1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/sched/mm.h> 106 #include <linux/timer.h> 107 #include <linux/string.h> 108 #include <linux/sockios.h> 109 #include <linux/net.h> 110 #include <linux/mm.h> 111 #include <linux/slab.h> 112 #include <linux/interrupt.h> 113 #include <linux/poll.h> 114 #include <linux/tcp.h> 115 #include <linux/init.h> 116 #include <linux/highmem.h> 117 #include <linux/user_namespace.h> 118 #include <linux/static_key.h> 119 #include <linux/memcontrol.h> 120 #include <linux/prefetch.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 140 #include <trace/events/sock.h> 141 142 #include <net/tcp.h> 143 #include <net/busy_poll.h> 144 145 static DEFINE_MUTEX(proto_list_mutex); 146 static LIST_HEAD(proto_list); 147 148 /** 149 * sk_ns_capable - General socket capability test 150 * @sk: Socket to use a capability on or through 151 * @user_ns: The user namespace of the capability to use 152 * @cap: The capability to use 153 * 154 * Test to see if the opener of the socket had when the socket was 155 * created and the current process has the capability @cap in the user 156 * namespace @user_ns. 157 */ 158 bool sk_ns_capable(const struct sock *sk, 159 struct user_namespace *user_ns, int cap) 160 { 161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 162 ns_capable(user_ns, cap); 163 } 164 EXPORT_SYMBOL(sk_ns_capable); 165 166 /** 167 * sk_capable - Socket global capability test 168 * @sk: Socket to use a capability on or through 169 * @cap: The global capability to use 170 * 171 * Test to see if the opener of the socket had when the socket was 172 * created and the current process has the capability @cap in all user 173 * namespaces. 174 */ 175 bool sk_capable(const struct sock *sk, int cap) 176 { 177 return sk_ns_capable(sk, &init_user_ns, cap); 178 } 179 EXPORT_SYMBOL(sk_capable); 180 181 /** 182 * sk_net_capable - Network namespace socket capability test 183 * @sk: Socket to use a capability on or through 184 * @cap: The capability to use 185 * 186 * Test to see if the opener of the socket had when the socket was created 187 * and the current process has the capability @cap over the network namespace 188 * the socket is a member of. 189 */ 190 bool sk_net_capable(const struct sock *sk, int cap) 191 { 192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 193 } 194 EXPORT_SYMBOL(sk_net_capable); 195 196 /* 197 * Each address family might have different locking rules, so we have 198 * one slock key per address family and separate keys for internal and 199 * userspace sockets. 200 */ 201 static struct lock_class_key af_family_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_keys[AF_MAX]; 203 static struct lock_class_key af_family_slock_keys[AF_MAX]; 204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 205 206 /* 207 * Make lock validator output more readable. (we pre-construct these 208 * strings build-time, so that runtime initialization of socket 209 * locks is fast): 210 */ 211 212 #define _sock_locks(x) \ 213 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 214 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 215 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 216 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 217 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 218 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 219 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 220 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 221 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 222 x "27" , x "28" , x "AF_CAN" , \ 223 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 224 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 225 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 226 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 227 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX" 228 229 static const char *const af_family_key_strings[AF_MAX+1] = { 230 _sock_locks("sk_lock-") 231 }; 232 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 233 _sock_locks("slock-") 234 }; 235 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 236 _sock_locks("clock-") 237 }; 238 239 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 240 _sock_locks("k-sk_lock-") 241 }; 242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 243 _sock_locks("k-slock-") 244 }; 245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 246 _sock_locks("k-clock-") 247 }; 248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 249 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" , 250 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK", 251 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" , 252 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" , 253 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" , 254 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" , 255 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" , 256 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" , 257 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" , 258 "rlock-27" , "rlock-28" , "rlock-AF_CAN" , 259 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" , 260 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" , 261 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" , 262 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" , 263 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX" 264 }; 265 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 266 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" , 267 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK", 268 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" , 269 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" , 270 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" , 271 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" , 272 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" , 273 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" , 274 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" , 275 "wlock-27" , "wlock-28" , "wlock-AF_CAN" , 276 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" , 277 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" , 278 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" , 279 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" , 280 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX" 281 }; 282 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 283 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" , 284 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK", 285 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" , 286 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" , 287 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" , 288 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" , 289 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" , 290 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" , 291 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" , 292 "elock-27" , "elock-28" , "elock-AF_CAN" , 293 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" , 294 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" , 295 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" , 296 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" , 297 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX" 298 }; 299 300 /* 301 * sk_callback_lock and sk queues locking rules are per-address-family, 302 * so split the lock classes by using a per-AF key: 303 */ 304 static struct lock_class_key af_callback_keys[AF_MAX]; 305 static struct lock_class_key af_rlock_keys[AF_MAX]; 306 static struct lock_class_key af_wlock_keys[AF_MAX]; 307 static struct lock_class_key af_elock_keys[AF_MAX]; 308 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 309 310 /* Run time adjustable parameters. */ 311 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 312 EXPORT_SYMBOL(sysctl_wmem_max); 313 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 314 EXPORT_SYMBOL(sysctl_rmem_max); 315 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 316 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 317 318 /* Maximal space eaten by iovec or ancillary data plus some space */ 319 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 320 EXPORT_SYMBOL(sysctl_optmem_max); 321 322 int sysctl_tstamp_allow_data __read_mostly = 1; 323 324 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 325 EXPORT_SYMBOL_GPL(memalloc_socks); 326 327 /** 328 * sk_set_memalloc - sets %SOCK_MEMALLOC 329 * @sk: socket to set it on 330 * 331 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 332 * It's the responsibility of the admin to adjust min_free_kbytes 333 * to meet the requirements 334 */ 335 void sk_set_memalloc(struct sock *sk) 336 { 337 sock_set_flag(sk, SOCK_MEMALLOC); 338 sk->sk_allocation |= __GFP_MEMALLOC; 339 static_key_slow_inc(&memalloc_socks); 340 } 341 EXPORT_SYMBOL_GPL(sk_set_memalloc); 342 343 void sk_clear_memalloc(struct sock *sk) 344 { 345 sock_reset_flag(sk, SOCK_MEMALLOC); 346 sk->sk_allocation &= ~__GFP_MEMALLOC; 347 static_key_slow_dec(&memalloc_socks); 348 349 /* 350 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 351 * progress of swapping. SOCK_MEMALLOC may be cleared while 352 * it has rmem allocations due to the last swapfile being deactivated 353 * but there is a risk that the socket is unusable due to exceeding 354 * the rmem limits. Reclaim the reserves and obey rmem limits again. 355 */ 356 sk_mem_reclaim(sk); 357 } 358 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 359 360 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 361 { 362 int ret; 363 unsigned int noreclaim_flag; 364 365 /* these should have been dropped before queueing */ 366 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 367 368 noreclaim_flag = memalloc_noreclaim_save(); 369 ret = sk->sk_backlog_rcv(sk, skb); 370 memalloc_noreclaim_restore(noreclaim_flag); 371 372 return ret; 373 } 374 EXPORT_SYMBOL(__sk_backlog_rcv); 375 376 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 377 { 378 struct timeval tv; 379 380 if (optlen < sizeof(tv)) 381 return -EINVAL; 382 if (copy_from_user(&tv, optval, sizeof(tv))) 383 return -EFAULT; 384 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 385 return -EDOM; 386 387 if (tv.tv_sec < 0) { 388 static int warned __read_mostly; 389 390 *timeo_p = 0; 391 if (warned < 10 && net_ratelimit()) { 392 warned++; 393 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 394 __func__, current->comm, task_pid_nr(current)); 395 } 396 return 0; 397 } 398 *timeo_p = MAX_SCHEDULE_TIMEOUT; 399 if (tv.tv_sec == 0 && tv.tv_usec == 0) 400 return 0; 401 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 402 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ); 403 return 0; 404 } 405 406 static void sock_warn_obsolete_bsdism(const char *name) 407 { 408 static int warned; 409 static char warncomm[TASK_COMM_LEN]; 410 if (strcmp(warncomm, current->comm) && warned < 5) { 411 strcpy(warncomm, current->comm); 412 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 413 warncomm, name); 414 warned++; 415 } 416 } 417 