~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/core/sock.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Generic socket support routines. Memory allocators, socket lock/release
  7  *              handler for protocols to use and generic option handler.
  8  *
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Florian La Roche, <flla@stud.uni-sb.de>
 13  *              Alan Cox, <A.Cox@swansea.ac.uk>
 14  *
 15  * Fixes:
 16  *              Alan Cox        :       Numerous verify_area() problems
 17  *              Alan Cox        :       Connecting on a connecting socket
 18  *                                      now returns an error for tcp.
 19  *              Alan Cox        :       sock->protocol is set correctly.
 20  *                                      and is not sometimes left as 0.
 21  *              Alan Cox        :       connect handles icmp errors on a
 22  *                                      connect properly. Unfortunately there
 23  *                                      is a restart syscall nasty there. I
 24  *                                      can't match BSD without hacking the C
 25  *                                      library. Ideas urgently sought!
 26  *              Alan Cox        :       Disallow bind() to addresses that are
 27  *                                      not ours - especially broadcast ones!!
 28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
 29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
 30  *                                      instead they leave that for the DESTROY timer.
 31  *              Alan Cox        :       Clean up error flag in accept
 32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
 33  *                                      was buggy. Put a remove_sock() in the handler
 34  *                                      for memory when we hit 0. Also altered the timer
 35  *                                      code. The ACK stuff can wait and needs major
 36  *                                      TCP layer surgery.
 37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
 38  *                                      and fixed timer/inet_bh race.
 39  *              Alan Cox        :       Added zapped flag for TCP
 40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
 41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
 42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
 43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
 44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
 45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
 46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
 47  *      Pauline Middelink       :       identd support
 48  *              Alan Cox        :       Fixed connect() taking signals I think.
 49  *              Alan Cox        :       SO_LINGER supported
 50  *              Alan Cox        :       Error reporting fixes
 51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
 52  *              Alan Cox        :       inet sockets don't set sk->type!
 53  *              Alan Cox        :       Split socket option code
 54  *              Alan Cox        :       Callbacks
 55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
 56  *              Alex            :       Removed restriction on inet fioctl
 57  *              Alan Cox        :       Splitting INET from NET core
 58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
 59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
 60  *              Alan Cox        :       Split IP from generic code
 61  *              Alan Cox        :       New kfree_skbmem()
 62  *              Alan Cox        :       Make SO_DEBUG superuser only.
 63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
 64  *                                      (compatibility fix)
 65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
 66  *              Alan Cox        :       Allocator for a socket is settable.
 67  *              Alan Cox        :       SO_ERROR includes soft errors.
 68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
 69  *              Alan Cox        :       Generic socket allocation to make hooks
 70  *                                      easier (suggested by Craig Metz).
 71  *              Michael Pall    :       SO_ERROR returns positive errno again
 72  *              Steve Whitehouse:       Added default destructor to free
 73  *                                      protocol private data.
 74  *              Steve Whitehouse:       Added various other default routines
 75  *                                      common to several socket families.
 76  *              Chris Evans     :       Call suser() check last on F_SETOWN
 77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
 78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
 79  *              Andi Kleen      :       Fix write_space callback
 80  *              Chris Evans     :       Security fixes - signedness again
 81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
 82  *
 83  * To Fix:
 84  *
 85  *
 86  *              This program is free software; you can redistribute it and/or
 87  *              modify it under the terms of the GNU General Public License
 88  *              as published by the Free Software Foundation; either version
 89  *              2 of the License, or (at your option) any later version.
 90  */
 91 
 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 93 
 94 #include <linux/capability.h>
 95 #include <linux/errno.h>
 96 #include <linux/errqueue.h>
 97 #include <linux/types.h>
 98 #include <linux/socket.h>
 99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 
139 #include <trace/events/sock.h>
140 
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144 
145 #include <net/busy_poll.h>
146 
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149 
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161                    struct user_namespace *user_ns, int cap)
162 {
163         return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164                 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167 
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179         return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182 
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194         return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197 
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family:
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 
205 /*
206  * Make lock validator output more readable. (we pre-construct these
207  * strings build-time, so that runtime initialization of socket
208  * locks is fast):
209  */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
212   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
213   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
214   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
215   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
216   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
217   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
218   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
219   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
220   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
221   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
222   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
223   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
224   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_KCM"      ,
225   "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
229   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
230   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
231   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
232   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
233   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
234   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
235   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
236   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
237   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
238   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
239   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
240   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
241   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_KCM"       ,
242   "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
246   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
247   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
248   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
249   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
250   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
251   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
252   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
253   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
254   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
255   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
256   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
257   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
258   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_KCM"      ,
259   "clock-AF_MAX"
260 };
261 
262 /*
263  * sk_callback_lock locking rules are per-address-family,
264  * so split the lock classes by using a per-AF key:
265  */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267 
268 /* Take into consideration the size of the struct sk_buff overhead in the
269  * determination of these values, since that is non-constant across
270  * platforms.  This makes socket queueing behavior and performance
271  * not depend upon such differences.
272  */
273 #define _SK_MEM_PACKETS         256
274 #define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305         sock_set_flag(sk, SOCK_MEMALLOC);
306         sk->sk_allocation |= __GFP_MEMALLOC;
307         static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313         sock_reset_flag(sk, SOCK_MEMALLOC);
314         sk->sk_allocation &= ~__GFP_MEMALLOC;
315         static_key_slow_dec(&memalloc_socks);
316 
317         /*
318          * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319          * progress of swapping. SOCK_MEMALLOC may be cleared while
320          * it has rmem allocations due to the last swapfile being deactivated
321          * but there is a risk that the socket is unusable due to exceeding
322          * the rmem limits. Reclaim the reserves and obey rmem limits again.
323          */
324         sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330         int ret;
331         unsigned long pflags = current->flags;
332 
333         /* these should have been dropped before queueing */
334         BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336         current->flags |= PF_MEMALLOC;
337         ret = sk->sk_backlog_rcv(sk, skb);
338         tsk_restore_flags(current, pflags, PF_MEMALLOC);
339 
340         return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343 
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346         struct timeval tv;
347 
348         if (optlen < sizeof(tv))
349                 return -EINVAL;
350         if (copy_from_user(&tv, optval, sizeof(tv)))
351                 return -EFAULT;
352         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353                 return -EDOM;
354 
355         if (tv.tv_sec < 0) {
356                 static int warned __read_mostly;
357 
358                 *timeo_p = 0;
359                 if (warned < 10 && net_ratelimit()) {
360                         warned++;
361                         pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362                                 __func__, current->comm, task_pid_nr(current));
363                 }
364                 return 0;
365         }
366         *timeo_p = MAX_SCHEDULE_TIMEOUT;
367         if (tv.tv_sec == 0 && tv.tv_usec == 0)
368                 return 0;
369         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371         return 0;
372 }
373 
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376         static int warned;
377         static char warncomm[TASK_COMM_LEN];
378         if (strcmp(warncomm, current->comm) && warned < 5) {
379                 strcpy(warncomm,  current->comm);
380                 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381                         warncomm, name);
382                 warned++;
383         }
384 }
385 
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388         switch (sk->sk_family) {
389         case AF_UNSPEC:
390         case AF_UNIX:
391                 return false;
392         default:
393                 return true;
394         }
395 }
396 
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399         if (sk->sk_flags & flags) {
400                 sk->sk_flags &= ~flags;
401                 if (sock_needs_netstamp(sk) &&
402                     !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403                         net_disable_timestamp();
404         }
405 }
406 
407 
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410         unsigned long flags;
411         struct sk_buff_head *list = &sk->sk_receive_queue;
412 
413         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414                 atomic_inc(&sk->sk_drops);
415                 trace_sock_rcvqueue_full(sk, skb);
416                 return -ENOMEM;
417         }
418 
419         if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420                 atomic_inc(&sk->sk_drops);
421                 return -ENOBUFS;
422         }
423 
424         skb->dev = NULL;
425         skb_set_owner_r(skb, sk);
426 
427         /* we escape from rcu protected region, make sure we dont leak
428          * a norefcounted dst
429          */
430         skb_dst_force(skb);
431 
432         spin_lock_irqsave(&list->lock, flags);
433         sock_skb_set_dropcount(sk, skb);
434         __skb_queue_tail(list, skb);
435         spin_unlock_irqrestore(&list->lock, flags);
436 
437         if (!sock_flag(sk, SOCK_DEAD))
438                 sk->sk_data_ready(sk);
439         return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442 
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445         int err;
446 
447         err = sk_filter(sk, skb);
448         if (err)
449                 return err;
450 
451         return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454 
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456                      const int nested, unsigned int trim_cap, bool refcounted)
457 {
458         int rc = NET_RX_SUCCESS;
459 
460         if (sk_filter_trim_cap(sk, skb, trim_cap))
461                 goto discard_and_relse;
462 
463         skb->dev = NULL;
464 
465         if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466                 atomic_inc(&sk->sk_drops);
467                 goto discard_and_relse;
468         }
469         if (nested)
470                 bh_lock_sock_nested(sk);
471         else
472                 bh_lock_sock(sk);
473         if (!sock_owned_by_user(sk)) {
474                 /*
475                  * trylock + unlock semantics:
476                  */
477                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478 
479                 rc = sk_backlog_rcv(sk, skb);
480 
481                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482         } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483                 bh_unlock_sock(sk);
484                 atomic_inc(&sk->sk_drops);
485                 goto discard_and_relse;
486         }
487 
488         bh_unlock_sock(sk);
489 out:
490         if (refcounted)
491                 sock_put(sk);
492         return rc;
493 discard_and_relse:
494         kfree_skb(skb);
495         goto out;
496 }
497 EXPORT_SYMBOL(__sk_receive_skb);
498 
499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
500 {
501         struct dst_entry *dst = __sk_dst_get(sk);
502 
503         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504                 sk_tx_queue_clear(sk);
505                 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
506                 dst_release(dst);
507                 return NULL;
508         }
509 
510         return dst;
511 }
512 EXPORT_SYMBOL(__sk_dst_check);
513 
514 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
515 {
516         struct dst_entry *dst = sk_dst_get(sk);
517 
518         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
519                 sk_dst_reset(sk);
520                 dst_release(dst);
521                 return NULL;
522         }
523 
524         return dst;
525 }
526 EXPORT_SYMBOL(sk_dst_check);
527 
528 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
529                                 int optlen)
530 {
531         int ret = -ENOPROTOOPT;
532 #ifdef CONFIG_NETDEVICES
533         struct net *net = sock_net(sk);
534         char devname[IFNAMSIZ];
535         int index;
536 
537         /* Sorry... */
538         ret = -EPERM;
539         if (!ns_capable(net->user_ns, CAP_NET_RAW))
540                 goto out;
541 
542         ret = -EINVAL;
543         if (optlen < 0)
544                 goto out;
545 
546         /* Bind this socket to a particular device like "eth0",
547          * as specified in the passed interface name. If the
548          * name is "" or the option length is zero the socket
549          * is not bound.
550          */
551         if (optlen > IFNAMSIZ - 1)
552                 optlen = IFNAMSIZ - 1;
553         memset(devname, 0, sizeof(devname));
554 
555         ret = -EFAULT;
556         if (copy_from_user(devname, optval, optlen))
557                 goto out;
558 
559         index = 0;
560         if (devname[0] != '\0') {
561                 struct net_device *dev;
562 
563                 rcu_read_lock();
564                 dev = dev_get_by_name_rcu(net, devname);
565                 if (dev)
566                         index = dev->ifindex;
567                 rcu_read_unlock();
568                 ret = -ENODEV;
569                 if (!dev)
570                         goto out;
571         }
572 
573         lock_sock(sk);
574         sk->sk_bound_dev_if = index;
575         sk_dst_reset(sk);
576         release_sock(sk);
577 
578         ret = 0;
579 
580 out:
581 #endif
582 
583         return ret;
584 }
585 
586 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
587                                 int __user *optlen, int len)
588 {
589         int ret = -ENOPROTOOPT;
590 #ifdef CONFIG_NETDEVICES
591         struct net *net = sock_net(sk);
592         char devname[IFNAMSIZ];
593 
594         if (sk->sk_bound_dev_if == 0) {
595                 len = 0;
596                 goto zero;
597         }
598 
599         ret = -EINVAL;
600         if (len < IFNAMSIZ)
601                 goto out;
602 
603         ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
604         if (ret)
605                 goto out;
606 
607         len = strlen(devname) + 1;
608 
609         ret = -EFAULT;
610         if (copy_to_user(optval, devname, len))
611                 goto out;
612 
613 zero:
614         ret = -EFAULT;
615         if (put_user(len, optlen))
616                 goto out;
617 
618         ret = 0;
619 
620 out:
621 #endif
622 
623         return ret;
624 }
625 
626 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
627 {
628         if (valbool)
629                 sock_set_flag(sk, bit);
630         else
631                 sock_reset_flag(sk, bit);
632 }
633 
634 bool sk_mc_loop(struct sock *sk)
635 {
636         if (dev_recursion_level())
637                 return false;
638         if (!sk)
639                 return true;
640         switch (sk->sk_family) {
641         case AF_INET:
642                 return inet_sk(sk)->mc_loop;
643 #if IS_ENABLED(CONFIG_IPV6)
644         case AF_INET6:
645                 return inet6_sk(sk)->mc_loop;
646 #endif
647         }
648         WARN_ON(1);
649         return true;
650 }
651 EXPORT_SYMBOL(sk_mc_loop);
652 
653 /*
654  *      This is meant for all protocols to use and covers goings on
655  *      at the socket level. Everything here is generic.
656  */
657 
658 int sock_setsockopt(struct socket *sock, int level, int optname,
659                     char __user *optval, unsigned int optlen)
660 {
661         struct sock *sk = sock->sk;
662         int val;
663         int valbool;
664         struct linger ling;
665         int ret = 0;
666 
667         /*
668          *      Options without arguments
669          */
670 
671         if (optname == SO_BINDTODEVICE)
672                 return sock_setbindtodevice(sk, optval, optlen);
673 
674         if (optlen < sizeof(int))
675                 return -EINVAL;
676 
677         if (get_user(val, (int __user *)optval))
678                 return -EFAULT;
679 
680         valbool = val ? 1 : 0;
681 
682         lock_sock(sk);
683 
684         switch (optname) {
685         case SO_DEBUG:
686                 if (val && !capable(CAP_NET_ADMIN))
687                         ret = -EACCES;
688                 else
689                         sock_valbool_flag(sk, SOCK_DBG, valbool);
690                 break;
691         case SO_REUSEADDR:
692                 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
693                 break;
694         case SO_REUSEPORT:
695                 sk->sk_reuseport = valbool;
696                 break;
697         case SO_TYPE:
698         case SO_PROTOCOL:
699         case SO_DOMAIN:
700         case SO_ERROR:
701                 ret = -ENOPROTOOPT;
702                 break;
703         case SO_DONTROUTE:
704                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
705                 break;
706         case SO_BROADCAST:
707                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
708                 break;
709         case SO_SNDBUF:
710                 /* Don't error on this BSD doesn't and if you think
711                  * about it this is right. Otherwise apps have to
712                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
713                  * are treated in BSD as hints
714                  */
715                 val = min_t(u32, val, sysctl_wmem_max);
716 set_sndbuf:
717                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
718                 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
719                 /* Wake up sending tasks if we upped the value. */
720                 sk->sk_write_space(sk);
721                 break;
722 
723         case SO_SNDBUFFORCE:
724                 if (!capable(CAP_NET_ADMIN)) {
725                         ret = -EPERM;
726                         break;
727                 }
728                 goto set_sndbuf;
729 
730         case SO_RCVBUF:
731                 /* Don't error on this BSD doesn't and if you think
732                  * about it this is right. Otherwise apps have to
733                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
734                  * are treated in BSD as hints
735                  */
736                 val = min_t(u32, val, sysctl_rmem_max);
737 set_rcvbuf:
738                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
739                 /*
740                  * We double it on the way in to account for
741                  * "struct sk_buff" etc. overhead.   Applications
742                  * assume that the SO_RCVBUF setting they make will
743                  * allow that much actual data to be received on that
744                  * socket.
745                  *
746                  * Applications are unaware that "struct sk_buff" and
747                  * other overheads allocate from the receive buffer
748                  * during socket buffer allocation.
749                  *
750                  * And after considering the possible alternatives,
751                  * returning the value we actually used in getsockopt
752                  * is the most desirable behavior.
753                  */
754                 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
755                 break;
756 
757         case SO_RCVBUFFORCE:
758                 if (!capable(CAP_NET_ADMIN)) {
759                         ret = -EPERM;
760                         break;
761                 }
762                 goto set_rcvbuf;
763 
764         case SO_KEEPALIVE:
765 #ifdef CONFIG_INET
766                 if (sk->sk_protocol == IPPROTO_TCP &&
767                     sk->sk_type == SOCK_STREAM)
768                         tcp_set_keepalive(sk, valbool);
769 #endif
770                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
771                 break;
772 
773         case SO_OOBINLINE:
774                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
775                 break;
776 
777         case SO_NO_CHECK:
778                 sk->sk_no_check_tx = valbool;
779                 break;
780 
781         case SO_PRIORITY:
782                 if ((val >= 0 && val <= 6) ||
783                     ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
784                         sk->sk_priority = val;
785                 else
786                         ret = -EPERM;
787                 break;
788 
789         case SO_LINGER:
790                 if (optlen < sizeof(ling)) {
791                         ret = -EINVAL;  /* 1003.1g */
792                         break;
793                 }
794                 if (copy_from_user(&ling, optval, sizeof(ling))) {
795                         ret = -EFAULT;
796                         break;
797                 }
798                 if (!ling.l_onoff)
799                         sock_reset_flag(sk, SOCK_LINGER);
800                 else {
801 #if (BITS_PER_LONG == 32)
802                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
803                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
804                         else
805 #endif
806                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
807                         sock_set_flag(sk, SOCK_LINGER);
808                 }
809                 break;
810 
811         case SO_BSDCOMPAT:
812                 sock_warn_obsolete_bsdism("setsockopt");
813                 break;
814 
815         case SO_PASSCRED:
816                 if (valbool)
817                         set_bit(SOCK_PASSCRED, &sock->flags);
818                 else
819                         clear_bit(SOCK_PASSCRED, &sock->flags);
820                 break;
821 
822         case SO_TIMESTAMP:
823         case SO_TIMESTAMPNS:
824                 if (valbool)  {
825                         if (optname == SO_TIMESTAMP)
826                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
827                         else
828                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
829                         sock_set_flag(sk, SOCK_RCVTSTAMP);
830                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
831                 } else {
832                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
833                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
834                 }
835                 break;
836 
837         case SO_TIMESTAMPING:
838                 if (val & ~SOF_TIMESTAMPING_MASK) {
839                         ret = -EINVAL;
840                         break;
841                 }
842 
843                 if (val & SOF_TIMESTAMPING_OPT_ID &&
844                     !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845                         if (sk->sk_protocol == IPPROTO_TCP &&
846                             sk->sk_type == SOCK_STREAM) {
847                                 if ((1 << sk->sk_state) &
848                                     (TCPF_CLOSE | TCPF_LISTEN)) {
849                                         ret = -EINVAL;
850                                         break;
851                                 }
852                                 sk->sk_tskey = tcp_sk(sk)->snd_una;
853                         } else {
854                                 sk->sk_tskey = 0;
855                         }
856                 }
857                 sk->sk_tsflags = val;
858                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
859                         sock_enable_timestamp(sk,
860                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
861                 else
862                         sock_disable_timestamp(sk,
863                                                (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
864                 break;
865 
866         case SO_RCVLOWAT:
867                 if (val < 0)
868                         val = INT_MAX;
869                 sk->sk_rcvlowat = val ? : 1;
870                 break;
871 
872         case SO_RCVTIMEO:
873                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
874                 break;
875 
876         case SO_SNDTIMEO:
877                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
878                 break;
879 
880         case SO_ATTACH_FILTER:
881                 ret = -EINVAL;
882                 if (optlen == sizeof(struct sock_fprog)) {
883                         struct sock_fprog fprog;
884 
885                         ret = -EFAULT;
886                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
887                                 break;
888 
889                         ret = sk_attach_filter(&fprog, sk);
890                 }
891                 break;
892 
893         case SO_ATTACH_BPF:
894                 ret = -EINVAL;
895                 if (optlen == sizeof(u32)) {
896                         u32 ufd;
897 
898                         ret = -EFAULT;
899                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
900                                 break;
901 
902                         ret = sk_attach_bpf(ufd, sk);
903                 }
904                 break;
905 
906         case SO_ATTACH_REUSEPORT_CBPF:
907                 ret = -EINVAL;
908                 if (optlen == sizeof(struct sock_fprog)) {
909                         struct sock_fprog fprog;
910 
911                         ret = -EFAULT;
912                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
913                                 break;
914 
915                         ret = sk_reuseport_attach_filter(&fprog, sk);
916                 }
917                 break;
918 
919         case SO_ATTACH_REUSEPORT_EBPF:
920                 ret = -EINVAL;
921                 if (optlen == sizeof(u32)) {
922                         u32 ufd;
923 
924                         ret = -EFAULT;
925                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
926                                 break;
927 
928                         ret = sk_reuseport_attach_bpf(ufd, sk);
929                 }
930                 break;
931 
932         case SO_DETACH_FILTER:
933                 ret = sk_detach_filter(sk);
934                 break;
935 
936         case SO_LOCK_FILTER:
937                 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
938                         ret = -EPERM;
939                 else
940                         sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
941                 break;
942 
943         case SO_PASSSEC:
944                 if (valbool)
945                         set_bit(SOCK_PASSSEC, &sock->flags);
946                 else
947                         clear_bit(SOCK_PASSSEC, &sock->flags);
948                 break;
949         case SO_MARK:
950                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
951                         ret = -EPERM;
952                 else
953                         sk->sk_mark = val;
954                 break;
955 
956         case SO_RXQ_OVFL:
957                 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
958                 break;
959 
960         case SO_WIFI_STATUS:
961                 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
962                 break;
963 
964         case SO_PEEK_OFF:
965                 if (sock->ops->set_peek_off)
