
872 
873                 if (val & SOF_TIMESTAMPING_OPT_ID &&
874                     !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
875                         if (sk->sk_protocol == IPPROTO_TCP &&
876                             sk->sk_type == SOCK_STREAM) {
877                                 if ((1 << sk->sk_state) &
878                                     (TCPF_CLOSE | TCPF_LISTEN)) {
879                                         ret = -EINVAL;
880                                         break;
881                                 }
882                                 sk->sk_tskey = tcp_sk(sk)->snd_una;
883                         } else {
884                                 sk->sk_tskey = 0;
885                         }
886                 }
887 
888                 if (val & SOF_TIMESTAMPING_OPT_STATS &&
889                     !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
890                         ret = -EINVAL;
891                         break;
892                 }
893 
894                 sk->sk_tsflags = val;
895                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
896                         sock_enable_timestamp(sk,
897                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
898                 else
899                         sock_disable_timestamp(sk,
900                                                (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
901                 break;
902 
903         case SO_RCVLOWAT:
904                 if (val < 0)
905                         val = INT_MAX;
906                 sk->sk_rcvlowat = val ? : 1;
907                 break;
908 
909         case SO_RCVTIMEO:
910                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
911                 break;
912 
913         case SO_SNDTIMEO:
914                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
915                 break;
916 
917         case SO_ATTACH_FILTER:
918                 ret = -EINVAL;
919                 if (optlen == sizeof(struct sock_fprog)) {
920                         struct sock_fprog fprog;
921 
922                         ret = -EFAULT;
923                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
924                                 break;
925 
926                         ret = sk_attach_filter(&fprog, sk);
927                 }
928                 break;
929 
930         case SO_ATTACH_BPF:
931                 ret = -EINVAL;
932                 if (optlen == sizeof(u32)) {
933                         u32 ufd;
934 
935                         ret = -EFAULT;
936                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
937                                 break;
938 
939                         ret = sk_attach_bpf(ufd, sk);
940                 }
941                 break;
942 
943         case SO_ATTACH_REUSEPORT_CBPF:
944                 ret = -EINVAL;
945                 if (optlen == sizeof(struct sock_fprog)) {
946                         struct sock_fprog fprog;
947 
948                         ret = -EFAULT;
949                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
950                                 break;
951 
952                         ret = sk_reuseport_attach_filter(&fprog, sk);
953                 }
954                 break;
955 
956         case SO_ATTACH_REUSEPORT_EBPF:
957                 ret = -EINVAL;
958                 if (optlen == sizeof(u32)) {
959                         u32 ufd;
960 
961                         ret = -EFAULT;
962                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
963                                 break;
964 
965                         ret = sk_reuseport_attach_bpf(ufd, sk);
966                 }
967                 break;
968 
969         case SO_DETACH_FILTER:
970                 ret = sk_detach_filter(sk);
971                 break;
972 
973         case SO_LOCK_FILTER:
974                 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
975                         ret = -EPERM;
976                 else
977                         sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
978                 break;
979 
980         case SO_PASSSEC:
981                 if (valbool)
982                         set_bit(SOCK_PASSSEC, &sock->flags);
983                 else
984                         clear_bit(SOCK_PASSSEC, &sock->flags);
985                 break;
986         case SO_MARK:
987                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
988                         ret = -EPERM;
989                 else
990                         sk->sk_mark = val;
991                 break;
992 
993         case SO_RXQ_OVFL:
994                 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
995                 break;
996 
997         case SO_WIFI_STATUS:
998                 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
999                 break;
1000 
1001         case SO_PEEK_OFF:
1002                 if (sock->ops->set_peek_off)
1003                         ret = sock->ops->set_peek_off(sk, val);
1004                 else
1005                         ret = -EOPNOTSUPP;
1006                 break;
1007 
1008         case SO_NOFCS:
1009                 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1010                 break;
1011 
1012         case SO_SELECT_ERR_QUEUE:
1013                 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1014                 break;
1015 
1016 #ifdef CONFIG_NET_RX_BUSY_POLL
1017         case SO_BUSY_POLL:
1018                 /* allow unprivileged users to decrease the value */
1019                 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1020                         ret = -EPERM;
1021                 else {
1022                         if (val < 0)
1023                                 ret = -EINVAL;
1024                         else
1025                                 sk->sk_ll_usec = val;
1026                 }
1027                 break;
1028 #endif
1029 
1030         case SO_MAX_PACING_RATE:
1031                 if (val != ~0U)
1032                         cmpxchg(&sk->sk_pacing_status,
1033                                 SK_PACING_NONE,
1034                                 SK_PACING_NEEDED);
1035                 sk->sk_max_pacing_rate = val;
1036                 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1037                                          sk->sk_max_pacing_rate);
1038                 break;
1039 
1040         case SO_INCOMING_CPU:
1041                 sk->sk_incoming_cpu = val;
1042                 break;
1043 
1044         case SO_CNX_ADVICE:
1045                 if (val == 1)
1046                         dst_negative_advice(sk);
1047                 break;
1048 
1049         case SO_ZEROCOPY:
1050                 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
1051                         ret = -ENOTSUPP;
1052                 else if (sk->sk_protocol != IPPROTO_TCP)
1053                         ret = -ENOTSUPP;
1054                 else if (sk->sk_state != TCP_CLOSE)
1055                         ret = -EBUSY;
1056                 else if (val < 0 || val > 1)
1057                         ret = -EINVAL;
1058                 else
1059                         sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1060                 break;
1061 
1062         default:
1063                 ret = -ENOPROTOOPT;
1064                 break;
1065         }
1066         release_sock(sk);
1067         return ret;
1068 }
1069 EXPORT_SYMBOL(sock_setsockopt);
1070 
1071 
1072 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1073                           struct ucred *ucred)
1074 {
1075         ucred->pid = pid_vnr(pid);
1076         ucred->uid = ucred->gid = -1;
1077         if (cred) {
1078                 struct user_namespace *current_ns = current_user_ns();
1079 
1080                 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1081                 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1082         }
1083 }
1084 
1085 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1086 {
1087         struct user_namespace *user_ns = current_user_ns();
1088         int i;
1089 
1090         for (i = 0; i < src->ngroups; i++)
1091                 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1092                         return -EFAULT;
1093 
1094         return 0;
1095 }
1096 
1097 int sock_getsockopt(struct socket *sock, int level, int optname,
1098                     char __user *optval, int __user *optlen)
1099 {
1100         struct sock *sk = sock->sk;
1101 
1102         union {
1103                 int val;
1104                 u64 val64;
1105                 struct linger ling;
1106                 struct timeval tm;
1107         } v;
1108 
1109         int lv = sizeof(int);
1110         int len;
1111 
1112         if (get_user(len, optlen))
1113                 return -EFAULT;
1114         if (len < 0)
1115                 return -EINVAL;
1116 
1117         memset(&v, 0, sizeof(v));
1118 
1119         switch (optname) {
1120         case SO_DEBUG:
1121                 v.val = sock_flag(sk, SOCK_DBG);
1122                 break;
1123 
1124         case SO_DONTROUTE:
1125                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1126                 break;
1127 
1128         case SO_BROADCAST:
1129                 v.val = sock_flag(sk, SOCK_BROADCAST);
1130                 break;
1131 
1132         case SO_SNDBUF:
1133                 v.val = sk->sk_sndbuf;
1134                 break;
1135 
1136         case SO_RCVBUF:
1137                 v.val = sk->sk_rcvbuf;
1138                 break;
1139 
1140         case SO_REUSEADDR:
1141                 v.val = sk->sk_reuse;
1142                 break;
1143 
1144         case SO_REUSEPORT:
1145                 v.val = sk->sk_reuseport;
1146                 break;
1147 
1148         case SO_KEEPALIVE:
1149                 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1150                 break;
1151 
1152         case SO_TYPE:
1153                 v.val = sk->sk_type;
1154                 break;
1155 
1156         case SO_PROTOCOL:
1157                 v.val = sk->sk_protocol;
1158                 break;
1159 
1160         case SO_DOMAIN:
1161                 v.val = sk->sk_family;
1162                 break;
1163 
1164         case SO_ERROR:
1165                 v.val = -sock_error(sk);
1166                 if (v.val == 0)
1167                         v.val = xchg(&sk->sk_err_soft, 0);
1168                 break;
1169 
1170         case SO_OOBINLINE:
1171                 v.val = sock_flag(sk, SOCK_URGINLINE);
1172                 break;
1173 
1174         case SO_NO_CHECK:
1175                 v.val = sk->sk_no_check_tx;
1176                 break;
1177 
1178         case SO_PRIORITY:
1179                 v.val = sk->sk_priority;
1180                 break;
1181 
1182         case SO_LINGER:
1183                 lv              = sizeof(v.ling);
1184                 v.ling.l_onoff  = sock_flag(sk, SOCK_LINGER);
1185                 v.ling.l_linger = sk->sk_lingertime / HZ;
1186                 break;
1187 
1188         case SO_BSDCOMPAT:
1189                 sock_warn_obsolete_bsdism("getsockopt");