418 static bool sock_needs_netstamp(const struct sock *sk) 419 { 420 switch (sk->sk_family) { 421 case AF_UNSPEC: 422 case AF_UNIX: 423 return false; 424 default: 425 return true; 426 } 427 } 428 429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 430 { 431 if (sk->sk_flags & flags) { 432 sk->sk_flags &= ~flags; 433 if (sock_needs_netstamp(sk) && 434 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 435 net_disable_timestamp(); 436 } 437 } 438 439 440 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 441 { 442 unsigned long flags; 443 struct sk_buff_head *list = &sk->sk_receive_queue; 444 445 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 446 atomic_inc(&sk->sk_drops); 447 trace_sock_rcvqueue_full(sk, skb); 448 return -ENOMEM; 449 } 450 451 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 452 atomic_inc(&sk->sk_drops); 453 return -ENOBUFS; 454 } 455 456 skb->dev = NULL; 457 skb_set_owner_r(skb, sk); 458 459 /* we escape from rcu protected region, make sure we dont leak 460 * a norefcounted dst 461 */ 462 skb_dst_force(skb); 463 464 spin_lock_irqsave(&list->lock, flags); 465 sock_skb_set_dropcount(sk, skb); 466 __skb_queue_tail(list, skb); 467 spin_unlock_irqrestore(&list->lock, flags); 468 469 if (!sock_flag(sk, SOCK_DEAD)) 470 sk->sk_data_ready(sk); 471 return 0; 472 } 473 EXPORT_SYMBOL(__sock_queue_rcv_skb); 474 475 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 476 { 477 int err; 478 479 err = sk_filter(sk, skb); 480 if (err) 481 return err; 482 483 return __sock_queue_rcv_skb(sk, skb); 484 } 485 EXPORT_SYMBOL(sock_queue_rcv_skb); 486 487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 488 const int nested, unsigned int trim_cap, bool refcounted) 489 { 490 int rc = NET_RX_SUCCESS; 491 492 if (sk_filter_trim_cap(sk, skb, trim_cap)) 493 goto discard_and_relse; 494 495 skb->dev = NULL; 496 497 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 498 atomic_inc(&sk->sk_drops); 499 goto discard_and_relse; 500 } 501 if (nested) 502 bh_lock_sock_nested(sk); 503 else 504 bh_lock_sock(sk); 505 if (!sock_owned_by_user(sk)) { 506 /* 507 * trylock + unlock semantics: 508 */ 509 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 510 511 rc = sk_backlog_rcv(sk, skb); 512 513 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 514 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 515 bh_unlock_sock(sk); 516 atomic_inc(&sk->sk_drops); 517 goto discard_and_relse; 518 } 519 520 bh_unlock_sock(sk); 521 out: 522 if (refcounted) 523 sock_put(sk); 524 return rc; 525 discard_and_relse: 526 kfree_skb(skb); 527 goto out; 528 } 529 EXPORT_SYMBOL(__sk_receive_skb); 530 531 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 532 { 533 struct dst_entry *dst = __sk_dst_get(sk); 534 535 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 536 sk_tx_queue_clear(sk); 537 sk->sk_dst_pending_confirm = 0; 538 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 539 dst_release(dst); 540 return NULL; 541 } 542 543 return dst; 544 } 545 EXPORT_SYMBOL(__sk_dst_check); 546 547 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 548 { 549 struct dst_entry *dst = sk_dst_get(sk); 550 551 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 552 sk_dst_reset(sk); 553 dst_release(dst); 554 return NULL; 555 } 556 557 return dst; 558 } 559 EXPORT_SYMBOL(sk_dst_check); 560 561 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 562 int optlen) 563 { 564 int ret = -ENOPROTOOPT; 565 #ifdef CONFIG_NETDEVICES 566 struct net *net = sock_net(sk); 567 char devname[IFNAMSIZ]; 568 int index; 569 570 /* Sorry... */ 571 ret = -EPERM; 572 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 573 goto out; 574 575 ret = -EINVAL; 576 if (optlen < 0) 577 goto out; 578 579 /* Bind this socket to a particular device like "eth0", 580 * as specified in the passed interface name. If the 581 * name is "" or the option length is zero the socket 582 * is not bound. 583 */ 584 if (optlen > IFNAMSIZ - 1) 585 optlen = IFNAMSIZ - 1; 586 memset(devname, 0, sizeof(devname)); 587 588 ret = -EFAULT; 589 if (copy_from_user(devname, optval, optlen)) 590 goto out; 591 592 index = 0; 593 if (devname[0] != '\0') { 594 struct net_device *dev; 595 596 rcu_read_lock(); 597 dev = dev_get_by_name_rcu(net, devname); 598 if (dev) 599 index = dev->ifindex; 600 rcu_read_unlock(); 601 ret = -ENODEV; 602 if (!dev) 603 goto out; 604 } 605 606 lock_sock(sk); 607 sk->sk_bound_dev_if = index; 608 sk_dst_reset(sk); 609 release_sock(sk); 610 611 ret = 0; 612 613 out: 614 #endif 615 616 return ret; 617 } 618 619 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 620 int __user *optlen, int len) 621 { 622 int ret = -ENOPROTOOPT; 623 #ifdef CONFIG_NETDEVICES 624 struct net *net = sock_net(sk); 625 char devname[IFNAMSIZ]; 626 627 if (sk->sk_bound_dev_if == 0) { 628 len = 0; 629 goto zero; 630 } 631 632 ret = -EINVAL; 633 if (len < IFNAMSIZ) 634 goto out; 635 636 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 637 if (ret) 638 goto out; 639 640 len = strlen(devname) + 1; 641 642 ret = -EFAULT; 643 if (copy_to_user(optval, devname, len)) 644 goto out; 645 646 zero: 647 ret = -EFAULT; 648 if (put_user(len, optlen)) 649 goto out; 650 651 ret = 0; 652 653 out: 654 #endif 655 656 return ret; 657 } 658 659 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 660 { 661 if (valbool) 662 sock_set_flag(sk, bit); 663 else 664 sock_reset_flag(sk, bit); 665 } 666 667 bool sk_mc_loop(struct sock *sk) 668 { 669 if (dev_recursion_level()) 670 return false; 671 if (!sk) 672 return true; 673 switch (sk->sk_family) { 674 case AF_INET: 675 return inet_sk(sk)->mc_loop; 676 #if IS_ENABLED(CONFIG_IPV6) 677 case AF_INET6: 678 return inet6_sk(sk)->mc_loop; 679 #endif 680 } 681 WARN_ON(1); 682 return true; 683 } 684 EXPORT_SYMBOL(sk_mc_loop); 685 686 /* 687 * This is meant for all protocols to use and covers goings on 688 * at the socket level. Everything here is generic. 689 */ 690 691 int sock_setsockopt(struct socket *sock, int level, int optname, 692 char __user *optval, unsigned int optlen) 693 { 694 struct sock *sk = sock->sk; 695 int val; 696 int valbool; 697 struct linger ling; 698 int ret = 0; 699 700 /* 701 * Options without arguments 702 */ 703 704 if (optname == SO_BINDTODEVICE) 705 return sock_setbindtodevice(sk, optval, optlen); 706 707 if (optlen < sizeof(int)) 708 return -EINVAL; 709 710 if (get_user(val, (int __user *)optval)) 711 return -EFAULT; 712 713 valbool = val ? 1 : 0; 714 715 lock_sock(sk); 716 717 switch (optname) { 718 case SO_DEBUG: 719 if (val && !capable(CAP_NET_ADMIN)) 720 ret = -EACCES; 721 else 722 sock_valbool_flag(sk, SOCK_DBG, valbool); 723 break; 724 case SO_REUSEADDR: 725 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 726 break; 727 case SO_REUSEPORT: 728 sk->sk_reuseport = valbool; 729 break; 730 case SO_TYPE: 731 case SO_PROTOCOL: 732 case SO_DOMAIN: 733 case SO_ERROR: 734 ret = -ENOPROTOOPT; 735 break; 736 case SO_DONTROUTE: 737 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 738 break; 739 case SO_BROADCAST: 740 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 741 break; 742 case SO_SNDBUF: 743 /* Don't error on this BSD doesn't and if you think 744 * about it this is right. Otherwise apps have to 745 * play 'guess the biggest size' games. RCVBUF/SNDBUF 746 * are treated in BSD as hints 747 */ 748 val = min_t(u32, val, sysctl_wmem_max); 749 set_sndbuf: 750 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 751 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 752 /* Wake up sending tasks if we upped the value. */ 753 sk->sk_write_space(sk); 754 break; 755 756 case SO_SNDBUFFORCE: 757 if (!capable(CAP_NET_ADMIN)) { 758 ret = -EPERM; 759 break; 760 } 761 goto set_sndbuf; 762 763 case SO_RCVBUF: 764 /* Don't error on this BSD doesn't and if you think 765 * about it this is right. Otherwise apps have to 766 * play 'guess the biggest size' games. RCVBUF/SNDBUF 767 * are treated in BSD as hints 768 */ 769 val = min_t(u32, val, sysctl_rmem_max); 770 set_rcvbuf: 771 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 772 /* 773 * We double it on the way in to account for 774 * "struct sk_buff" etc. overhead. Applications 775 * assume that the SO_RCVBUF setting they make will 776 * allow that much actual data to be received on that 777 * socket. 778 * 779 * Applications are unaware that "struct sk_buff" and 780 * other overheads allocate from the receive buffer 781 * during socket buffer allocation. 782 * 783 * And after considering the possible alternatives, 784 * returning the value we actually used in getsockopt 785 * is the most desirable behavior. 786 */ 787 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 788 break; 789 790 case SO_RCVBUFFORCE: 791 if (!capable(CAP_NET_ADMIN)) { 792 ret = -EPERM; 793 break; 794 } 795 goto set_rcvbuf; 796 797 case SO_KEEPALIVE: 798 if (sk->sk_prot->keepalive) 799 sk->sk_prot->keepalive(sk, valbool); 800 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 801 break; 802 803 case SO_OOBINLINE: 804 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 805 break; 806 807 case SO_NO_CHECK: 808 sk->sk_no_check_tx = valbool; 809 break; 810 811 case SO_PRIORITY: 812 if ((val >= 0 && val <= 6) || 813 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 814 sk->sk_priority = val; 815 else 816 ret = -EPERM; 817 break; 818 819 case SO_LINGER: 820 if (optlen < sizeof(ling)) { 821 ret = -EINVAL; /* 1003.1g */ 822 break; 823 } 824 if (copy_from_user(&ling, optval, sizeof(ling))) { 825 ret = -EFAULT; 826 break; 827 } 828 if (!ling.l_onoff) 829 sock_reset_flag(sk, SOCK_LINGER); 830 else { 831 #if (BITS_PER_LONG == 32) 832 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 833 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 834 else 835 #endif 836 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 837 sock_set_flag(sk, SOCK_LINGER); 838 } 839 break; 840 841 case SO_BSDCOMPAT: 842 sock_warn_obsolete_bsdism("setsockopt"); 843 break; 844 845 case SO_PASSCRED: 846 if (valbool) 847 set_bit(SOCK_PASSCRED, &sock->flags); 848 else 849 clear_bit(SOCK_PASSCRED, &sock->flags); 850 break; 851 852 case SO_TIMESTAMP: 853 case SO_TIMESTAMPNS: 854 if (valbool) { 855 if (optname == SO_TIMESTAMP) 856 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 857 else 858 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 859 sock_set_flag(sk, SOCK_RCVTSTAMP); 860 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 861 } else { 862 sock_reset_flag(sk, SOCK_RCVTSTAMP); 863 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 864 } 865 break; 866 867 case SO_TIMESTAMPING: 868 if (val & ~SOF_TIMESTAMPING_MASK) { 869 ret = -EINVAL; 870 break; 871 } 872 873 if (val & SOF_TIMESTAMPING_OPT_ID && 874 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 875 if (sk->sk_protocol == IPPROTO_TCP && 876 sk->sk_type == SOCK_STREAM) { 877 if ((1 << sk->sk_state) & 878 (TCPF_CLOSE | TCPF_LISTEN)) { 879 ret = -EINVAL; 880 break; 881 } 882 sk->sk_tskey = tcp_sk(sk)->snd_una; 883 } else { 884 sk->sk_tskey = 0; 885 } 886 } 887 888 if (val & SOF_TIMESTAMPING_OPT_STATS && 889 