966                         ret = sock->ops->set_peek_off(sk, val);
967                 else
968                         ret = -EOPNOTSUPP;
969                 break;
970 
971         case SO_NOFCS:
972                 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
973                 break;
974 
975         case SO_SELECT_ERR_QUEUE:
976                 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
977                 break;
978 
979 #ifdef CONFIG_NET_RX_BUSY_POLL
980         case SO_BUSY_POLL:
981                 /* allow unprivileged users to decrease the value */
982                 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
983                         ret = -EPERM;
984                 else {
985                         if (val < 0)
986                                 ret = -EINVAL;
987                         else
988                                 sk->sk_ll_usec = val;
989                 }
990                 break;
991 #endif
992 
993         case SO_MAX_PACING_RATE:
994                 sk->sk_max_pacing_rate = val;
995                 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
996                                          sk->sk_max_pacing_rate);
997                 break;
998 
999         case SO_INCOMING_CPU:
1000                 sk->sk_incoming_cpu = val;
1001                 break;
1002 
1003         case SO_CNX_ADVICE:
1004                 if (val == 1)
1005                         dst_negative_advice(sk);
1006                 break;
1007         default:
1008                 ret = -ENOPROTOOPT;
1009                 break;
1010         }
1011         release_sock(sk);
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(sock_setsockopt);
1015 
1016 
1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1018                           struct ucred *ucred)
1019 {
1020         ucred->pid = pid_vnr(pid);
1021         ucred->uid = ucred->gid = -1;
1022         if (cred) {
1023                 struct user_namespace *current_ns = current_user_ns();
1024 
1025                 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1026                 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1027         }
1028 }
1029 
1030 int sock_getsockopt(struct socket *sock, int level, int optname,
1031                     char __user *optval, int __user *optlen)
1032 {
1033         struct sock *sk = sock->sk;
1034 
1035         union {
1036                 int val;
1037                 struct linger ling;
1038                 struct timeval tm;
1039         } v;
1040 
1041         int lv = sizeof(int);
1042         int len;
1043 
1044         if (get_user(len, optlen))
1045                 return -EFAULT;
1046         if (len < 0)
1047                 return -EINVAL;
1048 
1049         memset(&v, 0, sizeof(v));
1050 
1051         switch (optname) {
1052         case SO_DEBUG:
1053                 v.val = sock_flag(sk, SOCK_DBG);
1054                 break;
1055 
1056         case SO_DONTROUTE:
1057                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1058                 break;
1059 
1060         case SO_BROADCAST:
1061                 v.val = sock_flag(sk, SOCK_BROADCAST);
1062                 break;
1063 
1064         case SO_SNDBUF:
1065                 v.val = sk->sk_sndbuf;
1066                 break;
1067 
1068         case SO_RCVBUF:
1069                 v.val = sk->sk_rcvbuf;
1070                 break;
1071 
1072         case SO_REUSEADDR:
1073                 v.val = sk->sk_reuse;
1074                 break;
1075 
1076         case SO_REUSEPORT:
1077                 v.val = sk->sk_reuseport;
1078                 break;
1079 
1080         case SO_KEEPALIVE:
1081                 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1082                 break;
1083 
1084         case SO_TYPE:
1085                 v.val = sk->sk_type;
1086                 break;
1087 
1088         case SO_PROTOCOL:
1089                 v.val = sk->sk_protocol;
1090                 break;
1091 
1092         case SO_DOMAIN:
1093                 v.val = sk->sk_family;
1094                 break;
1095 
1096         case SO_ERROR:
1097                 v.val = -sock_error(sk);
1098                 if (v.val == 0)
1099                         v.val = xchg(&sk->sk_err_soft, 0);
1100                 break;
1101 
1102         case SO_OOBINLINE:
1103                 v.val = sock_flag(sk, SOCK_URGINLINE);
1104                 break;
1105 
1106         case SO_NO_CHECK:
1107                 v.val = sk->sk_no_check_tx;
1108                 break;
1109 
1110         case SO_PRIORITY:
1111                 v.val = sk->sk_priority;
1112                 break;
1113 
1114         case SO_LINGER:
1115                 lv              = sizeof(v.ling);
1116                 v.ling.l_onoff  = sock_flag(sk, SOCK_LINGER);
1117                 v.ling.l_linger = sk->sk_lingertime / HZ;
1118                 break;
1119 
1120         case SO_BSDCOMPAT:
1121                 sock_warn_obsolete_bsdism("getsockopt");
1122                 break;
1123 
1124         case SO_TIMESTAMP:
1125                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1126                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1127                 break;
1128 
1129         case SO_TIMESTAMPNS:
1130                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1131                 break;
1132 
1133         case SO_TIMESTAMPING:
1134                 v.val = sk->sk_tsflags;
1135                 break;
1136 
1137         case SO_RCVTIMEO:
1138                 lv = sizeof(struct timeval);
1139                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1140                         v.tm.tv_sec = 0;
1141                         v.tm.tv_usec = 0;
1142                 } else {
1143                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1144                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1145                 }
1146                 break;
1147 
1148         case SO_SNDTIMEO:
1149                 lv = sizeof(struct timeval);
1150                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1151                         v.tm.tv_sec = 0;
1152                         v.tm.tv_usec = 0;
1153                 } else {
1154                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1155                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1156                 }
1157                 break;
1158 
1159         case SO_RCVLOWAT:
1160                 v.val = sk->sk_rcvlowat;
1161                 break;
1162 
1163         case SO_SNDLOWAT:
1164                 v.val = 1;
1165                 break;
1166 
1167         case SO_PASSCRED:
1168                 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1169                 break;
1170 
1171         case SO_PEERCRED:
1172         {
1173                 struct ucred peercred;
1174                 if (len > sizeof(peercred))
1175                         len = sizeof(peercred);
1176                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1177                 if (copy_to_user(optval, &peercred, len))
1178                         return -EFAULT;
1179                 goto lenout;
1180         }
1181 
1182         case SO_PEERNAME:
1183         {
1184                 char address[128];
1185 
1186                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1187                         return -ENOTCONN;
1188                 if (lv < len)
1189                         return -EINVAL;
1190                 if (copy_to_user(optval, address, len))
1191                         return -EFAULT;
1192                 goto lenout;
1193         }
1194 
1195         /* Dubious BSD thing... Probably nobody even uses it, but
1196          * the UNIX standard wants it for whatever reason... -DaveM
1197          */
1198         case SO_ACCEPTCONN:
1199                 v.val = sk->sk_state == TCP_LISTEN;
1200                 break;
1201 
1202         case SO_PASSSEC:
1203                 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1204                 break;
1205 
1206         case SO_PEERSEC:
1207                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1208 
1209         case SO_MARK:
1210                 v.val = sk->sk_mark;
1211                 break;
1212 
1213         case SO_RXQ_OVFL:
1214                 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1215                 break;
1216 
1217         case SO_WIFI_STATUS:
1218                 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1219                 break;
1220 
1221         case SO_PEEK_OFF:
1222                 if (!sock->ops->set_peek_off)
1223                         return -EOPNOTSUPP;
1224 
1225                 v.val = sk->sk_peek_off;
1226                 break;
1227         case SO_NOFCS:
1228                 v.val = sock_flag(sk, SOCK_NOFCS);
1229                 break;
1230 
1231         case SO_BINDTODEVICE:
1232                 return sock_getbindtodevice(sk, optval, optlen, len);
1233 
1234         case SO_GET_FILTER:
1235                 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1236                 if (len < 0)
1237                         return len;
1238 
1239                 goto lenout;
1240 
1241         case SO_LOCK_FILTER:
1242                 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1243                 break;
1244 
1245         case SO_BPF_EXTENSIONS:
1246                 v.val = bpf_tell_extensions();
1247                 break;
1248 
1249         case SO_SELECT_ERR_QUEUE:
1250                 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1251                 break;
1252 
1253 #ifdef CONFIG_NET_RX_BUSY_POLL
1254         case SO_BUSY_POLL:
1255                 v.val = sk->sk_ll_usec;
1256                 break;
1257 #endif
1258 
1259         case SO_MAX_PACING_RATE:
1260                 v.val = sk->sk_max_pacing_rate;
1261                 break;
1262 
1263         case SO_INCOMING_CPU:
1264                 v.val = sk->sk_incoming_cpu;
1265                 break;
1266 
1267         default:
1268                 /* We implement the SO_SNDLOWAT etc to not be settable
1269                  * (1003.1g 7).
1270                  */
1271                 return -ENOPROTOOPT;
1272         }
1273 
1274         if (len > lv)
1275                 len = lv;
1276         if (copy_to_user(optval, &v, len))
1277                 return -EFAULT;
1278 lenout:
1279         if (put_user(len, optlen))
1280                 return -EFAULT;
1281         return 0;
1282 }
1283 
1284 /*
1285  * Initialize an sk_lock.
1286  *
1287  * (We also register the sk_lock with the lock validator.)
1288  */
1289 static inline void sock_lock_init(struct sock *sk)
1290 {
1291         sock_lock_init_class_and_name(sk,
1292                         af_family_slock_key_strings[sk->sk_family],
1293                         af_family_slock_keys + sk->sk_family,
1294                         af_family_key_strings[sk->sk_family],
1295                         af_family_keys + sk->sk_family);
1296 }
1297 
1298 /*
1299  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1300  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1301  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1302  */
1303 static void sock_copy(struct sock *nsk, const struct sock *osk)
1304 {
1305 #ifdef CONFIG_SECURITY_NETWORK
1306         void *sptr = nsk->sk_security;
1307 #endif
1308         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1309 
1310         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1311                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1312 
1313 #ifdef CONFIG_SECURITY_NETWORK
1314         nsk->sk_security = sptr;
1315         security_sk_clone(osk, nsk);
1316 #endif
1317 }
1318 
1319 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1320 {
1321         unsigned long nulls1, nulls2;
1322 
1323         nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1324         nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1325         if (nulls1 > nulls2)
1326                 swap(nulls1, nulls2);
1327 
1328         if (nulls1 != 0)
1329                 memset((char *)sk, 0, nulls1);
1330         memset((char *)sk + nulls1 + sizeof(void *), 0,
1331                nulls2 - nulls1 - sizeof(void *));
1332         memset((char *)sk + nulls2 + sizeof(void *), 0,
1333                size - nulls2 - sizeof(void *));
1334 }
1335 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1336 
1337 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1338                 int family)
1339 {
1340         struct sock *sk;
1341         struct kmem_cache *slab;
1342 
1343         slab = prot->slab;
1344         if (slab != NULL) {
1345                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1346                 if (!sk)
1347                         return sk;
1348                 if (priority & __GFP_ZERO) {
1349                         if (prot->clear_sk)
1350                                 prot->clear_sk(sk, prot->obj_size);
1351                         else
1352                                 sk_prot_clear_nulls(sk, prot->obj_size);
1353                 }
1354         } else
1355                 sk = kmalloc(prot->obj_size, priority);
1356 
1357         if (sk != NULL) {
1358                 kmemcheck_annotate_bitfield(sk, flags);
1359 
1360                 if (security_sk_alloc(sk, family, priority))
1361                         goto out_free;
1362 
1363                 if (!try_module_get(prot->owner))
1364                         goto out_free_sec;
1365                 sk_tx_queue_clear(sk);
1366         }
1367 
1368         return sk;
1369 
1370 out_free_sec:
1371         security_sk_free(sk);
1372 out_free:
1373         if (slab != NULL)
1374                 kmem_cache_free(slab, sk);
1375         else
1376                 kfree(sk);
1377         return NULL;
1378 }
1379 
1380 static void sk_prot_free(struct proto *prot, struct sock *sk)
1381 {
1382         struct kmem_cache *slab;
1383         struct module *owner;
1384 
1385         owner = prot->owner;
1386         slab = prot->slab;
1387 
1388         cgroup_sk_free(&sk->sk_cgrp_data);
1389         security_sk_free(sk);
1390         if (slab != NULL)
1391                 kmem_cache_free(slab, sk);
1392         else
1393                 kfree(sk);
1394         module_put(owner);
1395 }
1396 
1397 /**
1398  *      sk_alloc - All socket objects are allocated here
1399  *      @net: the applicable net namespace
1400  *      @family: protocol family
1401  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1402  *      @prot: struct proto associated with this new sock instance
1403  *      @kern: is this to be a kernel socket?
1404  */
1405 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1406                       struct proto *prot, int kern)
1407 {
1408         struct sock *sk;
1409 
1410         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1411         if (sk) {
1412                 sk->sk_family = family;
1413                 /*
1414                  * See comment in struct sock definition to understand
1415                  * why we need sk_prot_creator -acme
1416                  */
1417                 sk->sk_prot = sk->sk_prot_creator = prot;
1418                 sock_lock_init(sk);
1419                 sk->sk_net_refcnt = kern ? 0 : 1;
1420                 if (likely(sk->sk_net_refcnt))
1421                         get_net(net);
1422                 sock_net_set(sk, net);
1423                 atomic_set(&sk->sk_wmem_alloc, 1);
1424 
1425                 cgroup_sk_alloc(&sk->sk_cgrp_data);
1426                 sock_update_classid(&sk->sk_cgrp_data);
1427                 sock_update_netprioidx(&sk->sk_cgrp_data);
1428         }
1429 
1430         return sk;
1431 }
1432 EXPORT_SYMBOL(sk_alloc);
1433 
1434 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1435  * grace period. This is the case for UDP sockets and TCP listeners.
1436  */
1437 static void __sk_destruct(struct rcu_head *head)
1438 {
1439         struct sock *sk = container_of(head, struct sock, sk_rcu);
1440         struct sk_filter *filter;
1441 
1442         if (sk->sk_destruct)
1443                 sk->sk_destruct(sk);
1444 
1445         filter = rcu_dereference_check(sk->sk_filter,
1446                                        atomic_read(&sk->sk_wmem_alloc) == 0);
1447         if (filter) {
1448                 sk_filter_uncharge(sk, filter);
1449                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1450         }
1451         if (rcu_access_pointer(sk->sk_reuseport_cb))
1452                 reuseport_detach_sock(sk);
1453 
1454         sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1455 
1456         if (atomic_read(&sk->sk_omem_alloc))
1457                 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1458                          __func__, atomic_read(&sk->sk_omem_alloc));
1459 
1460         if (sk->sk_peer_cred)
1461                 put_cred(sk->sk_peer_cred);
1462         put_pid(sk->sk_peer_pid);
1463         if (likely(sk->sk_net_refcnt))
1464                 put_net(sock_net(sk));
1465         sk_prot_free(sk->sk_prot_creator, sk);
1466 }
1467 
1468 void sk_destruct(struct sock *sk)
1469 {
1470         if (sock_flag(sk, SOCK_RCU_FREE))
1471                 call_rcu(&sk->sk_rcu, __sk_destruct);
1472         else
1473                 __sk_destruct(&sk->sk_rcu);
1474 }
1475 
1476 static void __sk_free(struct sock *sk)
1477 {
1478         if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1479                 sock_diag_broadcast_destroy(sk);
1480         else
1481                 sk_destruct(sk);
1482 }
1483 
1484 void sk_free(struct sock *sk)
1485 {
1486         /*
1487          * We subtract one from sk_wmem_alloc and can know if
1488          * some packets are still in some tx queue.
1489          * If not null, sock_wfree() will call __sk_free(sk) later
1490          */
1491         if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1492                 __sk_free(sk);
1493 }
1494 EXPORT_SYMBOL(sk_free);
1495 
1496 /**
1497  *      sk_clone_lock - clone a socket, and lock its clone
1498  *      @sk: the socket to clone
1499  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1500  *
1501  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1502  */
1503 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1504 {
1505         struct sock *newsk;
1506         bool is_charged = true;
1507 
1508         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1509         if (newsk != NULL) {
1510                 struct sk_filter *filter;
1511 
1512                 sock_copy(newsk, sk);
1513 
1514                 /* SANITY */
1515                 if (likely(newsk->sk_net_refcnt))
1516                         get_net(sock_net(newsk));
1517                 sk_node_init(&newsk->sk_node);
1518                 sock_lock_init(newsk);
1519                 bh_lock_sock(newsk);
1520                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1521                 newsk->sk_backlog.len = 0;
1522 
1523                 atomic_set(&newsk->sk_rmem_alloc, 0);
1524                 /*
1525                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1526                  */
1527                 atomic_set(&newsk->sk_wmem_alloc, 1);
1528                 atomic_set(&newsk->sk_omem_alloc, 0);
1529                 skb_queue_head_init(&newsk->sk_receive_queue);
1530                 skb_queue_head_init(&newsk->sk_write_queue);
1531 
1532                 rwlock_init(&newsk->sk_callback_lock);
1533                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1534                                 af_callback_keys + newsk->sk_family,
1535                                 af_family_clock_key_strings[newsk->sk_family]);
1536 
1537                 newsk->sk_dst_cache     = NULL;
1538                 newsk->sk_wmem_queued   = 0;
1539                 newsk->sk_forward_alloc = 0;
1540                 atomic_set(&newsk->sk_drops, 0);
1541                 newsk->sk_send_head     = NULL;
1542                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1543 
1544                 sock_reset_flag(newsk, SOCK_DONE);
1545                 skb_queue_head_init(&newsk->sk_error_queue);
1546 
1547                 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1548                 if (filter != NULL)
1549                         /* though it's an empty new sock, the charging may fail
1550                          * if sysctl_optmem_max was changed between creation of
1551                          * original socket and cloning
1552                          */
1553                         is_charged = sk_filter_charge(newsk, filter);
1554 
1555                 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1556                         /* It is still raw copy of parent, so invalidate
1557                          * destructor and make plain sk_free() */
1558                         newsk->sk_destruct = NULL;
1559                         bh_unlock_sock(newsk);
1560                         sk_free(newsk);
1561                         newsk = NULL;
1562                         goto out;
1563                 }
1564                 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1565 
1566                 newsk->sk_err      = 0;
1567                 newsk->sk_err_soft = 0;
1568                 newsk->sk_priority = 0;
1569                 newsk->sk_incoming_cpu = raw_smp_processor_id();
1570                 atomic64_set(&newsk->sk_cookie, 0);
1571 
1572                 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1573 
1574                 /*
1575                  * Before updating sk_refcnt, we must commit prior changes to memory
1576                  * (Documentation/RCU/rculist_nulls.txt for details)
1577                  */
1578                 smp_wmb();
1579                 atomic_set(&newsk->sk_refcnt, 2);
1580 
1581                 /*
1582                  * Increment the counter in the same struct proto as the master
1583                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1584                  * is the same as sk->sk_prot->socks, as this field was copied
1585                  * with memcpy).
1586                  *
1587                  * This _changes_ the previous behaviour, where
1588                  * tcp_create_openreq_child always was incrementing the
1589                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1590                  * to be taken into account in all callers. -acme
1591                  */
1592                 sk_refcnt_debug_inc(newsk);
1593                 sk_set_socket(newsk, NULL);
1594                 newsk->sk_wq = NULL;
1595 
1596                 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1597                         sock_update_memcg(newsk);
1598 
1599                 if (newsk->sk_prot->sockets_allocated)
1600                         sk_sockets_allocated_inc(newsk);
1601 
1602                 if (sock_needs_netstamp(sk) &&
1603                     newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1604                         net_enable_timestamp();
1605         }
1606 out:
1607         return newsk;
1608 }
1609 EXPORT_SYMBOL_GPL(sk_clone_lock);
1610 
1611 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1612 {
1613         u32 max_segs = 1;
1614 
1615         sk_dst_set(sk, dst);
1616         sk->sk_route_caps = dst->dev->features;
1617         if (sk->sk_route_caps & NETIF_F_GSO)
1618                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1619         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1620         if (sk_can_gso(sk)) {
1621                 if (dst->header_len) {
1622                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1623                 } else {
1624                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1625                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1626                         max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1627                 }
1628         }
1629         sk->sk_gso_max_segs = max_segs;
1630 }
1631 EXPORT_SYMBOL_GPL(sk_setup_caps);
1632 
1633 /*
1634  *      Simple resource managers for sockets.
1635  */
1636 
1637 
1638 /*
1639  * Write buffer destructor automatically called from kfree_skb.
1640  */
1641 void sock_wfree(struct sk_buff *skb)
1642 {
1643         struct sock *sk = skb->sk;
1644         unsigned int len = skb->truesize;
1645 
1646         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1647                 /*
1648                  * Keep a reference on sk_wmem_alloc, this will be released
1649                  * after sk_write_space() call
1650                  */
1651                 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1652                 sk->sk_write_space(sk);
1653                 len = 1;
1654         }
1655         /*
1656          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1657          * could not do because of in-flight packets
1658          */
1659         if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1660                 __sk_free(sk);
1661 }
1662 EXPORT_SYMBOL(sock_wfree);
1663 
1664 /* This variant of sock_wfree() is used by TCP,
1665  * since it sets SOCK_USE_WRITE_QUEUE.
1666  */
1667 void __sock_wfree(struct sk_buff *skb)
1668 {
1669         struct sock *sk = skb->sk;
1670 
1671         if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1672                 __sk_free(sk);
1673 }
1674 
1675 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1676 {
1677         skb_orphan(skb);
1678         skb->sk = sk;
1679 #ifdef CONFIG_INET
1680         if (unlikely(!sk_fullsock(sk))) {
1681                 skb->destructor = sock_edemux;
1682                 sock_hold(sk);
1683                 return;
1684         }
1685 #endif
1686         skb->destructor = sock_wfree;
1687         skb_set_hash_from_sk(skb, sk);
1688         /*
1689          * We used to take a refcount on sk, but following operation
1690          * is enough to guarantee sk_free() wont free this sock until
1691          * all in-flight packets are completed
1692          */
1693         atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1694 }
1695 EXPORT_SYMBOL(skb_set_owner_w);
1696 
1697 /* This helper is used by netem, as it can hold packets in its
1698  * delay queue. We want to allow the owner socket to send more
1699  * packets, as if they were already TX completed by a typical driver.
1700  * But we also want to keep skb->sk set because some packet schedulers
1701  * rely on it (sch_fq for example). So we set skb->truesize to a small
1702  * amount (1) and decrease sk_wmem_alloc accordingly.
1703  */
1704 void skb_orphan_partial(struct sk_buff *skb)
1705 {
1706         /* If this skb is a TCP pure ACK or already went here,
1707          * we have nothing to do. 2 is already a very small truesize.
1708          */
1709         if (skb->truesize <= 2)
1710                 return;
1711 
1712         /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1713          * so we do not completely orphan skb, but transfert all
1714          * accounted bytes but one, to avoid unexpected reorders.
1715          */
1716         if (skb->destructor == sock_wfree
1717 #ifdef CONFIG_INET
1718             || skb->destructor == tcp_wfree
1719 #endif
1720                 ) {
1721                 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1722                 skb->truesize = 1;
1723         } else {
1724                 skb_orphan(skb);
1725         }
1726 }
1727 EXPORT_SYMBOL(skb_orphan_partial);
1728 
1729 /*
1730  * Read buffer destructor automatically called from kfree_skb.
1731  */
1732 void sock_rfree(struct sk_buff *skb)
1733 {
1734         struct sock *sk = skb->sk;
1735         unsigned int len = skb->truesize;
1736 
1737         atomic_sub(len, &sk->sk_rmem_alloc);
1738         sk_mem_uncharge(sk, len);
1739 }
1740 EXPORT_SYMBOL(sock_rfree);
1741 
1742 /*
1743  * Buffer destructor for skbs that are not used directly in read or write
1744  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1745  */
1746 void sock_efree(struct sk_buff *skb)
1747 {
1748         sock_put(skb->sk);
1749 }
1750 EXPORT_SYMBOL(sock_efree);
1751 
1752 kuid_t sock_i_uid(struct sock *sk)
1753 {
1754         kuid_t uid;
1755 
1756         read_lock_bh(&sk->sk_callback_lock);
1757         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1758         read_unlock_bh(&sk->sk_callback_lock);
1759         return uid;
1760 }
1761 EXPORT_SYMBOL(sock_i_uid);
1762 
1763 unsigned long sock_i_ino(struct sock *sk)
1764 {
1765         unsigned long ino;
1766 
1767         read_lock_bh(&sk->sk_callback_lock);
1768         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1769         read_unlock_bh(&sk->sk_callback_lock);
1770         return ino;
1771 }
1772 EXPORT_SYMBOL(sock_i_ino);
1773 
1774 /*
1775  * Allocate a skb from the socket's send buffer.
1776  */
1777 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1778                              gfp_t priority)
1779 {
1780         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1781                 struct sk_buff *skb = alloc_skb(size, priority);
1782                 if (skb) {
1783                         skb_set_owner_w(skb, sk);
1784                         return skb;
1785                 }
1786         }
1787         return NULL;
1788 }
1789 EXPORT_SYMBOL(sock_wmalloc);
1790 
1791 /*
1792  * Allocate a memory block from the socket's option memory buffer.
1793  */
1794 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1795 {
1796         if ((unsigned int)size <= sysctl_optmem_max &&
1797             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1798                 void *mem;
1799                 /* First do the add, to avoid the race if kmalloc
1800                  * might sleep.
1801                  */
1802                 atomic_add(size, &sk->sk_omem_alloc);
1803                 mem = kmalloc(size, priority);
1804                 if (mem)
1805                         return mem;
1806                 atomic_sub(size, &sk->sk_omem_alloc);
1807         }
1808         return NULL;
1809 }
1810 EXPORT_SYMBOL(sock_kmalloc);
1811 
1812 /* Free an option memory block. Note, we actually want the inline
1813  * here as this allows gcc to detect the nullify and fold away the
1814  * condition entirely.
1815  */
1816 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1817                                   const bool nullify)
1818 {
1819         if (WARN_ON_ONCE(!mem))
1820                 return;
1821         if (nullify)
1822                 kzfree(mem);
1823         else
1824                 kfree(mem);
1825         atomic_sub(size, &sk->sk_omem_alloc);
1826 }
1827 
1828 void sock_kfree_s(struct sock *sk, void *mem, int size)
1829 {
1830         __sock_kfree_s(sk, mem, size, false);
1831 }
1832 EXPORT_SYMBOL(sock_kfree_s);
1833 
1834 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1835 {
1836         __sock_kfree_s(sk, mem, size, true);
1837 }
1838 EXPORT_SYMBOL(sock_kzfree_s);
1839 
1840 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1841    I think, these locks should be removed for datagram sockets.
1842  */
1843 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1844 {
1845         DEFINE_WAIT(wait);
1846 
1847         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1848         for (;;) {
1849                 if (!timeo)
1850                         break;
1851                 if (signal_pending(current))
1852                         break;
1853                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1854                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1855                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1856                         break;
1857                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1858                         break;
1859                 if (sk->sk_err)
1860                         break;
1861                 timeo = schedule_timeout(timeo);
1862         }
1863         finish_wait(sk_sleep(sk), &wait);
1864         return timeo;
1865 }
1866 
1867 
1868 /*
1869  *      Generic send/receive buffer handlers
1870  */
1871 
1872 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1873                                      unsigned long data_len, int noblock,
1874                                      int *errcode, int max_page_order)
1875 {
1876         struct sk_buff *skb;
1877         long timeo;
1878         int err;
1879 
1880         timeo = sock_sndtimeo(sk, noblock);
1881         for (;;) {
1882                 err = sock_error(sk);
1883                 if (err != 0)
1884                         goto failure;
1885 
1886                 err = -EPIPE;
1887                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1888                         goto failure;
1889 
1890                 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1891                         break;
1892 
1893                 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1894                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1895                 err = -EAGAIN;
1896                 if (!timeo)
1897                         goto failure;
1898                 if (signal_pending(current))
1899                         goto interrupted;
1900                 timeo = sock_wait_for_wmem(sk, timeo);
1901         }
1902         skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1903                                    errcode, sk->sk_allocation);
1904         if (skb)
1905                 skb_set_owner_w(skb, sk);
1906         return skb;
1907 
1908 interrupted:
1909         err = sock_intr_errno(timeo);
1910 failure:
1911         *errcode = err;
1912         return NULL;
1913 }
1914 EXPORT_SYMBOL(sock_alloc_send_pskb);
1915 
1916 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1917                                     int noblock, int *errcode)
1918 {
1919         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1920 }
1921 EXPORT_SYMBOL(sock_alloc_send_skb);
1922 
1923 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1924                      struct sockcm_cookie *sockc)
1925 {
1926         u32 tsflags;
1927 
1928         switch (cmsg->cmsg_type) {
1929         case SO_MARK:
1930                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1931                         return -EPERM;
1932                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1933                         return -EINVAL;
1934                 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1935                 break;
1936         case SO_TIMESTAMPING:
1937                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1938                         return -EINVAL;
1939 
1940                 tsflags = *(u32 *)CMSG_DATA(cmsg);
1941                 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1942                         return -EINVAL;
1943 
1944                 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1945                 sockc->tsflags |= tsflags;
1946                 break;
1947         /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1948         case SCM_RIGHTS:
1949         case SCM_CREDENTIALS:
1950                 break;
1951         default:
1952                 return -EINVAL;
1953         }
1954         return 0;
1955 }
1956 EXPORT_SYMBOL(__sock_cmsg_send);
1957 
1958 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1959                    struct sockcm_cookie *sockc)
1960 {
1961         struct cmsghdr *cmsg;
1962         int ret;
1963 
1964         for_each_cmsghdr(cmsg, msg) {
1965                 if (!CMSG_OK(msg, cmsg))
1966                         return -EINVAL;
1967                 if (cmsg->cmsg_level != SOL_SOCKET)
1968                         continue;
1969                 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1970                 if (ret)
1971                         return ret;
1972         }
1973         return 0;
1974 }
1975 EXPORT_SYMBOL(sock_cmsg_send);
1976 
1977 /* On 32bit arches, an skb frag is limited to 2^15 */
1978 #define SKB_FRAG_PAGE_ORDER     get_order(32768)
1979 
1980 /**
1981  * skb_page_frag_refill - check that a page_frag contains enough room
1982  * @sz: minimum size of the fragment we want to get
1983  * @pfrag: pointer to page_frag
1984  * @gfp: priority for memory allocation
1985  *
1986  * Note: While this allocator tries to use high order pages, there is
1987  * no guarantee that allocations succeed. Therefore, @sz MUST be
1988  * less or equal than PAGE_SIZE.
1989  */
1990 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1991 {
1992         if (pfrag->page) {
1993                 if (page_ref_count(pfrag->page) == 1) {
1994                         pfrag->offset = 0;
1995                         return true;
1996                 }
1997                 if (pfrag->offset + sz <= pfrag->size)
1998                         return true;
1999                 put_page(pfrag->page);
2000         }
2001 
2002         pfrag->offset = 0;
2003         if (SKB_FRAG_PAGE_ORDER) {
2004                 /* Avoid direct reclaim but allow kswapd to wake */
2005                 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2006                                           __GFP_COMP | __GFP_NOWARN |
2007                                           __GFP_NORETRY,
2008                                           SKB_FRAG_PAGE_ORDER);
2009                 if (likely(pfrag->page)) {
2010                         pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2011                         return true;
2012                 }
2013         }
2014         pfrag->page = alloc_page(gfp);
2015         if (likely(pfrag->page)) {
2016                 pfrag->size = PAGE_SIZE;
2017                 return true;
2018         }
2019         return false;
2020 }
2021 EXPORT_SYMBOL(skb_page_frag_refill);
2022 
2023 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2024 {
2025         if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2026                 return true;
2027 
2028         sk_enter_memory_pressure(sk);
2029         sk_stream_moderate_sndbuf(sk);
2030         return false;
2031 }
2032 EXPORT_SYMBOL(sk_page_frag_refill);
2033 
2034 static void __lock_sock(struct sock *sk)
2035         __releases(&sk->sk_lock.slock)
2036         __acquires(&sk->sk_lock.slock)
2037 {
2038         DEFINE_WAIT(wait);
2039 
2040         for (;;) {
2041                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2042                                         TASK_UNINTERRUPTIBLE);
2043                 spin_unlock_bh(&sk->sk_lock.slock);
2044                 schedule();
2045                 spin_lock_bh(&sk->sk_lock.slock);
2046                 if (!sock_owned_by_user(sk))
2047                         break;
2048         }
2049         finish_wait(&sk->sk_lock.wq, &wait);
2050 }
2051 
2052 static void __release_sock(struct sock *sk)
2053         __releases(&sk->sk_lock.slock)
2054         __acquires(&sk->sk_lock.slock)
2055 {
2056         struct sk_buff *skb, *next;
2057 
2058         while ((skb = sk->sk_backlog.head) != NULL) {
2059                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2060 
2061                 spin_unlock_bh(&sk->sk_lock.slock);
2062 
2063                 do {
2064                         next = skb->next;
2065                         prefetch(next);
2066                         WARN_ON_ONCE(skb_dst_is_noref(skb));
2067                         skb->next = NULL;
2068                         sk_backlog_rcv(sk, skb);
2069 
2070                         cond_resched();
2071 
2072                         skb = next;
2073                 } while (skb != NULL);
2074 
2075                 spin_lock_bh(&sk->sk_lock.slock);
2076         }
2077 
2078         /*
2079          * Doing the zeroing here guarantee we can not loop forever
2080          * while a wild producer attempts to flood us.
2081          */
2082         sk->sk_backlog.len = 0;
2083 }
2084 
2085 void __sk_flush_backlog(struct sock *sk)
2086 {
2087         spin_lock_bh(&sk->sk_lock.slock);
2088         __release_sock(sk);
2089         spin_unlock_bh(&sk->sk_lock.slock);
2090 }
2091 
2092 /**
2093  * sk_wait_data - wait for data to arrive at sk_receive_queue
2094  * @sk:    sock to wait on
2095  * @timeo: for how long
2096  * @skb:   last skb seen on sk_receive_queue
2097  *
2098  * Now socket state including sk->sk_err is changed only under lock,
2099  * hence we may omit checks after joining wait queue.
2100  * We check receive queue before schedule() only as optimization;
2101  * it is very likely that release_sock() added new data.
2102  */
2103 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2104 {
2105         int rc;
2106         DEFINE_WAIT(wait);
2107 
2108         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2109         sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2110         rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2111         sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2112         finish_wait(sk_sleep(sk), &wait);
2113         return rc;
2114 }
2115 EXPORT_SYMBOL(sk_wait_data);
2116 
2117 /**
2118  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2119  *      @sk: socket
2120  *      @size: memory size to allocate
2121  *      @kind: allocation type
2122  *
2123  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2124  *      rmem allocation. This function assumes that protocols which have
2125  *      memory_pressure use sk_wmem_queued as write buffer accounting.
2126  */
2127 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2128 {
2129         struct proto *prot = sk->sk_prot;
2130         int amt = sk_mem_pages(size);
2131         long allocated;
2132 
2133         sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2134 
2135         allocated = sk_memory_allocated_add(sk, amt);
2136 
2137         if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2138             !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2139                 goto suppress_allocation;
2140 
2141         /* Under limit. */
2142         if (allocated <= sk_prot_mem_limits(sk, 0)) {
2143                 sk_leave_memory_pressure(sk);
2144                 return 1;
2145         }
2146 
2147         /* Under pressure. */
2148         if (allocated > sk_prot_mem_limits(sk, 1))
2149                 sk_enter_memory_pressure(sk);
2150 
2151         /* Over hard limit. */
2152         if (allocated > sk_prot_mem_limits(sk, 2))
2153                 goto suppress_allocation;
2154 
2155         /* guarantee minimum buffer size under pressure */
2156         if (kind == SK_MEM_RECV) {
2157                 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2158                         return 1;
2159 
2160         } else { /* SK_MEM_SEND */
2161                 if (sk->sk_type == SOCK_STREAM) {
2162                         if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2163                                 return 1;
2164                 } else if (atomic_read(&sk->sk_wmem_alloc) <
2165                            prot->sysctl_wmem[0])
2166                                 return 1;
2167         }
2168 
2169         if (sk_has_memory_pressure(sk)) {
2170                 int alloc;
2171 
2172                 if (!sk_under_memory_pressure(sk))
2173                         return 1;
2174                 alloc = sk_sockets_allocated_read_positive(sk);
2175                 if (sk_prot_mem_limits(sk, 2) > alloc *
2176                     sk_mem_pages(sk->sk_wmem_queued +
2177                                  atomic_read(&sk->sk_rmem_alloc) +
2178                                  sk->sk_forward_alloc))
2179                         return 1;
2180         }
2181 
2182 suppress_allocation:
2183 
2184         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2185                 sk_stream_moderate_sndbuf(sk);
2186 
2187                 /* Fail only if socket is _under_ its sndbuf.
2188                  * In this case we cannot block, so that we have to fail.
2189                  */
2190                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2191                         return 1;
2192         }
2193 
2194         trace_sock_exceed_buf_limit(sk, prot, allocated);
2195 
2196         /* Alas. Undo changes. */
2197         sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2198 
2199         sk_memory_allocated_sub(sk, amt);
2200 
2201         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2202                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2203 
2204         return 0;
2205 }
2206 EXPORT_SYMBOL(__sk_mem_schedule);
2207 
2208 /**
2209  *      __sk_mem_reclaim - reclaim memory_allocated
2210  *      @sk: socket
2211  *      @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2212  */
2213 void __sk_mem_reclaim(struct sock *sk, int amount)
2214 {
2215         amount >>= SK_MEM_QUANTUM_SHIFT;
2216         sk_memory_allocated_sub(sk, amount);
2217         sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2218 
2219         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2220                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2221 
2222         if (sk_under_memory_pressure(sk) &&
2223             (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2224                 sk_leave_memory_pressure(sk);
2225 }
2226 EXPORT_SYMBOL(__sk_mem_reclaim);
2227 
2228 int sk_set_peek_off(struct sock *sk, int val)
2229 {
2230         if (val < 0)
2231                 return -EINVAL;
2232 
2233         sk->sk_peek_off = val;
2234         return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2237 
2238 /*
2239  * Set of default routines for initialising struct proto_ops when
2240  * the protocol does not support a particular function. In certain
2241  * cases where it makes no sense for a protocol to have a "do nothing"
2242  * function, some default processing is provided.
2243  */
2244 
2245 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2246 {
2247         return -EOPNOTSUPP;
2248 }
2249 EXPORT_SYMBOL(sock_no_bind);
2250 
2251 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2252                     int len, int flags)
2253 {
2254         return -EOPNOTSUPP;
2255 }
2256 EXPORT_SYMBOL(sock_no_connect);
2257 
2258 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2259 {
2260         return -EOPNOTSUPP;
2261 }
2262 EXPORT_SYMBOL(sock_no_socketpair);
2263 
2264 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2265 {
2266         return -EOPNOTSUPP;
2267 }
2268 EXPORT_SYMBOL(sock_no_accept);
2269 
2270 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2271                     int *len, int peer)
2272 {
2273         return -EOPNOTSUPP;
2274 }
2275 EXPORT_SYMBOL(sock_no_getname);
2276 
2277 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2278 {
2279         return 0;
2280 }
2281 EXPORT_SYMBOL(sock_no_poll);
2282 
2283 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2284 {
2285         return -EOPNOTSUPP;
2286 }
2287 EXPORT_SYMBOL(sock_no_ioctl);
2288 
2289 int sock_no_listen(struct socket *sock, int backlog)
2290 {
2291         return -EOPNOTSUPP;
2292 }
2293 EXPORT_SYMBOL(sock_no_listen);
2294 
2295 int sock_no_shutdown(struct socket *sock, int how)
2296 {
2297         return -EOPNOTSUPP;
2298 }
2299 EXPORT_SYMBOL(sock_no_shutdown);
2300 
2301 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2302                     char __user *optval, unsigned int optlen)
2303 {
2304         return -EOPNOTSUPP;
2305 }
2306 EXPORT_SYMBOL(sock_no_setsockopt);
2307 
2308 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2309                     char __user *optval, int __user *optlen)
2310 {
2311         return -EOPNOTSUPP;
2312 }
2313 EXPORT_SYMBOL(sock_no_getsockopt);
2314 
2315 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2316 {
2317         return -EOPNOTSUPP;
2318 }
2319 EXPORT_SYMBOL(sock_no_sendmsg);
2320 
2321 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2322                     int flags)
2323 {
2324         return -EOPNOTSUPP;
2325 }
2326 EXPORT_SYMBOL(sock_no_recvmsg);
2327 
2328 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2329 {
2330         /* Mirror missing mmap method error code */
2331         return -ENODEV;
2332 }
2333 EXPORT_SYMBOL(sock_no_mmap);
2334 
2335 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2336 {
2337         ssize_t res;
2338         struct msghdr msg = {.msg_flags = flags};
2339         struct kvec iov;
2340         char *kaddr = kmap(page);
2341         iov.iov_base = kaddr + offset;
2342         iov.iov_len = size;
2343         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2344         kunmap(page);
2345         return res;
2346 }
2347 EXPORT_SYMBOL(sock_no_sendpage);
2348 
2349 /*
2350  *      Default Socket Callbacks
2351  */
2352 
2353 static void sock_def_wakeup(struct sock *sk)
2354 {
2355         struct socket_wq *wq;
2356 
2357         rcu_read_lock();
2358         wq = rcu_dereference(sk->sk_wq);
2359         if (skwq_has_sleeper(wq))
2360                 wake_up_interruptible_all(&wq->wait);
2361         rcu_read_unlock();
2362 }
2363 
2364 static void sock_def_error_report(struct sock *sk)
2365 {
2366         struct socket_wq *wq;
2367 
2368         rcu_read_lock();
2369         wq = rcu_dereference(sk->sk_wq);
2370         if (skwq_has_sleeper(wq))
2371                 wake_up_interruptible_poll(&wq->wait, POLLERR);
2372         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2373         rcu_read_unlock();
2374 }
2375 
2376 static void sock_def_readable(struct sock *sk)
2377 {
2378         struct socket_wq *wq;
2379 
2380         rcu_read_lock();
2381         wq = rcu_dereference(sk->sk_wq);
2382         if (skwq_has_sleeper(wq))
2383                 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2384                                                 POLLRDNORM | POLLRDBAND);
2385         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2386         rcu_read_unlock();
2387 }
2388 
2389 static void sock_def_write_space(struct sock *sk)
2390 {
2391         struct socket_wq *wq;
2392 
2393         rcu_read_lock();
2394 
2395         /* Do not wake up a writer until he can make "significant"
2396          * progress.  --DaveM
2397          */
2398         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2399                 wq = rcu_dereference(sk->sk_wq);
2400                 if (skwq_has_sleeper(wq))
2401                         wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2402                                                 POLLWRNORM | POLLWRBAND);
2403 
2404                 /* Should agree with poll, otherwise some programs break */
2405                 if (sock_writeable(sk))
2406                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2407         }
2408 
2409         rcu_read_unlock();
2410 }
2411 
2412 static void sock_def_destruct(struct sock *sk)
2413 {
2414 }
2415 
2416 void sk_send_sigurg(struct sock *sk)
2417 {
2418         if (sk->sk_socket && sk->sk_socket->file)
2419                 if (send_sigurg(&sk->sk_socket->file->f_owner))
2420                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2421 }
2422 EXPORT_SYMBOL(sk_send_sigurg);
2423 
2424 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2425                     unsigned long expires)
2426 {
2427         if (!mod_timer(timer, expires))
2428                 sock_hold(sk);
2429 }
2430 EXPORT_SYMBOL(sk_reset_timer);
2431 
2432 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2433 {
2434         if (del_timer(timer))
2435                 __sock_put(sk);
2436 }
2437 EXPORT_SYMBOL(sk_stop_timer);
2438 
2439 void sock_init_data(struct socket *sock, struct sock *sk)
2440 {
2441         skb_queue_head_init(&sk->sk_receive_queue);
2442         skb_queue_head_init(&sk->sk_write_queue);
2443         skb_queue_head_init(&sk->sk_error_queue);
2444 
2445         sk->sk_send_head        =       NULL;
2446 
2447         init_timer(&sk->sk_timer);
2448 
2449         sk->sk_allocation       =       GFP_KERNEL;
2450         sk->sk_rcvbuf           =       sysctl_rmem_default;
2451         sk->sk_sndbuf           =       sysctl_wmem_default;
2452         sk->sk_state            =       TCP_CLOSE;
2453         sk_set_socket(sk, sock);
2454 
2455         sock_set_flag(sk, SOCK_ZAPPED);
2456 
2457         if (sock) {
2458                 sk->sk_type     =       sock->type;
2459                 sk->sk_wq       =       sock->wq;
2460                 sock->sk        =       sk;
2461         } else
2462                 sk->sk_wq       =       NULL;
2463 
2464         rwlock_init(&sk->sk_callback_lock);
2465         lockdep_set_class_and_name(&sk->sk_callback_lock,
2466                         af_callback_keys + sk->sk_family,
2467                         af_family_clock_key_strings[sk->sk_family]);
2468 
2469         sk->sk_state_change     =       sock_def_wakeup;
2470         sk->sk_data_ready       =       sock_def_readable;
2471         sk->sk_write_space      =       sock_def_write_space;
2472         sk->sk_error_report     =       sock_def_error_report;
2473         sk->sk_destruct         =       sock_def_destruct;
2474 
2475         sk->sk_frag.page        =       NULL;
2476         sk->sk_frag.offset      =       0;
2477         sk->sk_peek_off         =       -1;
2478 
2479         sk->sk_peer_pid         =       NULL;
2480         sk->sk_peer_cred        =       NULL;
2481         sk->sk_write_pending    =       0;
2482         sk->sk_rcvlowat         =       1;
2483         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2484         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2485 
2486         sk->sk_stamp = ktime_set(-1L, 0);
2487 
2488 #ifdef CONFIG_NET_RX_BUSY_POLL
2489         sk->sk_napi_id          =       0;
2490         sk->sk_ll_usec          =       sysctl_net_busy_read;
2491 #endif
2492 
2493         sk->sk_max_pacing_rate = ~0U;
2494         sk->sk_pacing_rate = ~0U;
2495         sk->sk_incoming_cpu = -1;
2496         /*
2497          * Before updating sk_refcnt, we must commit prior changes to memory
2498          * (Documentation/RCU/rculist_nulls.txt for details)
2499          */
2500         smp_wmb();
2501         atomic_set(&sk->sk_refcnt, 1);
2502         atomic_set(&sk->sk_drops, 0);
2503 }
2504 EXPORT_SYMBOL(sock_init_data);
2505 
2506 void lock_sock_nested(struct sock *sk, int subclass)
2507 {
2508         might_sleep();
2509         spin_lock_bh(&sk->sk_lock.slock);
2510         if (sk->sk_lock.owned)
2511                 __lock_sock(sk);
2512         sk->sk_lock.owned = 1;
2513         spin_unlock(&sk->sk_lock.slock);
2514         /*
2515          * The sk_lock has mutex_lock() semantics here:
2516          */
2517         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2518         local_bh_enable();
2519 }
2520 EXPORT_SYMBOL(lock_sock_nested);
2521 
2522 void release_sock(struct sock *sk)
2523 {
2524         spin_lock_bh(&sk->sk_lock.slock);
2525         if (sk->sk_backlog.tail)
2526                 __release_sock(sk);
2527 
2528         /* Warning : release_cb() might need to release sk ownership,
2529          * ie call sock_release_ownership(sk) before us.
2530          */
2531         if (sk->sk_prot->release_cb)
2532                 sk->sk_prot->release_cb(sk);
2533 
2534         sock_release_ownership(sk);
2535         if (waitqueue_active(&sk->sk_lock.wq))
2536                 wake_up(&sk->sk_lock.wq);
2537         spin_unlock_bh(&sk->sk_lock.slock);
2538 }
2539 EXPORT_SYMBOL(release_sock);
2540 
2541 /**
2542  * lock_sock_fast - fast version of lock_sock
2543  * @sk: socket
2544  *
2545  * This version should be used for very small section, where process wont block
2546  * return false if fast path is taken
2547  *   sk_lock.slock locked, owned = 0, BH disabled
2548  * return true if slow path is taken
2549  *   sk_lock.slock unlocked, owned = 1, BH enabled
2550  */
2551 bool lock_sock_fast(struct sock *sk)
2552 {
2553         might_sleep();
2554         spin_lock_bh(&sk->sk_lock.slock);
2555 
2556         if (!sk->sk_lock.owned)
2557                 /*
2558                  * Note : We must disable BH
2559                  */
2560                 return false;
2561 
2562         __lock_sock(sk);
2563         sk->sk_lock.owned = 1;
2564         spin_unlock(&sk->sk_lock.slock);
2565         /*
2566          * The sk_lock has mutex_lock() semantics here:
2567          */
2568         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2569         local_bh_enable();
2570         return true;
2571 }
2572 EXPORT_SYMBOL(lock_sock_fast);
2573 
2574 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2575 {
2576         struct timeval tv;
2577         if (!sock_flag(sk, SOCK_TIMESTAMP))
2578                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2579         tv = ktime_to_timeval(sk->sk_stamp);
2580         if (tv.tv_sec == -1)
2581                 return -ENOENT;
2582         if (tv.tv_sec == 0) {
2583                 sk->sk_stamp = ktime_get_real();
2584                 tv = ktime_to_timeval(sk->sk_stamp);
2585         }
2586         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2587 }
2588 EXPORT_SYMBOL(sock_get_timestamp);
2589 
2590 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2591 {
2592         struct timespec ts;
2593         if (!sock_flag(sk, SOCK_TIMESTAMP))
2594                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2595         ts = ktime_to_timespec(sk->sk_stamp);
2596         if (ts.tv_sec == -1)
2597                 return -ENOENT;
2598         if (ts.tv_sec == 0) {
2599                 sk->sk_stamp = ktime_get_real();
2600                 ts = ktime_to_timespec(sk->sk_stamp);
2601         }
2602         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2603 }
2604 EXPORT_SYMBOL(sock_get_timestampns);
2605 
2606 void sock_enable_timestamp(struct sock *sk, int flag)
2607 {
2608         if (!sock_flag(sk, flag)) {
2609                 unsigned long previous_flags = sk->sk_flags;
2610 
2611                 sock_set_flag(sk, flag);
2612                 /*
2613                  * we just set one of the two flags which require net
2614                  * time stamping, but time stamping might have been on
2615                  * already because of the other one
2616                  */
2617                 if (sock_needs_netstamp(sk) &&
2618                     !(previous_flags & SK_FLAGS_TIMESTAMP))
2619                         net_enable_timestamp();
2620         }
2621 }
2622 
2623 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2624                        int level, int type)
2625 {
2626         struct sock_exterr_skb *serr;
2627         struct sk_buff *skb;
2628         int copied, err;
2629 
2630         err = -EAGAIN;
2631         skb = sock_dequeue_err_skb(sk);
2632         if (skb == NULL)
2633                 goto out;
2634 
2635         copied = skb->len;
2636         if (copied > len) {
2637                 msg->msg_flags |= MSG_TRUNC;
2638                 copied = len;
2639         }
2640         err = skb_copy_datagram_msg(skb, 0, msg, copied);
2641         if (err)
2642                 goto out_free_skb;
2643 
2644         sock_recv_timestamp(msg, sk, skb);
2645 
2646         serr = SKB_EXT_ERR(skb);
2647         put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2648 
2649         msg->msg_flags |= MSG_ERRQUEUE;
2650         err = copied;
2651 
2652 out_free_skb:
2653         kfree_skb(skb);
2654 out:
2655         return err;
2656 }
2657 EXPORT_SYMBOL(sock_recv_errqueue);
2658 
2659 /*
2660  *      Get a socket option on an socket.
2661  *
2662  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2663  *      asynchronous errors should be reported by getsockopt. We assume
2664  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2665  */
2666 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2667                            char __user *optval, int __user *optlen)
2668 {
2669         struct sock *sk = sock->sk;
2670 
2671         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2672 }
2673 EXPORT_SYMBOL(sock_common_getsockopt);
2674 
2675 #ifdef CONFIG_COMPAT
2676 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2677                                   char __user *optval, int __user *optlen)
2678 {
2679         struct sock *sk = sock->sk;
2680 
2681         if (sk->sk_prot->compat_getsockopt != NULL)
2682                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2683                                                       optval, optlen);
2684         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2685 }
2686 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2687 #endif
2688 
2689 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2690                         int flags)
2691 {
2692         struct sock *sk = sock->sk;
2693         int addr_len = 0;
2694         int err;
2695 
2696         err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2697                                    flags & ~MSG_DONTWAIT, &addr_len);
2698         if (err >= 0)
2699                 msg->msg_namelen = addr_len;
2700         return err;
2701 }
2702 EXPORT_SYMBOL(sock_common_recvmsg);
2703 
2704 /*
2705  *      Set socket options on an inet socket.
2706  */
2707 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2708                            char __user *optval, unsigned int optlen)
2709 {
2710         struct sock *sk = sock->sk;
2711 
2712         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2713 }
2714 EXPORT_SYMBOL(sock_common_setsockopt);
2715 
2716 #ifdef CONFIG_COMPAT
2717 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2718                                   char __user *optval, unsigned int optlen)
2719 {
2720         struct sock *sk = sock->sk;
2721 
2722         if (sk->sk_prot->compat_setsockopt != NULL)
2723                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2724                                                       optval, optlen);
2725         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2726 }
2727 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2728 #endif
2729 
2730 void sk_common_release(struct sock *sk)
2731 {
2732         if (sk->sk_prot->destroy)
2733                 sk->sk_prot->destroy(sk);
2734 
2735         /*
2736          * Observation: when sock_common_release is called, processes have
2737          * no access to socket. But net still has.
2738          * Step one, detach it from networking:
2739          *
2740          * A. Remove from hash tables.
2741          */
2742 
2743         sk->sk_prot->unhash(sk);
2744 
2745         /*
2746          * In this point socket cannot receive new packets, but it is possible
2747          * that some packets are in flight because some CPU runs receiver and
2748          * did hash table lookup before we unhashed socket. They will achieve
2749          * receive queue and will be purged by socket destructor.
2750          *
2751          * Also we still have packets pending on receive queue and probably,
2752          * our own packets waiting in device queues. sock_destroy will drain
2753          * receive queue, but transmitted packets will delay socket destruction
2754          * until the last reference will be released.
2755          */
2756 
2757         sock_orphan(sk);
2758 
2759         xfrm_sk_free_policy(sk);
2760 
2761         sk_refcnt_debug_release(sk);
2762 
2763         if (sk->sk_frag.page) {
2764                 put_page(sk->sk_frag.page);
2765                 sk->sk_frag.page = NULL;
2766         }
2767 
2768         sock_put(sk);
2769 }
2770 EXPORT_SYMBOL(sk_common_release);
2771 
2772 #ifdef CONFIG_PROC_FS
2773 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
2774 struct prot_inuse {
2775         int val[PROTO_INUSE_NR];
2776 };
2777 
2778 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2779 
2780 #ifdef CONFIG_NET_NS
2781 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2782 {
2783         __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2784 }
2785 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2786 
2787 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2788 {
2789         int cpu, idx = prot->inuse_idx;
2790         int res = 0;
2791 
2792         for_each_possible_cpu(cpu)
2793                 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2794 
2795         return res >= 0 ? res : 0;
2796 }
2797 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2798 
2799 static int __net_init sock_inuse_init_net(struct net *net)
2800 {
2801         net->core.inuse = alloc_percpu(struct prot_inuse);
2802         return net->core.inuse ? 0 : -ENOMEM;
2803 }
2804 
2805 static void __net_exit sock_inuse_exit_net(struct net *net)
2806 {
2807         free_percpu(net->core.inuse);
2808 }
2809 
2810 static struct pernet_operations net_inuse_ops = {
2811         .init = sock_inuse_init_net,
2812         .exit = sock_inuse_exit_net,
2813 };
2814 
2815 static __init int net_inuse_init(void)
2816 {
2817         if (register_pernet_subsys(&net_inuse_ops))
2818                 panic("Cannot initialize net inuse counters");
2819 
2820         return 0;
2821 }
2822 
2823 core_initcall(net_inuse_init);
2824 #else
2825 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2826 
2827 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2828 {
2829         __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2830 }
2831 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2832 
2833 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2834 {
2835         int cpu, idx = prot->inuse_idx;
2836         int res = 0;
2837 
2838         for_each_possible_cpu(cpu)
2839                 res += per_cpu(prot_inuse, cpu).val[idx];
2840 
2841         return res >= 0 ? res : 0;
2842 }
2843 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2844 #endif
2845 
2846 static void assign_proto_idx(struct proto *prot)
2847 {
2848         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2849 
2850         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2851                 pr_err("PROTO_INUSE_NR exhausted\n");
2852                 return;
2853         }
2854 
2855         set_bit(prot->inuse_idx, proto_inuse_idx);
2856 }
2857 
2858 static void release_proto_idx(struct proto *prot)
2859 {
2860         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2861                 clear_bit(prot->inuse_idx, proto_inuse_idx);
2862 }
2863 #else
2864 static inline void assign_proto_idx(struct proto *prot)
2865 {
2866 }
2867 
2868 static inline void release_proto_idx(struct proto *prot)
2869 {
2870 }
2871 #endif
2872 
2873 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2874 {
2875         if (!rsk_prot)
2876                 return;
2877         kfree(rsk_prot->slab_name);
2878         rsk_prot->slab_name = NULL;
2879         kmem_cache_destroy(rsk_prot->slab);
2880         rsk_prot->slab = NULL;
2881 }
2882 
2883 static int req_prot_init(const struct proto *prot)
2884 {
2885         struct request_sock_ops *rsk_prot = prot->rsk_prot;
2886 
2887         if (!rsk_prot)
2888                 return 0;
2889 
2890         rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2891                                         prot->name);
2892         if (!rsk_prot->slab_name)
2893                 return -ENOMEM;
2894 
2895         rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2896                                            rsk_prot->obj_size, 0,
2897                                            prot->slab_flags, NULL);
2898 
2899         if (!rsk_prot->slab) {
2900                 pr_crit("%s: Can't create request sock SLAB cache!\n",
2901                         prot->name);
2902                 return -ENOMEM;
2903         }
2904         return 0;
2905 }
2906 
2907 int proto_register(struct proto *prot, int alloc_slab)
2908 {
2909         if (alloc_slab) {
2910                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2911                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
2912                                         NULL);
2913 
2914                 if (prot->slab == NULL) {
2915                         pr_crit("%s: Can't create sock SLAB cache!\n",
2916                                 prot->name);
2917                         goto out;
2918                 }
2919 
2920                 if (req_prot_init(prot))
2921                         goto out_free_request_sock_slab;
2922 
2923                 if (prot->twsk_prot != NULL) {
2924                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2925 
2926                         if (prot->twsk_prot->twsk_slab_name == NULL)
2927                                 goto out_free_request_sock_slab;
2928 
2929                         prot->twsk_prot->twsk_slab =
2930                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2931                                                   prot->twsk_prot->twsk_obj_size,
2932                                                   0,
2933                                                   prot->slab_flags,
2934                                                   NULL);
2935                         if (prot->twsk_prot->twsk_slab == NULL)
2936                                 goto out_free_timewait_sock_slab_name;
2937                 }
2938         }
2939 
2940         mutex_lock(&proto_list_mutex);
2941         list_add(&prot->node, &proto_list);
2942         assign_proto_idx(prot);
2943         mutex_unlock(&proto_list_mutex);
2944         return 0;
2945 
2946 out_free_timewait_sock_slab_name:
2947         kfree(prot->twsk_prot->twsk_slab_name);
2948 out_free_request_sock_slab:
2949         req_prot_cleanup(prot->rsk_prot);
2950 
2951         kmem_cache_destroy(prot->slab);
2952         prot->slab = NULL;
2953 out:
2954         return -ENOBUFS;
2955 }
2956 EXPORT_SYMBOL(proto_register);
2957 
2958 void proto_unregister(struct proto *prot)
2959 {
2960         mutex_lock(&proto_list_mutex);
2961         release_proto_idx(prot);
2962         list_del(&prot->node);
2963         mutex_unlock(&proto_list_mutex);
2964 
2965         kmem_cache_destroy(prot->slab);
2966         prot->slab = NULL;
2967 
2968         req_prot_cleanup(prot->rsk_prot);
2969 
2970         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2971                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2972                 kfree(prot->twsk_prot->twsk_slab_name);
2973                 prot->twsk_prot->twsk_slab = NULL;
2974         }
2975 }
2976 EXPORT_SYMBOL(proto_unregister);
2977 
2978 #ifdef CONFIG_PROC_FS
2979 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2980         __acquires(proto_list_mutex)
2981 {
2982         mutex_lock(&proto_list_mutex);
2983         return seq_list_start_head(&proto_list, *pos);
2984 }
2985 
2986 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2987 {
2988         return seq_list_next(v, &proto_list, pos);
2989 }
2990 
2991 static void proto_seq_stop(struct seq_file *seq, void *v)
2992         __releases(proto_list_mutex)
2993 {
2994         mutex_unlock(&proto_list_mutex);
2995 }
2996 
2997 static char proto_method_implemented(const void *method)
2998 {
2999         return method == NULL ? 'n' : 'y';
3000 }
3001 static long sock_prot_memory_allocated(struct proto *proto)
3002 {
3003         return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3004 }
3005 
3006 static char *sock_prot_memory_pressure(struct proto *proto)
3007 {
3008         return proto->memory_pressure != NULL ?
3009         proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3010 }
3011 
3012 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3013 {
3014 
3015         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3016                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3017                    proto->name,
3018                    proto->obj_size,
3019                    sock_prot_inuse_get(seq_file_net(seq), proto),
3020                    sock_prot_memory_allocated(proto),
3021                    sock_prot_memory_pressure(proto),
3022                    proto->max_header,
3023                    proto->slab == NULL ? "no" : "yes",
3024                    module_name(proto->owner),
3025                    proto_method_implemented(proto->close),
3026                    proto_method_implemented(proto->connect),
3027                    proto_method_implemented(proto->disconnect),
3028                    proto_method_implemented(proto->accept),
3029                    proto_method_implemented(proto->ioctl),
3030                    proto_method_implemented(proto->init),
3031                    proto_method_implemented(proto->destroy),
3032                    proto_method_implemented(proto->shutdown),
3033                    proto_method_implemented(proto->setsockopt),
3034                    proto_method_implemented(proto->getsockopt),
3035                    proto_method_implemented(proto->sendmsg),
3036                    proto_method_implemented(proto->recvmsg),
3037                    proto_method_implemented(proto->sendpage),
3038                    proto_method_implemented(proto->bind),
3039                    proto_method_implemented(proto->backlog_rcv),
3040                    proto_method_implemented(proto->hash),
3041                    proto_method_implemented(proto->unhash),
3042                    proto_method_implemented(proto->get_port),
3043                    proto_method_implemented(proto->enter_memory_pressure));
3044 }
3045 
3046 static int proto_seq_show(struct seq_file *seq, void *v)
3047 {
3048         if (v == &proto_list)
3049                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3050                            "protocol",
3051                            "size",
3052                            "sockets",
3053                            "memory",
3054                            "press",
3055                            "maxhdr",
3056                            "slab",
3057                            "module",
3058                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3059         else
3060                 proto_seq_printf(seq, list_entry(v, struct proto, node));
3061         return 0;
3062 }
3063 
3064 static const struct seq_operations proto_seq_ops = {
3065         .start  = proto_seq_start,
3066         .next   = proto_seq_next,
3067         .stop   = proto_seq_stop,
3068         .show   = proto_seq_show,
3069 };
3070 
3071 static int proto_seq_open(struct inode *inode, struct file *file)
3072 {
3073         return seq_open_net(inode, file, &proto_seq_ops,
3074                             sizeof(struct seq_net_private));
3075 }
3076 
3077 static const struct file_operations proto_seq_fops = {
3078         .owner          = THIS_MODULE,
3079         .open           = proto_seq_open,
3080         .read           = seq_read,
3081         .llseek         = seq_lseek,
3082         .release        = seq_release_net,
3083 };
3084 
3085 static __net_init int proto_init_net(struct net *net)
3086 {
3087         if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3088                 return -ENOMEM;
3089 
3090         return 0;
3091 }
3092 
3093 static __net_exit void proto_exit_net(struct net *net)
3094 {
3095         remove_proc_entry("protocols", net->proc_net);
3096 }
3097 
3098 
3099 static __net_initdata struct pernet_operations proto_net_ops = {
3100         .init = proto_init_net,
3101         .exit = proto_exit_net,
3102 };
3103 
3104 static int __init proto_init(void)
3105 {
3106         return register_pernet_subsys(&proto_net_ops);
3107 }
3108 
3109 subsys_initcall(proto_init);
3110 
3111 #endif /* PROC_FS */
3112 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp