1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 * 85 * 86 * This program is free software; you can redistribute it and/or 87 * modify it under the terms of the GNU General Public License 88 * as published by the Free Software Foundation; either version 89 * 2 of the License, or (at your option) any later version. 90 */ 91 92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 93 94 #include <linux/capability.h> 95 #include <linux/errno.h> 96 #include <linux/errqueue.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 #include <linux/highmem.h> 116 #include <linux/user_namespace.h> 117 #include <linux/static_key.h> 118 #include <linux/memcontrol.h> 119 #include <linux/prefetch.h> 120 121 #include <asm/uaccess.h> 122 123 #include <linux/netdevice.h> 124 #include <net/protocol.h> 125 #include <linux/skbuff.h> 126 #include <net/net_namespace.h> 127 #include <net/request_sock.h> 128 #include <net/sock.h> 129 #include <linux/net_tstamp.h> 130 #include <net/xfrm.h> 131 #include <linux/ipsec.h> 132 #include <net/cls_cgroup.h> 133 #include <net/netprio_cgroup.h> 134 #include <linux/sock_diag.h> 135 136 #include <linux/filter.h> 137 #include <net/sock_reuseport.h> 138 139 #include <trace/events/sock.h> 140 141 #ifdef CONFIG_INET 142 #include <net/tcp.h> 143 #endif 144 145 #include <net/busy_poll.h> 146 147 static DEFINE_MUTEX(proto_list_mutex); 148 static LIST_HEAD(proto_list); 149 150 /** 151 * sk_ns_capable - General socket capability test 152 * @sk: Socket to use a capability on or through 153 * @user_ns: The user namespace of the capability to use 154 * @cap: The capability to use 155 * 156 * Test to see if the opener of the socket had when the socket was 157 * created and the current process has the capability @cap in the user 158 * namespace @user_ns. 159 */ 160 bool sk_ns_capable(const struct sock *sk, 161 struct user_namespace *user_ns, int cap) 162 { 163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 164 ns_capable(user_ns, cap); 165 } 166 EXPORT_SYMBOL(sk_ns_capable); 167 168 /** 169 * sk_capable - Socket global capability test 170 * @sk: Socket to use a capability on or through 171 * @cap: The global capability to use 172 * 173 * Test to see if the opener of the socket had when the socket was 174 * created and the current process has the capability @cap in all user 175 * namespaces. 176 */ 177 bool sk_capable(const struct sock *sk, int cap) 178 { 179 return sk_ns_capable(sk, &init_user_ns, cap); 180 } 181 EXPORT_SYMBOL(sk_capable); 182 183 /** 184 * sk_net_capable - Network namespace socket capability test 185 * @sk: Socket to use a capability on or through 186 * @cap: The capability to use 187 * 188 * Test to see if the opener of the socket had when the socket was created 189 * and the current process has the capability @cap over the network namespace 190 * the socket is a member of. 191 */ 192 bool sk_net_capable(const struct sock *sk, int cap) 193 { 194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 195 } 196 EXPORT_SYMBOL(sk_net_capable); 197 198 /* 199 * Each address family might have different locking rules, so we have 200 * one slock key per address family: 201 */ 202 static struct lock_class_key af_family_keys[AF_MAX]; 203 static struct lock_class_key af_family_slock_keys[AF_MAX]; 204 205 /* 206 * Make lock validator output more readable. (we pre-construct these 207 * strings build-time, so that runtime initialization of socket 208 * locks is fast): 209 */ 210 static const char *const af_family_key_strings[AF_MAX+1] = { 211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" , 212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK", 213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" , 214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" , 215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" , 216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" , 217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" , 218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" , 219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" , 220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" , 221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" , 222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" , 223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" , 224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" , 225 "sk_lock-AF_MAX" 226 }; 227 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" , 229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK", 230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" , 231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" , 232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" , 233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" , 234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" , 235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" , 236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" , 237 "slock-27" , "slock-28" , "slock-AF_CAN" , 238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" , 239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" , 240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" , 241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" , 242 "slock-AF_MAX" 243 }; 244 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" , 246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK", 247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" , 248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" , 249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" , 250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" , 251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" , 252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" , 253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" , 254 "clock-27" , "clock-28" , "clock-AF_CAN" , 255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" , 256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" , 257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" , 258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" , 259 "clock-AF_MAX" 260 }; 261 262 /* 263 * sk_callback_lock locking rules are per-address-family, 264 * so split the lock classes by using a per-AF key: 265 */ 266 static struct lock_class_key af_callback_keys[AF_MAX]; 267 268 /* Take into consideration the size of the struct sk_buff overhead in the 269 * determination of these values, since that is non-constant across 270 * platforms. This makes socket queueing behavior and performance 271 * not depend upon such differences. 272 */ 273 #define _SK_MEM_PACKETS 256 274 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 275 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 276 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 277 278 /* Run time adjustable parameters. */ 279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 280 EXPORT_SYMBOL(sysctl_wmem_max); 281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 282 EXPORT_SYMBOL(sysctl_rmem_max); 283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 285 286 /* Maximal space eaten by iovec or ancillary data plus some space */ 287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 288 EXPORT_SYMBOL(sysctl_optmem_max); 289 290 int sysctl_tstamp_allow_data __read_mostly = 1; 291 292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE; 293 EXPORT_SYMBOL_GPL(memalloc_socks); 294 295 /** 296 * sk_set_memalloc - sets %SOCK_MEMALLOC 297 * @sk: socket to set it on 298 * 299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 300 * It's the responsibility of the admin to adjust min_free_kbytes 301 * to meet the requirements 302 */ 303 void sk_set_memalloc(struct sock *sk) 304 { 305 sock_set_flag(sk, SOCK_MEMALLOC); 306 sk->sk_allocation |= __GFP_MEMALLOC; 307 static_key_slow_inc(&memalloc_socks); 308 } 309 EXPORT_SYMBOL_GPL(sk_set_memalloc); 310 311 void sk_clear_memalloc(struct sock *sk) 312 { 313 sock_reset_flag(sk, SOCK_MEMALLOC); 314 sk->sk_allocation &= ~__GFP_MEMALLOC; 315 static_key_slow_dec(&memalloc_socks); 316 317 /* 318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 319 * progress of swapping. SOCK_MEMALLOC may be cleared while 320 * it has rmem allocations due to the last swapfile being deactivated 321 * but there is a risk that the socket is unusable due to exceeding 322 * the rmem limits. Reclaim the reserves and obey rmem limits again. 323 */ 324 sk_mem_reclaim(sk); 325 } 326 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 327 328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 329 { 330 int ret; 331 unsigned long pflags = current->flags; 332 333 /* these should have been dropped before queueing */ 334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 335 336 current->flags |= PF_MEMALLOC; 337 ret = sk->sk_backlog_rcv(sk, skb); 338 tsk_restore_flags(current, pflags, PF_MEMALLOC); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 345 { 346 struct timeval tv; 347 348 if (optlen < sizeof(tv)) 349 return -EINVAL; 350 if (copy_from_user(&tv, optval, sizeof(tv))) 351 return -EFAULT; 352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 353 return -EDOM; 354 355 if (tv.tv_sec < 0) { 356 static int warned __read_mostly; 357 358 *timeo_p = 0; 359 if (warned < 10 && net_ratelimit()) { 360 warned++; 361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 362 __func__, current->comm, task_pid_nr(current)); 363 } 364 return 0; 365 } 366 *timeo_p = MAX_SCHEDULE_TIMEOUT; 367 if (tv.tv_sec == 0 && tv.tv_usec == 0) 368 return 0; 369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 370 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 371 return 0; 372 } 373 374 static void sock_warn_obsolete_bsdism(const char *name) 375 { 376 static int warned; 377 static char warncomm[TASK_COMM_LEN]; 378 if (strcmp(warncomm, current->comm) && warned < 5) { 379 strcpy(warncomm, current->comm); 380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 381 warncomm, name); 382 warned++; 383 } 384 } 385 386 static bool sock_needs_netstamp(const struct sock *sk) 387 { 388 switch (sk->sk_family) { 389 case AF_UNSPEC: 390 case AF_UNIX: 391 return false; 392 default: 393 return true; 394 } 395 } 396 397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 398 { 399 if (sk->sk_flags & flags) { 400 sk->sk_flags &= ~flags; 401 if (sock_needs_netstamp(sk) && 402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 403 net_disable_timestamp(); 404 } 405 } 406 407 408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 409 { 410 unsigned long flags; 411 struct sk_buff_head *list = &sk->sk_receive_queue; 412 413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 414 atomic_inc(&sk->sk_drops); 415 trace_sock_rcvqueue_full(sk, skb); 416 return -ENOMEM; 417 } 418 419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 420 atomic_inc(&sk->sk_drops); 421 return -ENOBUFS; 422 } 423 424 skb->dev = NULL; 425 skb_set_owner_r(skb, sk); 426 427 /* we escape from rcu protected region, make sure we dont leak 428 * a norefcounted dst 429 */ 430 skb_dst_force(skb); 431 432 spin_lock_irqsave(&list->lock, flags); 433 sock_skb_set_dropcount(sk, skb); 434 __skb_queue_tail(list, skb); 435 spin_unlock_irqrestore(&list->lock, flags); 436 437 if (!sock_flag(sk, SOCK_DEAD)) 438 sk->sk_data_ready(sk); 439 return 0; 440 } 441 EXPORT_SYMBOL(__sock_queue_rcv_skb); 442 443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 444 { 445 int err; 446 447 err = sk_filter(sk, skb); 448 if (err) 449 return err; 450 451 return __sock_queue_rcv_skb(sk, skb); 452 } 453 EXPORT_SYMBOL(sock_queue_rcv_skb); 454 455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 456 const int nested, unsigned int trim_cap, bool refcounted) 457 { 458 int rc = NET_RX_SUCCESS; 459 460 if (sk_filter_trim_cap(sk, skb, trim_cap)) 461 goto discard_and_relse; 462 463 skb->dev = NULL; 464 465 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 466 atomic_inc(&sk->sk_drops); 467 goto discard_and_relse; 468 } 469 if (nested) 470 bh_lock_sock_nested(sk); 471 else 472 bh_lock_sock(sk); 473 if (!sock_owned_by_user(sk)) { 474 /* 475 * trylock + unlock semantics: 476 */ 477 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 478 479 rc = sk_backlog_rcv(sk, skb); 480 481 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 482 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 483 bh_unlock_sock(sk); 484 atomic_inc(&sk->sk_drops); 485 goto discard_and_relse; 486 } 487 488 bh_unlock_sock(sk); 489 out: 490 if (refcounted) 491 sock_put(sk); 492 return rc; 493 discard_and_relse: 494 kfree_skb(skb); 495 goto out; 496 } 497 EXPORT_SYMBOL(__sk_receive_skb); 498 499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 500 { 501 struct dst_entry *dst = __sk_dst_get(sk); 502 503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 504 sk_tx_queue_clear(sk); 505 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 506 dst_release(dst); 507 return NULL; 508 } 509 510 return dst; 511 } 512 EXPORT_SYMBOL(__sk_dst_check); 513 514 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 515 { 516 struct dst_entry *dst = sk_dst_get(sk); 517 518 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 519 sk_dst_reset(sk); 520 dst_release(dst); 521 return NULL; 522 } 523 524 return dst; 525 } 526 EXPORT_SYMBOL(sk_dst_check); 527 528 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 529 int optlen) 530 { 531 int ret = -ENOPROTOOPT; 532 #ifdef CONFIG_NETDEVICES 533 struct net *net = sock_net(sk); 534 char devname[IFNAMSIZ]; 535 int index; 536 537 /* Sorry... */ 538 ret = -EPERM; 539 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 540 goto out; 541 542 ret = -EINVAL; 543 if (optlen < 0) 544 goto out; 545 546 /* Bind this socket to a particular device like "eth0", 547 * as specified in the passed interface name. If the 548 * name is "" or the option length is zero the socket 549 * is not bound. 550 */ 551 if (optlen > IFNAMSIZ - 1) 552 optlen = IFNAMSIZ - 1; 553 memset(devname, 0, sizeof(devname)); 554 555 ret = -EFAULT; 556 if (copy_from_user(devname, optval, optlen)) 557 goto out; 558 559 index = 0; 560 if (devname[0] != '\0') { 561 struct net_device *dev; 562 563 rcu_read_lock(); 564 dev = dev_get_by_name_rcu(net, devname); 565 if (dev) 566 index = dev->ifindex; 567 rcu_read_unlock(); 568 ret = -ENODEV; 569 if (!dev) 570 goto out; 571 } 572 573 lock_sock(sk); 574 sk->sk_bound_dev_if = index; 575 sk_dst_reset(sk); 576 release_sock(sk); 577 578 ret = 0; 579 580 out: 581 #endif 582 583 return ret; 584 } 585 586 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 587 int __user *optlen, int len) 588 { 589 int ret = -ENOPROTOOPT; 590 #ifdef CONFIG_NETDEVICES 591 struct net *net = sock_net(sk); 592 char devname[IFNAMSIZ]; 593 594 if (sk->sk_bound_dev_if == 0) { 595 len = 0; 596 goto zero; 597 } 598 599 ret = -EINVAL; 600 if (len < IFNAMSIZ) 601 goto out; 602 603 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 604 if (ret) 605 goto out; 606 607 len = strlen(devname) + 1; 608 609 ret = -EFAULT; 610 if (copy_to_user(optval, devname, len)) 611 goto out; 612 613 zero: 614 ret = -EFAULT; 615 if (put_user(len, optlen)) 616 goto out; 617 618 ret = 0; 619 620 out: 621 #endif 622 623 return ret; 624 } 625 626 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 627 { 628 if (valbool) 629 sock_set_flag(sk, bit); 630 else 631 sock_reset_flag(sk, bit); 632 } 633 634 bool sk_mc_loop(struct sock *sk) 635 { 636 if (dev_recursion_level()) 637 return false; 638 if (!sk) 639 return true; 640 switch (sk->sk_family) { 641 case AF_INET: 642 return inet_sk(sk)->mc_loop; 643 #if IS_ENABLED(CONFIG_IPV6) 644 case AF_INET6: 645 return inet6_sk(sk)->mc_loop; 646 #endif 647 } 648 WARN_ON(1); 649 return true; 650 } 651 EXPORT_SYMBOL(sk_mc_loop); 652 653 /* 654 * This is meant for all protocols to use and covers goings on 655 * at the socket level. Everything here is generic. 656 */ 657 658 int sock_setsockopt(struct socket *sock, int level, int optname, 659 char __user *optval, unsigned int optlen) 660 { 661 struct sock *sk = sock->sk; 662 int val; 663 int valbool; 664 struct linger ling; 665 int ret = 0; 666 667 /* 668 * Options without arguments 669 */ 670 671 if (optname == SO_BINDTODEVICE) 672 return sock_setbindtodevice(sk, optval, optlen); 673 674 if (optlen < sizeof(int)) 675 return -EINVAL; 676 677 if (get_user(val, (int __user *)optval)) 678 return -EFAULT; 679 680 valbool = val ? 1 : 0; 681 682 lock_sock(sk); 683 684 switch (optname) { 685 case SO_DEBUG: 686 if (val && !capable(CAP_NET_ADMIN)) 687 ret = -EACCES; 688 else 689 sock_valbool_flag(sk, SOCK_DBG, valbool); 690 break; 691 case SO_REUSEADDR: 692 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 693 break; 694 case SO_REUSEPORT: 695 sk->sk_reuseport = valbool; 696 break; 697 case SO_TYPE: 698 case SO_PROTOCOL: 699 case SO_DOMAIN: 700 case SO_ERROR: 701 ret = -ENOPROTOOPT; 702 break; 703 case SO_DONTROUTE: 704 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 705 break; 706 case SO_BROADCAST: 707 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 708 break; 709 case SO_SNDBUF: 710 /* Don't error on this BSD doesn't and if you think 711 * about it this is right. Otherwise apps have to 712 * play 'guess the biggest size' games. RCVBUF/SNDBUF 713 * are treated in BSD as hints 714 */ 715 val = min_t(u32, val, sysctl_wmem_max); 716 set_sndbuf: 717 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 718 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 719 /* Wake up sending tasks if we upped the value. */ 720 sk->sk_write_space(sk); 721 break; 722 723 case SO_SNDBUFFORCE: 724 if (!capable(CAP_NET_ADMIN)) { 725 ret = -EPERM; 726 break; 727 } 728 goto set_sndbuf; 729 730 case SO_RCVBUF: 731 /* Don't error on this BSD doesn't and if you think 732 * about it this is right. Otherwise apps have to 733 * play 'guess the biggest size' games. RCVBUF/SNDBUF 734 * are treated in BSD as hints 735 */ 736 val = min_t(u32, val, sysctl_rmem_max); 737 set_rcvbuf: 738 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 739 /* 740 * We double it on the way in to account for 741 * "struct sk_buff" etc. overhead. Applications 742 * assume that the SO_RCVBUF setting they make will 743 * allow that much actual data to be received on that 744 * socket. 745 * 746 * Applications are unaware that "struct sk_buff" and 747 * other overheads allocate from the receive buffer 748 * during socket buffer allocation. 749 * 750 * And after considering the possible alternatives, 751 * returning the value we actually used in getsockopt 752 * is the most desirable behavior. 753 */ 754 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 755 break; 756 757 case SO_RCVBUFFORCE: 758 if (!capable(CAP_NET_ADMIN)) { 759 ret = -EPERM; 760 break; 761 } 762 goto set_rcvbuf; 763 764 case SO_KEEPALIVE: 765 #ifdef CONFIG_INET 766 if (sk->sk_protocol == IPPROTO_TCP && 767 sk->sk_type == SOCK_STREAM) 768 tcp_set_keepalive(sk, valbool); 769 #endif 770 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 771 break; 772 773 case SO_OOBINLINE: 774 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 775 break; 776 777 case SO_NO_CHECK: 778 sk->sk_no_check_tx = valbool; 779 break; 780 781 case SO_PRIORITY: 782 if ((val >= 0 && val <= 6) || 783 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 784 sk->sk_priority = val; 785 else 786 ret = -EPERM; 787 break; 788 789 case SO_LINGER: 790 if (optlen < sizeof(ling)) { 791 ret = -EINVAL; /* 1003.1g */ 792 break; 793 } 794 if (copy_from_user(&ling, optval, sizeof(ling))) { 795 ret = -EFAULT; 796 break; 797 } 798 if (!ling.l_onoff) 799 sock_reset_flag(sk, SOCK_LINGER); 800 else { 801 #if (BITS_PER_LONG == 32) 802 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 803 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 804 else 805 #endif 806 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 807 sock_set_flag(sk, SOCK_LINGER); 808 } 809 break; 810 811 case SO_BSDCOMPAT: 812 sock_warn_obsolete_bsdism("setsockopt"); 813 break; 814 815 case SO_PASSCRED: 816 if (valbool) 817 set_bit(SOCK_PASSCRED, &sock->flags); 818 else 819 clear_bit(SOCK_PASSCRED, &sock->flags); 820 break; 821 822 case SO_TIMESTAMP: 823 case SO_TIMESTAMPNS: 824 if (valbool) { 825 if (optname == SO_TIMESTAMP) 826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 827 else 828 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 829 sock_set_flag(sk, SOCK_RCVTSTAMP); 830 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 831 } else { 832 