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 890 ret = -EINVAL; 891 break; 892 } 893 894 sk->sk_tsflags = val; 895 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 896 sock_enable_timestamp(sk, 897 SOCK_TIMESTAMPING_RX_SOFTWARE); 898 else 899 sock_disable_timestamp(sk, 900 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 901 break; 902 903 case SO_RCVLOWAT: 904 if (val < 0) 905 val = INT_MAX; 906 sk->sk_rcvlowat = val ? : 1; 907 break; 908 909 case SO_RCVTIMEO: 910 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 911 break; 912 913 case SO_SNDTIMEO: 914 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 915 break; 916 917 case SO_ATTACH_FILTER: 918 ret = -EINVAL; 919 if (optlen == sizeof(struct sock_fprog)) { 920 struct sock_fprog fprog; 921 922 ret = -EFAULT; 923 if (copy_from_user(&fprog, optval, sizeof(fprog))) 924 break; 925 926 ret = sk_attach_filter(&fprog, sk); 927 } 928 break; 929 930 case SO_ATTACH_BPF: 931 ret = -EINVAL; 932 if (optlen == sizeof(u32)) { 933 u32 ufd; 934 935 ret = -EFAULT; 936 if (copy_from_user(&ufd, optval, sizeof(ufd))) 937 break; 938 939 ret = sk_attach_bpf(ufd, sk); 940 } 941 break; 942 943 case SO_ATTACH_REUSEPORT_CBPF: 944 ret = -EINVAL; 945 if (optlen == sizeof(struct sock_fprog)) { 946 struct sock_fprog fprog; 947 948 ret = -EFAULT; 949 if (copy_from_user(&fprog, optval, sizeof(fprog))) 950 break; 951 952 ret = sk_reuseport_attach_filter(&fprog, sk); 953 } 954 break; 955 956 case SO_ATTACH_REUSEPORT_EBPF: 957 ret = -EINVAL; 958 if (optlen == sizeof(u32)) { 959 u32 ufd; 960 961 ret = -EFAULT; 962 if (copy_from_user(&ufd, optval, sizeof(ufd))) 963 break; 964 965 ret = sk_reuseport_attach_bpf(ufd, sk); 966 } 967 break; 968 969 case SO_DETACH_FILTER: 970 ret = sk_detach_filter(sk); 971 break; 972 973 case SO_LOCK_FILTER: 974 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 975 ret = -EPERM; 976 else 977 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 978 break; 979 980 case SO_PASSSEC: 981 if (valbool) 982 set_bit(SOCK_PASSSEC, &sock->flags); 983 else 984 clear_bit(SOCK_PASSSEC, &sock->flags); 985 break; 986 case SO_MARK: 987 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 988 ret = -EPERM; 989 else 990 sk->sk_mark = val; 991 break; 992 993 case SO_RXQ_OVFL: 994 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 995 break; 996 997 case SO_WIFI_STATUS: 998 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 999 break; 1000 1001 case SO_PEEK_OFF: 1002 if (sock->ops->set_peek_off) 1003 ret = sock->ops->set_peek_off(sk, val); 1004 else 1005 ret = -EOPNOTSUPP; 1006 break; 1007 1008 case SO_NOFCS: 1009 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1010 break; 1011 1012 case SO_SELECT_ERR_QUEUE: 1013 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1014 break; 1015 1016 #ifdef CONFIG_NET_RX_BUSY_POLL 1017 case SO_BUSY_POLL: 1018 /* allow unprivileged users to decrease the value */ 1019 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1020 ret = -EPERM; 1021 else { 1022 if (val < 0) 1023 ret = -EINVAL; 1024 else 1025 sk->sk_ll_usec = val; 1026 } 1027 break; 1028 #endif 1029 1030 case SO_MAX_PACING_RATE: 1031 if (val != ~0U) 1032 cmpxchg(&sk->sk_pacing_status, 1033 SK_PACING_NONE, 1034 SK_PACING_NEEDED); 1035 sk->sk_max_pacing_rate = val; 1036 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 1037 sk->sk_max_pacing_rate); 1038 break; 1039 1040 case SO_INCOMING_CPU: 1041 sk->sk_incoming_cpu = val; 1042 break; 1043 1044 case SO_CNX_ADVICE: 1045 if (val == 1) 1046 dst_negative_advice(sk); 1047 break; 1048 1049 case SO_ZEROCOPY: 1050 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6) 1051 ret = -ENOTSUPP; 1052 else if (sk->sk_protocol != IPPROTO_TCP) 1053 ret = -ENOTSUPP; 1054 else if (sk->sk_state != TCP_CLOSE) 1055 ret = -EBUSY; 1056 else if (val < 0 || val > 1) 1057 ret = -EINVAL; 1058 else 1059 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1060 break; 1061 1062 default: 1063 ret = -ENOPROTOOPT; 1064 break; 1065 } 1066 release_sock(sk); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(sock_setsockopt); 1070 1071 1072 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1073 struct ucred *ucred) 1074 { 1075 ucred->pid = pid_vnr(pid); 1076 ucred->uid = ucred->gid = -1; 1077 if (cred) { 1078 struct user_namespace *current_ns = current_user_ns(); 1079 1080 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1081 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1082 } 1083 } 1084 1085 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1086 { 1087 struct user_namespace *user_ns = current_user_ns(); 1088 int i; 1089 1090 for (i = 0; i < src->ngroups; i++) 1091 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1092 return -EFAULT; 1093 1094 return 0; 1095 } 1096 1097 int sock_getsockopt(struct socket *sock, int level, int optname, 1098 char __user *optval, int __user *optlen) 1099 { 1100 struct sock *sk = sock->sk; 1101 1102 union { 1103 int val; 1104 u64 val64; 1105 struct linger ling; 1106 struct timeval tm; 1107 } v; 1108 1109 int lv = sizeof(int); 1110 int len; 1111 1112 if (get_user(len, optlen)) 1113 return -EFAULT; 1114 if (len < 0) 1115 return -EINVAL; 1116 1117 memset(&v, 0, sizeof(v)); 1118 1119 switch (optname) { 1120 case SO_DEBUG: 1121 v.val = sock_flag(sk, SOCK_DBG); 1122 break; 1123 1124 case SO_DONTROUTE: 1125 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1126 break; 1127 1128 case SO_BROADCAST: 1129 v.val = sock_flag(sk, SOCK_BROADCAST); 1130 break; 1131 1132 case SO_SNDBUF: 1133 v.val = sk->sk_sndbuf; 1134 break; 1135 1136 case SO_RCVBUF: 1137 v.val = sk->sk_rcvbuf; 1138 break; 1139 1140 case SO_REUSEADDR: 1141 v.val = sk->sk_reuse; 1142 break; 1143 1144 case SO_REUSEPORT: 1145 v.val = sk->sk_reuseport; 1146 break; 1147 1148 case SO_KEEPALIVE: 1149 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1150 break; 1151 1152 case SO_TYPE: 1153 v.val = sk->sk_type; 1154 break; 1155 1156 case SO_PROTOCOL: 1157 v.val = sk->sk_protocol; 1158 break; 1159 1160 case SO_DOMAIN: 1161 v.val = sk->sk_family; 1162 break; 1163 1164 case SO_ERROR: 1165 v.val = -sock_error(sk); 1166 if (v.val == 0) 1167 v.val = xchg(&sk->sk_err_soft, 0); 1168 break; 1169 1170 case SO_OOBINLINE: 1171 v.val = sock_flag(sk, SOCK_URGINLINE); 1172 break; 1173 1174 case SO_NO_CHECK: 1175 v.val = sk->sk_no_check_tx; 1176 break; 1177 1178 case SO_PRIORITY: 1179 v.val = sk->sk_priority; 1180 break; 1181 1182 case SO_LINGER: 1183 lv = sizeof(v.ling); 1184 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1185 v.ling.l_linger = sk->sk_lingertime / HZ; 1186 break; 1187 1188 case SO_BSDCOMPAT: 1189 sock_warn_obsolete_bsdism("getsockopt"); 1190 break; 1191 1192 case SO_TIMESTAMP: 1193 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1194 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1195 break; 1196 1197 case SO_TIMESTAMPNS: 1198 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1199 break; 1200 1201 case SO_TIMESTAMPING: 1202 v.val = sk->sk_tsflags; 1203 break; 1204 1205 case SO_RCVTIMEO: 1206 lv = sizeof(struct timeval); 1207 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1208 v.tm.tv_sec = 0; 1209 v.tm.tv_usec = 0; 1210 } else { 1211 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1212 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ; 1213 } 1214 break; 1215 1216 case SO_SNDTIMEO: 1217 lv = sizeof(struct timeval); 1218 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1219 v.tm.tv_sec = 0; 1220 v.tm.tv_usec = 0; 1221 } else { 1222 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1223 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ; 1224 } 1225 break; 1226 1227 case SO_RCVLOWAT: 1228 v.val = sk->sk_rcvlowat; 1229 break; 1230 1231 case SO_SNDLOWAT: 1232 v.val = 1; 1233 break; 1234 1235 case SO_PASSCRED: 1236 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1237 break; 1238 1239 case SO_PEERCRED: 1240 { 1241 struct ucred peercred; 1242 if (len > sizeof(peercred)) 1243 len = sizeof(peercred); 1244 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1245 if (copy_to_user(optval, &peercred, len)) 1246 return -EFAULT; 1247 goto lenout; 1248 } 1249 1250 case SO_PEERGROUPS: 1251 { 1252 int ret, n; 1253 1254 if (!sk->sk_peer_cred) 1255 return -ENODATA; 1256 1257 n = sk->sk_peer_cred->group_info->ngroups; 1258 if (len < n * sizeof(gid_t)) { 1259 len = n * sizeof(gid_t); 1260 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1261 } 1262 len = n * sizeof(gid_t); 1263 1264 ret = groups_to_user((gid_t __user *)optval, 1265 sk->sk_peer_cred->group_info); 1266 if (ret) 1267 return ret; 1268 goto lenout; 1269 } 1270 1271 case SO_PEERNAME: 1272 { 1273 char address[128]; 1274 1275 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1276 return -ENOTCONN; 1277 if (lv < len) 1278 return -EINVAL; 1279 if (copy_to_user(optval, address, len)) 1280 return -EFAULT; 1281 goto lenout; 1282 } 1283 1284 /* Dubious BSD thing... Probably nobody even uses it, but 1285 * the UNIX standard wants it for whatever reason... -DaveM 1286 */ 1287 case SO_ACCEPTCONN: 1288 v.val = sk->sk_state == TCP_LISTEN; 1289 break; 1290 1291 case SO_PASSSEC: 1292 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1293 break; 1294 1295 case SO_PEERSEC: 1296 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1297 1298 case SO_MARK: 1299 v.val = sk->sk_mark; 1300 break; 1301 1302 case SO_RXQ_OVFL: 1303 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1304 break; 1305 1306 case SO_WIFI_STATUS: 1307 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1308 break; 1309 1310 case SO_PEEK_OFF: 1311 if (!sock->ops->set_peek_off) 1312 return -EOPNOTSUPP; 1313 1314 v.val = sk->sk_peek_off; 1315 break; 1316 case SO_NOFCS: 1317 v.val = sock_flag(sk, SOCK_NOFCS); 1318 break; 1319 1320 case SO_BINDTODEVICE: 1321 return sock_getbindtodevice(sk, optval, optlen, len); 1322 1323 case SO_GET_FILTER: 1324 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1325 if (len < 0) 1326 return len; 1327 1328 goto lenout; 1329 1330 case SO_LOCK_FILTER: 1331 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1332 break; 1333 1334 case SO_BPF_EXTENSIONS: 1335 v.val = bpf_tell_extensions(); 1336 break; 1337 1338 case SO_SELECT_ERR_QUEUE: 1339 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1340 break; 1341 1342 #ifdef CONFIG_NET_RX_BUSY_POLL 1343 case SO_BUSY_POLL: 1344 v.val = sk->sk_ll_usec; 1345 break; 1346 #endif 1347 1348 case SO_MAX_PACING_RATE: 1349 v.val = sk->sk_max_pacing_rate; 1350 break; 1351 1352 case SO_INCOMING_CPU: 1353 v.val = sk->sk_incoming_cpu; 1354 break; 1355 1356 case SO_MEMINFO: 1357 { 1358 u32 meminfo[SK_MEMINFO_VARS]; 1359 1360 if (get_user(len, optlen)) 1361 return -EFAULT; 1362 1363 sk_get_meminfo(sk, meminfo); 1364 1365 len = min_t(unsigned int, len, sizeof(meminfo)); 1366 if (copy_to_user(optval, &meminfo, len)) 1367 return -EFAULT; 1368 1369 goto lenout; 1370 } 1371 1372 #ifdef CONFIG_NET_RX_BUSY_POLL 1373 case SO_INCOMING_NAPI_ID: 1374 v.val = READ_ONCE(sk->sk_napi_id); 1375 1376 /* aggregate non-NAPI IDs down to 0 */ 1377 if (v.val < MIN_NAPI_ID) 1378 v.val = 0; 1379 1380 break; 1381 #endif 1382 1383 case SO_COOKIE: 1384 lv = sizeof(u64); 1385 if (len < lv) 1386 return -EINVAL; 1387 v.val64 = sock_gen_cookie(sk); 1388 break; 1389 1390 case SO_ZEROCOPY: 1391 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1392 break; 1393 1394 default: 1395 /* We implement the SO_SNDLOWAT etc to not be settable 1396 * (1003.1g 7). 1397 */ 1398 return -ENOPROTOOPT; 1399 } 1400 1401 if (len > lv) 1402 len = lv; 1403 if (copy_to_user(optval, &v, len)) 1404 return -EFAULT; 1405 lenout: 1406 if (put_user(len, optlen)) 1407 return -EFAULT; 1408 return 0; 1409 } 1410 1411 /* 1412 * Initialize an sk_lock. 1413 * 1414 * (We also register the sk_lock with the lock validator.) 1415 */ 1416 static inline void sock_lock_init(struct sock *sk) 1417 { 1418 if (sk->sk_kern_sock) 1419 sock_lock_init_class_and_name( 1420 sk, 1421 af_family_kern_slock_key_strings[sk->sk_family], 1422 af_family_kern_slock_keys + sk->sk_family, 1423 af_family_kern_key_strings[sk->sk_family], 1424 af_family_kern_keys + sk->sk_family); 1425 else 1426 sock_lock_init_class_and_name( 1427 sk, 1428 af_family_slock_key_strings[sk->sk_family], 1429 af_family_slock_keys + sk->sk_family, 1430 af_family_key_strings[sk->sk_family], 1431 af_family_keys + sk->sk_family); 1432 } 1433 1434 /* 1435 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1436 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1437 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1438 */ 1439 static void sock_copy(struct sock *nsk, const struct sock *osk) 1440 { 1441 #ifdef CONFIG_SECURITY_NETWORK 1442 void *sptr = nsk->sk_security; 1443 #endif 1444 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1445 1446 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1447 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1448 1449 #ifdef CONFIG_SECURITY_NETWORK 1450 nsk->sk_security = sptr; 1451 security_sk_clone(osk, nsk); 1452 #endif 1453 } 1454 1455 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1456 int family) 1457 { 1458 struct sock *sk; 1459 struct kmem_cache *slab; 1460 1461 slab = prot->slab; 1462 if (slab != NULL) { 1463 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1464 if (!sk) 1465 return sk; 1466 if (priority & __GFP_ZERO) 1467 sk_prot_clear_nulls(sk, prot->obj_size); 1468 } else 1469 sk = kmalloc(prot->obj_size, priority); 1470 1471 if (sk != NULL) { 1472 if (security_sk_alloc(sk, family, priority)) 1473 goto out_free; 1474 1475 if (!try_module_get(prot->owner)) 1476 goto out_free_sec; 1477 sk_tx_queue_clear(sk); 1478 } 1479 1480 return sk; 1481 1482 out_free_sec: 1483 security_sk_free(sk); 1484 out_free: 1485 if (slab != NULL) 1486 kmem_cache_free(slab, sk); 1487 else 1488 kfree(sk); 1489 return NULL; 1490 } 1491 1492 static void sk_prot_free(struct proto *prot, struct sock *sk) 1493 { 1494 struct kmem_cache *slab; 1495 struct module *owner; 1496 1497 owner = prot->owner; 1498 slab = prot->slab; 1499 1500 cgroup_sk_free(&sk->sk_cgrp_data); 1501 mem_cgroup_sk_free(sk); 1502 security_sk_free(sk); 1503 if (slab != NULL) 1504 kmem_cache_free(slab, sk); 1505 else 1506 kfree(sk); 1507 module_put(owner); 1508 } 1509 1510 /** 1511 * sk_alloc - All socket objects are allocated here 1512 * @net: the applicable net namespace 1513 * @family: protocol family 1514 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1515 * @prot: struct proto associated with this new sock instance 1516 * @kern: is this to be a kernel socket? 1517 */ 1518 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1519 struct proto *prot, int kern) 1520 { 1521 struct sock *sk; 1522 1523 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1524 if (sk) { 1525 sk->sk_family = family; 1526 /* 1527 * See comment in struct sock definition to understand 1528 * why we need sk_prot_creator -acme 1529 */ 1530 sk->sk_prot = sk->sk_prot_creator = prot; 1531 sk->sk_kern_sock = kern; 1532 sock_lock_init(sk); 1533 sk->sk_net_refcnt = kern ? 0 : 1; 1534 if (likely(sk->sk_net_refcnt)) 1535 get_net(net); 1536 sock_net_set(sk, net); 1537 refcount_set(&sk->sk_wmem_alloc, 1); 1538 1539 mem_cgroup_sk_alloc(sk); 1540 cgroup_sk_alloc(&sk->sk_cgrp_data); 1541 sock_update_classid(&sk->sk_cgrp_data); 1542 sock_update_netprioidx(&sk->sk_cgrp_data); 1543 } 1544 1545 return sk; 1546 } 1547 EXPORT_SYMBOL(sk_alloc); 1548 1549 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1550 * grace period. This is the case for UDP sockets and TCP listeners. 1551 */ 1552 static void __sk_destruct(struct rcu_head *head) 1553 { 1554 struct sock *sk = container_of(head, struct sock, sk_rcu); 1555 struct sk_filter *filter; 1556 1557 if (sk->sk_destruct) 1558 sk->sk_destruct(sk); 1559 1560 filter = rcu_dereference_check(sk->sk_filter, 1561 refcount_read(&sk->sk_wmem_alloc) == 0); 1562 if (filter) { 1563 sk_filter_uncharge(sk, filter); 1564 RCU_INIT_POINTER(sk->sk_filter, NULL); 1565 } 1566 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1567 reuseport_detach_sock(sk); 1568 1569 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1570 1571 if (atomic_read(&sk->sk_omem_alloc)) 1572 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1573 __func__, atomic_read(&sk->sk_omem_alloc)); 1574 1575 if (sk->sk_frag.page) { 1576 put_page(sk->sk_frag.page); 1577 sk->sk_frag.page = NULL; 1578 } 1579 1580 if (sk->sk_peer_cred) 1581 put_cred(sk->sk_peer_cred); 1582 put_pid(sk->sk_peer_pid); 1583 if (likely(sk->sk_net_refcnt)) 1584 put_net(sock_net(sk)); 1585 sk_prot_free(sk->sk_prot_creator, sk); 1586 } 1587 1588 void sk_destruct(struct sock *sk) 1589 { 1590 if (sock_flag(sk, SOCK_RCU_FREE)) 1591 call_rcu(&sk->sk_rcu, __sk_destruct); 1592 else 1593 __sk_destruct(&sk->sk_rcu); 1594 } 1595 1596 static void __sk_free(struct sock *sk) 1597 { 1598 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1599 sock_diag_broadcast_destroy(sk); 1600 else 1601 sk_destruct(sk); 1602 } 1603 1604 void sk_free(struct sock *sk) 1605 { 1606 /* 1607 * We subtract one from sk_wmem_alloc and can know if 1608 * some packets are still in some tx queue. 1609 * If not null, sock_wfree() will call __sk_free(sk) later 1610 */ 1611 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1612 __sk_free(sk); 1613 } 1614 EXPORT_SYMBOL(sk_free); 1615 1616 static void sk_init_common(struct sock *sk) 1617 { 1618 skb_queue_head_init(&sk->sk_receive_queue); 1619 skb_queue_head_init(&sk->sk_write_queue); 1620 skb_queue_head_init(&sk->sk_error_queue); 1621 1622 rwlock_init(&sk->sk_callback_lock); 1623 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1624 af_rlock_keys + sk->sk_family, 1625 af_family_rlock_key_strings[sk->sk_family]); 1626 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1627 af_wlock_keys + sk->sk_family, 1628 af_family_wlock_key_strings[sk->sk_family]); 1629 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1630 af_elock_keys + sk->sk_family, 1631 af_family_elock_key_strings[sk->sk_family]); 1632 lockdep_set_class_and_name(&sk->sk_callback_lock, 1633 af_callback_keys + sk->sk_family, 1634 af_family_clock_key_strings[sk->sk_family]); 1635 } 1636 1637 /** 1638 * sk_clone_lock - clone a socket, and lock its clone 1639 * @sk: the socket to clone 1640 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1641 * 1642 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1643 */ 1644 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1645 { 1646 struct sock *newsk; 1647 bool is_charged = true; 1648 1649 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1650 if (newsk != NULL) { 1651 struct sk_filter *filter; 1652 1653 sock_copy(newsk, sk); 1654 1655 newsk->sk_prot_creator = sk->sk_prot; 1656 1657 /* SANITY */ 1658 if (likely(newsk->sk_net_refcnt)) 1659 get_net(sock_net(newsk)); 1660 sk_node_init(&newsk->sk_node); 1661 sock_lock_init(newsk); 1662 bh_lock_sock(newsk); 1663 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1664 newsk->sk_backlog.len = 0; 1665 1666 atomic_set(&newsk->sk_rmem_alloc, 0); 1667 /* 1668 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1669 */ 1670 refcount_set(&newsk->sk_wmem_alloc, 1); 1671 atomic_set(&newsk->sk_omem_alloc, 0); 1672 sk_init_common(newsk); 1673 1674 newsk->sk_dst_cache = NULL; 1675 newsk->sk_dst_pending_confirm = 0; 1676 newsk->sk_wmem_queued = 0; 1677 newsk->sk_forward_alloc = 0; 1678 atomic_set(&newsk->sk_drops, 0); 1679 newsk->sk_send_head = NULL; 1680 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1681 atomic_set(&newsk->sk_zckey, 0); 1682 1683 sock_reset_flag(newsk, SOCK_DONE); 1684 mem_cgroup_sk_alloc(newsk); 1685 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1686 1687 rcu_read_lock(); 1688 filter = rcu_dereference(sk->sk_filter); 1689 if (filter != NULL) 1690 /* though it's an empty new sock, the charging may fail 1691 * if sysctl_optmem_max was changed between creation of 1692 * original socket and cloning 1693 */ 1694 is_charged = sk_filter_charge(newsk, filter); 1695 RCU_INIT_POINTER(newsk->sk_filter, filter); 1696 rcu_read_unlock(); 1697 1698 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1699 /* We need to make sure that we don't uncharge the new 1700 * socket if we couldn't charge it in the first place 1701 * as otherwise we uncharge the parent's filter. 1702 */ 1703 if (!is_charged) 1704 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1705 sk_free_unlock_clone(newsk); 1706 newsk = NULL; 1707 goto out; 1708 } 1709 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1710 1711 newsk->sk_err = 0; 1712 newsk->sk_err_soft = 0; 1713 newsk->sk_priority = 0; 1714 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1715 atomic64_set(&newsk->sk_cookie, 0); 1716 1717 /* 1718 * Before updating sk_refcnt, we must commit prior changes to memory 1719 * (Documentation/RCU/rculist_nulls.txt for details) 1720 */ 1721 smp_wmb(); 1722 refcount_set(&newsk->sk_refcnt, 2); 1723 1724 /* 1725 * Increment the counter in the same struct proto as the master 1726 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1727 * is the same as sk->sk_prot->socks, as this field was copied 1728 * with memcpy). 1729 * 1730 * This _changes_ the previous behaviour, where 1731 * tcp_create_openreq_child always was incrementing the 1732 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1733 * to be taken into account in all callers. -acme 1734 */ 1735 sk_refcnt_debug_inc(newsk); 1736 sk_set_socket(newsk, NULL); 1737 newsk->sk_wq = NULL; 1738 1739 if (newsk->sk_prot->sockets_allocated) 1740 sk_sockets_allocated_inc(newsk); 1741 1742 if (sock_needs_netstamp(sk) && 1743 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1744 net_enable_timestamp(); 1745 } 1746 out: 1747 return newsk; 1748 } 1749 EXPORT_SYMBOL_GPL(sk_clone_lock); 1750 1751 void sk_free_unlock_clone(struct sock *sk) 1752 { 1753 /* It is still raw copy of parent, so invalidate 1754 * destructor and make plain sk_free() */ 1755 sk->sk_destruct = NULL; 1756 bh_unlock_sock(sk); 1757 sk_free(sk); 1758 } 1759 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1760 1761 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1762 { 1763 u32 max_segs = 1; 1764 1765 sk_dst_set(sk, dst); 1766 sk->sk_route_caps = dst->dev->features; 1767 if (sk->sk_route_caps & NETIF_F_GSO) 1768 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1769 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1770 if (sk_can_gso(sk)) { 1771 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1772 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1773 } else { 1774 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1775 sk->sk_gso_max_size = dst->dev->gso_max_size; 1776 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1777 } 1778 } 1779 sk->sk_gso_max_segs = max_segs; 1780 } 1781 EXPORT_SYMBOL_GPL(sk_setup_caps); 1782 1783 /* 1784 * Simple resource managers for sockets. 1785 */ 1786 1787 1788 /* 1789 * Write buffer destructor automatically called from kfree_skb. 1790 */ 1791 void sock_wfree(struct sk_buff *skb) 1792 { 1793 struct sock *sk = skb->sk; 1794 unsigned int len = skb->truesize; 1795 1796 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1797 /* 1798 * Keep a reference on sk_wmem_alloc, this will be released 1799 * after sk_write_space() call 1800 */ 1801 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1802 sk->sk_write_space(sk); 1803 len = 1; 1804 } 1805 /* 1806 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1807 * could not do because of in-flight packets 1808 */ 1809 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1810 __sk_free(sk); 1811 } 1812 EXPORT_SYMBOL(sock_wfree); 1813 1814 /* This variant of sock_wfree() is used by TCP, 1815 * since it sets SOCK_USE_WRITE_QUEUE. 1816 */ 1817 void __sock_wfree(struct sk_buff *skb) 1818 { 1819 struct sock *sk = skb->sk; 1820 1821 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1822 __sk_free(sk); 1823 } 1824 1825 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1826 { 1827 skb_orphan(skb); 1828 skb->sk = sk; 1829 #ifdef CONFIG_INET 1830 if (unlikely(!sk_fullsock(sk))) { 1831 skb->destructor = sock_edemux; 1832 sock_hold(sk); 1833 return; 1834 } 1835 #endif 1836 skb->destructor = sock_wfree; 1837 skb_set_hash_from_sk(skb, sk); 1838 /* 1839 * We used to take a refcount on sk, but following operation 1840 * is enough to guarantee sk_free() wont free this sock until 1841 * all in-flight packets are completed 1842 */ 1843 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1844 } 1845 EXPORT_SYMBOL(skb_set_owner_w); 1846 1847 /* This helper is used by netem, as it can hold packets in its 1848 * delay queue. We want to allow the owner socket to send more 1849 * packets, as if they were already TX completed by a typical driver. 1850 * But we also want to keep skb->sk set because some packet schedulers 1851 * rely on it (sch_fq for example). 1852 */ 1853 void skb_orphan_partial(struct sk_buff *skb) 1854 { 1855 if (skb_is_tcp_pure_ack(skb)) 1856 return; 1857 1858 if (skb->destructor == sock_wfree 1859 #ifdef CONFIG_INET 1860 || skb->destructor == tcp_wfree 1861 #endif 1862 ) { 1863 struct sock *sk = skb->sk; 1864 1865 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 1866 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 1867 skb->destructor = sock_efree; 1868 } 1869 } else { 1870 skb_orphan(skb); 1871 } 1872 } 1873 EXPORT_SYMBOL(skb_orphan_partial); 1874 1875 /* 1876 * Read buffer destructor automatically called from kfree_skb. 1877 */ 1878 void sock_rfree(struct sk_buff *skb) 1879 { 1880 struct sock *sk = skb->sk; 1881 unsigned int len = skb->truesize; 1882 1883 atomic_sub(len, &sk->sk_rmem_alloc); 1884 sk_mem_uncharge(sk, len); 1885 } 1886 EXPORT_SYMBOL(sock_rfree); 1887 1888 /* 1889 * Buffer destructor for skbs that are not used directly in read or write 1890 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1891 */ 1892 void sock_efree(struct sk_buff *skb) 1893 { 1894 sock_put(skb->sk); 1895 } 1896 EXPORT_SYMBOL(sock_efree); 1897 1898 kuid_t sock_i_uid(struct sock *sk) 1899 { 1900 kuid_t uid; 1901 1902 read_lock_bh(&sk->sk_callback_lock); 1903 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1904 read_unlock_bh(&sk->sk_callback_lock); 1905 return uid; 1906 } 1907 EXPORT_SYMBOL(sock_i_uid); 1908 1909 unsigned long sock_i_ino(struct sock *sk) 1910 { 1911 unsigned long ino; 1912 1913 read_lock_bh(&sk->sk_callback_lock); 1914 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1915 read_unlock_bh(&sk->sk_callback_lock); 1916 return ino; 1917 } 1918 EXPORT_SYMBOL(sock_i_ino); 1919 1920 /* 1921 * Allocate a skb from the socket's send buffer. 1922 */ 1923 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1924 gfp_t priority) 1925 { 1926 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1927 struct sk_buff *skb = alloc_skb(size, priority); 1928 if (skb) { 1929 skb_set_owner_w(skb, sk); 1930 return skb; 1931 } 1932 } 1933 return NULL; 1934 } 1935 EXPORT_SYMBOL(sock_wmalloc); 1936 1937 static void sock_ofree(struct sk_buff *skb) 1938 { 1939 struct sock *sk = skb->sk; 1940 1941 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 1942 } 1943 1944 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1945 gfp_t priority) 1946 { 1947 struct sk_buff *skb; 1948 1949 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 1950 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 1951 sysctl_optmem_max) 1952 return NULL; 1953 1954 skb = alloc_skb(size, priority); 1955 if (!skb) 1956 return NULL; 1957 1958 atomic_add(skb->truesize, &sk->sk_omem_alloc); 1959 skb->sk = sk; 1960 skb->destructor = sock_ofree; 1961 return skb; 1962 } 1963 1964 /* 1965 * Allocate a memory block from the socket's option memory buffer. 1966 */ 1967 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1968 { 1969 if ((unsigned int)size <= sysctl_optmem_max && 1970 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1971 void *mem; 1972 /* First do the add, to avoid the race if kmalloc 1973 * might sleep. 1974 */ 1975 atomic_add(size, &sk->sk_omem_alloc); 1976 mem = kmalloc(size, priority); 1977 if (mem) 1978 return mem; 1979 atomic_sub(size, &sk->sk_omem_alloc); 1980 } 1981 return NULL; 1982 } 1983 EXPORT_SYMBOL(sock_kmalloc); 1984 1985 /* Free an option memory block. Note, we actually want the inline 1986 * here as this allows gcc to detect the nullify and fold away the 1987 * condition entirely. 1988 */ 1989 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1990 const bool nullify) 1991 { 1992 if (WARN_ON_ONCE(!mem)) 1993 return; 1994 if (nullify) 1995 kzfree(mem); 1996 else 1997 kfree(mem); 1998 atomic_sub(size, &sk->sk_omem_alloc); 1999 } 2000 2001 void sock_kfree_s(struct sock *sk, void *mem, int size) 2002 { 2003 __sock_kfree_s(sk, mem, size, false); 2004 } 2005 EXPORT_SYMBOL(sock_kfree_s); 2006 2007 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2008 { 2009 __sock_kfree_s(sk, mem, size, true); 2010 } 2011 EXPORT_SYMBOL(sock_kzfree_s); 2012 2013 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2014 I think, these locks should be removed for datagram sockets. 2015 */ 2016 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2017 { 2018 DEFINE_WAIT(wait); 2019 2020 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2021 for (;;) { 2022 if (!timeo) 2023 break; 2024 if (signal_pending(current)) 2025 break; 2026 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2027 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2028 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2029 break; 2030 if (sk->sk_shutdown & SEND_SHUTDOWN) 2031 break; 2032 if (sk->sk_err) 2033 break; 2034 timeo = schedule_timeout(timeo); 2035 } 2036 finish_wait(sk_sleep(sk), &wait); 2037 return timeo; 2038 } 2039 2040 2041 /* 2042 * Generic send/receive buffer handlers 2043 */ 2044 2045 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2046 unsigned long data_len, int noblock, 2047 int *errcode, int max_page_order) 2048 { 2049 struct sk_buff *skb; 2050 long timeo; 2051 int err; 2052 2053 timeo = sock_sndtimeo(sk, noblock); 2054 for (;;) { 2055 err = sock_error(sk); 2056 if (err != 0) 2057 goto failure; 2058 2059 err = -EPIPE; 2060 if (sk->sk_shutdown & SEND_SHUTDOWN) 2061 goto failure; 2062 2063 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2064 break; 2065 2066 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2067 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2068 err = -EAGAIN; 2069 if (!timeo) 2070 goto failure; 2071 if (signal_pending(current)) 2072 goto interrupted; 2073 timeo = sock_wait_for_wmem(sk, timeo); 2074 } 2075 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2076 errcode, sk->sk_allocation); 2077 if (skb) 2078 skb_set_owner_w(skb, sk); 2079 return skb; 2080 2081 interrupted: 2082 err = sock_intr_errno(timeo); 2083 failure: 2084 *errcode = err; 2085 return NULL; 2086 } 2087 EXPORT_SYMBOL(sock_alloc_send_pskb); 2088 2089 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2090 int noblock, int *errcode) 2091 { 2092 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2093 } 2094 EXPORT_SYMBOL(sock_alloc_send_skb); 2095 2096 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2097 struct sockcm_cookie *sockc) 2098 { 2099 u32 tsflags; 2100 2101 switch (cmsg->cmsg_type) { 2102 case SO_MARK: 2103 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2104 return -EPERM; 2105 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2106 return -EINVAL; 2107 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2108 break; 2109 case SO_TIMESTAMPING: 2110 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2111 return -EINVAL; 2112 2113 tsflags = *(u32 *)CMSG_DATA(cmsg); 2114 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2115 return -EINVAL; 2116 2117 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2118 sockc->tsflags |= tsflags; 2119 break; 2120 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2121 case SCM_RIGHTS: 2122 case SCM_CREDENTIALS: 2123 break; 2124 default: 2125 return -EINVAL; 2126 } 2127 return 0; 2128 } 2129 EXPORT_SYMBOL(__sock_cmsg_send); 2130 2131 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2132 struct sockcm_cookie *sockc) 2133 { 2134 struct cmsghdr *cmsg; 2135 int ret; 2136 2137 for_each_cmsghdr(cmsg, msg) { 2138 if (!CMSG_OK(msg, cmsg)) 2139 return -EINVAL; 2140 if (cmsg->cmsg_level != SOL_SOCKET) 2141 continue; 2142 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2143 if (ret) 2144 return ret; 2145 } 2146 return 0; 2147 } 2148 EXPORT_SYMBOL(sock_cmsg_send); 2149 2150 static void sk_enter_memory_pressure(struct sock *sk) 2151 { 2152 if (!sk->sk_prot->enter_memory_pressure) 2153 return; 2154 2155 sk->sk_prot->enter_memory_pressure(sk); 2156 } 2157 2158 static void sk_leave_memory_pressure(struct sock *sk) 2159 { 2160 if (sk->sk_prot->leave_memory_pressure) { 2161 sk->sk_prot->leave_memory_pressure(sk); 2162 } else { 2163 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2164 2165 if (memory_pressure && *memory_pressure) 2166 *memory_pressure = 0; 2167 } 2168 } 2169 2170 /* On 32bit arches, an skb frag is limited to 2^15 */ 2171 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2172 2173 /** 2174 * skb_page_frag_refill - check that a page_frag contains enough room 2175 * @sz: minimum size of the fragment we want to get 2176 * @pfrag: pointer to page_frag 2177 * @gfp: priority for memory allocation 2178 * 2179 * Note: While this allocator tries to use high order pages, there is 2180 * no guarantee that allocations succeed. Therefore, @sz MUST be 2181 * less or equal than PAGE_SIZE. 2182 */ 2183 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2184 { 2185 if (pfrag->page) { 2186 if (page_ref_count(pfrag->page) == 1) { 2187 pfrag->offset = 0; 2188 return true; 2189 } 2190 if (pfrag->offset + sz <= pfrag->size) 2191 return true; 2192 put_page(pfrag->page); 2193 } 2194 2195 pfrag->offset = 0; 2196 if (SKB_FRAG_PAGE_ORDER) { 2197 /* Avoid direct reclaim but allow kswapd to wake */ 2198 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2199 __GFP_COMP | __GFP_NOWARN | 2200 __GFP_NORETRY, 2201 SKB_FRAG_PAGE_ORDER); 2202 if (likely(pfrag->page)) { 2203 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2204 return true; 2205 } 2206 } 2207 pfrag->page = alloc_page(gfp); 2208 if (likely(pfrag->page)) { 2209 pfrag->size = PAGE_SIZE; 2210 return true; 2211 } 2212 return false; 2213 } 2214 EXPORT_SYMBOL(skb_page_frag_refill); 2215 2216 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2217 { 2218 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2219 return true; 2220 2221 sk_enter_memory_pressure(sk); 2222 sk_stream_moderate_sndbuf(sk); 2223 return false; 2224 } 2225 EXPORT_SYMBOL(sk_page_frag_refill); 2226 2227 static void __lock_sock(struct sock *sk) 2228 __releases(&sk->sk_lock.slock) 2229 __acquires(&sk->sk_lock.slock) 2230 { 2231 DEFINE_WAIT(wait); 2232 2233 for (;;) { 2234 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2235 TASK_UNINTERRUPTIBLE); 2236 spin_unlock_bh(&sk->sk_lock.slock); 2237 schedule(); 2238 spin_lock_bh(&sk->sk_lock.slock); 2239 if (!sock_owned_by_user(sk)) 2240 break; 2241 } 2242 finish_wait(&sk->sk_lock.wq, &wait); 2243 } 2244 2245 static void __release_sock(struct sock *sk) 2246 __releases(&sk->sk_lock.slock) 2247 __acquires(&sk->sk_lock.slock) 2248 { 2249 struct sk_buff *skb, *next; 2250 2251 while ((skb = sk->sk_backlog.head) != NULL) { 2252 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2253 2254 spin_unlock_bh(&sk->sk_lock.slock); 2255 2256 do { 2257 next = skb->next; 2258 prefetch(next); 2259 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2260 skb->next = NULL; 2261 sk_backlog_rcv(sk, skb); 2262 2263 cond_resched(); 2264 2265 skb = next; 2266 } while (skb != NULL); 2267 2268 spin_lock_bh(&sk->sk_lock.slock); 2269 } 2270 2271 /* 2272 * Doing the zeroing here guarantee we can not loop forever 2273 * while a wild producer attempts to flood us. 2274 */ 2275 sk->sk_backlog.len = 0; 2276 } 2277 2278 void __sk_flush_backlog(struct sock *sk) 2279 { 2280 spin_lock_bh(&sk->sk_lock.slock); 2281 __release_sock(sk); 2282 spin_unlock_bh(&sk->sk_lock.slock); 2283 } 2284 2285 /** 2286 * sk_wait_data - wait for data to arrive at sk_receive_queue 2287 * @sk: sock to wait on 2288 * @timeo: for how long 2289 * @skb: last skb seen on sk_receive_queue 2290 * 2291 * Now socket state including sk->sk_err is changed only under lock, 2292 * hence we may omit checks after joining wait queue. 2293 * We check receive queue before schedule() only as optimization; 2294 * it is very likely that release_sock() added new data. 2295 */ 2296 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2297 { 2298 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2299 int rc; 2300 2301 add_wait_queue(sk_sleep(sk), &wait); 2302 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2303 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2304 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2305 remove_wait_queue(sk_sleep(sk), &wait); 2306 return rc; 2307 } 2308 EXPORT_SYMBOL(sk_wait_data); 2309 2310 /** 2311 * __sk_mem_raise_allocated - increase memory_allocated 2312 * @sk: socket 2313 * @size: memory size to allocate 2314 * @amt: pages to allocate 2315 * @kind: allocation type 2316 * 2317 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2318 */ 2319 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2320 { 2321 struct proto *prot = sk->sk_prot; 2322 long allocated = sk_memory_allocated_add(sk, amt); 2323 2324 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2325 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2326 goto suppress_allocation; 2327 2328 /* Under limit. */ 2329 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2330 sk_leave_memory_pressure(sk); 2331 return 1; 2332 } 2333 2334 /* Under pressure. */ 2335 if (allocated > sk_prot_mem_limits(sk, 1)) 2336 sk_enter_memory_pressure(sk); 2337 2338 /* Over hard limit. */ 2339 if (allocated > sk_prot_mem_limits(sk, 2)) 2340 goto suppress_allocation; 2341 2342 /* guarantee minimum buffer size under pressure */ 2343 if (kind == SK_MEM_RECV) { 2344 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2345 return 1; 2346 2347 } else { /* SK_MEM_SEND */ 2348 int wmem0 = sk_get_wmem0(sk, prot); 2349 2350 if (sk->sk_type == SOCK_STREAM) { 2351 if (sk->sk_wmem_queued < wmem0) 2352 return 1; 2353 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2354 return 1; 2355 } 2356 } 2357 2358 if (sk_has_memory_pressure(sk)) { 2359 int alloc; 2360 2361 if (!sk_under_memory_pressure(sk)) 2362 return 1; 2363 alloc = sk_sockets_allocated_read_positive(sk); 2364 if (sk_prot_mem_limits(sk, 2) > alloc * 2365 sk_mem_pages(sk->sk_wmem_queued + 2366 atomic_read(&sk->sk_rmem_alloc) + 2367 sk->sk_forward_alloc)) 2368 return 1; 2369 } 2370 2371 suppress_allocation: 2372 2373 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2374 sk_stream_moderate_sndbuf(sk); 2375 2376 /* Fail only if socket is _under_ its sndbuf. 2377 * In this case we cannot block, so that we have to fail. 2378 */ 2379 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2380 return 1; 2381 } 2382 2383 trace_sock_exceed_buf_limit(sk, prot, allocated); 2384 2385 sk_memory_allocated_sub(sk, amt); 2386 2387 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2388 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2389 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2393 2394 /** 2395 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2396 * @sk: socket 2397 * @size: memory size to allocate 2398 * @kind: allocation type 2399 * 2400 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2401 * rmem allocation. This function assumes that protocols which have 2402 * memory_pressure use sk_wmem_queued as write buffer accounting. 2403 */ 2404 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2405 { 2406 int ret, amt = sk_mem_pages(size); 2407 2408 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2409 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2410 if (!ret) 2411 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2412 return ret; 2413 } 2414 EXPORT_SYMBOL(__sk_mem_schedule); 2415 2416 /** 2417 * __sk_mem_reduce_allocated - reclaim memory_allocated 2418 * @sk: socket 2419 * @amount: number of quanta 2420 * 2421 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2422 */ 2423 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2424 { 2425 sk_memory_allocated_sub(sk, amount); 2426 2427 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2428 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2429 2430 if (sk_under_memory_pressure(sk) && 2431 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2432 sk_leave_memory_pressure(sk); 2433 } 2434 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2435 2436 /** 2437 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2438 * @sk: socket 2439 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2440 */ 2441 void __sk_mem_reclaim(struct sock *sk, int amount) 2442 { 2443 amount >>= SK_MEM_QUANTUM_SHIFT; 2444 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2445 __sk_mem_reduce_allocated(sk, amount); 2446 } 2447 EXPORT_SYMBOL(__sk_mem_reclaim); 2448 2449 int sk_set_peek_off(struct sock *sk, int val) 2450 { 2451 sk->sk_peek_off = val; 2452 return 0; 2453 } 2454 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2455 2456 /* 2457 * Set of default routines for initialising struct proto_ops when 2458 * the protocol does not support a particular function. In certain 2459 * cases where it makes no sense for a protocol to have a "do nothing" 2460 * function, some default processing is provided. 2461 */ 2462 2463 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2464 { 2465 return -EOPNOTSUPP; 2466 } 2467 EXPORT_SYMBOL(sock_no_bind); 2468 2469 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2470 int len, int flags) 2471 { 2472 return -EOPNOTSUPP; 2473 } 2474 EXPORT_SYMBOL(sock_no_connect); 2475 2476 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2477 { 2478 return -EOPNOTSUPP; 2479 } 2480 EXPORT_SYMBOL(sock_no_socketpair); 2481 2482 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2483 bool kern) 2484 { 2485 return -EOPNOTSUPP; 2486 } 2487 EXPORT_SYMBOL(sock_no_accept); 2488 2489 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2490 int *len, int peer) 2491 { 2492 return -EOPNOTSUPP; 2493 } 2494 EXPORT_SYMBOL(sock_no_getname); 2495 2496 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2497 { 2498 return 0; 2499 } 2500 EXPORT_SYMBOL(sock_no_poll); 2501 2502 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2503 { 2504 return -EOPNOTSUPP; 2505 } 2506 EXPORT_SYMBOL(sock_no_ioctl); 2507 2508 int sock_no_listen(struct socket *sock, int backlog) 2509 { 2510 return -EOPNOTSUPP; 2511 } 2512 EXPORT_SYMBOL(sock_no_listen); 2513 2514 int sock_no_shutdown(struct socket *sock, int how) 2515 { 2516 return -EOPNOTSUPP; 2517 } 2518 EXPORT_SYMBOL(sock_no_shutdown); 2519 2520 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2521 char __user *optval, unsigned int optlen) 2522 { 2523 return -EOPNOTSUPP; 2524 } 2525 EXPORT_SYMBOL(sock_no_setsockopt); 2526 2527 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2528 char __user *optval, int __user *optlen) 2529 { 2530 return -EOPNOTSUPP; 2531 } 2532 EXPORT_SYMBOL(sock_no_getsockopt); 2533 2534 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2535 { 2536 return -EOPNOTSUPP; 2537 } 2538 EXPORT_SYMBOL(sock_no_sendmsg); 2539 2540 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2541 { 2542 return -EOPNOTSUPP; 2543 } 2544 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2545 2546 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2547 int flags) 2548 { 2549 return -EOPNOTSUPP; 2550 } 2551 EXPORT_SYMBOL(sock_no_recvmsg); 2552 2553 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2554 { 2555 /* Mirror missing mmap method error code */ 2556 return -ENODEV; 2557 } 2558 EXPORT_SYMBOL(sock_no_mmap); 2559 2560 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2561 { 2562 ssize_t res; 2563 struct msghdr msg = {.msg_flags = flags}; 2564 struct kvec iov; 2565 char *kaddr = kmap(page); 2566 iov.iov_base = kaddr + offset; 2567 iov.iov_len = size; 2568 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2569 kunmap(page); 2570 return res; 2571 } 2572 EXPORT_SYMBOL(sock_no_sendpage); 2573 2574 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2575 int offset, size_t size, int flags) 2576 { 2577 ssize_t res; 2578 struct