1190                 break;
1191 
1192         case SO_TIMESTAMP:
1193                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1194                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1195                 break;
1196 
1197         case SO_TIMESTAMPNS:
1198                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1199                 break;
1200 
1201         case SO_TIMESTAMPING:
1202                 v.val = sk->sk_tsflags;
1203                 break;
1204 
1205         case SO_RCVTIMEO:
1206                 lv = sizeof(struct timeval);
1207                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1208                         v.tm.tv_sec = 0;
1209                         v.tm.tv_usec = 0;
1210                 } else {
1211                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1212                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1213                 }
1214                 break;
1215 
1216         case SO_SNDTIMEO:
1217                 lv = sizeof(struct timeval);
1218                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1219                         v.tm.tv_sec = 0;
1220                         v.tm.tv_usec = 0;
1221                 } else {
1222                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1223                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1224                 }
1225                 break;
1226 
1227         case SO_RCVLOWAT:
1228                 v.val = sk->sk_rcvlowat;
1229                 break;
1230 
1231         case SO_SNDLOWAT:
1232                 v.val = 1;
1233                 break;
1234 
1235         case SO_PASSCRED:
1236                 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1237                 break;
1238 
1239         case SO_PEERCRED:
1240         {
1241                 struct ucred peercred;
1242                 if (len > sizeof(peercred))
1243                         len = sizeof(peercred);
1244                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1245                 if (copy_to_user(optval, &peercred, len))
1246                         return -EFAULT;
1247                 goto lenout;
1248         }
1249 
1250         case SO_PEERGROUPS:
1251         {
1252                 int ret, n;
1253 
1254                 if (!sk->sk_peer_cred)
1255                         return -ENODATA;
1256 
1257                 n = sk->sk_peer_cred->group_info->ngroups;
1258                 if (len < n * sizeof(gid_t)) {
1259                         len = n * sizeof(gid_t);
1260                         return put_user(len, optlen) ? -EFAULT : -ERANGE;
1261                 }
1262                 len = n * sizeof(gid_t);
1263 
1264                 ret = groups_to_user((gid_t __user *)optval,
1265                                      sk->sk_peer_cred->group_info);
1266                 if (ret)
1267                         return ret;
1268                 goto lenout;
1269         }
1270 
1271         case SO_PEERNAME:
1272         {
1273                 char address[128];
1274 
1275                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1276                         return -ENOTCONN;
1277                 if (lv < len)
1278                         return -EINVAL;
1279                 if (copy_to_user(optval, address, len))
1280                         return -EFAULT;
1281                 goto lenout;
1282         }
1283 
1284         /* Dubious BSD thing... Probably nobody even uses it, but
1285          * the UNIX standard wants it for whatever reason... -DaveM
1286          */
1287         case SO_ACCEPTCONN:
1288                 v.val = sk->sk_state == TCP_LISTEN;
1289                 break;
1290 
1291         case SO_PASSSEC:
1292                 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1293                 break;
1294 
1295         case SO_PEERSEC:
1296                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1297 
1298         case SO_MARK:
1299                 v.val = sk->sk_mark;
1300                 break;
1301 
1302         case SO_RXQ_OVFL:
1303                 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1304                 break;
1305 
1306         case SO_WIFI_STATUS:
1307                 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1308                 break;
1309 
1310         case SO_PEEK_OFF:
1311                 if (!sock->ops->set_peek_off)
1312                         return -EOPNOTSUPP;
1313 
1314                 v.val = sk->sk_peek_off;
1315                 break;
1316         case SO_NOFCS:
1317                 v.val = sock_flag(sk, SOCK_NOFCS);
1318                 break;
1319 
1320         case SO_BINDTODEVICE:
1321                 return sock_getbindtodevice(sk, optval, optlen, len);
1322 
1323         case SO_GET_FILTER:
1324                 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1325                 if (len < 0)
1326                         return len;
1327 
1328                 goto lenout;
1329 
1330         case SO_LOCK_FILTER:
1331                 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1332                 break;
1333 
1334         case SO_BPF_EXTENSIONS:
1335                 v.val = bpf_tell_extensions();
1336                 break;
1337 
1338         case SO_SELECT_ERR_QUEUE:
1339                 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1340                 break;
1341 
1342 #ifdef CONFIG_NET_RX_BUSY_POLL
1343         case SO_BUSY_POLL:
1344                 v.val = sk->sk_ll_usec;
1345                 break;
1346 #endif
1347 
1348         case SO_MAX_PACING_RATE:
1349                 v.val = sk->sk_max_pacing_rate;
1350                 break;
1351 
1352         case SO_INCOMING_CPU:
1353                 v.val = sk->sk_incoming_cpu;
1354                 break;
1355 
1356         case SO_MEMINFO:
1357         {
1358                 u32 meminfo[SK_MEMINFO_VARS];
1359 
1360                 if (get_user(len, optlen))
1361                         return -EFAULT;
1362 
1363                 sk_get_meminfo(sk, meminfo);
1364 
1365                 len = min_t(unsigned int, len, sizeof(meminfo));
1366                 if (copy_to_user(optval, &meminfo, len))
1367                         return -EFAULT;
1368 
1369                 goto lenout;
1370         }
1371 
1372 #ifdef CONFIG_NET_RX_BUSY_POLL
1373         case SO_INCOMING_NAPI_ID:
1374                 v.val = READ_ONCE(sk->sk_napi_id);
1375 
1376                 /* aggregate non-NAPI IDs down to 0 */
1377                 if (v.val < MIN_NAPI_ID)
1378                         v.val = 0;
1379 
1380                 break;
1381 #endif
1382 
1383         case SO_COOKIE:
1384                 lv = sizeof(u64);
1385                 if (len < lv)
1386                         return -EINVAL;
1387                 v.val64 = sock_gen_cookie(sk);
1388                 break;
1389 
1390         case SO_ZEROCOPY:
1391                 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1392                 break;
1393 
1394         default:
1395                 /* We implement the SO_SNDLOWAT etc to not be settable
1396                  * (1003.1g 7).
1397                  */
1398                 return -ENOPROTOOPT;
1399         }
1400 
1401         if (len > lv)
1402                 len = lv;
1403         if (copy_to_user(optval, &v, len))
1404                 return -EFAULT;
1405 lenout:
1406         if (put_user(len, optlen))
1407                 return -EFAULT;
1408         return 0;
1409 }
1410 
1411 /*
1412  * Initialize an sk_lock.
1413  *
1414  * (We also register the sk_lock with the lock validator.)
1415  */
1416 static inline void sock_lock_init(struct sock *sk)
1417 {
1418         if (sk->sk_kern_sock)
1419                 sock_lock_init_class_and_name(
1420                         sk,
1421                         af_family_kern_slock_key_strings[sk->sk_family],
1422                         af_family_kern_slock_keys + sk->sk_family,
1423                         af_family_kern_key_strings[sk->sk_family],
1424                         af_family_kern_keys + sk->sk_family);
1425         else
1426                 sock_lock_init_class_and_name(
1427                         sk,
1428                         af_family_slock_key_strings[sk->sk_family],
1429                         af_family_slock_keys + sk->sk_family,
1430                         af_family_key_strings[sk->sk_family],
1431                         af_family_keys + sk->sk_family);
1432 }
1433 
1434 /*
1435  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1436  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1437  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1438  */
1439 static void sock_copy(struct sock *nsk, const struct sock *osk)
1440 {
1441 #ifdef CONFIG_SECURITY_NETWORK
1442         void *sptr = nsk->sk_security;
1443 #endif
1444         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1445 
1446         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1447                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1448 
1449 #ifdef CONFIG_SECURITY_NETWORK
1450         nsk->sk_security = sptr;
1451         security_sk_clone(osk, nsk);
1452 #endif
1453 }
1454 
1455 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1456                 int family)
1457 {
1458         struct sock *sk;
1459         struct kmem_cache *slab;
1460 
1461         slab = prot->slab;
1462         if (slab != NULL) {
1463                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1464                 if (!sk)
1465                         return sk;
1466                 if (priority & __GFP_ZERO)
1467                         sk_prot_clear_nulls(sk, prot->obj_size);
1468         } else
1469                 sk = kmalloc(prot->obj_size, priority);
1470 
1471         if (sk != NULL) {
1472                 if (security_sk_alloc(sk, family, priority))
1473                         goto out_free;
1474 
1475                 if (!try_module_get(prot->owner))
1476                         goto out_free_sec;
1477                 sk_tx_queue_clear(sk);
1478         }
1479 
1480         return sk;
1481 
1482 out_free_sec:
1483         security_sk_free(sk);
1484 out_free:
1485         if (slab != NULL)
1486                 kmem_cache_free(slab, sk);
1487         else
1488                 kfree(sk);
1489         return NULL;
1490 }
1491 
1492 static void sk_prot_free(struct proto *prot, struct sock *sk)
1493 {
1494         struct kmem_cache *slab;
1495         struct module *owner;
1496 
1497         owner = prot->owner;
1498         slab = prot->slab;
1499 
1500         cgroup_sk_free(&sk->sk_cgrp_data);
1501         mem_cgroup_sk_free(sk);
1502         security_sk_free(sk);
1503         if (slab != NULL)
1504                 kmem_cache_free(slab, sk);
1505         else
1506                 kfree(sk);
1507         module_put(owner);
1508 }
1509 
1510 /**
1511  *      sk_alloc - All socket objects are allocated here
1512  *      @net: the applicable net namespace
1513  *      @family: protocol family
1514  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1515  *      @prot: struct proto associated with this new sock instance
1516  *      @kern: is this to be a kernel socket?