sock_reset_flag(sk, SOCK_RCVTSTAMP); 833 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 834 } 835 break; 836 837 case SO_TIMESTAMPING: 838 if (val & ~SOF_TIMESTAMPING_MASK) { 839 ret = -EINVAL; 840 break; 841 } 842 843 if (val & SOF_TIMESTAMPING_OPT_ID && 844 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 845 if (sk->sk_protocol == IPPROTO_TCP && 846 sk->sk_type == SOCK_STREAM) { 847 if ((1 << sk->sk_state) & 848 (TCPF_CLOSE | TCPF_LISTEN)) { 849 ret = -EINVAL; 850 break; 851 } 852 sk->sk_tskey = tcp_sk(sk)->snd_una; 853 } else { 854 sk->sk_tskey = 0; 855 } 856 } 857 sk->sk_tsflags = val; 858 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 859 sock_enable_timestamp(sk, 860 SOCK_TIMESTAMPING_RX_SOFTWARE); 861 else 862 sock_disable_timestamp(sk, 863 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 864 break; 865 866 case SO_RCVLOWAT: 867 if (val < 0) 868 val = INT_MAX; 869 sk->sk_rcvlowat = val ? : 1; 870 break; 871 872 case SO_RCVTIMEO: 873 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 874 break; 875 876 case SO_SNDTIMEO: 877 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 878 break; 879 880 case SO_ATTACH_FILTER: 881 ret = -EINVAL; 882 if (optlen == sizeof(struct sock_fprog)) { 883 struct sock_fprog fprog; 884 885 ret = -EFAULT; 886 if (copy_from_user(&fprog, optval, sizeof(fprog))) 887 break; 888 889 ret = sk_attach_filter(&fprog, sk); 890 } 891 break; 892 893 case SO_ATTACH_BPF: 894 ret = -EINVAL; 895 if (optlen == sizeof(u32)) { 896 u32 ufd; 897 898 ret = -EFAULT; 899 if (copy_from_user(&ufd, optval, sizeof(ufd))) 900 break; 901 902 ret = sk_attach_bpf(ufd, sk); 903 } 904 break; 905 906 case SO_ATTACH_REUSEPORT_CBPF: 907 ret = -EINVAL; 908 if (optlen == sizeof(struct sock_fprog)) { 909 struct sock_fprog fprog; 910 911 ret = -EFAULT; 912 if (copy_from_user(&fprog, optval, sizeof(fprog))) 913 break; 914 915 ret = sk_reuseport_attach_filter(&fprog, sk); 916 } 917 break; 918 919 case SO_ATTACH_REUSEPORT_EBPF: 920 ret = -EINVAL; 921 if (optlen == sizeof(u32)) { 922 u32 ufd; 923 924 ret = -EFAULT; 925 if (copy_from_user(&ufd, optval, sizeof(ufd))) 926 break; 927 928 ret = sk_reuseport_attach_bpf(ufd, sk); 929 } 930 break; 931 932 case SO_DETACH_FILTER: 933 ret = sk_detach_filter(sk); 934 break; 935 936 case SO_LOCK_FILTER: 937 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 938 ret = -EPERM; 939 else 940 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 941 break; 942 943 case SO_PASSSEC: 944 if (valbool) 945 set_bit(SOCK_PASSSEC, &sock->flags); 946 else 947 clear_bit(SOCK_PASSSEC, &sock->flags); 948 break; 949 case SO_MARK: 950 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 951 ret = -EPERM; 952 else 953 sk->sk_mark = val; 954 break; 955 956 case SO_RXQ_OVFL: 957 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 958 break; 959 960 case SO_WIFI_STATUS: 961 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 962 break; 963 964 case SO_PEEK_OFF: 965 if (sock->ops->set_peek_off) 966 ret = sock->ops->set_peek_off(sk, val); 967 else 968 ret = -EOPNOTSUPP; 969 break; 970 971 case SO_NOFCS: 972 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 973 break; 974 975 case SO_SELECT_ERR_QUEUE: 976 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 977 break; 978 979 #ifdef CONFIG_NET_RX_BUSY_POLL 980 case SO_BUSY_POLL: 981 /* allow unprivileged users to decrease the value */ 982 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 983 ret = -EPERM; 984 else { 985 if (val < 0) 986 ret = -EINVAL; 987 else 988 sk->sk_ll_usec = val; 989 } 990 break; 991 #endif 992 993 case SO_MAX_PACING_RATE: 994 sk->sk_max_pacing_rate = val; 995 sk->sk_pacing_rate = min(sk->sk_pacing_rate, 996 sk->sk_max_pacing_rate); 997 break; 998 999 case SO_INCOMING_CPU: 1000 sk->sk_incoming_cpu = val; 1001 break; 1002 1003 case SO_CNX_ADVICE: 1004 if (val == 1) 1005 dst_negative_advice(sk); 1006 break; 1007 default: 1008 ret = -ENOPROTOOPT; 1009 break; 1010 } 1011 release_sock(sk); 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(sock_setsockopt); 1015 1016 1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1018 struct ucred *ucred) 1019 { 1020 ucred->pid = pid_vnr(pid); 1021 ucred->uid = ucred->gid = -1; 1022 if (cred) { 1023 struct user_namespace *current_ns = current_user_ns(); 1024 1025 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1026 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1027 } 1028 } 1029 1030 int sock_getsockopt(struct socket *sock, int level, int optname, 1031 char __user *optval, int __user *optlen) 1032 { 1033 struct sock *sk = sock->sk; 1034 1035 union { 1036 int val; 1037 struct linger ling; 1038 struct timeval tm; 1039 } v; 1040 1041 int lv = sizeof(int); 1042 int len; 1043 1044 if (get_user(len, optlen)) 1045 return -EFAULT; 1046 if (len < 0) 1047 return -EINVAL; 1048 1049 memset(&v, 0, sizeof(v)); 1050 1051 switch (optname) { 1052 case SO_DEBUG: 1053 v.val = sock_flag(sk, SOCK_DBG); 1054 break; 1055 1056 case SO_DONTROUTE: 1057 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1058 break; 1059 1060 case SO_BROADCAST: 1061 v.val = sock_flag(sk, SOCK_BROADCAST); 1062 break; 1063 1064 case SO_SNDBUF: 1065 v.val = sk->sk_sndbuf; 1066 break; 1067 1068 case SO_RCVBUF: 1069 v.val = sk->sk_rcvbuf; 1070 break; 1071 1072 case SO_REUSEADDR: 1073 v.val = sk->sk_reuse; 1074 break; 1075 1076 case SO_REUSEPORT: 1077 v.val = sk->sk_reuseport; 1078 break; 1079 1080 case SO_KEEPALIVE: 1081 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1082 break; 1083 1084 case SO_TYPE: 1085 v.val = sk->sk_type; 1086 break; 1087 1088 case SO_PROTOCOL: 1089 v.val = sk->sk_protocol; 1090 break; 1091 1092 case SO_DOMAIN: 1093 v.val = sk->sk_family; 1094 break; 1095 1096 case SO_ERROR: 1097 v.val = -sock_error(sk); 1098 if (v.val == 0) 1099 v.val = xchg(&sk->sk_err_soft, 0); 1100 break; 1101 1102 case SO_OOBINLINE: 1103 v.val = sock_flag(sk, SOCK_URGINLINE); 1104 break; 1105 1106 case SO_NO_CHECK: 1107 v.val = sk->sk_no_check_tx; 1108 break; 1109 1110 case SO_PRIORITY: 1111 v.val = sk->sk_priority; 1112 break; 1113 1114 case SO_LINGER: 1115 lv = sizeof(v.ling); 1116 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1117 v.ling.l_linger = sk->sk_lingertime / HZ; 1118 break; 1119 1120 case SO_BSDCOMPAT: 1121 sock_warn_obsolete_bsdism("getsockopt"); 1122 break; 1123 1124 case SO_TIMESTAMP: 1125 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1126 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1127 break; 1128 1129 case SO_TIMESTAMPNS: 1130 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS); 1131 break; 1132 1133 case SO_TIMESTAMPING: 1134 v.val = sk->sk_tsflags; 1135 break; 1136 1137 case SO_RCVTIMEO: 1138 lv = sizeof(struct timeval); 1139 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 1140 v.tm.tv_sec = 0; 1141 v.tm.tv_usec = 0; 1142 } else { 1143 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 1144 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 1145 } 1146 break; 1147 1148 case SO_SNDTIMEO: 1149 lv = sizeof(struct timeval); 1150 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 1151 v.tm.tv_sec = 0; 1152 v.tm.tv_usec = 0; 1153 } else { 1154 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 1155 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 1156 } 1157 break; 1158 1159 case SO_RCVLOWAT: 1160 v.val = sk->sk_rcvlowat; 1161 break; 1162 1163 case SO_SNDLOWAT: 1164 v.val = 1; 1165 break; 1166 1167 case SO_PASSCRED: 1168 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1169 break; 1170 1171 case SO_PEERCRED: 1172 { 1173 struct ucred peercred; 1174 if (len > sizeof(peercred)) 1175 len = sizeof(peercred); 1176 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1177 if (copy_to_user(optval, &peercred, len)) 1178 return -EFAULT; 1179 goto lenout; 1180 } 1181 1182 case SO_PEERNAME: 1183 { 1184 char address[128]; 1185 1186 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 1187 return -ENOTCONN; 1188 if (lv < len) 1189 return -EINVAL; 1190 if (copy_to_user(optval, address, len)) 1191 return -EFAULT; 1192 goto lenout; 1193 } 1194 1195 /* Dubious BSD thing... Probably nobody even uses it, but 1196 * the UNIX standard wants it for whatever reason... -DaveM 1197 */ 1198 case SO_ACCEPTCONN: 1199 v.val = sk->sk_state == TCP_LISTEN; 1200 break; 1201 1202 case SO_PASSSEC: 1203 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1204 break; 1205 1206 case SO_PEERSEC: 1207 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1208 1209 case SO_MARK: 1210 v.val = sk->sk_mark; 1211 break; 1212 1213 case SO_RXQ_OVFL: 1214 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1215 break; 1216 1217 case SO_WIFI_STATUS: 1218 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1219 break; 1220 1221 case SO_PEEK_OFF: 1222 if (!sock->ops->set_peek_off) 1223 return -EOPNOTSUPP; 1224 1225 v.val = sk->sk_peek_off; 1226 break; 1227 case SO_NOFCS: 1228 v.val = sock_flag(sk, SOCK_NOFCS); 1229 break; 1230 1231 case SO_BINDTODEVICE: 1232 return sock_getbindtodevice(sk, optval, optlen, len); 1233 1234 case SO_GET_FILTER: 1235 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1236 if (len < 0) 1237 return len; 1238 1239 goto lenout; 1240 1241 case SO_LOCK_FILTER: 1242 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1243 break; 1244 1245 case SO_BPF_EXTENSIONS: 1246 v.val = bpf_tell_extensions(); 1247 break; 1248 1249 case SO_SELECT_ERR_QUEUE: 1250 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1251 break; 1252 1253 #ifdef CONFIG_NET_RX_BUSY_POLL 1254 case SO_BUSY_POLL: 1255 v.val = sk->sk_ll_usec; 1256 break; 1257 #endif 1258 1259 case SO_MAX_PACING_RATE: 1260 v.val = sk->sk_max_pacing_rate; 1261 break; 1262 1263 case SO_INCOMING_CPU: 1264 v.val = sk->sk_incoming_cpu; 1265 break; 1266 1267 default: 1268 /* We implement the SO_SNDLOWAT etc to not be settable 1269 * (1003.1g 7). 1270 */ 1271 return -ENOPROTOOPT; 1272 } 1273 1274 if (len > lv) 1275 len = lv; 1276 if (copy_to_user(optval, &v, len)) 1277 return -EFAULT; 1278 lenout: 1279 if (put_user(len, optlen)) 1280 return -EFAULT; 1281 return 0; 1282 } 1283 1284 /* 1285 * Initialize an sk_lock. 1286 * 1287 * (We also register the sk_lock with the lock validator.) 1288 */ 1289 static inline void sock_lock_init(struct sock *sk) 1290 { 1291 sock_lock_init_class_and_name(sk, 1292 af_family_slock_key_strings[sk->sk_family], 1293 af_family_slock_keys + sk->sk_family, 1294 af_family_key_strings[sk->sk_family], 1295 af_family_keys + sk->sk_family); 1296 } 1297 1298 /* 1299 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1300 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1301 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1302 */ 1303 static void sock_copy(struct sock *nsk, const struct sock *osk) 1304 { 1305 #ifdef CONFIG_SECURITY_NETWORK 1306 void *sptr = nsk->sk_security; 1307 #endif 1308 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1309 1310 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1311 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1312 1313 #ifdef CONFIG_SECURITY_NETWORK 1314 nsk->sk_security = sptr; 1315 security_sk_clone(osk, nsk); 1316 #endif 1317 } 1318 1319 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size) 1320 { 1321 unsigned long nulls1, nulls2; 1322 1323 nulls1 = offsetof(struct sock, __sk_common.skc_node.next); 1324 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next); 1325 if (nulls1 > nulls2) 1326 swap(nulls1, nulls2); 1327 1328 if (nulls1 != 0) 1329 memset((char *)sk, 0, nulls1); 1330 memset((char *)sk + nulls1 + sizeof(void *), 0, 1331 nulls2 - nulls1 - sizeof(void *)); 1332 memset((char *)sk + nulls2 + sizeof(void *), 0, 1333 size - nulls2 - sizeof(void *)); 1334 } 1335 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls); 1336 1337 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1338 int family) 1339 { 1340 struct sock *sk; 1341 struct kmem_cache *slab; 1342 1343 slab = prot->slab; 1344 if (slab != NULL) { 1345 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1346 if (!sk) 1347 return sk; 1348 if (priority & __GFP_ZERO) { 1349 if (prot->clear_sk) 1350 prot->clear_sk(sk, prot->obj_size); 1351 else 1352 sk_prot_clear_nulls(sk, prot->obj_size); 1353 } 1354 } else 1355 sk = kmalloc(prot->obj_size, priority); 1356 1357 if (sk != NULL) { 1358 kmemcheck_annotate_bitfield(sk, flags); 1359 1360 if (security_sk_alloc(sk, family, priority)) 1361 goto out_free; 1362 1363 if (!try_module_get(prot->owner)) 1364 goto out_free_sec; 1365 sk_tx_queue_clear(sk); 1366 } 1367 1368 return sk; 1369 1370 out_free_sec: 1371 security_sk_free(sk); 1372 out_free: 1373 if (slab != NULL) 1374 kmem_cache_free(slab, sk); 1375 else 1376 kfree(sk); 1377 return NULL; 1378 } 1379 1380 static void sk_prot_free(struct proto *prot, struct sock *sk) 1381 { 1382 struct kmem_cache *slab; 1383 struct module *owner; 1384 1385 owner = prot->owner; 1386 slab = prot->slab; 1387 1388 cgroup_sk_free(&sk->sk_cgrp_data); 1389 security_sk_free(sk); 1390 if (slab != NULL) 1391 kmem_cache_free(slab, sk); 1392 else 1393 kfree(sk); 1394 module_put(owner); 1395 } 1396 1397 /** 1398 * sk_alloc - All socket objects are allocated here 1399 * @net: the applicable net namespace 1400 * @family: protocol family 1401 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1402 * @prot: struct proto associated with this new sock instance 1403 * @kern: is this to be a kernel socket? 1404 */ 1405 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1406 struct proto *prot, int kern) 1407 { 1408 struct sock *sk; 1409 1410 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1411 if (sk) { 1412 sk->sk_family = family; 1413 /* 1414 * See comment in struct sock definition to understand 1415 * why we need sk_prot_creator -acme 1416 */ 1417 sk->sk_prot = sk->sk_prot_creator = prot; 1418 sock_lock_init(sk); 1419 sk->sk_net_refcnt = kern ? 0 : 1; 1420 if (likely(sk->sk_net_refcnt)) 1421 get_net(net); 1422 sock_net_set(sk, net); 1423 atomic_set(&sk->sk_wmem_alloc, 1); 1424 1425 cgroup_sk_alloc(&sk->sk_cgrp_data); 1426 sock_update_classid(&sk->sk_cgrp_data); 1427 sock_update_netprioidx(&sk->sk_cgrp_data); 1428 } 1429 1430 return sk; 1431 } 1432 EXPORT_SYMBOL(sk_alloc); 1433 1434 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1435 * grace period. This is the case for UDP sockets and TCP listeners. 1436 */ 1437 static void __sk_destruct(struct rcu_head *head) 1438 { 1439 struct sock *sk = container_of(head, struct sock, sk_rcu); 1440 struct sk_filter *filter; 1441 1442 if (sk->sk_destruct) 1443 sk->sk_destruct(sk); 1444 1445 filter = rcu_dereference_check(sk->sk_filter, 1446 atomic_read(&sk->sk_wmem_alloc) == 0); 1447 if (filter) { 1448 sk_filter_uncharge(sk, filter); 1449 RCU_INIT_POINTER(sk->sk_filter, NULL); 1450 } 1451 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1452 reuseport_detach_sock(sk); 1453 1454 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1455 1456 if (atomic_read(&sk->sk_omem_alloc)) 1457 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1458 __func__, atomic_read(&sk->sk_omem_alloc)); 1459 1460 if (sk->sk_peer_cred) 1461 put_cred(sk->sk_peer_cred); 1462 put_pid(sk->sk_peer_pid); 1463 if (likely(sk->sk_net_refcnt)) 1464 put_net(sock_net(sk)); 1465 sk_prot_free(sk->sk_prot_creator, sk); 1466 } 1467 1468 void sk_destruct(struct sock *sk) 1469 { 1470 if (sock_flag(sk, SOCK_RCU_FREE)) 1471 call_rcu(&sk->sk_rcu, __sk_destruct); 1472 else 1473 __sk_destruct(&sk->sk_rcu); 1474 } 1475 1476 static void __sk_free(struct sock *sk) 1477 { 1478 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt)) 1479 sock_diag_broadcast_destroy(sk); 1480 else 1481 sk_destruct(sk); 1482 } 1483 1484 void sk_free(struct sock *sk) 1485 { 1486 /* 1487 * We subtract one from sk_wmem_alloc and can know if 1488 * some packets are still in some tx queue. 1489 * If not null, sock_wfree() will call __sk_free(sk) later 1490 */ 1491 if (atomic_dec_and_test(&sk->sk_wmem_alloc)) 1492 __sk_free(sk); 1493 } 1494 EXPORT_SYMBOL(sk_free); 1495 1496 /** 1497 * sk_clone_lock - clone a socket, and lock its clone 1498 * @sk: the socket to clone 1499 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1500 * 1501 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1502 */ 1503 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1504 { 1505 struct sock *newsk; 1506 bool is_charged = true; 1507 1508 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1509 if (newsk != NULL) { 1510 struct sk_filter *filter; 1511 1512 sock_copy(newsk, sk); 1513 1514 /* SANITY */ 1515 if (likely(newsk->sk_net_refcnt)) 1516 get_net(sock_net(newsk)); 1517 sk_node_init(&newsk->sk_node); 1518 sock_lock_init(newsk); 1519 bh_lock_sock(newsk); 1520 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1521 newsk->sk_backlog.len = 0; 1522 1523 atomic_set(&newsk->sk_rmem_alloc, 0); 1524 /* 1525 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1526 */ 1527 atomic_set(&newsk->sk_wmem_alloc, 1); 1528 atomic_set(&newsk->sk_omem_alloc, 0); 1529 skb_queue_head_init(&newsk->sk_receive_queue); 1530 skb_queue_head_init(&newsk->sk_write_queue); 1531 1532 rwlock_init(&newsk->sk_callback_lock); 1533 lockdep_set_class_and_name(&newsk->sk_callback_lock, 1534 af_callback_keys + newsk->sk_family, 1535 af_family_clock_key_strings[newsk->sk_family]); 1536 1537 newsk->sk_dst_cache = NULL; 1538 newsk->sk_wmem_queued = 0; 1539 newsk->sk_forward_alloc = 0; 1540 atomic_set(&newsk->sk_drops, 0); 1541 newsk->sk_send_head = NULL; 1542 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1543 1544 sock_reset_flag(newsk, SOCK_DONE); 1545 skb_queue_head_init(&newsk->sk_error_queue); 1546 1547 filter = rcu_dereference_protected(newsk->sk_filter, 1); 1548 if (filter != NULL) 1549 /* though it's an empty new sock, the charging may fail 1550 * if sysctl_optmem_max was changed between creation of 1551 * original socket and cloning 1552 */ 1553 is_charged = sk_filter_charge(newsk, filter); 1554 1555 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1556 /* It is still raw copy of parent, so invalidate 1557 * destructor and make plain sk_free() */ 1558 newsk->sk_destruct = NULL; 1559 bh_unlock_sock(newsk); 1560 sk_free(newsk); 1561 newsk = NULL; 1562 goto out; 1563 } 1564 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1565 1566 newsk->sk_err = 0; 1567 newsk->sk_err_soft = 0; 1568 newsk->sk_priority = 0; 1569 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1570 atomic64_set(&newsk->sk_cookie, 0); 1571 1572 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1573 1574 /* 1575 * Before updating sk_refcnt, we must commit prior changes to memory 1576 * (Documentation/RCU/rculist_nulls.txt for details) 1577 */ 1578 smp_wmb(); 1579 atomic_set(&newsk->sk_refcnt, 2); 1580 1581 /* 1582 * Increment the counter in the same struct proto as the master 1583 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1584 * is the same as sk->sk_prot->socks, as this field was copied 1585 * with memcpy). 1586 * 1587 * This _changes_ the previous behaviour, where 1588 * tcp_create_openreq_child always was incrementing the 1589 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1590 * to be taken into account in all callers. -acme 1591 */ 1592 sk_refcnt_debug_inc(newsk); 1593 sk_set_socket(newsk, NULL); 1594 newsk->sk_wq = NULL; 1595 1596 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 1597 sock_update_memcg(newsk); 1598 1599 if (newsk->sk_prot->sockets_allocated) 1600 sk_sockets_allocated_inc(newsk); 1601 1602 if (sock_needs_netstamp(sk) && 1603 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1604 net_enable_timestamp(); 1605 } 1606 out: 1607 return newsk; 1608 } 1609 EXPORT_SYMBOL_GPL(sk_clone_lock); 1610 1611 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1612 { 1613 u32 max_segs = 1; 1614 1615 sk_dst_set(sk, dst); 1616 sk->sk_route_caps = dst->dev->features; 1617 if (sk->sk_route_caps & NETIF_F_GSO) 1618 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1619 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1620 if (sk_can_gso(sk)) { 1621 if (dst->header_len) { 1622 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1623 } else { 1624 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1625 sk->sk_gso_max_size = dst->dev->gso_max_size; 1626 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1627 } 1628 } 1629 sk->sk_gso_max_segs = max_segs; 1630 } 1631 EXPORT_SYMBOL_GPL(sk_setup_caps); 1632 1633 /* 1634 * Simple resource managers for sockets. 1635 */ 1636 1637 1638 /* 1639 * Write buffer destructor automatically called from kfree_skb. 1640 */ 1641 void sock_wfree(struct sk_buff *skb) 1642 { 1643 struct sock *sk = skb->sk; 1644 unsigned int len = skb->truesize; 1645 1646 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1647 /* 1648 * Keep a reference on sk_wmem_alloc, this will be released 1649 * after sk_write_space() call 1650 */ 1651 atomic_sub(len - 1, &sk->sk_wmem_alloc); 1652 sk->sk_write_space(sk); 1653 len = 1; 1654 } 1655 /* 1656 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1657 * could not do because of in-flight packets 1658 */ 1659 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc)) 1660 __sk_free(sk); 1661 } 1662 EXPORT_SYMBOL(sock_wfree); 1663 1664 /* This variant of sock_wfree() is used by TCP, 1665 * since it sets SOCK_USE_WRITE_QUEUE. 1666 */ 1667 void __sock_wfree(struct sk_buff *skb) 1668 { 1669 struct sock *sk = skb->sk; 1670 1671 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1672 __sk_free(sk); 1673 } 1674 1675 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1676 { 1677 skb_orphan(skb); 1678 skb->sk = sk; 1679 #ifdef CONFIG_INET 1680 if (unlikely(!sk_fullsock(sk))) { 1681 skb->destructor = sock_edemux; 1682 sock_hold(sk); 1683 return; 1684 } 1685 #endif 1686 skb->destructor = sock_wfree; 1687 skb_set_hash_from_sk(skb, sk); 1688 /* 1689 * We used to take a refcount on sk, but following operation 1690 * is enough to guarantee sk_free() wont free this sock until 1691 * all in-flight packets are completed 1692 */ 1693 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1694 } 1695 EXPORT_SYMBOL(skb_set_owner_w); 1696 1697 /* This helper is used by netem, as it can hold packets in its 1698 * delay queue. We want to allow the owner socket to send more 1699 * packets, as if they were already TX completed by a typical driver. 1700 * But we also want to keep skb->sk set because some packet schedulers 1701 * rely on it (sch_fq for example). So we set skb->truesize to a small 1702 * amount (1) and decrease sk_wmem_alloc accordingly. 1703 */ 1704 void skb_orphan_partial(struct sk_buff *skb) 1705 { 1706 /* If this skb is a TCP pure ACK or already went here, 1707 * we have nothing to do. 2 is already a very small truesize. 1708 */ 1709 if (skb->truesize <= 2) 1710 return; 1711 1712 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc, 1713 * so we do not completely orphan skb, but transfert all 1714 * accounted bytes but one, to avoid unexpected reorders. 1715 */ 1716 if (skb->destructor == sock_wfree 1717 #ifdef CONFIG_INET 1718 || skb->destructor == tcp_wfree 1719 #endif 1720 ) { 1721 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc); 1722 skb->truesize = 1; 1723 } else { 1724 skb_orphan(skb); 1725 } 1726 } 1727 EXPORT_SYMBOL(skb_orphan_partial); 1728 1729 /* 1730 * Read buffer destructor automatically called from kfree_skb. 1731 */ 1732 void sock_rfree(struct sk_buff *skb) 1733 { 1734 struct sock *sk = skb->sk; 1735 unsigned int len = skb->truesize; 1736 1737 atomic_sub(len, &sk->sk_rmem_alloc); 1738 sk_mem_uncharge(sk, len); 1739 } 1740 EXPORT_SYMBOL(sock_rfree); 1741 1742 /* 1743 * Buffer destructor for skbs that are not used directly in read or write 1744 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 1745 */ 1746 void sock_efree(struct sk_buff *skb) 1747 { 1748 sock_put(skb->sk); 1749 } 1750 EXPORT_SYMBOL(sock_efree); 1751 1752 kuid_t sock_i_uid(struct sock *sk) 1753 { 1754 kuid_t uid; 1755 1756 read_lock_bh(&sk->sk_callback_lock); 1757 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 1758 read_unlock_bh(&sk->sk_callback_lock); 1759 return uid; 1760 } 1761 EXPORT_SYMBOL(sock_i_uid); 1762 1763 unsigned long sock_i_ino(struct sock *sk) 1764 { 1765 unsigned long ino; 1766 1767 read_lock_bh(&sk->sk_callback_lock); 1768 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 1769 read_unlock_bh(&sk->sk_callback_lock); 1770 return ino; 1771 } 1772 EXPORT_SYMBOL(sock_i_ino); 1773 1774 /* 1775 * Allocate a skb from the socket's send buffer. 1776 */ 1777 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1778 gfp_t priority) 1779 { 1780 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1781 struct sk_buff *skb = alloc_skb(size, priority); 1782 if (skb) { 1783 skb_set_owner_w(skb, sk); 1784 return skb; 1785 } 1786 } 1787 return NULL; 1788 } 1789 EXPORT_SYMBOL(sock_wmalloc); 1790 1791 /* 1792 * Allocate a memory block from the socket's option memory buffer. 1793 */ 1794 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 1795 { 1796 if ((unsigned int)size <= sysctl_optmem_max && 1797 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 1798 void *mem; 1799 /* First do the add, to avoid the race if kmalloc 1800 * might sleep. 1801 */ 1802 atomic_add(size, &sk->sk_omem_alloc); 1803 mem = kmalloc(size, priority); 1804 if (mem) 1805 return mem; 1806 atomic_sub(size, &sk->sk_omem_alloc); 1807 } 1808 return NULL; 1809 } 1810 EXPORT_SYMBOL(sock_kmalloc); 1811 1812 /* Free an option memory block. Note, we actually want the inline 1813 * here as this allows gcc to detect the nullify and fold away the 1814 * condition entirely. 1815 */ 1816 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 1817 const bool nullify) 1818 { 1819 if (WARN_ON_ONCE(!mem)) 1820 return; 1821 if (nullify) 1822 kzfree(mem); 1823 else 1824 kfree(mem); 1825 atomic_sub(size, &sk->sk_omem_alloc); 1826 } 1827 1828 void sock_kfree_s(struct sock *sk, void *mem, int size) 1829 { 1830 __sock_kfree_s(sk, mem, size, false); 1831 } 1832 EXPORT_SYMBOL(sock_kfree_s); 1833 1834 void sock_kzfree_s(struct sock *sk, void *mem, int size) 1835 { 1836 __sock_kfree_s(sk, mem, size, true); 1837 } 1838 EXPORT_SYMBOL(sock_kzfree_s); 1839 1840 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1841 I think, these locks should be removed for datagram sockets. 1842 */ 1843 static long sock_wait_for_wmem(struct sock *sk, long timeo) 1844 { 1845 DEFINE_WAIT(wait); 1846 1847 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1848 for (;;) { 1849 if (!timeo) 1850 break; 1851 if (signal_pending(current)) 1852 break; 1853 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1854 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1855 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1856 break; 1857 if (sk->sk_shutdown & SEND_SHUTDOWN) 1858 break; 1859 if (sk->sk_err) 1860 break; 1861 timeo = schedule_timeout(timeo); 1862 } 1863 finish_wait(sk_sleep(sk), &wait); 1864 return timeo; 1865 } 1866 1867 1868 /* 1869 * Generic send/receive buffer handlers 1870 */ 1871 1872 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1873 unsigned long data_len, int noblock, 1874 int *errcode, int max_page_order) 1875 { 1876 struct sk_buff *skb; 1877 long timeo; 1878 int err; 1879 1880 timeo = sock_sndtimeo(sk, noblock); 1881 for (;;) { 1882 err = sock_error(sk); 1883 if (err != 0) 1884 goto failure; 1885 1886 err = -EPIPE; 1887 if (sk->sk_shutdown & SEND_SHUTDOWN) 1888 goto failure; 1889 1890 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 1891 break; 1892 1893 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1894 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1895 err = -EAGAIN; 1896 if (!timeo) 1897 goto failure; 1898 if (signal_pending(current)) 1899 goto interrupted; 1900 timeo = sock_wait_for_wmem(sk, timeo); 1901 } 1902 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 1903 errcode, sk->sk_allocation); 1904 if (skb) 1905 skb_set_owner_w(skb, sk); 1906 return skb; 1907 1908 interrupted: 1909 err = sock_intr_errno(timeo); 1910 failure: 1911 *errcode = err; 1912 return NULL; 1913 } 1914 EXPORT_SYMBOL(sock_alloc_send_pskb); 1915 1916 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1917 int noblock, int *errcode) 1918 { 1919 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 1920 } 1921 EXPORT_SYMBOL(sock_alloc_send_skb); 1922 1923 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1924 struct sockcm_cookie *sockc) 1925 { 1926 u32 tsflags; 1927 1928 switch (cmsg->cmsg_type) { 1929 case SO_MARK: 1930 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 1931 return -EPERM; 1932 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1933 return -EINVAL; 1934 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 1935 break; 1936 case SO_TIMESTAMPING: 1937 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 1938 return -EINVAL; 1939 1940 tsflags = *(u32 *)CMSG_DATA(cmsg); 1941 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 1942 return -EINVAL; 1943 1944 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 1945 sockc->tsflags |= tsflags; 1946 break; 1947 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 1948 case SCM_RIGHTS: 1949 case SCM_CREDENTIALS: 1950 break; 1951 default: 1952 return -EINVAL; 1953 } 1954 return 0; 1955 } 1956 EXPORT_SYMBOL(__sock_cmsg_send); 1957 1958 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1959 struct sockcm_cookie *sockc) 1960 { 1961 struct cmsghdr *cmsg; 1962 int ret; 1963 1964 for_each_cmsghdr(cmsg, msg) { 1965 if (!CMSG_OK(msg, cmsg)) 1966 return -EINVAL; 1967 if (cmsg->cmsg_level != SOL_SOCKET) 1968 continue; 1969 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 1970 if (ret) 1971 return ret; 1972 } 1973 return 0; 1974 } 1975 EXPORT_SYMBOL(sock_cmsg_send); 1976 1977 /* On 32bit arches, an skb frag is limited to 2^15 */ 1978 #define SKB_FRAG_PAGE_ORDER get_order(32768) 1979 1980 /** 1981 * skb_page_frag_refill - check that a page_frag contains enough room 1982 * @sz: minimum size of the fragment we want to get 1983 * @pfrag: pointer to page_frag 1984 * @gfp: priority for memory allocation 1985 * 1986 * Note: While this allocator tries to use high order pages, there is 1987 * no guarantee that allocations succeed. Therefore, @sz MUST be 1988 * less or equal than PAGE_SIZE. 1989 */ 1990 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 1991 { 1992 if (pfrag->page) { 1993 if (page_ref_count(pfrag->page) == 1) { 1994 pfrag->offset = 0; 1995 return true; 1996 } 1997 if (pfrag->offset + sz <= pfrag->size) 1998 return true; 1999 put_page(pfrag->page); 2000 } 2001 2002 pfrag->offset = 0; 2003 if (SKB_FRAG_PAGE_ORDER) { 2004 /* Avoid direct reclaim but allow kswapd to wake */ 2005 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2006 __GFP_COMP | __GFP_NOWARN | 2007 __GFP_NORETRY, 2008 SKB_FRAG_PAGE_ORDER); 2009 if (likely(pfrag->page)) { 2010 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2011 return true; 2012 } 2013 } 2014 pfrag->page = alloc_page(gfp); 2015 if (likely(pfrag->page)) { 2016 pfrag->size = PAGE_SIZE; 2017 return true; 2018 } 2019 return false; 2020 } 2021 EXPORT_SYMBOL(skb_page_frag_refill); 2022 2023 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2024 { 2025 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2026 return true; 2027 2028 sk_enter_memory_pressure(sk); 2029 sk_stream_moderate_sndbuf(sk); 2030 return false; 2031 } 2032 EXPORT_SYMBOL(sk_page_frag_refill); 2033 2034 static void __lock_sock(struct sock *sk) 2035 __releases(&sk->sk_lock.slock) 2036 __acquires(&sk->sk_lock.slock) 2037 { 2038 DEFINE_WAIT(wait); 2039 2040 for (;;) { 2041 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2042 TASK_UNINTERRUPTIBLE); 2043 spin_unlock_bh(&sk->sk_lock.slock); 2044 schedule(); 2045 spin_lock_bh(&sk->sk_lock.slock); 2046 if (!sock_owned_by_user(sk)) 2047 break; 2048 } 2049 finish_wait(&sk->sk_lock.wq, &wait); 2050 } 2051 2052 static void __release_sock(struct sock *sk) 2053 __releases(&sk->sk_lock.slock) 2054 __acquires(&sk->sk_lock.slock) 2055 { 2056 struct sk_buff *skb, *next; 2057 2058 while ((skb = sk->sk_backlog.head) != NULL) { 2059 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2060 2061 spin_unlock_bh(&sk->sk_lock.slock); 2062 2063 do { 2064 next = skb->next; 2065 prefetch(next); 2066 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2067 skb->next = NULL; 2068 sk_backlog_rcv(sk, skb); 2069 2070 cond_resched(); 2071 2072 skb = next; 2073 } while (skb != NULL); 2074 2075 spin_lock_bh(&sk->sk_lock.slock); 2076 } 2077 2078 /* 2079 * Doing the zeroing here guarantee we can not loop forever 2080 * while a wild producer attempts to flood us. 2081 */ 2082 sk->sk_backlog.len = 0; 2083 } 2084 2085 void __sk_flush_backlog(struct sock *sk) 2086 { 2087 spin_lock_bh(&sk->sk_lock.slock); 2088 __release_sock(sk); 2089 spin_unlock_bh(&sk->sk_lock.slock); 2090 } 2091 2092 /** 2093 * sk_wait_data - wait for data to arrive at sk_receive_queue 2094 * @sk: sock to wait on 2095 * @timeo: for how long 2096 * @skb: last skb seen on sk_receive_queue 2097 * 2098 * Now socket state including sk->sk_err is changed only under lock, 2099 * hence we may omit checks after joining wait queue. 2100 * We check receive queue before schedule() only as optimization; 2101 * it is very likely that release_sock() added new data. 2102 */ 2103 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2104 { 2105 int rc; 2106 DEFINE_WAIT(wait); 2107 2108 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2109 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2110 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb); 2111 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2112 finish_wait(sk_sleep(sk), &wait); 2113 return rc; 2114 } 2115 EXPORT_SYMBOL(sk_wait_data); 2116 2117 /** 2118 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2119 * @sk: socket 2120 * @size: memory size to allocate 2121 * @kind: allocation type 2122 * 2123 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2124 * rmem allocation. This function assumes that protocols which have 2125 * memory_pressure use sk_wmem_queued as write buffer accounting. 2126 */ 2127 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2128 { 2129 struct proto *prot = sk->sk_prot; 2130 int amt = sk_mem_pages(size); 2131 long allocated; 2132 2133 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2134 2135 allocated = sk_memory_allocated_add(sk, amt); 2136 2137 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2138 !mem_cgroup_charge_skmem(sk->sk_memcg, amt)) 2139 goto suppress_allocation; 2140 2141 /* Under limit. */ 2142 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2143 sk_leave_memory_pressure(sk); 2144 return 1; 2145 } 2146 2147 /* Under pressure. */ 2148 if (allocated > sk_prot_mem_limits(sk, 1)) 2149 sk_enter_memory_pressure(sk); 2150 2151 /* Over hard limit. */ 2152 if (allocated > sk_prot_mem_limits(sk, 2)) 2153 goto suppress_allocation; 2154 2155 /* guarantee minimum buffer size under pressure */ 2156 if (kind == SK_MEM_RECV) { 2157 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0]) 2158 return 1; 2159 2160 } else { /* SK_MEM_SEND */ 2161 if (sk->sk_type == SOCK_STREAM) { 2162 if (sk->sk_wmem_queued < prot->sysctl_wmem[0]) 2163 return 1; 2164 } else if (atomic_read(&sk->sk_wmem_alloc) < 2165 prot->sysctl_wmem[0]) 2166 return 1; 2167 } 2168 2169 if (sk_has_memory_pressure(sk)) { 2170 int alloc; 2171 2172 if (!sk_under_memory_pressure(sk)) 2173 return 1; 2174 alloc = sk_sockets_allocated_read_positive(sk); 2175 if (sk_prot_mem_limits(sk, 2) > alloc * 2176 sk_mem_pages(sk->sk_wmem_queued + 2177 atomic_read(&sk->sk_rmem_alloc) + 2178 sk->sk_forward_alloc)) 2179 return 1; 2180 } 2181 2182 suppress_allocation: 2183 2184 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2185 sk_stream_moderate_sndbuf(sk); 2186 2187 /* Fail only if socket is _under_ its sndbuf. 2188 * In this case we cannot block, so that we have to fail. 2189 */ 2190 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2191 return 1; 2192 } 2193 2194 trace_sock_exceed_buf_limit(sk, prot, allocated); 2195 2196 /* Alas. Undo changes. */ 2197 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM; 2198 2199 sk_memory_allocated_sub(sk, amt); 2200 2201 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2202 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2203 2204 return 0; 2205 } 2206 EXPORT_SYMBOL(__sk_mem_schedule); 2207 2208 /** 2209 * __sk_mem_reclaim - reclaim memory_allocated 2210 * @sk: socket 2211 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2212 */ 2213 void __sk_mem_reclaim(struct sock *sk, int amount) 2214 { 2215 amount >>= SK_MEM_QUANTUM_SHIFT; 2216 sk_memory_allocated_sub(sk, amount); 2217 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2218 2219 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2220 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2221 2222 if (sk_under_memory_pressure(sk) && 2223 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2224 sk_leave_memory_pressure(sk); 2225 } 2226 EXPORT_SYMBOL(__sk_mem_reclaim); 2227 2228 int sk_set_peek_off(struct sock *sk, int val) 2229 { 2230 if (val < 0) 2231 return -EINVAL; 2232 2233 sk->sk_peek_off = val; 2234 return 0; 2235 } 2236 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2237 2238 /* 2239 * Set of default routines for initialising struct proto_ops when 2240 * the protocol does not support a particular function. In certain 2241 * cases where it makes no sense for a protocol to have a "do nothing" 2242 * function, some default processing is provided. 2243 */ 2244 2245 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2246 { 2247 return -EOPNOTSUPP; 2248 } 2249 EXPORT_SYMBOL(sock_no_bind); 2250 2251 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2252 int len, int flags) 2253 { 2254 return -EOPNOTSUPP; 2255 } 2256 EXPORT_SYMBOL(sock_no_connect); 2257 2258 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2259 { 2260 return -EOPNOTSUPP; 2261 } 2262 EXPORT_SYMBOL(sock_no_socketpair); 2263 2264 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 2265 { 2266 return -EOPNOTSUPP; 2267 } 2268 EXPORT_SYMBOL(sock_no_accept); 2269 2270 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2271 int *len, int peer) 2272 { 2273 return -EOPNOTSUPP; 2274 } 2275 EXPORT_SYMBOL(sock_no_getname); 2276 2277 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt) 2278 { 2279 return 0; 2280 } 2281 EXPORT_SYMBOL(sock_no_poll); 2282 2283 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2284 { 2285 return -EOPNOTSUPP; 2286 } 2287 EXPORT_SYMBOL(sock_no_ioctl); 2288 2289 int sock_no_listen(struct socket *sock, int backlog) 2290 { 2291 return -EOPNOTSUPP; 2292 } 2293 EXPORT_SYMBOL(sock_no_listen); 2294 2295 int sock_no_shutdown(struct socket *sock, int how) 2296 { 2297 return -EOPNOTSUPP; 2298 } 2299 EXPORT_SYMBOL(sock_no_shutdown); 2300 2301 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2302 char __user *optval, unsigned int optlen) 2303 { 2304 return -EOPNOTSUPP; 2305 } 2306 EXPORT_SYMBOL(sock_no_setsockopt); 2307 2308 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2309 char __user *optval, int __user *optlen) 2310 { 2311 return -EOPNOTSUPP; 2312 } 2313 EXPORT_SYMBOL(sock_no_getsockopt); 2314 2315 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2316 { 2317 return -EOPNOTSUPP; 2318 } 2319 EXPORT_SYMBOL(sock_no_sendmsg); 2320 2321 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2322 int flags) 2323 { 2324 return -EOPNOTSUPP; 2325 } 2326 EXPORT_SYMBOL(sock_no_recvmsg); 2327 2328 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2329 { 2330 /* Mirror missing mmap method error code */ 2331 return -ENODEV; 2332 } 2333 EXPORT_SYMBOL(sock_no_mmap); 2334 2335 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2336 { 2337 ssize_t res; 2338 struct msghdr msg = {.msg_flags = flags}; 2339 struct kvec iov; 2340 char *kaddr = kmap(page); 2341 iov.iov_base = kaddr + offset; 2342 iov.iov_len = size; 2343 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2344 kunmap(page); 2345 return res; 2346 } 2347 EXPORT_SYMBOL(sock_no_sendpage); 2348 2349 /* 2350 * Default Socket Callbacks 2351 */ 2352 2353 static void sock_def_wakeup(struct sock *sk) 2354 { 2355 struct socket_wq *wq; 2356 2357 rcu_read_lock(); 2358 wq = rcu_dereference(sk->sk_wq); 2359 if (skwq_has_sleeper(wq)) 2360 wake_up_interruptible_all(&wq->wait); 2361 rcu_read_unlock(); 2362 } 2363 2364 static void sock_def_error_report(struct sock *sk) 2365 { 2366 struct socket_wq *wq; 2367 2368 rcu_read_lock(); 2369 wq = rcu_dereference(sk->sk_wq); 2370 if (skwq_has_sleeper(wq)) 2371 wake_up_interruptible_poll(&wq->wait, POLLERR); 2372 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2373 rcu_read_unlock(); 2374 } 2375 2376 static void sock_def_readable(struct sock *sk) 2377 { 2378 struct socket_wq *wq; 2379 2380 rcu_read_lock(); 2381 wq = rcu_dereference(sk->sk_wq); 2382 if (skwq_has_sleeper(wq)) 2383 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI | 2384 POLLRDNORM | POLLRDBAND); 2385 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2386 rcu_read_unlock(); 2387 } 2388 2389 static void sock_def_write_space(struct sock *sk) 2390 { 2391 struct socket_wq *wq; 2392 2393 rcu_read_lock(); 2394 2395 /* Do not wake up a writer until he can make "significant" 2396 * progress. --DaveM 2397 */ 2398 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2399 wq = rcu_dereference(sk->sk_wq); 2400 if (skwq_has_sleeper(wq)) 2401 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT | 2402 POLLWRNORM | POLLWRBAND); 2403 2404 /* Should agree with poll, otherwise some programs break */ 2405 if (sock_writeable(sk)) 2406 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2407 } 2408 2409 rcu_read_unlock(); 2410 } 2411 2412 static void sock_def_destruct(struct sock *sk) 2413 { 2414 } 2415 2416 void sk_send_sigurg(struct sock *sk) 2417 { 2418 if (sk->sk_socket && sk->sk_socket->file) 2419 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2420 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2421 } 2422 EXPORT_SYMBOL(sk_send_sigurg); 2423 2424 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2425 unsigned long expires) 2426 { 2427 if (!mod_timer(timer, expires)) 2428 sock_hold(sk); 2429 } 2430 EXPORT_SYMBOL(sk_reset_timer); 2431 2432 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2433 { 2434 if (del_timer(timer)) 2435 __sock_put(sk); 2436 } 2437 EXPORT_SYMBOL(sk_stop_timer); 2438 2439 void sock_init_data(struct socket *sock, struct sock *sk) 2440 { 2441 skb_queue_head_init(&sk->sk_receive_queue); 2442 skb_queue_head_init(&sk->sk_write_queue); 2443 skb_queue_head_init(&sk->sk_error_queue); 2444 2445 sk->sk_send_head = NULL; 2446 2447 init_timer(&sk->sk_timer); 2448 2449 sk->sk_allocation = GFP_KERNEL; 2450 sk->sk_rcvbuf = sysctl_rmem_default; 2451 sk->sk_sndbuf = sysctl_wmem_default; 2452 sk->sk_state = TCP_CLOSE; 2453 sk_set_socket(sk, sock); 2454 2455 sock_set_flag(sk, SOCK_ZAPPED); 2456 2457 if (sock) { 2458 sk->sk_type = sock->type; 2459 sk->sk_wq = sock->wq; 2460 sock->sk = sk; 2461 } else 2462 sk->sk_wq = NULL; 2463 2464 rwlock_init(&sk->sk_callback_lock); 2465 lockdep_set_class_and_name(&sk->sk_callback_lock, 2466 af_callback_keys + sk->sk_family, 2467 af_family_clock_key_strings[sk->sk_family]); 2468 2469 sk->sk_state_change = sock_def_wakeup; 2470 sk->sk_data_ready = sock_def_readable; 2471 sk->sk_write_space = sock_def_write_space; 2472 sk->sk_error_report = sock_def_error_report; 2473 sk->sk_destruct = sock_def_destruct; 2474 2475 sk->sk_frag.page = NULL; 2476 sk->sk_frag.offset = 0; 2477 sk->sk_peek_off = -1; 2478 2479 sk->sk_peer_pid = NULL; 2480 sk->sk_peer_cred = NULL; 2481 sk->sk_write_pending = 0; 2482 sk->sk_rcvlowat = 1; 2483 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2484 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2485 2486 sk->sk_stamp = ktime_set(-1L, 0); 2487 2488 #ifdef CONFIG_NET_RX_BUSY_POLL 2489 sk->sk_napi_id = 0; 2490 sk->sk_ll_usec = sysctl_net_busy_read; 2491 #endif 2492 2493 sk->sk_max_pacing_rate = ~0U; 2494 sk->sk_pacing_rate = ~0U; 2495 sk->sk_incoming_cpu = -1; 2496 /* 2497 * Before updating sk_refcnt, we must commit prior changes to memory 2498 * (Documentation/RCU/rculist_nulls.txt for details) 2499 */ 2500 smp_wmb(); 2501 atomic_set(&sk->sk_refcnt, 1); 2502 atomic_set(&sk->sk_drops, 0); 2503 } 2504 EXPORT_SYMBOL(sock_init_data); 2505 2506 void lock_sock_nested(struct sock *sk, int subclass) 2507 { 2508 might_sleep(); 2509 spin_lock_bh(&sk->sk_lock.slock); 2510 if (sk->sk_lock.owned) 2511 __lock_sock(sk); 2512 sk->sk_lock.owned = 1; 2513 spin_unlock(&sk->sk_lock.slock); 2514 /* 2515 * The sk_lock has mutex_lock() semantics here: 2516 */ 2517 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2518 local_bh_enable(); 2519 } 2520 EXPORT_SYMBOL(lock_sock_nested); 2521 2522 void release_sock(struct sock *sk) 2523 { 2524 spin_lock_bh(&sk->sk_lock.slock); 2525 if (sk->sk_backlog.tail) 2526 __release_sock(sk); 2527 2528 /* Warning : release_cb() might need to release sk ownership, 2529 * ie call sock_release_ownership(sk) before us. 2530 */ 2531 if (sk->sk_prot->release_cb) 2532 sk->sk_prot->release_cb(sk); 2533 2534 sock_release_ownership(sk); 2535 if (waitqueue_active(&sk->sk_lock.wq)) 2536 wake_up(&sk->sk_lock.wq); 2537 spin_unlock_bh(&sk->sk_lock.slock); 2538 } 2539 EXPORT_SYMBOL(release_sock); 2540 2541 /** 2542 * lock_sock_fast - fast version of lock_sock 2543 * @sk: socket 2544 * 2545 * This version should be used for very small section, where process wont block 2546 * return false if fast path is taken 2547 * sk_lock.slock locked, owned = 0, BH disabled 2548 * return true if slow path is taken 2549 * sk_lock.slock unlocked, owned = 1, BH enabled 2550 */ 2551 bool lock_sock_fast(struct sock *sk) 2552 { 2553 might_sleep(); 2554 spin_lock_bh(&sk->sk_lock.slock); 2555 2556 if (!sk->sk_lock.owned) 2557 /* 2558 * Note : We must disable BH 2559 */ 2560 return false; 2561 2562 __lock_sock(sk); 2563 sk->sk_lock.owned = 1; 2564 spin_unlock(&sk->sk_lock.slock); 2565 /* 2566 * The sk_lock has mutex_lock() semantics here: 2567 */ 2568 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2569 local_bh_enable(); 2570 return true; 2571 } 2572 EXPORT_SYMBOL(lock_sock_fast); 2573 2574 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 2575 { 2576 struct timeval tv; 2577 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2578 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2579 tv = ktime_to_timeval(sk->sk_stamp); 2580 if (tv.tv_sec == -1) 2581 return -ENOENT; 2582 if (tv.tv_sec == 0) { 2583 sk->sk_stamp = ktime_get_real(); 2584 tv = ktime_to_timeval(sk->sk_stamp); 2585 } 2586 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0; 2587 } 2588 EXPORT_SYMBOL(sock_get_timestamp); 2589 2590 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp) 2591 { 2592 struct timespec ts; 2593 if (!sock_flag(sk, SOCK_TIMESTAMP)) 2594 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 2595 ts = ktime_to_timespec(sk->sk_stamp); 2596 if (ts.tv_sec == -1) 2597 return -ENOENT; 2598 if (ts.tv_sec == 0) { 2599 sk->sk_stamp = ktime_get_real(); 2600 ts = ktime_to_timespec(sk->sk_stamp); 2601 } 2602 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0; 2603 } 2604 EXPORT_SYMBOL(sock_get_timestampns); 2605 2606 void sock_enable_timestamp(struct sock *sk, int flag) 2607 { 2608 if (!sock_flag(sk, flag)) { 2609 unsigned long previous_flags = sk->sk_flags; 2610 2611 sock_set_flag(sk, flag); 2612 /* 2613 * we just set one of the two flags which require net 2614 * time stamping, but time stamping might have been on 2615 * already because of the other one 2616 */ 2617 if (sock_needs_netstamp(sk) && 2618 !(previous_flags & SK_FLAGS_TIMESTAMP)) 2619 net_enable_timestamp(); 2620 } 2621 } 2622 2623 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2624 int level, int type) 2625 { 2626 struct sock_exterr_skb *serr; 2627 struct sk_buff *skb; 2628 int copied, err; 2629 2630 err = -EAGAIN; 2631 skb = sock_dequeue_err_skb(sk); 2632 if (skb == NULL) 2633 goto out; 2634 2635 copied = skb->len; 2636 if (copied > len) { 2637 msg->msg_flags |= MSG_TRUNC; 2638 copied = len; 2639 } 2640 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2641 if (err) 2642 goto out_free_skb; 2643 2644 sock_recv_timestamp(msg, sk, skb); 2645 2646 serr = SKB_EXT_ERR(skb); 2647 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 2648 2649 msg->msg_flags |= MSG_ERRQUEUE; 2650 err = copied; 2651 2652 out_free_skb: 2653 kfree_skb(skb); 2654 out: 2655 return err; 2656 } 2657 EXPORT_SYMBOL(sock_recv_errqueue); 2658 2659 /* 2660 * Get a socket option on an socket. 2661 * 2662 * FIX: POSIX 1003.1g is very ambiguous here. It states that 2663 * asynchronous errors should be reported by getsockopt. We assume 2664 * this means if you specify SO_ERROR (otherwise whats the point of it). 2665 */ 2666 int sock_common_getsockopt(struct socket *sock, int level, int optname, 2667 char __user *optval, int __user *optlen) 2668 { 2669 struct sock *sk = sock->sk; 2670 2671 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2672 } 2673 EXPORT_SYMBOL(sock_common_getsockopt); 2674 2675 #ifdef CONFIG_COMPAT 2676 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 2677 char __user *optval, int __user *optlen) 2678 { 2679 struct sock *sk = sock->sk; 2680 2681 if (sk->sk_prot->compat_getsockopt != NULL) 2682 return sk->sk_prot->compat_getsockopt(sk, level, optname, 2683 optval, optlen); 2684 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 2685 } 2686 EXPORT_SYMBOL(compat_sock_common_getsockopt); 2687 #endif 2688 2689 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2690 int flags) 2691 { 2692 struct sock *sk = sock->sk; 2693 int addr_len = 0; 2694 int err; 2695 2696 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2697 flags & ~MSG_DONTWAIT, &addr_len); 2698 if (err >= 0) 2699 msg->msg_namelen = addr_len; 2700 return err; 2701 } 2702 EXPORT_SYMBOL(sock_common_recvmsg); 2703 2704 /* 2705 * Set socket options on an inet socket. 2706 */ 2707 int sock_common_setsockopt(struct socket *sock, int level, int optname, 2708 char __user *optval, unsigned int optlen) 2709 { 2710 struct sock *sk = sock->sk; 2711 2712 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2713 } 2714 EXPORT_SYMBOL(sock_common_setsockopt); 2715 2716 #ifdef CONFIG_COMPAT 2717 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 2718 char __user *optval, unsigned int optlen) 2719 { 2720 struct sock *sk = sock->sk; 2721 2722 if (sk->sk_prot->compat_setsockopt != NULL) 2723 return sk->sk_prot->compat_setsockopt(sk, level, optname, 2724 optval, optlen); 2725 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 2726 } 2727 EXPORT_SYMBOL(compat_sock_common_setsockopt); 2728 #endif 2729 2730 void sk_common_release(struct sock *sk) 2731 { 2732 if (sk->sk_prot->destroy) 2733 sk->sk_prot->destroy(sk); 2734 2735 /* 2736 * Observation: when sock_common_release is called, processes have 2737 * no access to socket. But net still has. 2738 * Step one, detach it from networking: 2739 * 2740 * A. Remove from hash tables. 2741 */ 2742 2743 sk->sk_prot->unhash(sk); 2744 2745 /* 2746 * In this point socket cannot receive new packets, but it is possible 2747 * that some packets are in flight because some CPU runs receiver and 2748 * did hash table lookup before we unhashed socket. They will achieve 2749 * receive queue and will be purged by socket destructor. 2750 * 2751 * Also we still have packets pending on receive queue and probably, 2752 * our own packets waiting in device queues. sock_destroy will drain 2753 * receive queue, but transmitted packets will delay socket destruction 2754 * until the last reference will be released. 2755 */ 2756 2757 sock_orphan(sk); 2758 2759 xfrm_sk_free_policy(sk); 2760 2761 sk_refcnt_debug_release(sk); 2762 2763 if (sk->sk_frag.page) { 2764 put_page(sk->sk_frag.page); 2765 sk->sk_frag.page = NULL; 2766 } 2767 2768 sock_put(sk); 2769 } 2770 EXPORT_SYMBOL(sk_common_release); 2771 2772 #ifdef CONFIG_PROC_FS 2773 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 2774 struct prot_inuse { 2775 int val[PROTO_INUSE_NR]; 2776 }; 2777 2778 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 2779 2780 #ifdef CONFIG_NET_NS 2781 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2782 { 2783 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val); 2784 } 2785 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2786 2787 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2788 { 2789 int cpu, idx = prot->inuse_idx; 2790 int res = 0; 2791 2792 for_each_possible_cpu(cpu) 2793 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx]; 2794 2795 return res >= 0 ? res : 0; 2796 } 2797 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2798 2799 static int __net_init sock_inuse_init_net(struct net *net) 2800 { 2801 net->core.inuse = alloc_percpu(struct prot_inuse); 2802 return net->core.inuse ? 0 : -ENOMEM; 2803 } 2804 2805 static void __net_exit sock_inuse_exit_net(struct net *net) 2806 { 2807 free_percpu(net->core.inuse); 2808 } 2809 2810 static struct pernet_operations net_inuse_ops = { 2811 .init = sock_inuse_init_net, 2812 .exit = sock_inuse_exit_net, 2813 }; 2814 2815 static __init int net_inuse_init(void) 2816 { 2817 if (register_pernet_subsys(&net_inuse_ops)) 2818 panic("Cannot initialize net inuse counters"); 2819 2820 return 0; 2821 } 2822 2823 core_initcall(net_inuse_init); 2824 #else 2825 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse); 2826 2827 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 2828 { 2829 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val); 2830 } 2831 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 2832 2833 int sock_prot_inuse_get(struct net *net, struct proto *prot) 2834 { 2835 int cpu, idx = prot->inuse_idx; 2836 int res = 0; 2837 2838 for_each_possible_cpu(cpu) 2839 res += per_cpu(prot_inuse, cpu).val[idx]; 2840 2841 return res >= 0 ? res : 0; 2842 } 2843 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 2844 #endif 2845 2846 static void assign_proto_idx(struct proto *prot) 2847 { 2848 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 2849 2850 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 2851 pr_err("PROTO_INUSE_NR exhausted\n"); 2852 return; 2853 } 2854 2855 set_bit(prot->inuse_idx, proto_inuse_idx); 2856 } 2857 2858 static void release_proto_idx(struct proto *prot) 2859 { 2860 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 2861 clear_bit(prot->inuse_idx, proto_inuse_idx); 2862 } 2863 #else 2864 static inline void assign_proto_idx(struct proto *prot) 2865 { 2866 } 2867 2868 static inline void release_proto_idx(struct proto *prot) 2869 { 2870 } 2871 #endif 2872 2873 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 2874 { 2875 if (!rsk_prot) 2876 return; 2877 kfree(rsk_prot->slab_name); 2878 rsk_prot->slab_name = NULL; 2879 kmem_cache_destroy(rsk_prot->slab); 2880 rsk_prot->slab = NULL; 2881 } 2882 2883 static int req_prot_init(const struct proto *prot) 2884 { 2885 struct request_sock_ops *rsk_prot = prot->rsk_prot; 2886 2887 if (!rsk_prot) 2888 return 0; 2889 2890 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 2891 prot->name); 2892 if (!rsk_prot->slab_name) 2893 return -ENOMEM; 2894 2895 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 2896 rsk_prot->obj_size, 0, 2897 prot->slab_flags, NULL); 2898 2899 if (!rsk_prot->slab) { 2900 pr_crit("%s: Can't create request sock SLAB cache!\n", 2901 prot->name); 2902 return -ENOMEM; 2903 } 2904 return 0; 2905 } 2906 2907 int proto_register(struct proto *prot, int alloc_slab) 2908 { 2909 if (alloc_slab) { 2910 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 2911 SLAB_HWCACHE_ALIGN | prot->slab_flags, 2912 NULL); 2913 2914 if (prot->slab == NULL) { 2915 pr_crit("%s: Can't create sock SLAB cache!\n", 2916 prot->name); 2917 goto out; 2918 } 2919 2920 if (req_prot_init(prot)) 2921 goto out_free_request_sock_slab; 2922 2923 if (prot->twsk_prot != NULL) { 2924 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 2925 2926 if (prot->twsk_prot->twsk_slab_name == NULL) 2927 goto out_free_request_sock_slab; 2928 2929 prot->twsk_prot->twsk_slab = 2930 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 2931 prot->twsk_prot->twsk_obj_size, 2932 0, 2933 prot->slab_flags, 2934 NULL); 2935 if (prot->twsk_prot->twsk_slab == NULL) 2936 goto out_free_timewait_sock_slab_name; 2937 } 2938 } 2939 2940 mutex_lock(&proto_list_mutex); 2941 list_add(&prot->node, &proto_list); 2942 assign_proto_idx(prot); 2943 mutex_unlock(&proto_list_mutex); 2944 return 0; 2945 2946 out_free_timewait_sock_slab_name: 2947 kfree(prot->twsk_prot->twsk_slab_name); 2948 out_free_request_sock_slab: 2949 req_prot_cleanup(prot->rsk_prot); 2950 2951 kmem_cache_destroy(prot->slab); 2952 prot->slab = NULL; 2953 out: 2954 return -ENOBUFS; 2955 } 2956 EXPORT_SYMBOL(proto_register); 2957 2958 void proto_unregister(struct proto *prot) 2959 { 2960 mutex_lock(&proto_list_mutex); 2961 release_proto_idx(prot); 2962 list_del(&prot->node); 2963 mutex_unlock(&proto_list_mutex); 2964 2965 kmem_cache_destroy(prot->slab); 2966 prot->slab = NULL; 2967 2968 req_prot_cleanup(prot->rsk_prot); 2969 2970 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 2971 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 2972 kfree(prot->twsk_prot->twsk_slab_name); 2973 prot->twsk_prot->twsk_slab = NULL; 2974 } 2975 } 2976 EXPORT_SYMBOL(proto_unregister); 2977 2978 #ifdef CONFIG_PROC_FS 2979 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 2980 __acquires(proto_list_mutex) 2981 { 2982 mutex_lock(&proto_list_mutex); 2983 return seq_list_start_head(&proto_list, *pos); 2984 } 2985 2986 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2987 { 2988 return seq_list_next(v, &proto_list, pos); 2989 } 2990 2991 static void proto_seq_stop(struct seq_file *seq, void *v) 2992 __releases(proto_list_mutex) 2993 { 2994 mutex_unlock(&proto_list_mutex); 2995 } 2996 2997 static char proto_method_implemented(const void *method) 2998 { 2999 return method == NULL ? 'n' : 'y'; 3000 } 3001 static long sock_prot_memory_allocated(struct proto *proto) 3002 { 3003 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3004 } 3005 3006 static char *sock_prot_memory_pressure(struct proto *proto) 3007 { 3008 return proto->memory_pressure != NULL ? 3009 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3010 } 3011 3012 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3013 { 3014 3015 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3016 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3017 proto->name, 3018 proto->obj_size, 3019 sock_prot_inuse_get(seq_file_net(seq), proto), 3020 sock_prot_memory_allocated(proto), 3021 sock_prot_memory_pressure(proto), 3022 proto->max_header, 3023 proto->slab == NULL ? "no" : "yes", 3024 module_name(proto->owner), 3025 proto_method_implemented(proto->close), 3026 proto_method_implemented(proto->connect), 3027 proto_method_implemented(proto->disconnect), 3028 proto_method_implemented(proto->accept), 3029 proto_method_implemented(proto->ioctl), 3030 proto_method_implemented(proto->init), 3031 proto_method_implemented(proto->destroy), 3032 proto_method_implemented(proto->shutdown), 3033 proto_method_implemented(proto->setsockopt), 3034 proto_method_implemented(proto->getsockopt), 3035 proto_method_implemented(proto->sendmsg), 3036 proto_method_implemented(proto->recvmsg), 3037 proto_method_implemented(proto->sendpage), 3038 proto_method_implemented(proto->bind), 3039 proto_method_implemented(proto->backlog_rcv), 3040 proto_method_implemented(proto->hash), 3041 proto_method_implemented(proto->unhash), 3042 proto_method_implemented(proto->get_port), 3043 proto_method_implemented(proto->enter_memory_pressure)); 3044 } 3045 3046 static int proto_seq_show(struct seq_file *seq, void *v) 3047 { 3048 if (v == &proto_list) 3049 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3050 "protocol", 3051 "size", 3052 "sockets", 3053 "memory", 3054 "press", 3055 "maxhdr", 3056 "slab", 3057 "module", 3058 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3059 else 3060 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3061 return 0; 3062 } 3063 3064 static const struct seq_operations proto_seq_ops = { 3065 .start = proto_seq_start, 3066 .next = proto_seq_next, 3067 .stop = proto_seq_stop, 3068 .show = proto_seq_show, 3069 }; 3070 3071 static int proto_seq_open(struct inode *inode, struct file *file) 3072 { 3073 return seq_open_net(inode, file, &proto_seq_ops, 3074 sizeof(struct seq_net_private)); 3075 } 3076 3077 static const struct file_operations proto_seq_fops = { 3078 .owner = THIS_MODULE, 3079 .open = proto_seq_open, 3080 .read = seq_read, 3081 .llseek = seq_lseek, 3082 .release = seq_release_net, 3083 }; 3084 3085 static __net_init int proto_init_net(struct net *net) 3086 { 3087 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops)) 3088 return -ENOMEM; 3089 3090 return 0; 3091 } 3092 3093 static __net_exit void proto_exit_net(struct net *net) 3094 { 3095 remove_proc_entry("protocols", net->proc_net); 3096 } 3097 3098 3099 static __net_initdata struct pernet_operations proto_net_ops = { 3100 .init = proto_init_net, 3101 .exit = proto_exit_net, 3102 }; 3103 3104 static int __init proto_init(void) 3105 { 3106 return register_pernet_subsys(&proto_net_ops); 3107 } 3108 3109 subsys_initcall(proto_init); 3110 3111 #endif /* PROC_FS */ 3112
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.