msghdr msg = {.msg_flags = flags}; 2579 struct kvec iov; 2580 char *kaddr = kmap(page); 2581 2582 iov.iov_base = kaddr + offset; 2583 iov.iov_len = size; 2584 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2585 kunmap(page); 2586 return res; 2587 } 2588 EXPORT_SYMBOL(sock_no_sendpage_locked); 2589 2590 /* 2591 * Default Socket Callbacks 2592 */ 2593 2594 static void sock_def_wakeup(struct sock *sk) 2595 { 2596 struct socket_wq *wq; 2597 2598 rcu_read_lock(); 2599 wq = rcu_dereference(sk->sk_wq); 2600 if (skwq_has_sleeper(wq)) 2601 wake_up_interruptible_all(&wq->wait); 2602 rcu_read_unlock(); 2603 } 2604 2605 static void sock_def_error_report(struct sock *sk) 2606 { 2607 struct socket_wq *wq; 2608 2609 rcu_read_lock(); 2610 wq = rcu_dereference(sk->sk_wq); 2611 if (skwq_has_sleeper(wq)) 2612 wake_up_interruptible_poll(&wq->wait, POLLERR); 2613 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2614 rcu_read_unlock(); 2615 } 2616 2617 static void sock_def_readable(struct sock *sk) 2618 { 2619 struct socket_wq *wq; 2620 2621 rcu_read_lock(); 2622 wq = rcu_dereference(sk->sk_wq); 2623 if (skwq_has_sleeper(wq)) 2624 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2625 POLLRDNORM | POLLRDBAND); 2626 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2627 rcu_read_unlock(); 2628 } 2629 2630 static void sock_def_write_space(struct sock *sk) 2631 { 2632 struct socket_wq *wq; 2633 2634 rcu_read_lock(); 2635 2636 /* Do not wake up a writer until he can make "significant" 2637 * progress. --DaveM 2638 */ 2639 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2640 wq = rcu_dereference(sk->sk_wq); 2641 if (skwq_has_sleeper(wq)) 2642 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2643 POLLWRNORM | POLLWRBAND); 2644 2645 /* Should agree with poll, otherwise some programs break */ 2646 if (sock_writeable(sk)) 2647 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2648 } 2649 2650 rcu_read_unlock(); 2651 } 2652 2653 static void sock_def_destruct(struct sock *sk) 2654 { 2655 } 2656 2657 void sk_send_sigurg(struct sock *sk) 2658 { 2659 if (sk->sk_socket && sk->sk_socket->file) 2660 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2661 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2662 } 2663 EXPORT_SYMBOL(sk_send_sigurg); 2664 2665 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2666 unsigned long expires) 2667 { 2668 if (!mod_timer(timer, expires)) 2669 sock_hold(sk); 2670 } 2671 EXPORT_SYMBOL(sk_reset_timer); 2672 2673 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2674 { 2675 if (del_timer(timer)) 2676 __sock_put(sk); 2677 } 2678 EXPORT_SYMBOL(sk_stop_timer); 2679 2680 void sock_init_data(struct socket *sock, struct sock *sk) 2681 { 2682 sk_init_common(sk); 2683 sk->sk_send_head = NULL; 2684 2685 timer_setup(&sk->sk_timer, NULL, 0); 2686 2687 sk->sk_allocation = GFP_KERNEL; 2688 sk->sk_rcvbuf = sysctl_rmem_default; 2689 sk->sk_sndbuf = sysctl_wmem_default; 2690 sk->sk_state = TCP_CLOSE; 2691 sk_set_socket(sk, sock); 2692 2693 sock_set_flag(sk, SOCK_ZAPPED); 2694 2695 if (sock) { 2696 sk->sk_type = sock->type; 2697 sk->sk_wq = sock->wq; 2698 sock->sk = sk; 2699 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2700 } else { 2701 sk->sk_wq = NULL; 2702 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2703 } 2704 2705 rwlock_init(&sk->sk_callback_lock); 2706 if (sk->sk_kern_sock) 2707 lockdep_set_class_and_name( 2708 &sk->sk_callback_lock, 2709 af_kern_callback_keys + sk->sk_family, 2710 af_family_kern_clock_key_strings[sk->sk_family]); 2711 else 2712 lockdep_set_class_and_name( 2713 &sk->sk_callback_lock, 2714 af_callback_keys + sk->sk_family, 2715 af_family_clock_key_strings[sk->sk_family]); 2716 2717 sk->sk_state_change = sock_def_wakeup; 2718 sk->sk_data_ready = sock_def_readable; 2719 sk->sk_write_space = sock_def_write_space; 2720 sk->sk_error_report = sock_def_error_report; 2721 sk->sk_destruct = sock_def_destruct; 2722 2723 sk->sk_frag.page = NULL; 2724 sk->sk_frag.offset = 0; 2725 sk->sk_peek_off = -1; 2726 2727 sk->sk_peer_pid = NULL; 2728 sk->sk_peer_cred = NULL; 2729 sk->sk_write_pending = 0; 2730 sk->sk_rcvlowat = 1; 2731 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2732 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2733 2734 sk->sk_stamp = SK_DEFAULT_STAMP; 2735 atomic_set(&sk->sk_zckey, 0); 2736 2737 #ifdef CONFIG_NET_RX_BUSY_POLL 2738 sk->sk_napi_id = 0; 2739 sk->sk_ll_usec = sysctl_net_busy_read; 2740 #endif 2741 2742 sk->sk_max_pacing_rate = ~0U; 2743 sk->sk_pacing_rate = ~0U; 2744 sk->sk_pacing_shift = 10; 2745 sk->sk_incoming_cpu = -1; 2746 /* 2747 * Before updating sk_refcnt, we must commit prior changes to memory 2748 * (Documentation/RCU/rculist_nulls.txt for details) 2749 */ 2750 smp_wmb(); 2751 refcount_set(&sk->sk_refcnt, 1); 2752 atomic_set(&sk->sk_drops, 0); 2753 } 2754 EXPORT_SYMBOL(sock_init_data); 2755 2756 void lock_sock_nested(struct sock *sk, int subclass) 2757 { 2758 might_sleep(); 2759 spin_lock_bh(&sk->sk_lock.slock); 2760 if (sk->sk_lock.owned) 2761 __lock_sock(sk); 2762 sk->sk_lock.owned = 1; 2763 spin_unlock(&sk->sk_lock.slock); 2764 /* 2765 * The sk_lock has mutex_lock() semantics here: 2766 */ 2767 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2768 local_bh_enable(); 2769 } 2770 EXPORT_SYMBOL(lock_sock_nested); 2771 2772 void release_sock(struct sock *sk) 2773 { 2774 spin_lock_bh(&sk->sk_lock.slock); 2775 if (sk->sk_backlog.tail) 2776 __release_sock(sk); 2777 2778 /* Warning : release_cb() might need to release sk ownership, 2779 * ie call sock_release_ownership(sk) before us. 2780 */ 2781 if (sk->sk_prot->release_cb) 2782 sk->sk_prot->release_cb(sk); 2783 2784 sock_release_ownership(sk); 2785 if (waitqueue_active(&sk->sk_lock.wq)) 2786 wake_up(&sk->sk_lock.wq); 2787 spin_unlock_bh(&sk->sk_lock.slock); 2788 } 2789 EXPORT_SYMBOL(release_sock); 2790 2791 /** 2792 * lock_sock_fast - fast version of lock_sock 2793 * @sk: socket 2794 * 2795 * This version should be used for very small section, where process wont block 2796 * return false if fast path is taken: 2797 * 2798 * sk_lock.slock locked, owned = 0, BH disabled 2799 * 2800 * return true if slow path is taken: 2801 * 2802 * sk_lock.slock unlocked, owned = 1, BH enabled 2803 */ 2804 bool lock_sock_fast(struct sock *sk) 2805 { 2806 might_sleep(); 2807 spin_lock_bh(&sk->sk_lock.slock); 2808 2809 if (!sk->sk_lock.owned) 2810 /* 2811 * Note : We must disable BH 2812 */ 2813 return false; 2814 2815 __lock_sock(sk); 2816 sk->sk_lock.owned = 1; 2817 spin_unlock(&sk->sk_lock.slock); 2818 /* 2819 * The sk_lock has mutex_lock() semantics here: 2820 */ 2821 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2822 local_bh_enable(); 2823 return true; 2824 } 2825 EXPORT_SYMBOL(lock_sock_fast); 2826 2827 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2828 { 2829 struct timeval tv; 2830 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2831 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2832 tv = ktime_to_timeval(sk->sk_stamp); 2833 if (tv.tv_sec == -1) 2834 return -ENOENT; 2835 if (tv.tv_sec == 0) { 2836 sk->sk_stamp = ktime_get_real(); 2837 tv = ktime_to_timeval(sk->sk_stamp); 2838 } 2839 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2840 } 2841 EXPORT_SYMBOL(sock_get_timestamp); 2842 2843 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2844 { 2845 struct timespec ts; 2846 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2847 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2848 ts = ktime_to_timespec(sk->sk_stamp); 2849 if (ts.tv_sec == -1) 2850 return -ENOENT; 2851 if (ts.tv_sec == 0) { 2852 sk->sk_stamp = ktime_get_real(); 2853 ts = ktime_to_timespec(sk->sk_stamp); 2854 } 2855 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2856 } 2857 EXPORT_SYMBOL(sock_get_timestampns); 2858 2859 void sock_enable_timestamp(struct sock *sk, int flag) 2860 { 2861 if (!sock_flag(sk, flag)) { 2862 unsigned long previous_flags = sk->sk_flags; 2863 2864 sock_set_flag(sk, flag); 2865 /* 2866 * we just set one of the two flags which require net 2867 * time stamping, but time stamping might have been on 2868 * already because of the other one 2869 */ 2870 if (sock_needs_netstamp(sk) && 2871 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2872 net_enable_timestamp(); 2873 } 2874 } 2875 2876 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2877 int level, int type) 2878 { 2879 struct sock_exterr_skb *serr; 2880 struct sk_buff *skb; 2881 int copied, err; 2882 2883 err = -EAGAIN; 2884 skb = sock_dequeue_err_skb(sk); 2885 if (skb == NULL) 2886 goto out; 2887 2888 copied = skb->len; 2889 if (copied > len) { 2890 msg->msg_flags |= MSG_TRUNC; 2891 copied = len; 2892 } 2893 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2894 if (err) 2895 goto out_free_skb; 2896 2897 sock_recv_timestamp(msg, sk, skb); 2898 2899 serr = SKB_EXT_ERR(skb); 2900 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2901 2902 msg->msg_flags |= MSG_ERRQUEUE; 2903 err = copied; 2904 2905 out_free_skb: 2906 kfree_skb(skb); 2907 out: 2908 return err; 2909 } 2910 EXPORT_SYMBOL(sock_recv_errqueue); 2911 2912 /* 2913 * Get a socket option on an socket. 2914 * 2915 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2916 * asynchronous errors should be reported by getsockopt. We assume 2917 * this means if you specify SO_ERROR (otherwise whats the point of it). 2918 */ 2919 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2920 char __user *optval, int __user *optlen) 2921 { 2922 struct sock *sk = sock->sk; 2923 2924 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2925 } 2926 EXPORT_SYMBOL(sock_common_getsockopt); 2927 2928 #ifdef CONFIG_COMPAT 2929 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2930 char __user *optval, int __user *optlen) 2931 { 2932 struct sock *sk = sock->sk; 2933 2934 if (sk->sk_prot->compat_getsockopt != NULL) 2935 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2936 optval, optlen); 2937 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2938 } 2939 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2940 #endif 2941 2942 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2943 int flags) 2944 { 2945 struct sock *sk = sock->sk; 2946 int addr_len = 0; 2947 int err; 2948 2949 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2950 flags & ~MSG_DONTWAIT, &addr_len); 2951 if (err >= 0) 2952 msg->msg_namelen = addr_len; 2953 return err; 2954 } 2955 EXPORT_SYMBOL(sock_common_recvmsg); 2956 2957 /* 2958 * Set socket options on an inet socket. 2959 */ 2960 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2961 char __user *optval, unsigned int optlen) 2962 { 2963 struct sock *sk = sock->sk; 2964 2965 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2966 } 2967 EXPORT_SYMBOL(sock_common_setsockopt); 2968 2969 #ifdef CONFIG_COMPAT 2970 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2971 char __user *optval, unsigned int optlen) 2972 { 2973 struct sock *sk = sock->sk; 2974 2975 if (sk->sk_prot->compat_setsockopt != NULL) 2976 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2977 optval, optlen); 2978 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2979 } 2980 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2981 #endif 2982 2983 void sk_common_release(struct sock *sk) 2984 { 2985 if (sk->sk_prot->destroy) 2986 sk->sk_prot->destroy(sk); 2987 2988 /* 2989 * Observation: when sock_common_release is called, processes have 2990 * no access to socket. But net still has. 2991 * Step one, detach it from networking: 2992 * 2993 * A. Remove from hash tables. 2994 */ 2995 2996 sk->sk_prot->unhash(sk); 2997 2998 /* 2999 * In this point socket cannot receive new packets, but it is possible 3000 * that some packets are in flight because some CPU runs receiver and 3001 * did hash table lookup before we unhashed socket. They will achieve 3002 * receive queue and will be purged by socket destructor. 3003 * 3004 * Also we still have packets pending on receive queue and probably, 3005 * our own packets waiting in device queues. sock_destroy will drain 3006 * receive queue, but transmitted packets will delay socket destruction 3007 * until the last reference will be released. 3008 */ 3009 3010 sock_orphan(sk); 3011 3012 xfrm_sk_free_policy(sk); 3013 3014 sk_refcnt_debug_release(sk); 3015 3016 sock_put(sk); 3017 } 3018 EXPORT_SYMBOL(sk_common_release); 3019 3020 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3021 { 3022 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3023 3024 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3025 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3026 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3027 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3028 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3029 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3030 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3031 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3032 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3033 } 3034 3035 #ifdef CONFIG_PROC_FS 3036 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3037 struct prot_inuse { 3038 int val[PROTO_INUSE_NR]; 3039 }; 3040 3041 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3042 3043 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3044 { 3045 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 3046 } 3047 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3048 3049 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3050 { 3051 int cpu, idx = prot->inuse_idx; 3052 int res = 0; 3053 3054 for_each_possible_cpu(cpu) 3055 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 3056 3057 return res >= 0 ? res : 0; 3058 } 3059 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3060 3061 static int __net_init sock_inuse_init_net(struct net *net) 3062 { 3063 net->core.inuse = alloc_percpu(struct prot_inuse); 3064 return net->core.inuse ? 0 : -ENOMEM; 3065 } 3066 3067 static void __net_exit sock_inuse_exit_net(struct net *net) 3068 { 3069 free_percpu(net->core.inuse); 3070 } 3071 3072 static struct pernet_operations net_inuse_ops = { 3073 .init = sock_inuse_init_net, 3074 .exit = sock_inuse_exit_net, 3075 }; 3076 3077 static __init int net_inuse_init(void) 3078 { 3079 if (register_pernet_subsys(&net_inuse_ops)) 3080 panic("Cannot initialize net inuse counters"); 3081 3082 return 0; 3083 } 3084 3085 core_initcall(net_inuse_init); 3086 3087 static void assign_proto_idx(struct proto *prot) 3088 { 3089 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3090 3091 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3092 pr_err("PROTO_INUSE_NR exhausted\n"); 3093 return; 3094 } 3095 3096 set_bit(prot->inuse_idx, proto_inuse_idx); 3097 } 3098 3099 static void release_proto_idx(struct proto *prot) 3100 { 3101 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3102 clear_bit(prot->inuse_idx, proto_inuse_idx); 3103 } 3104 #else 3105 static inline void assign_proto_idx(struct proto *prot) 3106 { 3107 } 3108 3109 static inline void release_proto_idx(struct proto *prot) 3110 { 3111 } 3112 #endif 3113 3114 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3115 { 3116 if (!rsk_prot) 3117 return; 3118 kfree(rsk_prot->slab_name); 3119 rsk_prot->slab_name = NULL; 3120 kmem_cache_destroy(rsk_prot->slab); 3121 rsk_prot->slab = NULL; 3122 } 3123 3124 static int req_prot_init(const struct proto *prot) 3125 { 3126 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3127 3128 if (!rsk_prot) 3129 return 0; 3130 3131 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3132 prot->name); 3133 if (!rsk_prot->slab_name) 3134 return -ENOMEM; 3135 3136 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3137 rsk_prot->obj_size, 0, 3138 prot->slab_flags, NULL); 3139 3140 if (!rsk_prot->slab) { 3141 pr_crit("%s: Can't create request sock SLAB cache!\n", 3142 prot->name); 3143 return -ENOMEM; 3144 } 3145 return 0; 3146 } 3147 3148 int proto_register(struct proto *prot, int alloc_slab) 3149 { 3150 if (alloc_slab) { 3151 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 3152 SLAB_HWCACHE_ALIGN | prot->slab_flags, 3153 NULL); 3154 3155 if (prot->slab == NULL) { 3156 pr_crit("%s: Can't create sock SLAB cache!\n", 3157 prot->name); 3158 goto out; 3159 } 3160 3161 if (req_prot_init(prot)) 3162 goto out_free_request_sock_slab; 3163 3164 if (prot->twsk_prot != NULL) { 3165 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3166 3167 if (prot->twsk_prot->twsk_slab_name == NULL) 3168 goto out_free_request_sock_slab; 3169 3170 prot->twsk_prot->twsk_slab = 3171 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3172 prot->twsk_prot->twsk_obj_size, 3173 0, 3174 prot->slab_flags, 3175 NULL); 3176 if (prot->twsk_prot->twsk_slab == NULL) 3177 goto out_free_timewait_sock_slab_name; 3178 } 3179 } 3180 3181 mutex_lock(&proto_list_mutex); 3182 list_add(&prot->node, &proto_list); 3183 assign_proto_idx(prot); 3184 mutex_unlock(&proto_list_mutex); 3185 return 0; 3186 3187 out_free_timewait_sock_slab_name: 3188 kfree(prot->twsk_prot->twsk_slab_name); 3189 out_free_request_sock_slab: 3190 req_prot_cleanup(prot->rsk_prot); 3191 3192 kmem_cache_destroy(prot->slab); 3193 prot->slab = NULL; 3194 out: 3195 return -ENOBUFS; 3196 } 3197 EXPORT_SYMBOL(proto_register); 3198 3199 void proto_unregister(struct proto *prot) 3200 { 3201 mutex_lock(&proto_list_mutex); 3202 release_proto_idx(prot); 3203 list_del(&prot->node); 3204 mutex_unlock(&proto_list_mutex); 3205 3206 kmem_cache_destroy(prot->slab); 3207 prot->slab = NULL; 3208 3209 req_prot_cleanup(prot->rsk_prot); 3210 3211 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3212 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3213 kfree(prot->twsk_prot->twsk_slab_name); 3214 prot->twsk_prot->twsk_slab = NULL; 3215 } 3216 } 3217 EXPORT_SYMBOL(proto_unregister); 3218 3219 #ifdef CONFIG_PROC_FS 3220 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3221 __acquires(proto_list_mutex) 3222 { 3223 mutex_lock(&proto_list_mutex); 3224 return seq_list_start_head(&proto_list, *pos); 3225 } 3226 3227 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3228 { 3229 return seq_list_next(v, &proto_list, pos); 3230 } 3231 3232 static void proto_seq_stop(struct seq_file *seq, void *v) 3233 __releases(proto_list_mutex) 3234 { 3235 mutex_unlock(&proto_list_mutex); 3236 } 3237 3238 static char proto_method_implemented(const void *method) 3239 { 3240 return method == NULL ? 'n' : 'y'; 3241 } 3242 static long sock_prot_memory_allocated(struct proto *proto) 3243 { 3244 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3245 } 3246 3247 static char *sock_prot_memory_pressure(struct proto *proto) 3248 { 3249 return proto->memory_pressure != NULL ? 3250 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3251 } 3252 3253 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3254 { 3255 3256 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3257 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3258 proto->name, 3259 proto->obj_size, 3260 sock_prot_inuse_get(seq_file_net(seq), proto), 3261 sock_prot_memory_allocated(proto), 3262 sock_prot_memory_pressure(proto), 3263 proto->max_header, 3264 proto->slab == NULL ? "no" : "yes", 3265 module_name(proto->owner), 3266 proto_method_implemented(proto->close), 3267 proto_method_implemented(proto->connect), 3268 proto_method_implemented(proto->disconnect), 3269 proto_method_implemented(proto->accept), 3270 proto_method_implemented(proto->ioctl), 3271 proto_method_implemented(proto->init), 3272 proto_method_implemented(proto->destroy), 3273 proto_method_implemented(proto->shutdown), 3274 proto_method_implemented(proto->setsockopt), 3275 proto_method_implemented(proto->getsockopt), 3276 proto_method_implemented(proto->sendmsg), 3277 proto_method_implemented(proto->recvmsg), 3278 proto_method_implemented(proto->sendpage), 3279 proto_method_implemented(proto->bind), 3280 proto_method_implemented(proto->backlog_rcv), 3281 proto_method_implemented(proto->hash), 3282 proto_method_implemented(proto->unhash), 3283 proto_method_implemented(proto->get_port), 3284 proto_method_implemented(proto->enter_memory_pressure)); 3285 } 3286 3287 static int proto_seq_show(struct seq_file *seq, void *v) 3288 { 3289 if (v == &proto_list) 3290 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3291 "protocol", 3292 "size", 3293 "sockets", 3294 "memory", 3295 "press", 3296 "maxhdr", 3297 "slab", 3298 "module", 3299 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3300 else 3301 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3302 return 0; 3303 } 3304 3305 static const struct seq_operations proto_seq_ops = { 3306 .start = proto_seq_start, 3307 .next = proto_seq_next, 3308 .stop = proto_seq_stop, 3309 .show = proto_seq_show, 3310 }; 3311 3312 static int proto_seq_open(struct inode *inode, struct file *file) 3313 { 3314 return seq_open_net(inode, file, &proto_seq_ops, 3315 sizeof(struct seq_net_private)); 3316 } 3317 3318 static const struct file_operations proto_seq_fops = { 3319 .owner = THIS_MODULE, 3320 .open = proto_seq_open, 3321 .read = seq_read, 3322 .llseek = seq_lseek, 3323 .release = seq_release_net, 3324 }; 3325 3326 static __net_init int proto_init_net(struct net *net) 3327 { 3328 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3329 return -ENOMEM; 3330 3331 return 0; 3332 } 3333 3334 static __net_exit void proto_exit_net(struct net *net) 3335 { 3336 remove_proc_entry("protocols", net->proc_net); 3337 } 3338 3339 3340 static __net_initdata struct pernet_operations proto_net_ops = { 3341 .init = proto_init_net, 3342 .exit = proto_exit_net, 3343 }; 3344 3345 static int __init proto_init(void) 3346 { 3347 return register_pernet_subsys(&proto_net_ops); 3348 } 3349 3350 subsys_initcall(proto_init); 3351 3352 #endif /* PROC_FS */ 3353 3354 #ifdef CONFIG_NET_RX_BUSY_POLL 3355 bool sk_busy_loop_end(void *p, unsigned long start_time) 3356 { 3357 struct sock *sk = p; 3358 3359 return !skb_queue_empty(&sk->sk_receive_queue) || 3360 sk_busy_loop_timeout(sk, start_time); 3361 } 3362 EXPORT_SYMBOL(sk_busy_loop_end); 3363 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3364
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.