1517  */
1518 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1519                       struct proto *prot, int kern)
1520 {
1521         struct sock *sk;
1522 
1523         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1524         if (sk) {
1525                 sk->sk_family = family;
1526                 /*
1527                  * See comment in struct sock definition to understand
1528                  * why we need sk_prot_creator -acme
1529                  */
1530                 sk->sk_prot = sk->sk_prot_creator = prot;
1531                 sk->sk_kern_sock = kern;
1532                 sock_lock_init(sk);
1533                 sk->sk_net_refcnt = kern ? 0 : 1;
1534                 if (likely(sk->sk_net_refcnt))
1535                         get_net(net);
1536                 sock_net_set(sk, net);
1537                 refcount_set(&sk->sk_wmem_alloc, 1);
1538 
1539                 mem_cgroup_sk_alloc(sk);
1540                 cgroup_sk_alloc(&sk->sk_cgrp_data);
1541                 sock_update_classid(&sk->sk_cgrp_data);
1542                 sock_update_netprioidx(&sk->sk_cgrp_data);
1543         }
1544 
1545         return sk;
1546 }
1547 EXPORT_SYMBOL(sk_alloc);
1548 
1549 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1550  * grace period. This is the case for UDP sockets and TCP listeners.
1551  */
1552 static void __sk_destruct(struct rcu_head *head)
1553 {
1554         struct sock *sk = container_of(head, struct sock, sk_rcu);
1555         struct sk_filter *filter;
1556 
1557         if (sk->sk_destruct)
1558                 sk->sk_destruct(sk);
1559 
1560         filter = rcu_dereference_check(sk->sk_filter,
1561                                        refcount_read(&sk->sk_wmem_alloc) == 0);
1562         if (filter) {
1563                 sk_filter_uncharge(sk, filter);
1564                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1565         }
1566         if (rcu_access_pointer(sk->sk_reuseport_cb))
1567                 reuseport_detach_sock(sk);
1568 
1569         sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1570 
1571         if (atomic_read(&sk->sk_omem_alloc))
1572                 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1573                          __func__, atomic_read(&sk->sk_omem_alloc));
1574 
1575         if (sk->sk_frag.page) {
1576                 put_page(sk->sk_frag.page);
1577                 sk->sk_frag.page = NULL;
1578         }
1579 
1580         if (sk->sk_peer_cred)
1581                 put_cred(sk->sk_peer_cred);
1582         put_pid(sk->sk_peer_pid);
1583         if (likely(sk->sk_net_refcnt))
1584                 put_net(sock_net(sk));
1585         sk_prot_free(sk->sk_prot_creator, sk);
1586 }
1587 
1588 void sk_destruct(struct sock *sk)
1589 {
1590         if (sock_flag(sk, SOCK_RCU_FREE))
1591                 call_rcu(&sk->sk_rcu, __sk_destruct);
1592         else
1593                 __sk_destruct(&sk->sk_rcu);
1594 }
1595 
1596 static void __sk_free(struct sock *sk)
1597 {
1598         if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1599                 sock_diag_broadcast_destroy(sk);
1600         else
1601                 sk_destruct(sk);
1602 }
1603 
1604 void sk_free(struct sock *sk)
1605 {
1606         /*
1607          * We subtract one from sk_wmem_alloc and can know if
1608          * some packets are still in some tx queue.
1609          * If not null, sock_wfree() will call __sk_free(sk) later
1610          */
1611         if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1612                 __sk_free(sk);
1613 }
1614 EXPORT_SYMBOL(sk_free);
1615 
1616 static void sk_init_common(struct sock *sk)
1617 {
1618         skb_queue_head_init(&sk->sk_receive_queue);
1619         skb_queue_head_init(&sk->sk_write_queue);
1620         skb_queue_head_init(&sk->sk_error_queue);
1621 
1622         rwlock_init(&sk->sk_callback_lock);
1623         lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1624                         af_rlock_keys + sk->sk_family,
1625                         af_family_rlock_key_strings[sk->sk_family]);
1626         lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1627                         af_wlock_keys + sk->sk_family,
1628                         af_family_wlock_key_strings[sk->sk_family]);
1629         lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1630                         af_elock_keys + sk->sk_family,
1631                         af_family_elock_key_strings[sk->sk_family]);
1632         lockdep_set_class_and_name(&sk->sk_callback_lock,
1633                         af_callback_keys + sk->sk_family,
1634                         af_family_clock_key_strings[sk->sk_family]);
1635 }
1636 
1637 /**
1638  *      sk_clone_lock - clone a socket, and lock its clone
1639  *      @sk: the socket to clone
1640  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1641  *
1642  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1643  */
1644 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1645 {
1646         struct sock *newsk;
1647         bool is_charged = true;
1648 
1649         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1650         if (newsk != NULL) {
1651                 struct sk_filter *filter;
1652 
1653                 sock_copy(newsk, sk);
1654 
1655                 newsk->sk_prot_creator = sk->sk_prot;
1656 
1657                 /* SANITY */
1658                 if (likely(newsk->sk_net_refcnt))
1659                         get_net(sock_net(newsk));
1660                 sk_node_init(&newsk->sk_node);
1661                 sock_lock_init(newsk);
1662                 bh_lock_sock(newsk);
1663                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1664                 newsk->sk_backlog.len = 0;
1665 
1666                 atomic_set(&newsk->sk_rmem_alloc, 0);
1667                 /*
1668                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1669                  */
1670                 refcount_set(&newsk->sk_wmem_alloc, 1);
1671                 atomic_set(&newsk->sk_omem_alloc, 0);
1672                 sk_init_common(newsk);
1673 
1674                 newsk->sk_dst_cache     = NULL;
1675                 newsk->sk_dst_pending_confirm = 0;
1676                 newsk->sk_wmem_queued   = 0;
1677                 newsk->sk_forward_alloc = 0;
1678                 atomic_set(&newsk->sk_drops, 0);
1679                 newsk->sk_send_head     = NULL;
1680                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1681                 atomic_set(&newsk->sk_zckey, 0);
1682 
1683                 sock_reset_flag(newsk, SOCK_DONE);
1684                 mem_cgroup_sk_alloc(newsk);
1685                 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1686 
1687                 rcu_read_lock();
1688                 filter = rcu_dereference(sk->sk_filter);
1689                 if (filter != NULL)
1690                         /* though it's an empty new sock, the charging may fail
1691                          * if sysctl_optmem_max was changed between creation of
1692                          * original socket and cloning
1693                          */
1694                         is_charged = sk_filter_charge(newsk, filter);
1695                 RCU_INIT_POINTER(newsk->sk_filter, filter);
1696                 rcu_read_unlock();
1697 
1698                 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1699                         /* We need to make sure that we don't uncharge the new
1700                          * socket if we couldn't charge it in the first place
1701                          * as otherwise we uncharge the parent's filter.
1702                          */
1703                         if (!is_charged)
1704                                 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1705                         sk_free_unlock_clone(newsk);
1706                         newsk = NULL;
1707                         goto out;
1708                 }
1709                 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1710 
1711                 newsk->sk_err      = 0;
1712                 newsk->sk_err_soft = 0;
1713                 newsk->sk_priority = 0;
1714                 newsk->sk_incoming_cpu = raw_smp_processor_id();
1715                 atomic64_set(&newsk->sk_cookie, 0);
1716 
1717                 /*
1718                  * Before updating sk_refcnt, we must commit prior changes to memory
1719                  * (Documentation/RCU/rculist_nulls.txt for details)
1720                  */
1721                 smp_wmb();
1722                 refcount_set(&newsk->sk_refcnt, 2);
1723 
1724                 /*
1725                  * Increment the counter in the same struct proto as the master
1726                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1727                  * is the same as sk->sk_prot->socks, as this field was copied
1728                  * with memcpy).
1729                  *
1730                  * This _changes_ the previous behaviour, where
1731                  * tcp_create_openreq_child always was incrementing the
1732                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1733                  * to be taken into account in all callers. -acme
1734                  */
1735                 sk_refcnt_debug_inc(newsk);
1736                 sk_set_socket(newsk, NULL);
1737                 newsk->sk_wq = NULL;
1738 
1739                 if (newsk->sk_prot->sockets_allocated)
1740                         sk_sockets_allocated_inc(newsk);
1741 
1742                 if (sock_needs_netstamp(sk) &&
1743                     newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1744                         net_enable_timestamp();
1745         }
1746 out:
1747         return newsk;
1748 }
1749 EXPORT_SYMBOL_GPL(sk_clone_lock);
1750 
1751 void sk_free_unlock_clone(struct sock *sk)
1752 {
1753         /* It is still raw copy of parent, so invalidate
1754          * destructor and make plain sk_free() */
1755         sk->sk_destruct = NULL;
1756         bh_unlock_sock(sk);
1757         sk_free(sk);
1758 }
1759 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1760 
1761 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1762 {
1763         u32 max_segs = 1;
1764 
1765         sk_dst_set(sk, dst);
1766         sk->sk_route_caps = dst->dev->features;
1767         if (sk->sk_route_caps & NETIF_F_GSO)
1768                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1769         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1770         if (sk_can_gso(sk)) {
1771                 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1772                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1773                 } else {
1774                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1775                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1776                         max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1777                 }
1778         }
1779         sk->sk_gso_max_segs = max_segs;
1780 }
1781 EXPORT_SYMBOL_GPL(sk_setup_caps);
1782 
1783 /*
1784  *      Simple resource managers for sockets.
1785  */
1786 
1787 
1788 /*
1789  * Write buffer destructor automatically called from kfree_skb.
1790  */
1791 void sock_wfree(struct sk_buff *skb)
1792 {
1793         struct sock *sk = skb->sk;
1794         unsigned int len = skb->truesize;
1795 
1796         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1797                 /*
1798                  * Keep a reference on sk_wmem_alloc, this will be released
1799                  * after sk_write_space() call
1800                  */
1801                 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1802                 sk->sk_write_space(sk);
1803                 len = 1;
1804         }
1805         /*
1806          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1807          * could not do because of in-flight packets
1808          */
1809         if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1810                 __sk_free(sk);
1811 }
1812 EXPORT_SYMBOL(sock_wfree);
1813 
1814 /* This variant of sock_wfree() is used by TCP,
1815  * since it sets SOCK_USE_WRITE_QUEUE.
1816  */
1817 void __sock_wfree(struct sk_buff *skb)
1818 {
1819         struct sock *sk = skb->sk;
1820 
1821         if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1822                 __sk_free(sk);
1823 }
1824 
1825 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1826 {
1827         skb_orphan(skb);
1828         skb->sk = sk;
1829 #ifdef CONFIG_INET
1830         if (unlikely(!sk_fullsock(sk))) {
1831                 skb->destructor = sock_edemux;
1832                 sock_hold(sk);
1833                 return;
1834         }
1835 #endif
1836         skb->destructor = sock_wfree;
1837         skb_set_hash_from_sk(skb, sk);
1838         /*
1839          * We used to take a refcount on sk, but following operation
1840          * is enough to guarantee sk_free() wont free this sock until
1841          * all in-flight packets are completed
1842          */
1843         refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1844 }
1845 EXPORT_SYMBOL(skb_set_owner_w);
1846 
1847 /* This helper is used by netem, as it can hold packets in its
1848  * delay queue. We want to allow the owner socket to send more
1849  * packets, as if they were already TX completed by a typical driver.
1850  * But we also want to keep skb->sk set because some packet schedulers
1851  * rely on it (sch_fq for example).
1852  */
1853 void skb_orphan_partial(struct sk_buff *skb)
1854 {
1855         if (skb_is_tcp_pure_ack(skb))
1856                 return;
1857 
1858         if (skb->destructor == sock_wfree
1859 #ifdef CONFIG_INET
1860             || skb->destructor == tcp_wfree
1861 #endif
1862                 ) {
1863                 struct sock *sk = skb->sk;
1864 
1865                 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1866                         WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1867                         skb->destructor = sock_efree;
1868                 }
1869         } else {
1870                 skb_orphan(skb);
1871         }
1872 }
1873 EXPORT_SYMBOL(skb_orphan_partial);
1874 
1875 /*
1876  * Read buffer destructor automatically called from kfree_skb.
1877  */
1878 void sock_rfree(struct sk_buff *skb)
1879 {
1880         struct sock *sk = skb->sk;
1881         unsigned int len = skb->truesize;
1882 
1883         atomic_sub(len, &sk->sk_rmem_alloc);
1884         sk_mem_uncharge(sk, len);
1885 }
1886 EXPORT_SYMBOL(sock_rfree);
1887 
1888 /*
1889  * Buffer destructor for skbs that are not used directly in read or write
1890  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1891  */
1892 void sock_efree(struct sk_buff *skb)
1893 {
1894         sock_put(skb->sk);
1895 }
1896 EXPORT_SYMBOL(sock_efree);
1897 
1898 kuid_t sock_i_uid(struct sock *sk)
1899 {
1900         kuid_t uid;
1901 
1902         read_lock_bh(&sk->sk_callback_lock);
1903         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1904         read_unlock_bh(&sk->sk_callback_lock);
1905         return uid;
1906 }
1907 EXPORT_SYMBOL(sock_i_uid);
1908 
1909 unsigned long sock_i_ino(struct sock *sk)
1910 {
1911         unsigned long ino;
1912 
1913         read_lock_bh(&sk->sk_callback_lock);
1914         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1915         read_unlock_bh(&sk->sk_callback_lock);
1916         return ino;
1917 }
1918 EXPORT_SYMBOL(sock_i_ino);
1919 
1920 /*
1921  * Allocate a skb from the socket's send buffer.
1922  */
1923 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1924                              gfp_t priority)
1925 {
1926         if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1927                 struct sk_buff *skb = alloc_skb(size, priority);
1928                 if (skb) {
1929                         skb_set_owner_w(skb, sk);
1930                         return skb;
1931                 }
1932         }
1933         return NULL;
1934 }
1935 EXPORT_SYMBOL(sock_wmalloc);
1936 
1937 static void sock_ofree(struct sk_buff *skb)
1938 {
1939         struct sock *sk = skb->sk;
1940 
1941         atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1942 }
1943 
1944 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1945                              gfp_t priority)
1946 {
1947         struct sk_buff *skb;
1948 
1949         /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1950         if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1951             sysctl_optmem_max)
1952                 return NULL;
1953 
1954         skb = alloc_skb(size, priority);
1955         if (!skb)
1956                 return NULL;
1957 
1958         atomic_add(skb->truesize, &sk->sk_omem_alloc);
1959         skb->sk = sk;
1960         skb->destructor = sock_ofree;
1961         return skb;
1962 }
1963 
1964 /*
1965  * Allocate a memory block from the socket's option memory buffer.
1966  */
1967 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1968 {
1969         if ((unsigned int)size <= sysctl_optmem_max &&
1970             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1971                 void *mem;
1972                 /* First do the add, to avoid the race if kmalloc
1973                  * might sleep.
1974                  */
1975                 atomic_add(size, &sk->sk_omem_alloc);
1976                 mem = kmalloc(size, priority);
1977                 if (mem)
1978                         return mem;
1979                 atomic_sub(size, &sk->sk_omem_alloc);
1980         }
1981         return NULL;
1982 }
1983 EXPORT_SYMBOL(sock_kmalloc);
1984 
1985 /* Free an option memory block. Note, we actually want the inline
1986  * here as this allows gcc to detect the nullify and fold away the
1987  * condition entirely.
1988  */
1989 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1990                                   const bool nullify)
1991 {
1992         if (WARN_ON_ONCE(!mem))
1993                 return;
1994         if (nullify)
1995                 kzfree(mem);
1996         else
1997                 kfree(mem);
1998         atomic_sub(size, &sk->sk_omem_alloc);
1999 }
2000 
2001 void sock_kfree_s(struct sock *sk, void *mem, int size)
2002 {
2003         __sock_kfree_s(sk, mem, size, false);
2004 }
2005 EXPORT_SYMBOL(sock_kfree_s);
2006 
2007 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2008 {
2009         __sock_kfree_s(sk, mem, size, true);
2010 }
2011 EXPORT_SYMBOL(sock_kzfree_s);
2012 
2013 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2014    I think, these locks should be removed for datagram sockets.
2015  */
2016 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2017 {
2018         DEFINE_WAIT(wait);
2019 
2020         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2021         for (;;) {
2022                 if (!timeo)
2023                         break;
2024                 if (signal_pending(current))
2025                         break;
2026                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2027                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2028                 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2029                         break;
2030                 if (sk->sk_shutdown & SEND_SHUTDOWN)
2031                         break;
2032                 if (sk->sk_err)
2033                         break;
2034                 timeo = schedule_timeout(timeo);
2035         }
2036         finish_wait(sk_sleep(sk), &wait);
2037         return timeo;
2038 }
2039 
2040 
2041 /*
2042  *      Generic send/receive buffer handlers
2043  */
2044 
2045 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2046                                      unsigned long data_len, int noblock,
2047                                      int *errcode, int max_page_order)
2048 {
2049         struct sk_buff *skb;
2050         long timeo;
2051         int err;
2052 
2053         timeo = sock_sndtimeo(sk, noblock);
2054         for (;;) {
2055                 err = sock_error(sk);
2056                 if (err != 0)
2057                         goto failure;
2058 
2059                 err = -EPIPE;
2060                 if (sk->sk_shutdown & SEND_SHUTDOWN)
2061                         goto failure;
2062 
2063                 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2064                         break;
2065 
2066                 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2067                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2068                 err = -EAGAIN;
2069                 if (!timeo)
2070                         goto failure;
2071                 if (signal_pending(current))
2072                         goto interrupted;
2073                 timeo = sock_wait_for_wmem(sk, timeo);
2074         }
2075         skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2076                                    errcode, sk->sk_allocation);
2077         if (skb)
2078                 skb_set_owner_w(skb, sk);
2079         return skb;
2080 
2081 interrupted:
2082         err = sock_intr_errno(timeo);
2083 failure:
2084         *errcode = err;
2085         return NULL;
2086 }
2087 EXPORT_SYMBOL(sock_alloc_send_pskb);
2088 
2089 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2090                                     int noblock, int *errcode)
2091 {
2092         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2093 }
2094 EXPORT_SYMBOL(sock_alloc_send_skb);
2095 
2096 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2097                      struct sockcm_cookie *sockc)
2098 {
2099         u32 tsflags;
2100 
2101         switch (cmsg->cmsg_type) {
2102         case SO_MARK:
2103                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2104                         return -EPERM;
2105                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2106                         return -EINVAL;
2107                 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2108                 break;
2109         case SO_TIMESTAMPING:
2110                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2111                         return -EINVAL;
2112 
2113                 tsflags = *(u32 *)CMSG_DATA(cmsg);
2114                 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2115                         return -EINVAL;
2116 
2117                 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2118                 sockc->tsflags |= tsflags;
2119                 break;
2120         /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2121         case SCM_RIGHTS:
2122         case SCM_CREDENTIALS:
2123                 break;
2124         default:
2125                 return -EINVAL;
2126         }
2127         return 0;
2128 }
2129 EXPORT_SYMBOL(__sock_cmsg_send);
2130 
2131 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2132                    struct sockcm_cookie *sockc)
2133 {
2134         struct cmsghdr *cmsg;
2135         int ret;
2136 
2137         for_each_cmsghdr(cmsg, msg) {
2138                 if (!CMSG_OK(msg, cmsg))
2139                         return -EINVAL;
2140                 if (cmsg->cmsg_level != SOL_SOCKET)
2141                         continue;
2142                 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2143                 if (ret)
2144                         return ret;
2145         }
2146         return 0;
2147 }
2148 EXPORT_SYMBOL(sock_cmsg_send);
2149 
2150 static void sk_enter_memory_pressure(struct sock *sk)
2151 {
2152         if (!sk->sk_prot->enter_memory_pressure)
2153                 return;
2154 
2155         sk->sk_prot->enter_memory_pressure(sk);
2156 }
2157 
2158 static void sk_leave_memory_pressure(struct sock *sk)
2159 {
2160         if (sk->sk_prot->leave_memory_pressure) {
2161                 sk->sk_prot->leave_memory_pressure(sk);
2162         } else {
2163                 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2164 
2165                 if (memory_pressure && *memory_pressure)
2166                         *memory_pressure = 0;
2167         }
2168 }
2169 
2170 /* On 32bit arches, an skb frag is limited to 2^15 */
2171 #define SKB_FRAG_PAGE_ORDER     get_order(32768)
2172 
2173 /**
2174  * skb_page_frag_refill - check that a page_frag contains enough room
2175  * @sz: minimum size of the fragment we want to get
2176  * @pfrag: pointer to page_frag
2177  * @gfp: priority for memory allocation
2178  *
2179  * Note: While this allocator tries to use high order pages, there is
2180  * no guarantee that allocations succeed. Therefore, @sz MUST be
2181  * less or equal than PAGE_SIZE.
2182  */
2183 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2184 {
2185         if (pfrag->page) {
2186                 if (page_ref_count(pfrag->page) == 1) {
2187                         pfrag->offset = 0;
2188                         return true;
2189                 }
2190                 if (pfrag->offset + sz <= pfrag->size)
2191                         return true;
2192                 put_page(pfrag->page);
2193         }
2194 
2195         pfrag->offset = 0;
2196         if (SKB_FRAG_PAGE_ORDER) {
2197                 /* Avoid direct reclaim but allow kswapd to wake */
2198                 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2199                                           __GFP_COMP | __GFP_NOWARN |
2200                                           __GFP_NORETRY,
2201                                           SKB_FRAG_PAGE_ORDER);
2202                 if (likely(pfrag->page)) {
2203                         pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2204                         return true;
2205                 }
2206         }
2207         pfrag->page = alloc_page(gfp);
2208         if (likely(pfrag->page)) {
2209                 pfrag->size = PAGE_SIZE;
2210                 return true;
2211         }
2212         return false;
2213 }
2214 EXPORT_SYMBOL(skb_page_frag_refill);
2215 
2216 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2217 {
2218         if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2219                 return true;
2220 
2221         sk_enter_memory_pressure(sk);
2222         sk_stream_moderate_sndbuf(sk);
2223         return false;
2224 }
2225 EXPORT_SYMBOL(sk_page_frag_refill);
2226 
2227 static void __lock_sock(struct sock *sk)
2228         __releases(&sk->sk_lock.slock)
2229         __acquires(&sk->sk_lock.slock)
2230 {
2231         DEFINE_WAIT(wait);
2232 
2233         for (;;) {
2234                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2235                                         TASK_UNINTERRUPTIBLE);
2236                 spin_unlock_bh(&sk->sk_lock.slock);
2237                 schedule();
2238                 spin_lock_bh(&sk->sk_lock.slock);
2239                 if (!sock_owned_by_user(sk))
2240                         break;
2241         }
2242         finish_wait(&sk->sk_lock.wq, &wait);
2243 }
2244 
2245 static void __release_sock(struct sock *sk)
2246         __releases(&sk->sk_lock.slock)
2247         __acquires(&sk->sk_lock.slock)
2248 {
2249         struct sk_buff *skb, *next;
2250 
2251         while ((skb = sk->sk_backlog.head) != NULL) {
2252                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2253 
2254                 spin_unlock_bh(&sk->sk_lock.slock);
2255 
2256                 do {
2257                         next = skb->next;
2258                         prefetch(next);
2259                         WARN_ON_ONCE(skb_dst_is_noref(skb));
2260                         skb->next = NULL;
2261                         sk_backlog_rcv(sk, skb);
2262 
2263                         cond_resched();
2264 
2265                         skb = next;
2266                 } while (skb != NULL);
2267 
2268                 spin_lock_bh(&sk->sk_lock.slock);
2269         }
2270 
2271         /*
2272          * Doing the zeroing here guarantee we can not loop forever
2273          * while a wild producer attempts to flood us.
2274          */
2275         sk->sk_backlog.len = 0;
2276 }
2277 
2278 void __sk_flush_backlog(struct sock *sk)
2279 {
2280         spin_lock_bh(&sk->sk_lock.slock);
2281         __release_sock(sk);
2282         spin_unlock_bh(&sk->sk_lock.slock);
2283 }
2284 
2285 /**
2286  * sk_wait_data - wait for data to arrive at sk_receive_queue
2287  * @sk:    sock to wait on
2288  * @timeo: for how long
2289  * @skb:   last skb seen on sk_receive_queue
2290  *
2291  * Now socket state including sk->sk_err is changed only under lock,
2292  * hence we may omit checks after joining wait queue.
2293  * We check receive queue before schedule() only as optimization;
2294  * it is very likely that release_sock() added new data.
2295  */
2296 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2297 {
2298         DEFINE_WAIT_FUNC(wait, woken_wake_function);
2299         int rc;
2300 
2301         add_wait_queue(sk_sleep(sk), &wait);
2302         sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2303         rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2304         sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2305         remove_wait_queue(sk_sleep(sk), &wait);
2306         return rc;
2307 }
2308 EXPORT_SYMBOL(sk_wait_data);
2309 
2310 /**
2311  *      __sk_mem_raise_allocated - increase memory_allocated
2312  *      @sk: socket
2313  *      @size: memory size to allocate
2314  *      @amt: pages to allocate
2315  *      @kind: allocation type
2316  *
2317  *      Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2318  */
2319 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2320 {
2321         struct proto *prot = sk->sk_prot;
2322         long allocated = sk_memory_allocated_add(sk, amt);
2323 
2324         if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2325             !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2326                 goto suppress_allocation;
2327 
2328         /* Under limit. */
2329         if (allocated <= sk_prot_mem_limits(sk, 0)) {
2330                 sk_leave_memory_pressure(sk);
2331                 return 1;
2332         }
2333 
2334         /* Under pressure. */
2335         if (allocated > sk_prot_mem_limits(sk, 1))
2336                 sk_enter_memory_pressure(sk);
2337 
2338         /* Over hard limit. */
2339         if (allocated > sk_prot_mem_limits(sk, 2))
2340                 goto suppress_allocation;
2341 
2342         /* guarantee minimum buffer size under pressure */
2343         if (kind == SK_MEM_RECV) {
2344                 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2345                         return 1;
2346 
2347         } else { /* SK_MEM_SEND */
2348                 int wmem0 = sk_get_wmem0(sk, prot);
2349 
2350                 if (sk->sk_type == SOCK_STREAM) {
2351                         if (sk->sk_wmem_queued < wmem0)
2352                                 return 1;
2353                 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2354                                 return 1;
2355                 }
2356         }
2357 
2358         if (sk_has_memory_pressure(sk)) {
2359                 int alloc;
2360 
2361                 if (!sk_under_memory_pressure(sk))
2362                         return 1;
2363                 alloc = sk_sockets_allocated_read_positive(sk);
2364                 if (sk_prot_mem_limits(sk, 2) > alloc *
2365                     sk_mem_pages(sk->sk_wmem_queued +
2366                                  atomic_read(&sk->sk_rmem_alloc) +
2367                                  sk->sk_forward_alloc))
2368                         return 1;
2369         }
2370 
2371 suppress_allocation:
2372 
2373         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2374                 sk_stream_moderate_sndbuf(sk);
2375 
2376                 /* Fail only if socket is _under_ its sndbuf.
2377                  * In this case we cannot block, so that we have to fail.
2378                  */
2379                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2380                         return 1;
2381         }
2382 
2383         trace_sock_exceed_buf_limit(sk, prot, allocated);
2384 
2385         sk_memory_allocated_sub(sk, amt);
2386 
2387         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2388                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2389 
2390         return 0;
2391 }
2392 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2393 
2394 /**
2395  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2396  *      @sk: socket
2397  *      @size: memory size to allocate
2398  *      @kind: allocation type
2399  *
2400  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2401  *      rmem allocation. This function assumes that protocols which have
2402  *      memory_pressure use sk_wmem_queued as write buffer accounting.
2403  */
2404 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2405 {
2406         int ret, amt = sk_mem_pages(size);
2407 
2408         sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2409         ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2410         if (!ret)
2411                 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2412         return ret;
2413 }
2414 EXPORT_SYMBOL(__sk_mem_schedule);
2415 
2416 /**
2417  *      __sk_mem_reduce_allocated - reclaim memory_allocated
2418  *      @sk: socket
2419  *      @amount: number of quanta
2420  *
2421  *      Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2422  */
2423 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2424 {
2425         sk_memory_allocated_sub(sk, amount);
2426 
2427         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2428                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2429 
2430         if (sk_under_memory_pressure(sk) &&
2431             (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2432                 sk_leave_memory_pressure(sk);
2433 }
2434 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2435 
2436 /**
2437  *      __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2438  *      @sk: socket
2439  *      @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2440  */
2441 void __sk_mem_reclaim(struct sock *sk, int amount)
2442 {
2443         amount >>= SK_MEM_QUANTUM_SHIFT;
2444         sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2445         __sk_mem_reduce_allocated(sk, amount);
2446 }
2447 EXPORT_SYMBOL(__sk_mem_reclaim);
2448 
2449 int sk_set_peek_off(struct sock *sk, int val)
2450 {
2451         sk->sk_peek_off = val;
2452         return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2455 
2456 /*
2457  * Set of default routines for initialising struct proto_ops when
2458  * the protocol does not support a particular function. In certain
2459  * cases where it makes no sense for a protocol to have a "do nothing"
2460  * function, some default processing is provided.
2461  */
2462 
2463 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2464 {
2465         return -EOPNOTSUPP;
2466 }
2467 EXPORT_SYMBOL(sock_no_bind);
2468 
2469 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2470                     int len, int flags)
2471 {
2472         return -EOPNOTSUPP;
2473 }
2474 EXPORT_SYMBOL(sock_no_connect);
2475 
2476 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2477 {
2478         return -EOPNOTSUPP;
2479 }
2480 EXPORT_SYMBOL(sock_no_socketpair);
2481 
2482 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2483                    bool kern)
2484 {
2485         return -EOPNOTSUPP;
2486 }
2487 EXPORT_SYMBOL(sock_no_accept);
2488 
2489 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2490                     int *len, int peer)
2491 {
2492         return -EOPNOTSUPP;
2493 }
2494 EXPORT_SYMBOL(sock_no_getname);
2495 
2496 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2497 {
2498         return 0;
2499 }
2500 EXPORT_SYMBOL(sock_no_poll);
2501 
2502 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2503 {
2504         return -EOPNOTSUPP;
2505 }
2506 EXPORT_SYMBOL(sock_no_ioctl);
2507 
2508 int sock_no_listen(struct socket *sock, int backlog)
2509 {
2510         return -EOPNOTSUPP;
2511 }
2512 EXPORT_SYMBOL(sock_no_listen);
2513 
2514 int sock_no_shutdown(struct socket *sock, int how)
2515 {
2516         return -EOPNOTSUPP;
2517 }
2518 EXPORT_SYMBOL(sock_no_shutdown);
2519 
2520 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2521                     char __user *optval, unsigned int optlen)
2522 {
2523         return -EOPNOTSUPP;
2524 }
2525 EXPORT_SYMBOL(sock_no_setsockopt);
2526 
2527 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2528                     char __user *optval, int __user *optlen)
2529 {
2530         return -EOPNOTSUPP;
2531 }
2532 EXPORT_SYMBOL(sock_no_getsockopt);
2533 
2534 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2535 {
2536         return -EOPNOTSUPP;
2537 }
2538 EXPORT_SYMBOL(sock_no_sendmsg);
2539 
2540 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2541 {
2542         return -EOPNOTSUPP;
2543 }
2544 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2545 
2546 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2547                     int flags)
2548 {
2549         return -EOPNOTSUPP;
2550 }
2551 EXPORT_SYMBOL(sock_no_recvmsg);
2552 
2553 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2554 {
2555         /* Mirror missing mmap method error code */
2556         return -ENODEV;
2557 }
2558 EXPORT_SYMBOL(sock_no_mmap);
2559 
2560 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2561 {
2562         ssize_t res;
2563         struct msghdr msg = {.msg_flags = flags};
2564         struct kvec iov;
2565         char *kaddr = kmap(page);
2566         iov.iov_base = kaddr + offset;
2567         iov.iov_len = size;
2568         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2569         kunmap(page);
2570         return res;
2571 }
2572 EXPORT_SYMBOL(sock_no_sendpage);
2573 
2574 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2575                                 int offset, size_t size, int flags)
2576 {
2577         ssize_t res;
2578         struct msghdr msg = {.msg_flags = flags};
2579         struct kvec iov;
2580         char *kaddr = kmap(page);
2581 
2582         iov.iov_base = kaddr + offset;
2583         iov.iov_len = size;
2584         res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2585         kunmap(page);
2586         return res;
2587 }
2588 EXPORT_SYMBOL(sock_no_sendpage_locked);
2589 
2590 /*
2591  *      Default Socket Callbacks
2592  */
2593 
2594 static void sock_def_wakeup(struct sock *sk)
2595 {
2596         struct socket_wq *wq;
2597 
2598         rcu_read_lock();
2599         wq = rcu_dereference(sk->sk_wq);
2600         if (skwq_has_sleeper(wq))
2601                 wake_up_interruptible_all(&wq->wait);
2602         rcu_read_unlock();
2603 }
2604 
2605 static void sock_def_error_report(struct sock *sk)
2606 {
2607         struct socket_wq *wq;
2608 
2609         rcu_read_lock();
2610         wq = rcu_dereference(sk->sk_wq);
2611         if (skwq_has_sleeper(wq))
2612                 wake_up_interruptible_poll(&wq->wait, POLLERR);
2613         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2614         rcu_read_unlock();
2615 }
2616 
2617 static void sock_def_readable(struct sock *sk)
2618 {
2619         struct socket_wq *wq;
2620 
2621         rcu_read_lock();
2622         wq = rcu_dereference(sk->sk_wq);
2623         if (skwq_has_sleeper(wq))
2624                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2625                                                 POLLRDNORM | POLLRDBAND);
2626         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2627         rcu_read_unlock();
2628 }
2629 
2630 static void sock_def_write_space(struct sock *sk)
2631 {
2632         struct socket_wq *wq;
2633 
2634         rcu_read_lock();
2635 
2636         /* Do not wake up a writer until he can make "significant"
2637          * progress.  --DaveM
2638          */
2639         if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2640                 wq = rcu_dereference(sk->sk_wq);
2641                 if (skwq_has_sleeper(wq))
2642                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2643                                                 POLLWRNORM | POLLWRBAND);
2644 
2645                 /* Should agree with poll, otherwise some programs break */
2646                 if (sock_writeable(sk))
2647                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2648         }
2649 
2650         rcu_read_unlock();
2651 }
2652 
2653 static void sock_def_destruct(struct sock *sk)
2654 {
2655 }
2656 
2657 void sk_send_sigurg(struct sock *sk)
2658 {
2659         if (sk->sk_socket && sk->sk_socket->file)
2660                 if (send_sigurg(&sk->sk_socket->file->f_owner))
2661                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2662 }
2663 EXPORT_SYMBOL(sk_send_sigurg);
2664 
2665 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2666                     unsigned long expires)
2667 {
2668         if (!mod_timer(timer, expires))
2669                 sock_hold(sk);
2670 }
2671 EXPORT_SYMBOL(sk_reset_timer);
2672 
2673 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2674 {
2675         if (del_timer(timer))
2676                 __sock_put(sk);
2677 }
2678 EXPORT_SYMBOL(sk_stop_timer);
2679 
2680 void sock_init_data(struct socket *sock, struct sock *sk)
2681 {
2682         sk_init_common(sk);
2683         sk->sk_send_head        =       NULL;
2684 
2685         timer_setup(&sk->sk_timer, NULL, 0);
2686 
2687         sk->sk_allocation       =       GFP_KERNEL;
2688         sk->sk_rcvbuf           =       sysctl_rmem_default;
2689         sk->sk_sndbuf           =       sysctl_wmem_default;
2690         sk->sk_state            =       TCP_CLOSE;
2691         sk_set_socket(sk, sock);
2692 
2693         sock_set_flag(sk, SOCK_ZAPPED);
2694 
2695         if (sock) {
2696                 sk->sk_type     =       sock->type;
2697                 sk->sk_wq       =       sock->wq;
2698                 sock->sk        =       sk;
2699                 sk->sk_uid      =       SOCK_INODE(sock)->i_uid;
2700         } else {
2701                 sk->sk_wq       =       NULL;
2702                 sk->sk_uid      =       make_kuid(sock_net(sk)->user_ns, 0);
2703         }
2704 
2705         rwlock_init(&sk->sk_callback_lock);
2706         if (sk->sk_kern_sock)
2707                 lockdep_set_class_and_name(
2708                         &sk->sk_callback_lock,
2709                         af_kern_callback_keys + sk->sk_family,
2710                         af_family_kern_clock_key_strings[sk->sk_family]);
2711         else
2712                 lockdep_set_class_and_name(
2713                         &sk->sk_callback_lock,
2714                         af_callback_keys + sk->sk_family,
2715                         af_family_clock_key_strings[sk->sk_family]);
2716 
2717         sk->sk_state_change     =       sock_def_wakeup;
2718         sk->sk_data_ready       =       sock_def_readable;
2719         sk->sk_write_space      =       sock_def_write_space;
2720         sk->sk_error_report     =       sock_def_error_report;
2721         sk->sk_destruct         =       sock_def_destruct;
2722 
2723         sk->sk_frag.page        =       NULL;
2724         sk->sk_frag.offset      =       0;
2725         sk->sk_peek_off         =       -1;
2726 
2727         sk->sk_peer_pid         =       NULL;
2728         sk->sk_peer_cred        =       NULL;
2729         sk->sk_write_pending    =       0;
2730         sk->sk_rcvlowat         =       1;
2731         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2732         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2733 
2734         sk->sk_stamp = SK_DEFAULT_STAMP;
2735         atomic_set(&sk->sk_zckey, 0);
2736 
2737 #ifdef CONFIG_NET_RX_BUSY_POLL
2738         sk->sk_napi_id          =       0;
2739         sk->sk_ll_usec          =       sysctl_net_busy_read;
2740 #endif
2741 
2742         sk->sk_max_pacing_rate = ~0U;
2743         sk->sk_pacing_rate = ~0U;
2744         sk->sk_pacing_shift = 10;
2745         sk->sk_incoming_cpu = -1;
2746         /*
2747          * Before updating sk_refcnt, we must commit prior changes to memory
2748          * (Documentation/RCU/rculist_nulls.txt for details)
2749          */
2750         smp_wmb();
2751         refcount_set(&sk->sk_refcnt, 1);
2752         atomic_set(&sk->sk_drops, 0);
2753 }
2754 EXPORT_SYMBOL(sock_init_data);
2755 
2756 void lock_sock_nested(struct sock *sk, int subclass)
2757 {
2758         might_sleep();
2759         spin_lock_bh(&sk->sk_lock.slock);
2760         if (sk->sk_lock.owned)
2761                 __lock_sock(sk);
2762         sk->sk_lock.owned = 1;
2763         spin_unlock(&sk->sk_lock.slock);
2764         /*
2765          * The sk_lock has mutex_lock() semantics here:
2766          */
2767         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2768         local_bh_enable();
2769 }
2770 EXPORT_SYMBOL(lock_sock_nested);
2771 
2772 void release_sock(struct sock *sk)
2773 {
2774         spin_lock_bh(&sk->sk_lock.slock);
2775         if (sk->sk_backlog.tail)
2776                 __release_sock(sk);
2777 
2778         /* Warning : release_cb() might need to release sk ownership,
2779          * ie call sock_release_ownership(sk) before us.
2780          */
2781         if (sk->sk_prot->release_cb)
2782                 sk->sk_prot->release_cb(sk);
2783 
2784         sock_release_ownership(sk);
2785         if (waitqueue_active(&sk->sk_lock.wq))
2786                 wake_up(&sk->sk_lock.wq);
2787         spin_unlock_bh(&sk->sk_lock.slock);
2788 }
2789 EXPORT_SYMBOL(release_sock);
2790 
2791 /**
2792  * lock_sock_fast - fast version of lock_sock
2793  * @sk: socket
2794  *
2795  * This version should be used for very small section, where process wont block
2796  * return false if fast path is taken:
2797  *
2798  *   sk_lock.slock locked, owned = 0, BH disabled
2799  *
2800  * return true if slow path is taken:
2801  *
2802  *   sk_lock.slock unlocked, owned = 1, BH enabled
2803  */
2804 bool lock_sock_fast(struct sock *sk)
2805 {
2806         might_sleep();
2807         spin_lock_bh(&sk->sk_lock.slock);
2808 
2809         if (!sk->sk_lock.owned)
2810                 /*
2811                  * Note : We must disable BH
2812                  */
2813                 return false;
2814 
2815         __lock_sock(sk);
2816         sk->sk_lock.owned = 1;
2817         spin_unlock(&sk->sk_lock.slock);
2818         /*
2819          * The sk_lock has mutex_lock() semantics here:
2820          */
2821         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2822         local_bh_enable();
2823         return true;
2824 }
2825 EXPORT_SYMBOL(lock_sock_fast);
2826 
2827 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2828 {
2829         struct timeval tv;
2830         if (!sock_flag(sk, SOCK_TIMESTAMP))
2831                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2832         tv = ktime_to_timeval(sk->sk_stamp);
2833         if (tv.tv_sec == -1)
2834                 return -ENOENT;
2835         if (tv.tv_sec == 0) {
2836                 sk->sk_stamp = ktime_get_real();
2837                 tv = ktime_to_timeval(sk->sk_stamp);
2838         }
2839         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2840 }
2841 EXPORT_SYMBOL(sock_get_timestamp);
2842 
2843 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2844 {
2845         struct timespec ts;
2846         if (!sock_flag(sk, SOCK_TIMESTAMP))
2847                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2848         ts = ktime_to_timespec(sk->sk_stamp);
2849         if (ts.tv_sec == -1)
2850                 return -ENOENT;
2851         if (ts.tv_sec == 0) {
2852                 sk->sk_stamp = ktime_get_real();
2853                 ts = ktime_to_timespec(sk->sk_stamp);
2854         }
2855         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2856 }
2857 EXPORT_SYMBOL(sock_get_timestampns);
2858 
2859 void sock_enable_timestamp(struct sock *sk, int flag)
2860 {
2861         if (!sock_flag(sk, flag)) {
2862                 unsigned long previous_flags = sk->sk_flags;
2863 
2864                 sock_set_flag(sk, flag);
2865                 /*
2866                  * we just set one of the two flags which require net
2867                  * time stamping, but time stamping might have been on
2868                  * already because of the other one
2869                  */
2870                 if (sock_needs_netstamp(sk) &&
2871                     !(previous_flags & SK_FLAGS_TIMESTAMP))
2872                         net_enable_timestamp();
2873         }
2874 }
2875 
2876 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2877                        int level, int type)
2878 {
2879         struct sock_exterr_skb *serr;
2880         struct sk_buff *skb;
2881         int copied, err;
2882 
2883         err = -EAGAIN;
2884         skb = sock_dequeue_err_skb(sk);
2885         if (skb == NULL)
2886                 goto out;
2887 
2888         copied = skb->len;
2889         if (copied > len) {
2890                 msg->msg_flags |= MSG_TRUNC;
2891                 copied = len;
2892         }
2893         err = skb_copy_datagram_msg(skb, 0, msg, copied);
2894         if (err)
2895                 goto out_free_skb;
2896 
2897         sock_recv_timestamp(msg, sk, skb);
2898 
2899         serr = SKB_EXT_ERR(skb);
2900         put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2901 
2902         msg->msg_flags |= MSG_ERRQUEUE;
2903         err = copied;
2904 
2905 out_free_skb:
2906         kfree_skb(skb);
2907 out:
2908         return err;
2909 }
2910 EXPORT_SYMBOL(sock_recv_errqueue);
2911 
2912 /*
2913  *      Get a socket option on an socket.
2914  *
2915  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2916  *      asynchronous errors should be reported by getsockopt. We assume
2917  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2918  */
2919 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2920                            char __user *optval, int __user *optlen)
2921 {
2922         struct sock *sk = sock->sk;
2923 
2924         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2925 }
2926 EXPORT_SYMBOL(sock_common_getsockopt);
2927 
2928 #ifdef CONFIG_COMPAT
2929 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2930                                   char __user *optval, int __user *optlen)
2931 {
2932         struct sock *sk = sock->sk;
2933 
2934         if (sk->sk_prot->compat_getsockopt != NULL)
2935                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2936                                                       optval, optlen);
2937         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2938 }
2939 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2940 #endif
2941 
2942 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2943                         int flags)
2944 {
2945         struct sock *sk = sock->sk;
2946         int addr_len = 0;
2947         int err;
2948 
2949         err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2950                                    flags & ~MSG_DONTWAIT, &addr_len);
2951         if (err >= 0)
2952                 msg->msg_namelen = addr_len;
2953         return err;
2954 }
2955 EXPORT_SYMBOL(sock_common_recvmsg);
2956 
2957 /*
2958  *      Set socket options on an inet socket.
2959  */
2960 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2961                            char __user *optval, unsigned int optlen)
2962 {
2963         struct sock *sk = sock->sk;
2964 
2965         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2966 }
2967 EXPORT_SYMBOL(sock_common_setsockopt);
2968 
2969 #ifdef CONFIG_COMPAT
2970 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2971                                   char __user *optval, unsigned int optlen)
2972 {
2973         struct sock *sk = sock->sk;
2974 
2975         if (sk->sk_prot->compat_setsockopt != NULL)
2976                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2977                                                       optval, optlen);
2978         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2979 }
2980 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2981 #endif
2982 
2983 void sk_common_release(struct sock *sk)
2984 {
2985         if (sk->sk_prot->destroy)
2986                 sk->sk_prot->destroy(sk);
2987 
2988         /*
2989          * Observation: when sock_common_release is called, processes have
2990          * no access to socket. But net still has.
2991          * Step one, detach it from networking:
2992          *
2993          * A. Remove from hash tables.
2994          */
2995 
2996         sk->sk_prot->unhash(sk);
2997 
2998         /*
2999          * In this point socket cannot receive new packets, but it is possible
3000          * that some packets are in flight because some CPU runs receiver and
3001          * did hash table lookup before we unhashed socket. They will achieve
3002          * receive queue and will be purged by socket destructor.
3003          *
3004          * Also we still have packets pending on receive queue and probably,
3005          * our own packets waiting in device queues. sock_destroy will drain
3006          * receive queue, but transmitted packets will delay socket destruction
3007          * until the last reference will be released.
3008          */
3009 
3010         sock_orphan(sk);
3011 
3012         xfrm_sk_free_policy(sk);
3013 
3014         sk_refcnt_debug_release(sk);
3015 
3016         sock_put(sk);
3017 }
3018 EXPORT_SYMBOL(sk_common_release);
3019 
3020 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3021 {
3022         memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3023 
3024         mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3025         mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3026         mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3027         mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3028         mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3029         mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3030         mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3031         mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3032         mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3033 }
3034 
3035 #ifdef CONFIG_PROC_FS
3036 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
3037 struct prot_inuse {
3038         int val[PROTO_INUSE_NR];
3039 };
3040 
3041 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3042 
3043 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3044 {
3045         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
3046 }
3047 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3048 
3049 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3050 {
3051         int cpu, idx = prot->inuse_idx;
3052         int res = 0;
3053 
3054         for_each_possible_cpu(cpu)
3055                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
3056 
3057         return res >= 0 ? res : 0;
3058 }
3059 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3060 
3061 static int __net_init sock_inuse_init_net(struct net *net)
3062 {
3063         net->core.inuse = alloc_percpu(struct prot_inuse);
3064         return net->core.inuse ? 0 : -ENOMEM;
3065 }
3066 
3067 static void __net_exit sock_inuse_exit_net(struct net *net)
3068 {
3069         free_percpu(net->core.inuse);
3070 }
3071 
3072 static struct pernet_operations net_inuse_ops = {
3073         .init = sock_inuse_init_net,
3074         .exit = sock_inuse_exit_net,
3075 };
3076 
3077 static __init int net_inuse_init(void)
3078 {
3079         if (register_pernet_subsys(&net_inuse_ops))
3080                 panic("Cannot initialize net inuse counters");
3081 
3082         return 0;
3083 }
3084 
3085 core_initcall(net_inuse_init);
3086 
3087 static void assign_proto_idx(struct proto *prot)
3088 {
3089         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3090 
3091         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3092                 pr_err("PROTO_INUSE_NR exhausted\n");
3093                 return;
3094         }
3095 
3096         set_bit(prot->inuse_idx, proto_inuse_idx);
3097 }
3098 
3099 static void release_proto_idx(struct proto *prot)
3100 {
3101         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3102                 clear_bit(prot->inuse_idx, proto_inuse_idx);
3103 }
3104 #else
3105 static inline void assign_proto_idx(struct proto *prot)
3106 {
3107 }
3108 
3109 static inline void release_proto_idx(struct proto *prot)
3110 {
3111 }
3112 #endif
3113 
3114 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3115 {
3116         if (!rsk_prot)
3117                 return;
3118         kfree(rsk_prot->slab_name);
3119         rsk_prot->slab_name = NULL;
3120         kmem_cache_destroy(rsk_prot->slab);
3121         rsk_prot->slab = NULL;
3122 }
3123 
3124 static int req_prot_init(const struct proto *prot)
3125 {
3126         struct request_sock_ops *rsk_prot = prot->rsk_prot;
3127 
3128         if (!rsk_prot)
3129                 return 0;
3130 
3131         rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3132                                         prot->name);
3133         if (!rsk_prot->slab_name)
3134                 return -ENOMEM;
3135 
3136         rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3137                                            rsk_prot->obj_size, 0,
3138                                            prot->slab_flags, NULL);
3139 
3140         if (!rsk_prot->slab) {
3141                 pr_crit("%s: Can't create request sock SLAB cache!\n",
3142                         prot->name);
3143                 return -ENOMEM;
3144         }
3145         return 0;
3146 }
3147 
3148 int proto_register(struct proto *prot, int alloc_slab)
3149 {
3150         if (alloc_slab) {
3151                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3152                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
3153                                         NULL);
3154 
3155                 if (prot->slab == NULL) {
3156                         pr_crit("%s: Can't create sock SLAB cache!\n",
3157                                 prot->name);
3158                         goto out;
3159                 }
3160 
3161                 if (req_prot_init(prot))
3162                         goto out_free_request_sock_slab;
3163 
3164                 if (prot->twsk_prot != NULL) {
3165                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3166 
3167                         if (prot->twsk_prot->twsk_slab_name == NULL)
3168                                 goto out_free_request_sock_slab;
3169 
3170                         prot->twsk_prot->twsk_slab =
3171                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3172                                                   prot->twsk_prot->twsk_obj_size,
3173                                                   0,
3174                                                   prot->slab_flags,
3175                                                   NULL);
3176                         if (prot->twsk_prot->twsk_slab == NULL)
3177                                 goto out_free_timewait_sock_slab_name;
3178                 }
3179         }
3180 
3181         mutex_lock(&proto_list_mutex);
3182         list_add(&prot->node, &proto_list);
3183         assign_proto_idx(prot);
3184         mutex_unlock(&proto_list_mutex);
3185         return 0;
3186 
3187 out_free_timewait_sock_slab_name:
3188         kfree(prot->twsk_prot->twsk_slab_name);
3189 out_free_request_sock_slab:
3190         req_prot_cleanup(prot->rsk_prot);
3191 
3192         kmem_cache_destroy(prot->slab);
3193         prot->slab = NULL;
3194 out:
3195         return -ENOBUFS;
3196 }
3197 EXPORT_SYMBOL(proto_register);
3198 
3199 void proto_unregister(struct proto *prot)
3200 {
3201         mutex_lock(&proto_list_mutex);
3202         release_proto_idx(prot);
3203         list_del(&prot->node);
3204         mutex_unlock(&proto_list_mutex);
3205 
3206         kmem_cache_destroy(prot->slab);
3207         prot->slab = NULL;
3208 
3209         req_prot_cleanup(prot->rsk_prot);
3210 
3211         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3212                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3213                 kfree(prot->twsk_prot->twsk_slab_name);
3214                 prot->twsk_prot->twsk_slab = NULL;
3215         }
3216 }
3217 EXPORT_SYMBOL(proto_unregister);
3218 
3219 #ifdef CONFIG_PROC_FS
3220 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3221         __acquires(proto_list_mutex)
3222 {
3223         mutex_lock(&proto_list_mutex);
3224         return seq_list_start_head(&proto_list, *pos);
3225 }
3226 
3227 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3228 {
3229         return seq_list_next(v, &proto_list, pos);
3230 }
3231 
3232 static void proto_seq_stop(struct seq_file *seq, void *v)
3233         __releases(proto_list_mutex)
3234 {
3235         mutex_unlock(&proto_list_mutex);
3236 }
3237 
3238 static char proto_method_implemented(const void *method)
3239 {
3240         return method == NULL ? 'n' : 'y';
3241 }
3242 static long sock_prot_memory_allocated(struct proto *proto)
3243 {
3244         return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3245 }
3246 
3247 static char *sock_prot_memory_pressure(struct proto *proto)
3248 {
3249         return proto->memory_pressure != NULL ?
3250         proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3251 }
3252 
3253 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3254 {
3255 
3256         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3257                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3258                    proto->name,
3259                    proto->obj_size,
3260                    sock_prot_inuse_get(seq_file_net(seq), proto),
3261                    sock_prot_memory_allocated(proto),
3262                    sock_prot_memory_pressure(proto),
3263                    proto->max_header,
3264                    proto->slab == NULL ? "no" : "yes",
3265                    module_name(proto->owner),
3266                    proto_method_implemented(proto->close),
3267                    proto_method_implemented(proto->connect),
3268                    proto_method_implemented(proto->disconnect),
3269                    proto_method_implemented(proto->accept),
3270                    proto_method_implemented(proto->ioctl),
3271                    proto_method_implemented(proto->init),
3272                    proto_method_implemented(proto->destroy),
3273                    proto_method_implemented(proto->shutdown),
3274                    proto_method_implemented(proto->setsockopt),
3275                    proto_method_implemented(proto->getsockopt),
3276                    proto_method_implemented(proto->sendmsg),
3277                    proto_method_implemented(proto->recvmsg),
3278                    proto_method_implemented(proto->sendpage),
3279                    proto_method_implemented(proto->bind),
3280                    proto_method_implemented(proto->backlog_rcv),
3281                    proto_method_implemented(proto->hash),
3282                    proto_method_implemented(proto->unhash),
3283                    proto_method_implemented(proto->get_port),
3284                    proto_method_implemented(proto->enter_memory_pressure));
3285 }
3286 
3287 static int proto_seq_show(struct seq_file *seq, void *v)
3288 {
3289         if (v == &proto_list)
3290                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3291                            "protocol",
3292                            "size",
3293                            "sockets",
3294                            "memory",
3295                            "press",
3296                            "maxhdr",
3297                            "slab",
3298                            "module",
3299                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3300         else
3301                 proto_seq_printf(seq, list_entry(v, struct proto, node));
3302         return 0;
3303 }
3304 
3305 static const struct seq_operations proto_seq_ops = {
3306         .start  = proto_seq_start,
3307         .next   = proto_seq_next,
3308         .stop   = proto_seq_stop,
3309         .show   = proto_seq_show,
3310 };
3311 
3312 static int proto_seq_open(struct inode *inode, struct file *file)
3313 {
3314         return seq_open_net(inode, file, &proto_seq_ops,
3315                             sizeof(struct seq_net_private));
3316 }
3317 
3318 static const struct file_operations proto_seq_fops = {
3319         .owner          = THIS_MODULE,
3320         .open           = proto_seq_open,
3321         .read           = seq_read,
3322         .llseek         = seq_lseek,
3323         .release        = seq_release_net,
3324 };
3325 
3326 static __net_init int proto_init_net(struct net *net)
3327 {
3328         if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3329                 return -ENOMEM;
3330 
3331         return 0;
3332 }
3333 
3334 static __net_exit void proto_exit_net(struct net *net)
3335 {
3336         remove_proc_entry("protocols", net->proc_net);
3337 }
3338 
3339 
3340 static __net_initdata struct pernet_operations proto_net_ops = {
3341         .init = proto_init_net,
3342         .exit = proto_exit_net,
3343 };
3344 
3345 static int __init proto_init(void)
3346 {
3347         return register_pernet_subsys(&proto_net_ops);
3348 }
3349 
3350 subsys_initcall(proto_init);
3351 
3352 #endif /* PROC_FS */
3353 
3354 #ifdef CONFIG_NET_RX_BUSY_POLL
3355 bool sk_busy_loop_end(void *p, unsigned long start_time)
3356 {
3357         struct sock *sk = p;
3358 
3359         return !skb_queue_empty(&sk->sk_receive_queue) ||
3360                sk_busy_loop_timeout(sk, start_time);
3361 }
3362 EXPORT_SYMBOL(sk_busy_loop_end);
3363 #endif /* CONFIG_NET_RX_BUSY_POLL */
3364 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp