1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/init.h> 111 #include <linux/highmem.h> 112 #include <linux/user_namespace.h> 113 #include <linux/static_key.h> 114 #include <linux/memcontrol.h> 115 #include <linux/prefetch.h> 116 117 #include <linux/uaccess.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/net_namespace.h> 123 #include <net/request_sock.h> 124 #include <net/sock.h> 125 #include <linux/net_tstamp.h> 126 #include <net/xfrm.h> 127 #include <linux/ipsec.h> 128 #include <net/cls_cgroup.h> 129 #include <net/netprio_cgroup.h> 130 #include <linux/sock_diag.h> 131 132 #include <linux/filter.h> 133 #include <net/sock_reuseport.h> 134 #include <net/bpf_sk_storage.h> 135 136 #include <trace/events/sock.h> 137 138 #include <net/tcp.h> 139 #include <net/busy_poll.h> 140 141 static DEFINE_MUTEX(proto_list_mutex); 142 static LIST_HEAD(proto_list); 143 144 static void sock_inuse_add(struct net *net, int val); 145 146 /** 147 * sk_ns_capable - General socket capability test 148 * @sk: Socket to use a capability on or through 149 * @user_ns: The user namespace of the capability to use 150 * @cap: The capability to use 151 * 152 * Test to see if the opener of the socket had when the socket was 153 * created and the current process has the capability @cap in the user 154 * namespace @user_ns. 155 */ 156 bool sk_ns_capable(const struct sock *sk, 157 struct user_namespace *user_ns, int cap) 158 { 159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 160 ns_capable(user_ns, cap); 161 } 162 EXPORT_SYMBOL(sk_ns_capable); 163 164 /** 165 * sk_capable - Socket global capability test 166 * @sk: Socket to use a capability on or through 167 * @cap: The global capability to use 168 * 169 * Test to see if the opener of the socket had when the socket was 170 * created and the current process has the capability @cap in all user 171 * namespaces. 172 */ 173 bool sk_capable(const struct sock *sk, int cap) 174 { 175 return sk_ns_capable(sk, &init_user_ns, cap); 176 } 177 EXPORT_SYMBOL(sk_capable); 178 179 /** 180 * sk_net_capable - Network namespace socket capability test 181 * @sk: Socket to use a capability on or through 182 * @cap: The capability to use 183 * 184 * Test to see if the opener of the socket had when the socket was created 185 * and the current process has the capability @cap over the network namespace 186 * the socket is a member of. 187 */ 188 bool sk_net_capable(const struct sock *sk, int cap) 189 { 190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 191 } 192 EXPORT_SYMBOL(sk_net_capable); 193 194 /* 195 * Each address family might have different locking rules, so we have 196 * one slock key per address family and separate keys for internal and 197 * userspace sockets. 198 */ 199 static struct lock_class_key af_family_keys[AF_MAX]; 200 static struct lock_class_key af_family_kern_keys[AF_MAX]; 201 static struct lock_class_key af_family_slock_keys[AF_MAX]; 202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 203 204 /* 205 * Make lock validator output more readable. (we pre-construct these 206 * strings build-time, so that runtime initialization of socket 207 * locks is fast): 208 */ 209 210 #define _sock_locks(x) \ 211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 220 x "27" , x "28" , x "AF_CAN" , \ 221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 226 x "AF_MAX" 227 228 static const char *const af_family_key_strings[AF_MAX+1] = { 229 _sock_locks("sk_lock-") 230 }; 231 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 232 _sock_locks("slock-") 233 }; 234 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 235 _sock_locks("clock-") 236 }; 237 238 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 239 _sock_locks("k-sk_lock-") 240 }; 241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 242 _sock_locks("k-slock-") 243 }; 244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 245 _sock_locks("k-clock-") 246 }; 247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 248 _sock_locks("rlock-") 249 }; 250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 251 _sock_locks("wlock-") 252 }; 253 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 254 _sock_locks("elock-") 255 }; 256 257 /* 258 * sk_callback_lock and sk queues locking rules are per-address-family, 259 * so split the lock classes by using a per-AF key: 260 */ 261 static struct lock_class_key af_callback_keys[AF_MAX]; 262 static struct lock_class_key af_rlock_keys[AF_MAX]; 263 static struct lock_class_key af_wlock_keys[AF_MAX]; 264 static struct lock_class_key af_elock_keys[AF_MAX]; 265 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 266 267 /* Run time adjustable parameters. */ 268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 269 EXPORT_SYMBOL(sysctl_wmem_max); 270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 271 EXPORT_SYMBOL(sysctl_rmem_max); 272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 274 275 /* Maximal space eaten by iovec or ancillary data plus some space */ 276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); 277 EXPORT_SYMBOL(sysctl_optmem_max); 278 279 int sysctl_tstamp_allow_data __read_mostly = 1; 280 281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 282 EXPORT_SYMBOL_GPL(memalloc_socks_key); 283 284 /** 285 * sk_set_memalloc - sets %SOCK_MEMALLOC 286 * @sk: socket to set it on 287 * 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 289 * It's the responsibility of the admin to adjust min_free_kbytes 290 * to meet the requirements 291 */ 292 void sk_set_memalloc(struct sock *sk) 293 { 294 sock_set_flag(sk, SOCK_MEMALLOC); 295 sk->sk_allocation |= __GFP_MEMALLOC; 296 static_branch_inc(&memalloc_socks_key); 297 } 298 EXPORT_SYMBOL_GPL(sk_set_memalloc); 299 300 void sk_clear_memalloc(struct sock *sk) 301 { 302 sock_reset_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation &= ~__GFP_MEMALLOC; 304 static_branch_dec(&memalloc_socks_key); 305 306 /* 307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 308 * progress of swapping. SOCK_MEMALLOC may be cleared while 309 * it has rmem allocations due to the last swapfile being deactivated 310 * but there is a risk that the socket is unusable due to exceeding 311 * the rmem limits. Reclaim the reserves and obey rmem limits again. 312 */ 313 sk_mem_reclaim(sk); 314 } 315 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 316 317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 318 { 319 int ret; 320 unsigned int noreclaim_flag; 321 322 /* these should have been dropped before queueing */ 323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 324 325 noreclaim_flag = memalloc_noreclaim_save(); 326 ret = sk->sk_backlog_rcv(sk, skb); 327 memalloc_noreclaim_restore(noreclaim_flag); 328 329 return ret; 330 } 331 EXPORT_SYMBOL(__sk_backlog_rcv); 332 333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval) 334 { 335 struct __kernel_sock_timeval tv; 336 int size; 337 338 if (timeo == MAX_SCHEDULE_TIMEOUT) { 339 tv.tv_sec = 0; 340 tv.tv_usec = 0; 341 } else { 342 tv.tv_sec = timeo / HZ; 343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 344 } 345 346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 348 *(struct old_timeval32 *)optval = tv32; 349 return sizeof(tv32); 350 } 351 352 if (old_timeval) { 353 struct __kernel_old_timeval old_tv; 354 old_tv.tv_sec = tv.tv_sec; 355 old_tv.tv_usec = tv.tv_usec; 356 *(struct __kernel_old_timeval *)optval = old_tv; 357 size = sizeof(old_tv); 358 } else { 359 *(struct __kernel_sock_timeval *)optval = tv; 360 size = sizeof(tv); 361 } 362 363 return size; 364 } 365 366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval) 367 { 368 struct __kernel_sock_timeval tv; 369 370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 371 struct old_timeval32 tv32; 372 373 if (optlen < sizeof(tv32)) 374 return -EINVAL; 375 376 if (copy_from_user(&tv32, optval, sizeof(tv32))) 377 return -EFAULT; 378 tv.tv_sec = tv32.tv_sec; 379 tv.tv_usec = tv32.tv_usec; 380 } else if (old_timeval) { 381 struct __kernel_old_timeval old_tv; 382 383 if (optlen < sizeof(old_tv)) 384 return -EINVAL; 385 if (copy_from_user(&old_tv, optval, sizeof(old_tv))) 386 return -EFAULT; 387 tv.tv_sec = old_tv.tv_sec; 388 tv.tv_usec = old_tv.tv_usec; 389 } else { 390 if (optlen < sizeof(tv)) 391 return -EINVAL; 392 if (copy_from_user(&tv, optval, sizeof(tv))) 393 return -EFAULT; 394 } 395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 396 return -EDOM; 397 398 if (tv.tv_sec < 0) { 399 static int warned __read_mostly; 400 401 *timeo_p = 0; 402 if (warned < 10 && net_ratelimit()) { 403 warned++; 404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 405 __func__, current->comm, task_pid_nr(current)); 406 } 407 return 0; 408 } 409 *timeo_p = MAX_SCHEDULE_TIMEOUT; 410 if (tv.tv_sec == 0 && tv.tv_usec == 0) 411 return 0; 412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) 413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); 414 return 0; 415 } 416 417 static void sock_warn_obsolete_bsdism(const char *name) 418 { 419 static int warned; 420 static char warncomm[TASK_COMM_LEN]; 421 if (strcmp(warncomm, current->comm) && warned < 5) { 422 strcpy(warncomm, current->comm); 423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n", 424 warncomm, name); 425 warned++; 426 } 427 } 428 429 static bool sock_needs_netstamp(const struct sock *sk) 430 { 431 switch (sk->sk_family) { 432 case AF_UNSPEC: 433 case AF_UNIX: 434 return false; 435 default: 436 return true; 437 } 438 } 439 440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 441 { 442 if (sk->sk_flags & flags) { 443 sk->sk_flags &= ~flags; 444 if (sock_needs_netstamp(sk) && 445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 446 net_disable_timestamp(); 447 } 448 } 449 450 451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 452 { 453 unsigned long flags; 454 struct sk_buff_head *list = &sk->sk_receive_queue; 455 456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 457 atomic_inc(&sk->sk_drops); 458 trace_sock_rcvqueue_full(sk, skb); 459 return -ENOMEM; 460 } 461 462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 463 atomic_inc(&sk->sk_drops); 464 return -ENOBUFS; 465 } 466 467 skb->dev = NULL; 468 skb_set_owner_r(skb, sk); 469 470 /* we escape from rcu protected region, make sure we dont leak 471 * a norefcounted dst 472 */ 473 skb_dst_force(skb); 474 475 spin_lock_irqsave(&list->lock, flags); 476 sock_skb_set_dropcount(sk, skb); 477 __skb_queue_tail(list, skb); 478 spin_unlock_irqrestore(&list->lock, flags); 479 480 if (!sock_flag(sk, SOCK_DEAD)) 481 sk->sk_data_ready(sk); 482 return 0; 483 } 484 EXPORT_SYMBOL(__sock_queue_rcv_skb); 485 486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 487 { 488 int err; 489 490 err = sk_filter(sk, skb); 491 if (err) 492 return err; 493 494 return __sock_queue_rcv_skb(sk, skb); 495 } 496 EXPORT_SYMBOL(sock_queue_rcv_skb); 497 498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 499 const int nested, unsigned int trim_cap, bool refcounted) 500 { 501 int rc = NET_RX_SUCCESS; 502 503 if (sk_filter_trim_cap(sk, skb, trim_cap)) 504 goto discard_and_relse; 505 506 skb->dev = NULL; 507 508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 509 atomic_inc(&sk->sk_drops); 510 goto discard_and_relse; 511 } 512 if (nested) 513 bh_lock_sock_nested(sk); 514 else 515 bh_lock_sock(sk); 516 if (!sock_owned_by_user(sk)) { 517 /* 518 * trylock + unlock semantics: 519 */ 520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 521 522 rc = sk_backlog_rcv(sk, skb); 523 524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 525 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) { 526 bh_unlock_sock(sk); 527 atomic_inc(&sk->sk_drops); 528 goto discard_and_relse; 529 } 530 531 bh_unlock_sock(sk); 532 out: 533 if (refcounted) 534 sock_put(sk); 535 return rc; 536 discard_and_relse: 537 kfree_skb(skb); 538 goto out; 539 } 540 EXPORT_SYMBOL(__sk_receive_skb); 541 542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 543 { 544 struct dst_entry *dst = __sk_dst_get(sk); 545 546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 547 sk_tx_queue_clear(sk); 548 sk->sk_dst_pending_confirm = 0; 549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 550 dst_release(dst); 551 return NULL; 552 } 553 554 return dst; 555 } 556 EXPORT_SYMBOL(__sk_dst_check); 557 558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 559 { 560 struct dst_entry *dst = sk_dst_get(sk); 561 562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 563 sk_dst_reset(sk); 564 dst_release(dst); 565 return NULL; 566 } 567 568 return dst; 569 } 570 EXPORT_SYMBOL(sk_dst_check); 571 572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex) 573 { 574 int ret = -ENOPROTOOPT; 575 #ifdef CONFIG_NETDEVICES 576 struct net *net = sock_net(sk); 577 578 /* Sorry... */ 579 ret = -EPERM; 580 if (!ns_capable(net->user_ns, CAP_NET_RAW)) 581 goto out; 582 583 ret = -EINVAL; 584 if (ifindex < 0) 585 goto out; 586 587 sk->sk_bound_dev_if = ifindex; 588 if (sk->sk_prot->rehash) 589 sk->sk_prot->rehash(sk); 590 sk_dst_reset(sk); 591 592 ret = 0; 593 594 out: 595 #endif 596 597 return ret; 598 } 599 600 static int sock_setbindtodevice(struct sock *sk, char __user *optval, 601 int optlen) 602 { 603 int ret = -ENOPROTOOPT; 604 #ifdef CONFIG_NETDEVICES 605 struct net *net = sock_net(sk); 606 char devname[IFNAMSIZ]; 607 int index; 608 609 ret = -EINVAL; 610 if (optlen < 0) 611 goto out; 612 613 /* Bind this socket to a particular device like "eth0", 614 * as specified in the passed interface name. If the 615 * name is "" or the option length is zero the socket 616 * is not bound. 617 */ 618 if (optlen > IFNAMSIZ - 1) 619 optlen = IFNAMSIZ - 1; 620 memset(devname, 0, sizeof(devname)); 621 622 ret = -EFAULT; 623 if (copy_from_user(devname, optval, optlen)) 624 goto out; 625 626 index = 0; 627 if (devname[0] != '\0') { 628 struct net_device *dev; 629 630 rcu_read_lock(); 631 dev = dev_get_by_name_rcu(net, devname); 632 if (dev) 633 index = dev->ifindex; 634 rcu_read_unlock(); 635 ret = -ENODEV; 636 if (!dev) 637 goto out; 638 } 639 640 lock_sock(sk); 641 ret = sock_setbindtodevice_locked(sk, index); 642 release_sock(sk); 643 644 out: 645 #endif 646 647 return ret; 648 } 649 650 static int sock_getbindtodevice(struct sock *sk, char __user *optval, 651 int __user *optlen, int len) 652 { 653 int ret = -ENOPROTOOPT; 654 #ifdef CONFIG_NETDEVICES 655 struct net *net = sock_net(sk); 656 char devname[IFNAMSIZ]; 657 658 if (sk->sk_bound_dev_if == 0) { 659 len = 0; 660 goto zero; 661 } 662 663 ret = -EINVAL; 664 if (len < IFNAMSIZ) 665 goto out; 666 667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); 668 if (ret) 669 goto out; 670 671 len = strlen(devname) + 1; 672 673 ret = -EFAULT; 674 if (copy_to_user(optval, devname, len)) 675 goto out; 676 677 zero: 678 ret = -EFAULT; 679 if (put_user(len, optlen)) 680 goto out; 681 682 ret = 0; 683 684 out: 685 #endif 686 687 return ret; 688 } 689 690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool) 691 { 692 if (valbool) 693 sock_set_flag(sk, bit); 694 else 695 sock_reset_flag(sk, bit); 696 } 697 698 bool sk_mc_loop(struct sock *sk) 699 { 700 if (dev_recursion_level()) 701 return false; 702 if (!sk) 703 return true; 704 switch (sk->sk_family) { 705 case AF_INET: 706 return inet_sk(sk)->mc_loop; 707 #if IS_ENABLED(CONFIG_IPV6) 708 case AF_INET6: 709 return inet6_sk(sk)->mc_loop; 710 #endif 711 } 712 WARN_ON(1); 713 return true; 714 } 715 EXPORT_SYMBOL(sk_mc_loop); 716 717 /* 718 * This is meant for all protocols to use and covers goings on 719 * at the socket level. Everything here is generic. 720 */ 721 722 int sock_setsockopt(struct socket *sock, int level, int optname, 723 char __user *optval, unsigned int optlen) 724 { 725 struct sock_txtime sk_txtime; 726 struct sock *sk = sock->sk; 727 int val; 728 int valbool; 729 struct linger ling; 730 int ret = 0; 731 732 /* 733 * Options without arguments 734 */ 735 736 if (optname == SO_BINDTODEVICE) 737 return sock_setbindtodevice(sk, optval, optlen); 738 739 if (optlen < sizeof(int)) 740 return -EINVAL; 741 742 if (get_user(val, (int __user *)optval)) 743 return -EFAULT; 744 745 valbool = val ? 1 : 0; 746 747 lock_sock(sk); 748 749 switch (optname) { 750 case SO_DEBUG: 751 if (val && !capable(CAP_NET_ADMIN)) 752 ret = -EACCES; 753 else 754 sock_valbool_flag(sk, SOCK_DBG, valbool); 755 break; 756 case SO_REUSEADDR: 757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 758 break; 759 case SO_REUSEPORT: 760 sk->sk_reuseport = valbool; 761 break; 762 case SO_TYPE: 763 case SO_PROTOCOL: 764 case SO_DOMAIN: 765 case SO_ERROR: 766 ret = -ENOPROTOOPT; 767 break; 768 case SO_DONTROUTE: 769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 770 sk_dst_reset(sk); 771 break; 772 case SO_BROADCAST: 773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 774 break; 775 case SO_SNDBUF: 776 /* Don't error on this BSD doesn't and if you think 777 * about it this is right. Otherwise apps have to 778 * play 'guess the biggest size' games. RCVBUF/SNDBUF 779 * are treated in BSD as hints 780 */ 781 val = min_t(u32, val, sysctl_wmem_max); 782 set_sndbuf: 783 /* Ensure val * 2 fits into an int, to prevent max_t() 784 * from treating it as a negative value. 785 */ 786 val = min_t(int, val, INT_MAX / 2); 787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 788 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); 789 /* Wake up sending tasks if we upped the value. */ 790 sk->sk_write_space(sk); 791 break; 792 793 case SO_SNDBUFFORCE: 794 if (!capable(CAP_NET_ADMIN)) { 795 ret = -EPERM; 796 break; 797 } 798 799 /* No negative values (to prevent underflow, as val will be 800 * multiplied by 2). 801 */ 802 if (val < 0) 803 val = 0; 804 goto set_sndbuf; 805 806 case SO_RCVBUF: 807 /* Don't error on this BSD doesn't and if you think 808 * about it this is right. Otherwise apps have to 809 * play 'guess the biggest size' games. RCVBUF/SNDBUF 810 * are treated in BSD as hints 811 */ 812 val = min_t(u32, val, sysctl_rmem_max); 813 set_rcvbuf: 814 /* Ensure val * 2 fits into an int, to prevent max_t() 815 * from treating it as a negative value. 816 */ 817 val = min_t(int, val, INT_MAX / 2); 818 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 819 /* 820 * We double it on the way in to account for 821 * "struct sk_buff" etc. overhead. Applications 822 * assume that the SO_RCVBUF setting they make will 823 * allow that much actual data to be received on that 824 * socket. 825 * 826 * Applications are unaware that "struct sk_buff" and 827 * other overheads allocate from the receive buffer 828 * during socket buffer allocation. 829 * 830 * And after considering the possible alternatives, 831 * returning the value we actually used in getsockopt 832 * is the most desirable behavior. 833 */ 834 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); 835 break; 836 837 case SO_RCVBUFFORCE: 838 if (!capable(CAP_NET_ADMIN)) { 839 ret = -EPERM; 840 break; 841 } 842 843 /* No negative values (to prevent underflow, as val will be 844 * multiplied by 2). 845 */ 846 if (val < 0) 847 val = 0; 848 goto set_rcvbuf; 849 850 case SO_KEEPALIVE: 851 if (sk->sk_prot->keepalive) 852 sk->sk_prot->keepalive(sk, valbool); 853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 854 break; 855 856 case SO_OOBINLINE: 857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 858 break; 859 860 case SO_NO_CHECK: 861 sk->sk_no_check_tx = valbool; 862 break; 863 864 case SO_PRIORITY: 865 if ((val >= 0 && val <= 6) || 866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 867 sk->sk_priority = val; 868 else 869 ret = -EPERM; 870 break; 871 872 case SO_LINGER: 873 if (optlen < sizeof(ling)) { 874 ret = -EINVAL; /* 1003.1g */ 875 break; 876 } 877 if (copy_from_user(&ling, optval, sizeof(ling))) { 878 ret = -EFAULT; 879 break; 880 } 881 if (!ling.l_onoff) 882 sock_reset_flag(sk, SOCK_LINGER); 883 else { 884 #if (BITS_PER_LONG == 32) 885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 887 else 888 #endif 889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 890 sock_set_flag(sk, SOCK_LINGER); 891 } 892 break; 893 894 case SO_BSDCOMPAT: 895 sock_warn_obsolete_bsdism("setsockopt"); 896 break; 897 898 case SO_PASSCRED: 899 if (valbool) 900 set_bit(SOCK_PASSCRED, &sock->flags); 901 else 902 clear_bit(SOCK_PASSCRED, &sock->flags); 903 break; 904 905 case SO_TIMESTAMP_OLD: 906 case SO_TIMESTAMP_NEW: 907 case SO_TIMESTAMPNS_OLD: 908 case SO_TIMESTAMPNS_NEW: 909 if (valbool) { 910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW) 911 sock_set_flag(sk, SOCK_TSTAMP_NEW); 912 else 913 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 914 915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW) 916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 917 else 918 sock_set_flag(sk, SOCK_RCVTSTAMPNS); 919 sock_set_flag(sk, SOCK_RCVTSTAMP); 920 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 921 } else { 922 sock_reset_flag(sk, SOCK_RCVTSTAMP); 923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 924 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 925 } 926 break; 927 928 case SO_TIMESTAMPING_NEW: 929 sock_set_flag(sk, SOCK_TSTAMP_NEW); 930 /* fall through */ 931 case SO_TIMESTAMPING_OLD: 932 if (val & ~SOF_TIMESTAMPING_MASK) { 933 ret = -EINVAL; 934 break; 935 } 936 937 if (val & SOF_TIMESTAMPING_OPT_ID && 938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 939 if (sk->sk_protocol == IPPROTO_TCP && 940 sk->sk_type == SOCK_STREAM) { 941 if ((1 << sk->sk_state) & 942 (TCPF_CLOSE | TCPF_LISTEN)) { 943 ret = -EINVAL; 944 break; 945 } 946 sk->sk_tskey = tcp_sk(sk)->snd_una; 947 } else { 948 sk->sk_tskey = 0; 949 } 950 } 951 952 if (val & SOF_TIMESTAMPING_OPT_STATS && 953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { 954 ret = -EINVAL; 955 break; 956 } 957 958 sk->sk_tsflags = val; 959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 960 sock_enable_timestamp(sk, 961 SOCK_TIMESTAMPING_RX_SOFTWARE); 962 else { 963 if (optname == SO_TIMESTAMPING_NEW) 964 sock_reset_flag(sk, SOCK_TSTAMP_NEW); 965 966 sock_disable_timestamp(sk, 967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 968 } 969 break; 970 971 case SO_RCVLOWAT: 972 if (val < 0) 973 val = INT_MAX; 974 if (sock->ops->set_rcvlowat) 975 ret = sock->ops->set_rcvlowat(sk, val); 976 else 977 sk->sk_rcvlowat = val ? : 1; 978 break; 979 980 case SO_RCVTIMEO_OLD: 981 case SO_RCVTIMEO_NEW: 982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); 983 break; 984 985 case SO_SNDTIMEO_OLD: 986 case SO_SNDTIMEO_NEW: 987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); 988 break; 989 990 case SO_ATTACH_FILTER: 991 ret = -EINVAL; 992 if (optlen == sizeof(struct sock_fprog)) { 993 struct sock_fprog fprog; 994 995 ret = -EFAULT; 996 if (copy_from_user(&fprog, optval, sizeof(fprog))) 997 break; 998 999 ret = sk_attach_filter(&fprog, sk); 1000 } 1001 break; 1002 1003 case SO_ATTACH_BPF: 1004 ret = -EINVAL; 1005 if (optlen == sizeof(u32)) { 1006 u32 ufd; 1007 1008 ret = -EFAULT; 1009 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1010 break; 1011 1012 ret = sk_attach_bpf(ufd, sk); 1013 } 1014 break; 1015 1016 case SO_ATTACH_REUSEPORT_CBPF: 1017 ret = -EINVAL; 1018 if (optlen == sizeof(struct sock_fprog)) { 1019 struct sock_fprog fprog; 1020 1021 ret = -EFAULT; 1022 if (copy_from_user(&fprog, optval, sizeof(fprog))) 1023 break; 1024 1025 ret = sk_reuseport_attach_filter(&fprog, sk); 1026 } 1027 break; 1028 1029 case SO_ATTACH_REUSEPORT_EBPF: 1030 ret = -EINVAL; 1031 if (optlen == sizeof(u32)) { 1032 u32 ufd; 1033 1034 ret = -EFAULT; 1035 if (copy_from_user(&ufd, optval, sizeof(ufd))) 1036 break; 1037 1038 ret = sk_reuseport_attach_bpf(ufd, sk); 1039 } 1040 break; 1041 1042 case SO_DETACH_REUSEPORT_BPF: 1043 ret = reuseport_detach_prog(sk); 1044 break; 1045 1046 case SO_DETACH_FILTER: 1047 ret = sk_detach_filter(sk); 1048 break; 1049 1050 case SO_LOCK_FILTER: 1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1052 ret = -EPERM; 1053 else 1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1055 break; 1056 1057 case SO_PASSSEC: 1058 if (valbool) 1059 set_bit(SOCK_PASSSEC, &sock->flags); 1060 else 1061 clear_bit(SOCK_PASSSEC, &sock->flags); 1062 break; 1063 case SO_MARK: 1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1065 ret = -EPERM; 1066 } else if (val != sk->sk_mark) { 1067 sk->sk_mark = val; 1068 sk_dst_reset(sk); 1069 } 1070 break; 1071 1072 case SO_RXQ_OVFL: 1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1074 break; 1075 1076 case SO_WIFI_STATUS: 1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1078 break; 1079 1080 case SO_PEEK_OFF: 1081 if (sock->ops->set_peek_off) 1082 ret = sock->ops->set_peek_off(sk, val); 1083 else 1084 ret = -EOPNOTSUPP; 1085 break; 1086 1087 case SO_NOFCS: 1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1089 break; 1090 1091 case SO_SELECT_ERR_QUEUE: 1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1093 break; 1094 1095 #ifdef CONFIG_NET_RX_BUSY_POLL 1096 case SO_BUSY_POLL: 1097 /* allow unprivileged users to decrease the value */ 1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) 1099 ret = -EPERM; 1100 else { 1101 if (val < 0) 1102 ret = -EINVAL; 1103 else 1104 sk->sk_ll_usec = val; 1105 } 1106 break; 1107 #endif 1108 1109 case SO_MAX_PACING_RATE: 1110 { 1111 unsigned long ulval = (val == ~0U) ? ~0UL : val; 1112 1113 if (sizeof(ulval) != sizeof(val) && 1114 optlen >= sizeof(ulval) && 1115 get_user(ulval, (unsigned long __user *)optval)) { 1116 ret = -EFAULT; 1117 break; 1118 } 1119 if (ulval != ~0UL) 1120 cmpxchg(&sk->sk_pacing_status, 1121 SK_PACING_NONE, 1122 SK_PACING_NEEDED); 1123 sk->sk_max_pacing_rate = ulval; 1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); 1125 break; 1126 } 1127 case SO_INCOMING_CPU: 1128 WRITE_ONCE(sk->sk_incoming_cpu, val); 1129 break; 1130 1131 case SO_CNX_ADVICE: 1132 if (val == 1) 1133 dst_negative_advice(sk); 1134 break; 1135 1136 case SO_ZEROCOPY: 1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1138 if (!((sk->sk_type == SOCK_STREAM && 1139 sk->sk_protocol == IPPROTO_TCP) || 1140 (sk->sk_type == SOCK_DGRAM && 1141 sk->sk_protocol == IPPROTO_UDP))) 1142 ret = -ENOTSUPP; 1143 } else if (sk->sk_family != PF_RDS) { 1144 ret = -ENOTSUPP; 1145 } 1146 if (!ret) { 1147 if (val < 0 || val > 1) 1148 ret = -EINVAL; 1149 else 1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1151 } 1152 break; 1153 1154 case SO_TXTIME: 1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1156 ret = -EPERM; 1157 } else if (optlen != sizeof(struct sock_txtime)) { 1158 ret = -EINVAL; 1159 } else if (copy_from_user(&sk_txtime, optval, 1160 sizeof(struct sock_txtime))) { 1161 ret = -EFAULT; 1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1163 ret = -EINVAL; 1164 } else { 1165 sock_valbool_flag(sk, SOCK_TXTIME, true); 1166 sk->sk_clockid = sk_txtime.clockid; 1167 sk->sk_txtime_deadline_mode = 1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1169 sk->sk_txtime_report_errors = 1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1171 } 1172 break; 1173 1174 case SO_BINDTOIFINDEX: 1175 ret = sock_setbindtodevice_locked(sk, val); 1176 break; 1177 1178 default: 1179 ret = -ENOPROTOOPT; 1180 break; 1181 } 1182 release_sock(sk); 1183 return ret; 1184 } 1185 EXPORT_SYMBOL(sock_setsockopt); 1186 1187 1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1189 struct ucred *ucred) 1190 { 1191 ucred->pid = pid_vnr(pid); 1192 ucred->uid = ucred->gid = -1; 1193 if (cred) { 1194 struct user_namespace *current_ns = current_user_ns(); 1195 1196 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1197 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1198 } 1199 } 1200 1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src) 1202 { 1203 struct user_namespace *user_ns = current_user_ns(); 1204 int i; 1205 1206 for (i = 0; i < src->ngroups; i++) 1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) 1208 return -EFAULT; 1209 1210 return 0; 1211 } 1212 1213 int sock_getsockopt(struct socket *sock, int level, int optname, 1214 char __user *optval, int __user *optlen) 1215 { 1216 struct sock *sk = sock->sk; 1217 1218 union { 1219 int val; 1220 u64 val64; 1221 unsigned long ulval; 1222 struct linger ling; 1223 struct old_timeval32 tm32; 1224 struct __kernel_old_timeval tm; 1225 struct __kernel_sock_timeval stm; 1226 struct sock_txtime txtime; 1227 } v; 1228 1229 int lv = sizeof(int); 1230 int len; 1231 1232 if (get_user(len, optlen)) 1233 return -EFAULT; 1234 if (len < 0) 1235 return -EINVAL; 1236 1237 memset(&v, 0, sizeof(v)); 1238 1239 switch (optname) { 1240 case SO_DEBUG: 1241 v.val = sock_flag(sk, SOCK_DBG); 1242 break; 1243 1244 case SO_DONTROUTE: 1245 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1246 break; 1247 1248 case SO_BROADCAST: 1249 v.val = sock_flag(sk, SOCK_BROADCAST); 1250 break; 1251 1252 case SO_SNDBUF: 1253 v.val = sk->sk_sndbuf; 1254 break; 1255 1256 case SO_RCVBUF: 1257 v.val = sk->sk_rcvbuf; 1258 break; 1259 1260 case SO_REUSEADDR: 1261 v.val = sk->sk_reuse; 1262 break; 1263 1264 case SO_REUSEPORT: 1265 v.val = sk->sk_reuseport; 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1270 break; 1271 1272 case SO_TYPE: 1273 v.val = sk->sk_type; 1274 break; 1275 1276 case SO_PROTOCOL: 1277 v.val = sk->sk_protocol; 1278 break; 1279 1280 case SO_DOMAIN: 1281 v.val = sk->sk_family; 1282 break; 1283 1284 case SO_ERROR: 1285 v.val = -sock_error(sk); 1286 if (v.val == 0) 1287 v.val = xchg(&sk->sk_err_soft, 0); 1288 break; 1289 1290 case SO_OOBINLINE: 1291 v.val = sock_flag(sk, SOCK_URGINLINE); 1292 break; 1293 1294 case SO_NO_CHECK: 1295 v.val = sk->sk_no_check_tx; 1296 break; 1297 1298 case SO_PRIORITY: 1299 v.val = sk->sk_priority; 1300 break; 1301 1302 case SO_LINGER: 1303 lv = sizeof(v.ling); 1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1305 v.ling.l_linger = sk->sk_lingertime / HZ; 1306 break; 1307 1308 case SO_BSDCOMPAT: 1309 sock_warn_obsolete_bsdism("getsockopt"); 1310 break; 1311 1312 case SO_TIMESTAMP_OLD: 1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1314 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1315 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1316 break; 1317 1318 case SO_TIMESTAMPNS_OLD: 1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1320 break; 1321 1322 case SO_TIMESTAMP_NEW: 1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1324 break; 1325 1326 case SO_TIMESTAMPNS_NEW: 1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1328 break; 1329 1330 case SO_TIMESTAMPING_OLD: 1331 v.val = sk->sk_tsflags; 1332 break; 1333 1334 case SO_RCVTIMEO_OLD: 1335 case SO_RCVTIMEO_NEW: 1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); 1337 break; 1338 1339 case SO_SNDTIMEO_OLD: 1340 case SO_SNDTIMEO_NEW: 1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); 1342 break; 1343 1344 case SO_RCVLOWAT: 1345 v.val = sk->sk_rcvlowat; 1346 break; 1347 1348 case SO_SNDLOWAT: 1349 v.val = 1; 1350 break; 1351 1352 case SO_PASSCRED: 1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1354 break; 1355 1356 case SO_PEERCRED: 1357 { 1358 struct ucred peercred; 1359 if (len > sizeof(peercred)) 1360 len = sizeof(peercred); 1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1362 if (copy_to_user(optval, &peercred, len)) 1363 return -EFAULT; 1364 goto lenout; 1365 } 1366 1367 case SO_PEERGROUPS: 1368 { 1369 int ret, n; 1370 1371 if (!sk->sk_peer_cred) 1372 return -ENODATA; 1373 1374 n = sk->sk_peer_cred->group_info->ngroups; 1375 if (len < n * sizeof(gid_t)) { 1376 len = n * sizeof(gid_t); 1377 return put_user(len, optlen) ? -EFAULT : -ERANGE; 1378 } 1379 len = n * sizeof(gid_t); 1380 1381 ret = groups_to_user((gid_t __user *)optval, 1382 sk->sk_peer_cred->group_info); 1383 if (ret) 1384 return ret; 1385 goto lenout; 1386 } 1387 1388 case SO_PEERNAME: 1389 { 1390 char address[128]; 1391 1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); 1393 if (lv < 0) 1394 return -ENOTCONN; 1395 if (lv < len) 1396 return -EINVAL; 1397 if (copy_to_user(optval, address, len)) 1398 return -EFAULT; 1399 goto lenout; 1400 } 1401 1402 /* Dubious BSD thing... Probably nobody even uses it, but 1403 * the UNIX standard wants it for whatever reason... -DaveM 1404 */ 1405 case SO_ACCEPTCONN: 1406 v.val = sk->sk_state == TCP_LISTEN; 1407 break; 1408 1409 case SO_PASSSEC: 1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1411 break; 1412 1413 case SO_PEERSEC: 1414 return security_socket_getpeersec_stream(sock, optval, optlen, len); 1415 1416 case SO_MARK: 1417 v.val = sk->sk_mark; 1418 break; 1419 1420 case SO_RXQ_OVFL: 1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1422 break; 1423 1424 case SO_WIFI_STATUS: 1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1426 break; 1427 1428 case SO_PEEK_OFF: 1429 if (!sock->ops->set_peek_off) 1430 return -EOPNOTSUPP; 1431 1432 v.val = sk->sk_peek_off; 1433 break; 1434 case SO_NOFCS: 1435 v.val = sock_flag(sk, SOCK_NOFCS); 1436 break; 1437 1438 case SO_BINDTODEVICE: 1439 return sock_getbindtodevice(sk, optval, optlen, len); 1440 1441 case SO_GET_FILTER: 1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); 1443 if (len < 0) 1444 return len; 1445 1446 goto lenout; 1447 1448 case SO_LOCK_FILTER: 1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1450 break; 1451 1452 case SO_BPF_EXTENSIONS: 1453 v.val = bpf_tell_extensions(); 1454 break; 1455 1456 case SO_SELECT_ERR_QUEUE: 1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1458 break; 1459 1460 #ifdef CONFIG_NET_RX_BUSY_POLL 1461 case SO_BUSY_POLL: 1462 v.val = sk->sk_ll_usec; 1463 break; 1464 #endif 1465 1466 case SO_MAX_PACING_RATE: 1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1468 lv = sizeof(v.ulval); 1469 v.ulval = sk->sk_max_pacing_rate; 1470 } else { 1471 /* 32bit version */ 1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); 1473 } 1474 break; 1475 1476 case SO_INCOMING_CPU: 1477 v.val = READ_ONCE(sk->sk_incoming_cpu); 1478 break; 1479 1480 case SO_MEMINFO: 1481 { 1482 u32 meminfo[SK_MEMINFO_VARS]; 1483 1484 sk_get_meminfo(sk, meminfo); 1485 1486 len = min_t(unsigned int, len, sizeof(meminfo)); 1487 if (copy_to_user(optval, &meminfo, len)) 1488 return -EFAULT; 1489 1490 goto lenout; 1491 } 1492 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 case SO_INCOMING_NAPI_ID: 1495 v.val = READ_ONCE(sk->sk_napi_id); 1496 1497 /* aggregate non-NAPI IDs down to 0 */ 1498 if (v.val < MIN_NAPI_ID) 1499 v.val = 0; 1500 1501 break; 1502 #endif 1503 1504 case SO_COOKIE: 1505 lv = sizeof(u64); 1506 if (len < lv) 1507 return -EINVAL; 1508 v.val64 = sock_gen_cookie(sk); 1509 break; 1510 1511 case SO_ZEROCOPY: 1512 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1513 break; 1514 1515 case SO_TXTIME: 1516 lv = sizeof(v.txtime); 1517 v.txtime.clockid = sk->sk_clockid; 1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1519 SOF_TXTIME_DEADLINE_MODE : 0; 1520 v.txtime.flags |= sk->sk_txtime_report_errors ? 1521 SOF_TXTIME_REPORT_ERRORS : 0; 1522 break; 1523 1524 case SO_BINDTOIFINDEX: 1525 v.val = sk->sk_bound_dev_if; 1526 break; 1527 1528 default: 1529 /* We implement the SO_SNDLOWAT etc to not be settable 1530 * (1003.1g 7). 1531 */ 1532 return -ENOPROTOOPT; 1533 } 1534 1535 if (len > lv) 1536 len = lv; 1537 if (copy_to_user(optval, &v, len)) 1538 return -EFAULT; 1539 lenout: 1540 if (put_user(len, optlen)) 1541 return -EFAULT; 1542 return 0; 1543 } 1544 1545 /* 1546 * Initialize an sk_lock. 1547 * 1548 * (We also register the sk_lock with the lock validator.) 1549 */ 1550 static inline void sock_lock_init(struct sock *sk) 1551 { 1552 if (sk->sk_kern_sock) 1553 sock_lock_init_class_and_name( 1554 sk, 1555 af_family_kern_slock_key_strings[sk->sk_family], 1556 af_family_kern_slock_keys + sk->sk_family, 1557 af_family_kern_key_strings[sk->sk_family], 1558 af_family_kern_keys + sk->sk_family); 1559 else 1560 sock_lock_init_class_and_name( 1561 sk, 1562 af_family_slock_key_strings[sk->sk_family], 1563 af_family_slock_keys + sk->sk_family, 1564 af_family_key_strings[sk->sk_family], 1565 af_family_keys + sk->sk_family); 1566 } 1567 1568 /* 1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 1570 * even temporarly, because of RCU lookups. sk_node should also be left as is. 1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 1572 */ 1573 static void sock_copy(struct sock *nsk, const struct sock *osk) 1574 { 1575 #ifdef CONFIG_SECURITY_NETWORK 1576 void *sptr = nsk->sk_security; 1577 #endif 1578 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 1579 1580 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 1581 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 1582 1583 #ifdef CONFIG_SECURITY_NETWORK 1584 nsk->sk_security = sptr; 1585 security_sk_clone(osk, nsk); 1586 #endif 1587 } 1588 1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 1590 int family) 1591 { 1592 struct sock *sk; 1593 struct kmem_cache *slab; 1594 1595 slab = prot->slab; 1596 if (slab != NULL) { 1597 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 1598 if (!sk) 1599 return sk; 1600 if (want_init_on_alloc(priority)) 1601 sk_prot_clear_nulls(sk, prot->obj_size); 1602 } else 1603 sk = kmalloc(prot->obj_size, priority); 1604 1605 if (sk != NULL) { 1606 if (security_sk_alloc(sk, family, priority)) 1607 goto out_free; 1608 1609 if (!try_module_get(prot->owner)) 1610 goto out_free_sec; 1611 sk_tx_queue_clear(sk); 1612 } 1613 1614 return sk; 1615 1616 out_free_sec: 1617 security_sk_free(sk); 1618 out_free: 1619 if (slab != NULL) 1620 kmem_cache_free(slab, sk); 1621 else 1622 kfree(sk); 1623 return NULL; 1624 } 1625 1626 static void sk_prot_free(struct proto *prot, struct sock *sk) 1627 { 1628 struct kmem_cache *slab; 1629 struct module *owner; 1630 1631 owner = prot->owner; 1632 slab = prot->slab; 1633 1634 cgroup_sk_free(&sk->sk_cgrp_data); 1635 mem_cgroup_sk_free(sk); 1636 security_sk_free(sk); 1637 if (slab != NULL) 1638 kmem_cache_free(slab, sk); 1639 else 1640 kfree(sk); 1641 module_put(owner); 1642 } 1643 1644 /** 1645 * sk_alloc - All socket objects are allocated here 1646 * @net: the applicable net namespace 1647 * @family: protocol family 1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1649 * @prot: struct proto associated with this new sock instance 1650 * @kern: is this to be a kernel socket? 1651 */ 1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1653 struct proto *prot, int kern) 1654 { 1655 struct sock *sk; 1656 1657 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 1658 if (sk) { 1659 sk->sk_family = family; 1660 /* 1661 * See comment in struct sock definition to understand 1662 * why we need sk_prot_creator -acme 1663 */ 1664 sk->sk_prot = sk->sk_prot_creator = prot; 1665 sk->sk_kern_sock = kern; 1666 sock_lock_init(sk); 1667 sk->sk_net_refcnt = kern ? 0 : 1; 1668 if (likely(sk->sk_net_refcnt)) { 1669 get_net(net); 1670 sock_inuse_add(net, 1); 1671 } 1672 1673 sock_net_set(sk, net); 1674 refcount_set(&sk->sk_wmem_alloc, 1); 1675 1676 mem_cgroup_sk_alloc(sk); 1677 cgroup_sk_alloc(&sk->sk_cgrp_data); 1678 sock_update_classid(&sk->sk_cgrp_data); 1679 sock_update_netprioidx(&sk->sk_cgrp_data); 1680 } 1681 1682 return sk; 1683 } 1684 EXPORT_SYMBOL(sk_alloc); 1685 1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 1687 * grace period. This is the case for UDP sockets and TCP listeners. 1688 */ 1689 static void __sk_destruct(struct rcu_head *head) 1690 { 1691 struct sock *sk = container_of(head, struct sock, sk_rcu); 1692 struct sk_filter *filter; 1693 1694 if (sk->sk_destruct) 1695 sk->sk_destruct(sk); 1696 1697 filter = rcu_dereference_check(sk->sk_filter, 1698 refcount_read(&sk->sk_wmem_alloc) == 0); 1699 if (filter) { 1700 sk_filter_uncharge(sk, filter); 1701 RCU_INIT_POINTER(sk->sk_filter, NULL); 1702 } 1703 1704 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 1705 1706 #ifdef CONFIG_BPF_SYSCALL 1707 bpf_sk_storage_free(sk); 1708 #endif 1709 1710 if (atomic_read(&sk->sk_omem_alloc)) 1711 pr_debug("%s: optmem leakage (%d bytes) detected\n", 1712 __func__, atomic_read(&sk->sk_omem_alloc)); 1713 1714 if (sk->sk_frag.page) { 1715 put_page(sk->sk_frag.page); 1716 sk->sk_frag.page = NULL; 1717 } 1718 1719 if (sk->sk_peer_cred) 1720 put_cred(sk->sk_peer_cred); 1721 put_pid(sk->sk_peer_pid); 1722 if (likely(sk->sk_net_refcnt)) 1723 put_net(sock_net(sk)); 1724 sk_prot_free(sk->sk_prot_creator, sk); 1725 } 1726 1727 void sk_destruct(struct sock *sk) 1728 { 1729 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 1730 1731 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 1732 reuseport_detach_sock(sk); 1733 use_call_rcu = true; 1734 } 1735 1736 if (use_call_rcu) 1737 call_rcu(&sk->sk_rcu, __sk_destruct); 1738 else 1739 __sk_destruct(&sk->sk_rcu); 1740 } 1741 1742 static void __sk_free(struct sock *sk) 1743 { 1744 if (likely(sk->sk_net_refcnt)) 1745 sock_inuse_add(sock_net(sk), -1); 1746 1747 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 1748 sock_diag_broadcast_destroy(sk); 1749 else 1750 sk_destruct(sk); 1751 } 1752 1753 void sk_free(struct sock *sk) 1754 { 1755 /* 1756 * We subtract one from sk_wmem_alloc and can know if 1757 * some packets are still in some tx queue. 1758 * If not null, sock_wfree() will call __sk_free(sk) later 1759 */ 1760 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 1761 __sk_free(sk); 1762 } 1763 EXPORT_SYMBOL(sk_free); 1764 1765 static void sk_init_common(struct sock *sk) 1766 { 1767 skb_queue_head_init(&sk->sk_receive_queue); 1768 skb_queue_head_init(&sk->sk_write_queue); 1769 skb_queue_head_init(&sk->sk_error_queue); 1770 1771 rwlock_init(&sk->sk_callback_lock); 1772 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 1773 af_rlock_keys + sk->sk_family, 1774 af_family_rlock_key_strings[sk->sk_family]); 1775 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 1776 af_wlock_keys + sk->sk_family, 1777 af_family_wlock_key_strings[sk->sk_family]); 1778 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 1779 af_elock_keys + sk->sk_family, 1780 af_family_elock_key_strings[sk->sk_family]); 1781 lockdep_set_class_and_name(&sk->sk_callback_lock, 1782 af_callback_keys + sk->sk_family, 1783 af_family_clock_key_strings[sk->sk_family]); 1784 } 1785 1786 /** 1787 * sk_clone_lock - clone a socket, and lock its clone 1788 * @sk: the socket to clone 1789 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1790 * 1791 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1792 */ 1793 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 1794 { 1795 struct sock *newsk; 1796 bool is_charged = true; 1797 1798 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family); 1799 if (newsk != NULL) { 1800 struct sk_filter *filter; 1801 1802 sock_copy(newsk, sk); 1803 1804 newsk->sk_prot_creator = sk->sk_prot; 1805 1806 /* SANITY */ 1807 if (likely(newsk->sk_net_refcnt)) 1808 get_net(sock_net(newsk)); 1809 sk_node_init(&newsk->sk_node); 1810 sock_lock_init(newsk); 1811 bh_lock_sock(newsk); 1812 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 1813 newsk->sk_backlog.len = 0; 1814 1815 atomic_set(&newsk->sk_rmem_alloc, 0); 1816 /* 1817 * sk_wmem_alloc set to one (see sk_free() and sock_wfree()) 1818 */ 1819 refcount_set(&newsk->sk_wmem_alloc, 1); 1820 atomic_set(&newsk->sk_omem_alloc, 0); 1821 sk_init_common(newsk); 1822 1823 newsk->sk_dst_cache = NULL; 1824 newsk->sk_dst_pending_confirm = 0; 1825 newsk->sk_wmem_queued = 0; 1826 newsk->sk_forward_alloc = 0; 1827 atomic_set(&newsk->sk_drops, 0); 1828 newsk->sk_send_head = NULL; 1829 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 1830 atomic_set(&newsk->sk_zckey, 0); 1831 1832 sock_reset_flag(newsk, SOCK_DONE); 1833 mem_cgroup_sk_alloc(newsk); 1834 cgroup_sk_alloc(&newsk->sk_cgrp_data); 1835 1836 rcu_read_lock(); 1837 filter = rcu_dereference(sk->sk_filter); 1838 if (filter != NULL) 1839 /* though it's an empty new sock, the charging may fail 1840 * if sysctl_optmem_max was changed between creation of 1841 * original socket and cloning 1842 */ 1843 is_charged = sk_filter_charge(newsk, filter); 1844 RCU_INIT_POINTER(newsk->sk_filter, filter); 1845 rcu_read_unlock(); 1846 1847 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 1848 /* We need to make sure that we don't uncharge the new 1849 * socket if we couldn't charge it in the first place 1850 * as otherwise we uncharge the parent's filter. 1851 */ 1852 if (!is_charged) 1853 RCU_INIT_POINTER(newsk->sk_filter, NULL); 1854 sk_free_unlock_clone(newsk); 1855 newsk = NULL; 1856 goto out; 1857 } 1858 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 1859 #ifdef CONFIG_BPF_SYSCALL 1860 RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL); 1861 #endif 1862 1863 newsk->sk_err = 0; 1864 newsk->sk_err_soft = 0; 1865 newsk->sk_priority = 0; 1866 newsk->sk_incoming_cpu = raw_smp_processor_id(); 1867 if (likely(newsk->sk_net_refcnt)) 1868 sock_inuse_add(sock_net(newsk), 1); 1869 1870 /* 1871 * Before updating sk_refcnt, we must commit prior changes to memory 1872 * (Documentation/RCU/rculist_nulls.txt for details) 1873 */ 1874 smp_wmb(); 1875 refcount_set(&newsk->sk_refcnt, 2); 1876 1877 /* 1878 * Increment the counter in the same struct proto as the master 1879 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 1880 * is the same as sk->sk_prot->socks, as this field was copied 1881 * with memcpy). 1882 * 1883 * This _changes_ the previous behaviour, where 1884 * tcp_create_openreq_child always was incrementing the 1885 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 1886 * to be taken into account in all callers. -acme 1887 */ 1888 sk_refcnt_debug_inc(newsk); 1889 sk_set_socket(newsk, NULL); 1890 RCU_INIT_POINTER(newsk->sk_wq, NULL); 1891 1892 if (newsk->sk_prot->sockets_allocated) 1893 sk_sockets_allocated_inc(newsk); 1894 1895 if (sock_needs_netstamp(sk) && 1896 newsk->sk_flags & SK_FLAGS_TIMESTAMP) 1897 net_enable_timestamp(); 1898 } 1899 out: 1900 return newsk; 1901 } 1902 EXPORT_SYMBOL_GPL(sk_clone_lock); 1903 1904 void sk_free_unlock_clone(struct sock *sk) 1905 { 1906 /* It is still raw copy of parent, so invalidate 1907 * destructor and make plain sk_free() */ 1908 sk->sk_destruct = NULL; 1909 bh_unlock_sock(sk); 1910 sk_free(sk); 1911 } 1912 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 1913 1914 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 1915 { 1916 u32 max_segs = 1; 1917 1918 sk_dst_set(sk, dst); 1919 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; 1920 if (sk->sk_route_caps & NETIF_F_GSO) 1921 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 1922 sk->sk_route_caps &= ~sk->sk_route_nocaps; 1923 if (sk_can_gso(sk)) { 1924 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 1925 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 1926 } else { 1927 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 1928 sk->sk_gso_max_size = dst->dev->gso_max_size; 1929 max_segs = max_t(u32, dst->dev->gso_max_segs, 1); 1930 } 1931 } 1932 sk->sk_gso_max_segs = max_segs; 1933 } 1934 EXPORT_SYMBOL_GPL(sk_setup_caps); 1935 1936 /* 1937 * Simple resource managers for sockets. 1938 */ 1939 1940 1941 /* 1942 * Write buffer destructor automatically called from kfree_skb. 1943 */ 1944 void sock_wfree(struct sk_buff *skb) 1945 { 1946 struct sock *sk = skb->sk; 1947 unsigned int len = skb->truesize; 1948 1949 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 1950 /* 1951 * Keep a reference on sk_wmem_alloc, this will be released 1952 * after sk_write_space() call 1953 */ 1954 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 1955 sk->sk_write_space(sk); 1956 len = 1; 1957 } 1958 /* 1959 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 1960 * could not do because of in-flight packets 1961 */ 1962 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 1963 __sk_free(sk); 1964 } 1965 EXPORT_SYMBOL(sock_wfree); 1966 1967 /* This variant of sock_wfree() is used by TCP, 1968 * since it sets SOCK_USE_WRITE_QUEUE. 1969 */ 1970 void __sock_wfree(struct sk_buff *skb) 1971 { 1972 struct sock *sk = skb->sk; 1973 1974 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 1975 __sk_free(sk); 1976 } 1977 1978 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1979 { 1980 skb_orphan(skb); 1981 skb->sk = sk; 1982 #ifdef CONFIG_INET 1983 if (unlikely(!sk_fullsock(sk))) { 1984 skb->destructor = sock_edemux; 1985 sock_hold(sk); 1986 return; 1987 } 1988 #endif 1989 skb->destructor = sock_wfree; 1990 skb_set_hash_from_sk(skb, sk); 1991 /* 1992 * We used to take a refcount on sk, but following operation 1993 * is enough to guarantee sk_free() wont free this sock until 1994 * all in-flight packets are completed 1995 */ 1996 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1997 } 1998 EXPORT_SYMBOL(skb_set_owner_w); 1999 2000 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2001 { 2002 #ifdef CONFIG_TLS_DEVICE 2003 /* Drivers depend on in-order delivery for crypto offload, 2004 * partial orphan breaks out-of-order-OK logic. 2005 */ 2006 if (skb->decrypted) 2007 return false; 2008 #endif 2009 return (skb->destructor == sock_wfree || 2010 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2011 } 2012 2013 /* This helper is used by netem, as it can hold packets in its 2014 * delay queue. We want to allow the owner socket to send more 2015 * packets, as if they were already TX completed by a typical driver. 2016 * But we also want to keep skb->sk set because some packet schedulers 2017 * rely on it (sch_fq for example). 2018 */ 2019 void skb_orphan_partial(struct sk_buff *skb) 2020 { 2021 if (skb_is_tcp_pure_ack(skb)) 2022 return; 2023 2024 if (can_skb_orphan_partial(skb)) { 2025 struct sock *sk = skb->sk; 2026 2027 if (refcount_inc_not_zero(&sk->sk_refcnt)) { 2028 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)); 2029 skb->destructor = sock_efree; 2030 } 2031 } else { 2032 skb_orphan(skb); 2033 } 2034 } 2035 EXPORT_SYMBOL(skb_orphan_partial); 2036 2037 /* 2038 * Read buffer destructor automatically called from kfree_skb. 2039 */ 2040 void sock_rfree(struct sk_buff *skb) 2041 { 2042 struct sock *sk = skb->sk; 2043 unsigned int len = skb->truesize; 2044 2045 atomic_sub(len, &sk->sk_rmem_alloc); 2046 sk_mem_uncharge(sk, len); 2047 } 2048 EXPORT_SYMBOL(sock_rfree); 2049 2050 /* 2051 * Buffer destructor for skbs that are not used directly in read or write 2052 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2053 */ 2054 void sock_efree(struct sk_buff *skb) 2055 { 2056 sock_put(skb->sk); 2057 } 2058 EXPORT_SYMBOL(sock_efree); 2059 2060 kuid_t sock_i_uid(struct sock *sk) 2061 { 2062 kuid_t uid; 2063 2064 read_lock_bh(&sk->sk_callback_lock); 2065 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2066 read_unlock_bh(&sk->sk_callback_lock); 2067 return uid; 2068 } 2069 EXPORT_SYMBOL(sock_i_uid); 2070 2071 unsigned long sock_i_ino(struct sock *sk) 2072 { 2073 unsigned long ino; 2074 2075 read_lock_bh(&sk->sk_callback_lock); 2076 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2077 read_unlock_bh(&sk->sk_callback_lock); 2078 return ino; 2079 } 2080 EXPORT_SYMBOL(sock_i_ino); 2081 2082 /* 2083 * Allocate a skb from the socket's send buffer. 2084 */ 2085 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2086 gfp_t priority) 2087 { 2088 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 2089 struct sk_buff *skb = alloc_skb(size, priority); 2090 if (skb) { 2091 skb_set_owner_w(skb, sk); 2092 return skb; 2093 } 2094 } 2095 return NULL; 2096 } 2097 EXPORT_SYMBOL(sock_wmalloc); 2098 2099 static void sock_ofree(struct sk_buff *skb) 2100 { 2101 struct sock *sk = skb->sk; 2102 2103 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2104 } 2105 2106 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2107 gfp_t priority) 2108 { 2109 struct sk_buff *skb; 2110 2111 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2112 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2113 sysctl_optmem_max) 2114 return NULL; 2115 2116 skb = alloc_skb(size, priority); 2117 if (!skb) 2118 return NULL; 2119 2120 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2121 skb->sk = sk; 2122 skb->destructor = sock_ofree; 2123 return skb; 2124 } 2125 2126 /* 2127 * Allocate a memory block from the socket's option memory buffer. 2128 */ 2129 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2130 { 2131 if ((unsigned int)size <= sysctl_optmem_max && 2132 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 2133 void *mem; 2134 /* First do the add, to avoid the race if kmalloc 2135 * might sleep. 2136 */ 2137 atomic_add(size, &sk->sk_omem_alloc); 2138 mem = kmalloc(size, priority); 2139 if (mem) 2140 return mem; 2141 atomic_sub(size, &sk->sk_omem_alloc); 2142 } 2143 return NULL; 2144 } 2145 EXPORT_SYMBOL(sock_kmalloc); 2146 2147 /* Free an option memory block. Note, we actually want the inline 2148 * here as this allows gcc to detect the nullify and fold away the 2149 * condition entirely. 2150 */ 2151 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2152 const bool nullify) 2153 { 2154 if (WARN_ON_ONCE(!mem)) 2155 return; 2156 if (nullify) 2157 kzfree(mem); 2158 else 2159 kfree(mem); 2160 atomic_sub(size, &sk->sk_omem_alloc); 2161 } 2162 2163 void sock_kfree_s(struct sock *sk, void *mem, int size) 2164 { 2165 __sock_kfree_s(sk, mem, size, false); 2166 } 2167 EXPORT_SYMBOL(sock_kfree_s); 2168 2169 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2170 { 2171 __sock_kfree_s(sk, mem, size, true); 2172 } 2173 EXPORT_SYMBOL(sock_kzfree_s); 2174 2175 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2176 I think, these locks should be removed for datagram sockets. 2177 */ 2178 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2179 { 2180 DEFINE_WAIT(wait); 2181 2182 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2183 for (;;) { 2184 if (!timeo) 2185 break; 2186 if (signal_pending(current)) 2187 break; 2188 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2189 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2190 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 2191 break; 2192 if (sk->sk_shutdown & SEND_SHUTDOWN) 2193 break; 2194 if (sk->sk_err) 2195 break; 2196 timeo = schedule_timeout(timeo); 2197 } 2198 finish_wait(sk_sleep(sk), &wait); 2199 return timeo; 2200 } 2201 2202 2203 /* 2204 * Generic send/receive buffer handlers 2205 */ 2206 2207 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2208 unsigned long data_len, int noblock, 2209 int *errcode, int max_page_order) 2210 { 2211 struct sk_buff *skb; 2212 long timeo; 2213 int err; 2214 2215 timeo = sock_sndtimeo(sk, noblock); 2216 for (;;) { 2217 err = sock_error(sk); 2218 if (err != 0) 2219 goto failure; 2220 2221 err = -EPIPE; 2222 if (sk->sk_shutdown & SEND_SHUTDOWN) 2223 goto failure; 2224 2225 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf) 2226 break; 2227 2228 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2229 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2230 err = -EAGAIN; 2231 if (!timeo) 2232 goto failure; 2233 if (signal_pending(current)) 2234 goto interrupted; 2235 timeo = sock_wait_for_wmem(sk, timeo); 2236 } 2237 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2238 errcode, sk->sk_allocation); 2239 if (skb) 2240 skb_set_owner_w(skb, sk); 2241 return skb; 2242 2243 interrupted: 2244 err = sock_intr_errno(timeo); 2245 failure: 2246 *errcode = err; 2247 return NULL; 2248 } 2249 EXPORT_SYMBOL(sock_alloc_send_pskb); 2250 2251 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 2252 int noblock, int *errcode) 2253 { 2254 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); 2255 } 2256 EXPORT_SYMBOL(sock_alloc_send_skb); 2257 2258 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 2259 struct sockcm_cookie *sockc) 2260 { 2261 u32 tsflags; 2262 2263 switch (cmsg->cmsg_type) { 2264 case SO_MARK: 2265 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2266 return -EPERM; 2267 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2268 return -EINVAL; 2269 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2270 break; 2271 case SO_TIMESTAMPING_OLD: 2272 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2273 return -EINVAL; 2274 2275 tsflags = *(u32 *)CMSG_DATA(cmsg); 2276 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2277 return -EINVAL; 2278 2279 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2280 sockc->tsflags |= tsflags; 2281 break; 2282 case SCM_TXTIME: 2283 if (!sock_flag(sk, SOCK_TXTIME)) 2284 return -EINVAL; 2285 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2286 return -EINVAL; 2287 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2288 break; 2289 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2290 case SCM_RIGHTS: 2291 case SCM_CREDENTIALS: 2292 break; 2293 default: 2294 return -EINVAL; 2295 } 2296 return 0; 2297 } 2298 EXPORT_SYMBOL(__sock_cmsg_send); 2299 2300 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2301 struct sockcm_cookie *sockc) 2302 { 2303 struct cmsghdr *cmsg; 2304 int ret; 2305 2306 for_each_cmsghdr(cmsg, msg) { 2307 if (!CMSG_OK(msg, cmsg)) 2308 return -EINVAL; 2309 if (cmsg->cmsg_level != SOL_SOCKET) 2310 continue; 2311 ret = __sock_cmsg_send(sk, msg, cmsg, sockc); 2312 if (ret) 2313 return ret; 2314 } 2315 return 0; 2316 } 2317 EXPORT_SYMBOL(sock_cmsg_send); 2318 2319 static void sk_enter_memory_pressure(struct sock *sk) 2320 { 2321 if (!sk->sk_prot->enter_memory_pressure) 2322 return; 2323 2324 sk->sk_prot->enter_memory_pressure(sk); 2325 } 2326 2327 static void sk_leave_memory_pressure(struct sock *sk) 2328 { 2329 if (sk->sk_prot->leave_memory_pressure) { 2330 sk->sk_prot->leave_memory_pressure(sk); 2331 } else { 2332 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2333 2334 if (memory_pressure && *memory_pressure) 2335 *memory_pressure = 0; 2336 } 2337 } 2338 2339 /* On 32bit arches, an skb frag is limited to 2^15 */ 2340 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2341 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2342 2343 /** 2344 * skb_page_frag_refill - check that a page_frag contains enough room 2345 * @sz: minimum size of the fragment we want to get 2346 * @pfrag: pointer to page_frag 2347 * @gfp: priority for memory allocation 2348 * 2349 * Note: While this allocator tries to use high order pages, there is 2350 * no guarantee that allocations succeed. Therefore, @sz MUST be 2351 * less or equal than PAGE_SIZE. 2352 */ 2353 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2354 { 2355 if (pfrag->page) { 2356 if (page_ref_count(pfrag->page) == 1) { 2357 pfrag->offset = 0; 2358 return true; 2359 } 2360 if (pfrag->offset + sz <= pfrag->size) 2361 return true; 2362 put_page(pfrag->page); 2363 } 2364 2365 pfrag->offset = 0; 2366 if (SKB_FRAG_PAGE_ORDER && 2367 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2368 /* Avoid direct reclaim but allow kswapd to wake */ 2369 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2370 __GFP_COMP | __GFP_NOWARN | 2371 __GFP_NORETRY, 2372 SKB_FRAG_PAGE_ORDER); 2373 if (likely(pfrag->page)) { 2374 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2375 return true; 2376 } 2377 } 2378 pfrag->page = alloc_page(gfp); 2379 if (likely(pfrag->page)) { 2380 pfrag->size = PAGE_SIZE; 2381 return true; 2382 } 2383 return false; 2384 } 2385 EXPORT_SYMBOL(skb_page_frag_refill); 2386 2387 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2388 { 2389 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2390 return true; 2391 2392 sk_enter_memory_pressure(sk); 2393 sk_stream_moderate_sndbuf(sk); 2394 return false; 2395 } 2396 EXPORT_SYMBOL(sk_page_frag_refill); 2397 2398 static void __lock_sock(struct sock *sk) 2399 __releases(&sk->sk_lock.slock) 2400 __acquires(&sk->sk_lock.slock) 2401 { 2402 DEFINE_WAIT(wait); 2403 2404 for (;;) { 2405 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2406 TASK_UNINTERRUPTIBLE); 2407 spin_unlock_bh(&sk->sk_lock.slock); 2408 schedule(); 2409 spin_lock_bh(&sk->sk_lock.slock); 2410 if (!sock_owned_by_user(sk)) 2411 break; 2412 } 2413 finish_wait(&sk->sk_lock.wq, &wait); 2414 } 2415 2416 void __release_sock(struct sock *sk) 2417 __releases(&sk->sk_lock.slock) 2418 __acquires(&sk->sk_lock.slock) 2419 { 2420 struct sk_buff *skb, *next; 2421 2422 while ((skb = sk->sk_backlog.head) != NULL) { 2423 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2424 2425 spin_unlock_bh(&sk->sk_lock.slock); 2426 2427 do { 2428 next = skb->next; 2429 prefetch(next); 2430 WARN_ON_ONCE(skb_dst_is_noref(skb)); 2431 skb_mark_not_on_list(skb); 2432 sk_backlog_rcv(sk, skb); 2433 2434 cond_resched(); 2435 2436 skb = next; 2437 } while (skb != NULL); 2438 2439 spin_lock_bh(&sk->sk_lock.slock); 2440 } 2441 2442 /* 2443 * Doing the zeroing here guarantee we can not loop forever 2444 * while a wild producer attempts to flood us. 2445 */ 2446 sk->sk_backlog.len = 0; 2447 } 2448 2449 void __sk_flush_backlog(struct sock *sk) 2450 { 2451 spin_lock_bh(&sk->sk_lock.slock); 2452 __release_sock(sk); 2453 spin_unlock_bh(&sk->sk_lock.slock); 2454 } 2455 2456 /** 2457 * sk_wait_data - wait for data to arrive at sk_receive_queue 2458 * @sk: sock to wait on 2459 * @timeo: for how long 2460 * @skb: last skb seen on sk_receive_queue 2461 * 2462 * Now socket state including sk->sk_err is changed only under lock, 2463 * hence we may omit checks after joining wait queue. 2464 * We check receive queue before schedule() only as optimization; 2465 * it is very likely that release_sock() added new data. 2466 */ 2467 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 2468 { 2469 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2470 int rc; 2471 2472 add_wait_queue(sk_sleep(sk), &wait); 2473 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2474 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 2475 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2476 remove_wait_queue(sk_sleep(sk), &wait); 2477 return rc; 2478 } 2479 EXPORT_SYMBOL(sk_wait_data); 2480 2481 /** 2482 * __sk_mem_raise_allocated - increase memory_allocated 2483 * @sk: socket 2484 * @size: memory size to allocate 2485 * @amt: pages to allocate 2486 * @kind: allocation type 2487 * 2488 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc 2489 */ 2490 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 2491 { 2492 struct proto *prot = sk->sk_prot; 2493 long allocated = sk_memory_allocated_add(sk, amt); 2494 bool charged = true; 2495 2496 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 2497 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) 2498 goto suppress_allocation; 2499 2500 /* Under limit. */ 2501 if (allocated <= sk_prot_mem_limits(sk, 0)) { 2502 sk_leave_memory_pressure(sk); 2503 return 1; 2504 } 2505 2506 /* Under pressure. */ 2507 if (allocated > sk_prot_mem_limits(sk, 1)) 2508 sk_enter_memory_pressure(sk); 2509 2510 /* Over hard limit. */ 2511 if (allocated > sk_prot_mem_limits(sk, 2)) 2512 goto suppress_allocation; 2513 2514 /* guarantee minimum buffer size under pressure */ 2515 if (kind == SK_MEM_RECV) { 2516 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 2517 return 1; 2518 2519 } else { /* SK_MEM_SEND */ 2520 int wmem0 = sk_get_wmem0(sk, prot); 2521 2522 if (sk->sk_type == SOCK_STREAM) { 2523 if (sk->sk_wmem_queued < wmem0) 2524 return 1; 2525 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 2526 return 1; 2527 } 2528 } 2529 2530 if (sk_has_memory_pressure(sk)) { 2531 u64 alloc; 2532 2533 if (!sk_under_memory_pressure(sk)) 2534 return 1; 2535 alloc = sk_sockets_allocated_read_positive(sk); 2536 if (sk_prot_mem_limits(sk, 2) > alloc * 2537 sk_mem_pages(sk->sk_wmem_queued + 2538 atomic_read(&sk->sk_rmem_alloc) + 2539 sk->sk_forward_alloc)) 2540 return 1; 2541 } 2542 2543 suppress_allocation: 2544 2545 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 2546 sk_stream_moderate_sndbuf(sk); 2547 2548 /* Fail only if socket is _under_ its sndbuf. 2549 * In this case we cannot block, so that we have to fail. 2550 */ 2551 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) 2552 return 1; 2553 } 2554 2555 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 2556 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 2557 2558 sk_memory_allocated_sub(sk, amt); 2559 2560 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2561 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); 2562 2563 return 0; 2564 } 2565 EXPORT_SYMBOL(__sk_mem_raise_allocated); 2566 2567 /** 2568 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 2569 * @sk: socket 2570 * @size: memory size to allocate 2571 * @kind: allocation type 2572 * 2573 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 2574 * rmem allocation. This function assumes that protocols which have 2575 * memory_pressure use sk_wmem_queued as write buffer accounting. 2576 */ 2577 int __sk_mem_schedule(struct sock *sk, int size, int kind) 2578 { 2579 int ret, amt = sk_mem_pages(size); 2580 2581 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; 2582 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 2583 if (!ret) 2584 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; 2585 return ret; 2586 } 2587 EXPORT_SYMBOL(__sk_mem_schedule); 2588 2589 /** 2590 * __sk_mem_reduce_allocated - reclaim memory_allocated 2591 * @sk: socket 2592 * @amount: number of quanta 2593 * 2594 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 2595 */ 2596 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 2597 { 2598 sk_memory_allocated_sub(sk, amount); 2599 2600 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2601 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 2602 2603 if (sk_under_memory_pressure(sk) && 2604 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 2605 sk_leave_memory_pressure(sk); 2606 } 2607 EXPORT_SYMBOL(__sk_mem_reduce_allocated); 2608 2609 /** 2610 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 2611 * @sk: socket 2612 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) 2613 */ 2614 void __sk_mem_reclaim(struct sock *sk, int amount) 2615 { 2616 amount >>= SK_MEM_QUANTUM_SHIFT; 2617 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 2618 __sk_mem_reduce_allocated(sk, amount); 2619 } 2620 EXPORT_SYMBOL(__sk_mem_reclaim); 2621 2622 int sk_set_peek_off(struct sock *sk, int val) 2623 { 2624 sk->sk_peek_off = val; 2625 return 0; 2626 } 2627 EXPORT_SYMBOL_GPL(sk_set_peek_off); 2628 2629 /* 2630 * Set of default routines for initialising struct proto_ops when 2631 * the protocol does not support a particular function. In certain 2632 * cases where it makes no sense for a protocol to have a "do nothing" 2633 * function, some default processing is provided. 2634 */ 2635 2636 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 2637 { 2638 return -EOPNOTSUPP; 2639 } 2640 EXPORT_SYMBOL(sock_no_bind); 2641 2642 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 2643 int len, int flags) 2644 { 2645 return -EOPNOTSUPP; 2646 } 2647 EXPORT_SYMBOL(sock_no_connect); 2648 2649 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 2650 { 2651 return -EOPNOTSUPP; 2652 } 2653 EXPORT_SYMBOL(sock_no_socketpair); 2654 2655 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 2656 bool kern) 2657 { 2658 return -EOPNOTSUPP; 2659 } 2660 EXPORT_SYMBOL(sock_no_accept); 2661 2662 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 2663 int peer) 2664 { 2665 return -EOPNOTSUPP; 2666 } 2667 EXPORT_SYMBOL(sock_no_getname); 2668 2669 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 2670 { 2671 return -EOPNOTSUPP; 2672 } 2673 EXPORT_SYMBOL(sock_no_ioctl); 2674 2675 int sock_no_listen(struct socket *sock, int backlog) 2676 { 2677 return -EOPNOTSUPP; 2678 } 2679 EXPORT_SYMBOL(sock_no_listen); 2680 2681 int sock_no_shutdown(struct socket *sock, int how) 2682 { 2683 return -EOPNOTSUPP; 2684 } 2685 EXPORT_SYMBOL(sock_no_shutdown); 2686 2687 int sock_no_setsockopt(struct socket *sock, int level, int optname, 2688 char __user *optval, unsigned int optlen) 2689 { 2690 return -EOPNOTSUPP; 2691 } 2692 EXPORT_SYMBOL(sock_no_setsockopt); 2693 2694 int sock_no_getsockopt(struct socket *sock, int level, int optname, 2695 char __user *optval, int __user *optlen) 2696 { 2697 return -EOPNOTSUPP; 2698 } 2699 EXPORT_SYMBOL(sock_no_getsockopt); 2700 2701 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 2702 { 2703 return -EOPNOTSUPP; 2704 } 2705 EXPORT_SYMBOL(sock_no_sendmsg); 2706 2707 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 2708 { 2709 return -EOPNOTSUPP; 2710 } 2711 EXPORT_SYMBOL(sock_no_sendmsg_locked); 2712 2713 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 2714 int flags) 2715 { 2716 return -EOPNOTSUPP; 2717 } 2718 EXPORT_SYMBOL(sock_no_recvmsg); 2719 2720 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 2721 { 2722 /* Mirror missing mmap method error code */ 2723 return -ENODEV; 2724 } 2725 EXPORT_SYMBOL(sock_no_mmap); 2726 2727 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 2728 { 2729 ssize_t res; 2730 struct msghdr msg = {.msg_flags = flags}; 2731 struct kvec iov; 2732 char *kaddr = kmap(page); 2733 iov.iov_base = kaddr + offset; 2734 iov.iov_len = size; 2735 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 2736 kunmap(page); 2737 return res; 2738 } 2739 EXPORT_SYMBOL(sock_no_sendpage); 2740 2741 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 2742 int offset, size_t size, int flags) 2743 { 2744 ssize_t res; 2745 struct msghdr msg = {.msg_flags = flags}; 2746 struct kvec iov; 2747 char *kaddr = kmap(page); 2748 2749 iov.iov_base = kaddr + offset; 2750 iov.iov_len = size; 2751 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); 2752 kunmap(page); 2753 return res; 2754 } 2755 EXPORT_SYMBOL(sock_no_sendpage_locked); 2756 2757 /* 2758 * Default Socket Callbacks 2759 */ 2760 2761 static void sock_def_wakeup(struct sock *sk) 2762 { 2763 struct socket_wq *wq; 2764 2765 rcu_read_lock(); 2766 wq = rcu_dereference(sk->sk_wq); 2767 if (skwq_has_sleeper(wq)) 2768 wake_up_interruptible_all(&wq->wait); 2769 rcu_read_unlock(); 2770 } 2771 2772 static void sock_def_error_report(struct sock *sk) 2773 { 2774 struct socket_wq *wq; 2775 2776 rcu_read_lock(); 2777 wq = rcu_dereference(sk->sk_wq); 2778 if (skwq_has_sleeper(wq)) 2779 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 2780 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 2781 rcu_read_unlock(); 2782 } 2783 2784 static void sock_def_readable(struct sock *sk) 2785 { 2786 struct socket_wq *wq; 2787 2788 rcu_read_lock(); 2789 wq = rcu_dereference(sk->sk_wq); 2790 if (skwq_has_sleeper(wq)) 2791 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 2792 EPOLLRDNORM | EPOLLRDBAND); 2793 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 2794 rcu_read_unlock(); 2795 } 2796 2797 static void sock_def_write_space(struct sock *sk) 2798 { 2799 struct socket_wq *wq; 2800 2801 rcu_read_lock(); 2802 2803 /* Do not wake up a writer until he can make "significant" 2804 * progress. --DaveM 2805 */ 2806 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 2807 wq = rcu_dereference(sk->sk_wq); 2808 if (skwq_has_sleeper(wq)) 2809 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 2810 EPOLLWRNORM | EPOLLWRBAND); 2811 2812 /* Should agree with poll, otherwise some programs break */ 2813 if (sock_writeable(sk)) 2814 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 2815 } 2816 2817 rcu_read_unlock(); 2818 } 2819 2820 static void sock_def_destruct(struct sock *sk) 2821 { 2822 } 2823 2824 void sk_send_sigurg(struct sock *sk) 2825 { 2826 if (sk->sk_socket && sk->sk_socket->file) 2827 if (send_sigurg(&sk->sk_socket->file->f_owner)) 2828 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 2829 } 2830 EXPORT_SYMBOL(sk_send_sigurg); 2831 2832 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 2833 unsigned long expires) 2834 { 2835 if (!mod_timer(timer, expires)) 2836 sock_hold(sk); 2837 } 2838 EXPORT_SYMBOL(sk_reset_timer); 2839 2840 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 2841 { 2842 if (del_timer(timer)) 2843 __sock_put(sk); 2844 } 2845 EXPORT_SYMBOL(sk_stop_timer); 2846 2847 void sock_init_data(struct socket *sock, struct sock *sk) 2848 { 2849 sk_init_common(sk); 2850 sk->sk_send_head = NULL; 2851 2852 timer_setup(&sk->sk_timer, NULL, 0); 2853 2854 sk->sk_allocation = GFP_KERNEL; 2855 sk->sk_rcvbuf = sysctl_rmem_default; 2856 sk->sk_sndbuf = sysctl_wmem_default; 2857 sk->sk_state = TCP_CLOSE; 2858 sk_set_socket(sk, sock); 2859 2860 sock_set_flag(sk, SOCK_ZAPPED); 2861 2862 if (sock) { 2863 sk->sk_type = sock->type; 2864 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 2865 sock->sk = sk; 2866 sk->sk_uid = SOCK_INODE(sock)->i_uid; 2867 } else { 2868 RCU_INIT_POINTER(sk->sk_wq, NULL); 2869 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); 2870 } 2871 2872 rwlock_init(&sk->sk_callback_lock); 2873 if (sk->sk_kern_sock) 2874 lockdep_set_class_and_name( 2875 &sk->sk_callback_lock, 2876 af_kern_callback_keys + sk->sk_family, 2877 af_family_kern_clock_key_strings[sk->sk_family]); 2878 else 2879 lockdep_set_class_and_name( 2880 &sk->sk_callback_lock, 2881 af_callback_keys + sk->sk_family, 2882 af_family_clock_key_strings[sk->sk_family]); 2883 2884 sk->sk_state_change = sock_def_wakeup; 2885 sk->sk_data_ready = sock_def_readable; 2886 sk->sk_write_space = sock_def_write_space; 2887 sk->sk_error_report = sock_def_error_report; 2888 sk->sk_destruct = sock_def_destruct; 2889 2890 sk->sk_frag.page = NULL; 2891 sk->sk_frag.offset = 0; 2892 sk->sk_peek_off = -1; 2893 2894 sk->sk_peer_pid = NULL; 2895 sk->sk_peer_cred = NULL; 2896 sk->sk_write_pending = 0; 2897 sk->sk_rcvlowat = 1; 2898 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 2899 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 2900 2901 sk->sk_stamp = SK_DEFAULT_STAMP; 2902 #if BITS_PER_LONG==32 2903 seqlock_init(&sk->sk_stamp_seq); 2904 #endif 2905 atomic_set(&sk->sk_zckey, 0); 2906 2907 #ifdef CONFIG_NET_RX_BUSY_POLL 2908 sk->sk_napi_id = 0; 2909 sk->sk_ll_usec = sysctl_net_busy_read; 2910 #endif 2911 2912 sk->sk_max_pacing_rate = ~0UL; 2913 sk->sk_pacing_rate = ~0UL; 2914 sk->sk_pacing_shift = 10; 2915 sk->sk_incoming_cpu = -1; 2916 2917 sk_rx_queue_clear(sk); 2918 /* 2919 * Before updating sk_refcnt, we must commit prior changes to memory 2920 * (Documentation/RCU/rculist_nulls.txt for details) 2921 */ 2922 smp_wmb(); 2923 refcount_set(&sk->sk_refcnt, 1); 2924 atomic_set(&sk->sk_drops, 0); 2925 } 2926 EXPORT_SYMBOL(sock_init_data); 2927 2928 void lock_sock_nested(struct sock *sk, int subclass) 2929 { 2930 might_sleep(); 2931 spin_lock_bh(&sk->sk_lock.slock); 2932 if (sk->sk_lock.owned) 2933 __lock_sock(sk); 2934 sk->sk_lock.owned = 1; 2935 spin_unlock(&sk->sk_lock.slock); 2936 /* 2937 * The sk_lock has mutex_lock() semantics here: 2938 */ 2939 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 2940 local_bh_enable(); 2941 } 2942 EXPORT_SYMBOL(lock_sock_nested); 2943 2944 void release_sock(struct sock *sk) 2945 { 2946 spin_lock_bh(&sk->sk_lock.slock); 2947 if (sk->sk_backlog.tail) 2948 __release_sock(sk); 2949 2950 /* Warning : release_cb() might need to release sk ownership, 2951 * ie call sock_release_ownership(sk) before us. 2952 */ 2953 if (sk->sk_prot->release_cb) 2954 sk->sk_prot->release_cb(sk); 2955 2956 sock_release_ownership(sk); 2957 if (waitqueue_active(&sk->sk_lock.wq)) 2958 wake_up(&sk->sk_lock.wq); 2959 spin_unlock_bh(&sk->sk_lock.slock); 2960 } 2961 EXPORT_SYMBOL(release_sock); 2962 2963 /** 2964 * lock_sock_fast - fast version of lock_sock 2965 * @sk: socket 2966 * 2967 * This version should be used for very small section, where process wont block 2968 * return false if fast path is taken: 2969 * 2970 * sk_lock.slock locked, owned = 0, BH disabled 2971 * 2972 * return true if slow path is taken: 2973 * 2974 * sk_lock.slock unlocked, owned = 1, BH enabled 2975 */ 2976 bool lock_sock_fast(struct sock *sk) 2977 { 2978 might_sleep(); 2979 spin_lock_bh(&sk->sk_lock.slock); 2980 2981 if (!sk->sk_lock.owned) 2982 /* 2983 * Note : We must disable BH 2984 */ 2985 return false; 2986 2987 __lock_sock(sk); 2988 sk->sk_lock.owned = 1; 2989 spin_unlock(&sk->sk_lock.slock); 2990 /* 2991 * The sk_lock has mutex_lock() semantics here: 2992 */ 2993 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 2994 local_bh_enable(); 2995 return true; 2996 } 2997 EXPORT_SYMBOL(lock_sock_fast); 2998 2999 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3000 bool timeval, bool time32) 3001 { 3002 struct sock *sk = sock->sk; 3003 struct timespec64 ts; 3004 3005 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3006 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3007 if (ts.tv_sec == -1) 3008 return -ENOENT; 3009 if (ts.tv_sec == 0) { 3010 ktime_t kt = ktime_get_real(); 3011 sock_write_timestamp(sk, kt);; 3012 ts = ktime_to_timespec64(kt); 3013 } 3014 3015 if (timeval) 3016 ts.tv_nsec /= 1000; 3017 3018 #ifdef CONFIG_COMPAT_32BIT_TIME 3019 if (time32) 3020 return put_old_timespec32(&ts, userstamp); 3021 #endif 3022 #ifdef CONFIG_SPARC64 3023 /* beware of padding in sparc64 timeval */ 3024 if (timeval && !in_compat_syscall()) { 3025 struct __kernel_old_timeval __user tv = { 3026 .tv_sec = ts.tv_sec, 3027 .tv_usec = ts.tv_nsec, 3028 }; 3029 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3030 return -EFAULT; 3031 return 0; 3032 } 3033 #endif 3034 return put_timespec64(&ts, userstamp); 3035 } 3036 EXPORT_SYMBOL(sock_gettstamp); 3037 3038 void sock_enable_timestamp(struct sock *sk, int flag) 3039 { 3040 if (!sock_flag(sk, flag)) { 3041 unsigned long previous_flags = sk->sk_flags; 3042 3043 sock_set_flag(sk, flag); 3044 /* 3045 * we just set one of the two flags which require net 3046 * time stamping, but time stamping might have been on 3047 * already because of the other one 3048 */ 3049 if (sock_needs_netstamp(sk) && 3050 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3051 net_enable_timestamp(); 3052 } 3053 } 3054 3055 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3056 int level, int type) 3057 { 3058 struct sock_exterr_skb *serr; 3059 struct sk_buff *skb; 3060 int copied, err; 3061 3062 err = -EAGAIN; 3063 skb = sock_dequeue_err_skb(sk); 3064 if (skb == NULL) 3065 goto out; 3066 3067 copied = skb->len; 3068 if (copied > len) { 3069 msg->msg_flags |= MSG_TRUNC; 3070 copied = len; 3071 } 3072 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3073 if (err) 3074 goto out_free_skb; 3075 3076 sock_recv_timestamp(msg, sk, skb); 3077 3078 serr = SKB_EXT_ERR(skb); 3079 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3080 3081 msg->msg_flags |= MSG_ERRQUEUE; 3082 err = copied; 3083 3084 out_free_skb: 3085 kfree_skb(skb); 3086 out: 3087 return err; 3088 } 3089 EXPORT_SYMBOL(sock_recv_errqueue); 3090 3091 /* 3092 * Get a socket option on an socket. 3093 * 3094 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3095 * asynchronous errors should be reported by getsockopt. We assume 3096 * this means if you specify SO_ERROR (otherwise whats the point of it). 3097 */ 3098 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3099 char __user *optval, int __user *optlen) 3100 { 3101 struct sock *sk = sock->sk; 3102 3103 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3104 } 3105 EXPORT_SYMBOL(sock_common_getsockopt); 3106 3107 #ifdef CONFIG_COMPAT 3108 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 3109 char __user *optval, int __user *optlen) 3110 { 3111 struct sock *sk = sock->sk; 3112 3113 if (sk->sk_prot->compat_getsockopt != NULL) 3114 return sk->sk_prot->compat_getsockopt(sk, level, optname, 3115 optval, optlen); 3116 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 3117 } 3118 EXPORT_SYMBOL(compat_sock_common_getsockopt); 3119 #endif 3120 3121 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3122 int flags) 3123 { 3124 struct sock *sk = sock->sk; 3125 int addr_len = 0; 3126 int err; 3127 3128 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 3129 flags & ~MSG_DONTWAIT, &addr_len); 3130 if (err >= 0) 3131 msg->msg_namelen = addr_len; 3132 return err; 3133 } 3134 EXPORT_SYMBOL(sock_common_recvmsg); 3135 3136 /* 3137 * Set socket options on an inet socket. 3138 */ 3139 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3140 char __user *optval, unsigned int optlen) 3141 { 3142 struct sock *sk = sock->sk; 3143 3144 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3145 } 3146 EXPORT_SYMBOL(sock_common_setsockopt); 3147 3148 #ifdef CONFIG_COMPAT 3149 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 3150 char __user *optval, unsigned int optlen) 3151 { 3152 struct sock *sk = sock->sk; 3153 3154 if (sk->sk_prot->compat_setsockopt != NULL) 3155 return sk->sk_prot->compat_setsockopt(sk, level, optname, 3156 optval, optlen); 3157 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 3158 } 3159 EXPORT_SYMBOL(compat_sock_common_setsockopt); 3160 #endif 3161 3162 void sk_common_release(struct sock *sk) 3163 { 3164 if (sk->sk_prot->destroy) 3165 sk->sk_prot->destroy(sk); 3166 3167 /* 3168 * Observation: when sock_common_release is called, processes have 3169 * no access to socket. But net still has. 3170 * Step one, detach it from networking: 3171 * 3172 * A. Remove from hash tables. 3173 */ 3174 3175 sk->sk_prot->unhash(sk); 3176 3177 /* 3178 * In this point socket cannot receive new packets, but it is possible 3179 * that some packets are in flight because some CPU runs receiver and 3180 * did hash table lookup before we unhashed socket. They will achieve 3181 * receive queue and will be purged by socket destructor. 3182 * 3183 * Also we still have packets pending on receive queue and probably, 3184 * our own packets waiting in device queues. sock_destroy will drain 3185 * receive queue, but transmitted packets will delay socket destruction 3186 * until the last reference will be released. 3187 */ 3188 3189 sock_orphan(sk); 3190 3191 xfrm_sk_free_policy(sk); 3192 3193 sk_refcnt_debug_release(sk); 3194 3195 sock_put(sk); 3196 } 3197 EXPORT_SYMBOL(sk_common_release); 3198 3199 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3200 { 3201 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3202 3203 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3204 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf; 3205 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3206 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf; 3207 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; 3208 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued; 3209 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3210 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len; 3211 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3212 } 3213 3214 #ifdef CONFIG_PROC_FS 3215 #define PROTO_INUSE_NR 64 /* should be enough for the first time */ 3216 struct prot_inuse { 3217 int val[PROTO_INUSE_NR]; 3218 }; 3219 3220 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3221 3222 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) 3223 { 3224 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); 3225 } 3226 EXPORT_SYMBOL_GPL(sock_prot_inuse_add); 3227 3228 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3229 { 3230 int cpu, idx = prot->inuse_idx; 3231 int res = 0; 3232 3233 for_each_possible_cpu(cpu) 3234 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3235 3236 return res >= 0 ? res : 0; 3237 } 3238 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3239 3240 static void sock_inuse_add(struct net *net, int val) 3241 { 3242 this_cpu_add(*net->core.sock_inuse, val); 3243 } 3244 3245 int sock_inuse_get(struct net *net) 3246 { 3247 int cpu, res = 0; 3248 3249 for_each_possible_cpu(cpu) 3250 res += *per_cpu_ptr(net->core.sock_inuse, cpu); 3251 3252 return res; 3253 } 3254 3255 EXPORT_SYMBOL_GPL(sock_inuse_get); 3256 3257 static int __net_init sock_inuse_init_net(struct net *net) 3258 { 3259 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3260 if (net->core.prot_inuse == NULL) 3261 return -ENOMEM; 3262 3263 net->core.sock_inuse = alloc_percpu(int); 3264 if (net->core.sock_inuse == NULL) 3265 goto out; 3266 3267 return 0; 3268 3269 out: 3270 free_percpu(net->core.prot_inuse); 3271 return -ENOMEM; 3272 } 3273 3274 static void __net_exit sock_inuse_exit_net(struct net *net) 3275 { 3276 free_percpu(net->core.prot_inuse); 3277 free_percpu(net->core.sock_inuse); 3278 } 3279 3280 static struct pernet_operations net_inuse_ops = { 3281 .init = sock_inuse_init_net, 3282 .exit = sock_inuse_exit_net, 3283 }; 3284 3285 static __init int net_inuse_init(void) 3286 { 3287 if (register_pernet_subsys(&net_inuse_ops)) 3288 panic("Cannot initialize net inuse counters"); 3289 3290 return 0; 3291 } 3292 3293 core_initcall(net_inuse_init); 3294 3295 static int assign_proto_idx(struct proto *prot) 3296 { 3297 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3298 3299 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3300 pr_err("PROTO_INUSE_NR exhausted\n"); 3301 return -ENOSPC; 3302 } 3303 3304 set_bit(prot->inuse_idx, proto_inuse_idx); 3305 return 0; 3306 } 3307 3308 static void release_proto_idx(struct proto *prot) 3309 { 3310 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3311 clear_bit(prot->inuse_idx, proto_inuse_idx); 3312 } 3313 #else 3314 static inline int assign_proto_idx(struct proto *prot) 3315 { 3316 return 0; 3317 } 3318 3319 static inline void release_proto_idx(struct proto *prot) 3320 { 3321 } 3322 3323 static void sock_inuse_add(struct net *net, int val) 3324 { 3325 } 3326 #endif 3327 3328 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3329 { 3330 if (!rsk_prot) 3331 return; 3332 kfree(rsk_prot->slab_name); 3333 rsk_prot->slab_name = NULL; 3334 kmem_cache_destroy(rsk_prot->slab); 3335 rsk_prot->slab = NULL; 3336 } 3337 3338 static int req_prot_init(const struct proto *prot) 3339 { 3340 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3341 3342 if (!rsk_prot) 3343 return 0; 3344 3345 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3346 prot->name); 3347 if (!rsk_prot->slab_name) 3348 return -ENOMEM; 3349 3350 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3351 rsk_prot->obj_size, 0, 3352 SLAB_ACCOUNT | prot->slab_flags, 3353 NULL); 3354 3355 if (!rsk_prot->slab) { 3356 pr_crit("%s: Can't create request sock SLAB cache!\n", 3357 prot->name); 3358 return -ENOMEM; 3359 } 3360 return 0; 3361 } 3362 3363 int proto_register(struct proto *prot, int alloc_slab) 3364 { 3365 int ret = -ENOBUFS; 3366 3367 if (alloc_slab) { 3368 prot->slab = kmem_cache_create_usercopy(prot->name, 3369 prot->obj_size, 0, 3370 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3371 prot->slab_flags, 3372 prot->useroffset, prot->usersize, 3373 NULL); 3374 3375 if (prot->slab == NULL) { 3376 pr_crit("%s: Can't create sock SLAB cache!\n", 3377 prot->name); 3378 goto out; 3379 } 3380 3381 if (req_prot_init(prot)) 3382 goto out_free_request_sock_slab; 3383 3384 if (prot->twsk_prot != NULL) { 3385 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); 3386 3387 if (prot->twsk_prot->twsk_slab_name == NULL) 3388 goto out_free_request_sock_slab; 3389 3390 prot->twsk_prot->twsk_slab = 3391 kmem_cache_create(prot->twsk_prot->twsk_slab_name, 3392 prot->twsk_prot->twsk_obj_size, 3393 0, 3394 SLAB_ACCOUNT | 3395 prot->slab_flags, 3396 NULL); 3397 if (prot->twsk_prot->twsk_slab == NULL) 3398 goto out_free_timewait_sock_slab_name; 3399 } 3400 } 3401 3402 mutex_lock(&proto_list_mutex); 3403 ret = assign_proto_idx(prot); 3404 if (ret) { 3405 mutex_unlock(&proto_list_mutex); 3406 goto out_free_timewait_sock_slab_name; 3407 } 3408 list_add(&prot->node, &proto_list); 3409 mutex_unlock(&proto_list_mutex); 3410 return ret; 3411 3412 out_free_timewait_sock_slab_name: 3413 if (alloc_slab && prot->twsk_prot) 3414 kfree(prot->twsk_prot->twsk_slab_name); 3415 out_free_request_sock_slab: 3416 if (alloc_slab) { 3417 req_prot_cleanup(prot->rsk_prot); 3418 3419 kmem_cache_destroy(prot->slab); 3420 prot->slab = NULL; 3421 } 3422 out: 3423 return ret; 3424 } 3425 EXPORT_SYMBOL(proto_register); 3426 3427 void proto_unregister(struct proto *prot) 3428 { 3429 mutex_lock(&proto_list_mutex); 3430 release_proto_idx(prot); 3431 list_del(&prot->node); 3432 mutex_unlock(&proto_list_mutex); 3433 3434 kmem_cache_destroy(prot->slab); 3435 prot->slab = NULL; 3436 3437 req_prot_cleanup(prot->rsk_prot); 3438 3439 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 3440 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 3441 kfree(prot->twsk_prot->twsk_slab_name); 3442 prot->twsk_prot->twsk_slab = NULL; 3443 } 3444 } 3445 EXPORT_SYMBOL(proto_unregister); 3446 3447 int sock_load_diag_module(int family, int protocol) 3448 { 3449 if (!protocol) { 3450 if (!sock_is_registered(family)) 3451 return -ENOENT; 3452 3453 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 3454 NETLINK_SOCK_DIAG, family); 3455 } 3456 3457 #ifdef CONFIG_INET 3458 if (family == AF_INET && 3459 protocol != IPPROTO_RAW && 3460 !rcu_access_pointer(inet_protos[protocol])) 3461 return -ENOENT; 3462 #endif 3463 3464 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 3465 NETLINK_SOCK_DIAG, family, protocol); 3466 } 3467 EXPORT_SYMBOL(sock_load_diag_module); 3468 3469 #ifdef CONFIG_PROC_FS 3470 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 3471 __acquires(proto_list_mutex) 3472 { 3473 mutex_lock(&proto_list_mutex); 3474 return seq_list_start_head(&proto_list, *pos); 3475 } 3476 3477 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3478 { 3479 return seq_list_next(v, &proto_list, pos); 3480 } 3481 3482 static void proto_seq_stop(struct seq_file *seq, void *v) 3483 __releases(proto_list_mutex) 3484 { 3485 mutex_unlock(&proto_list_mutex); 3486 } 3487 3488 static char proto_method_implemented(const void *method) 3489 { 3490 return method == NULL ? 'n' : 'y'; 3491 } 3492 static long sock_prot_memory_allocated(struct proto *proto) 3493 { 3494 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 3495 } 3496 3497 static char *sock_prot_memory_pressure(struct proto *proto) 3498 { 3499 return proto->memory_pressure != NULL ? 3500 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 3501 } 3502 3503 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 3504 { 3505 3506 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 3507 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 3508 proto->name, 3509 proto->obj_size, 3510 sock_prot_inuse_get(seq_file_net(seq), proto), 3511 sock_prot_memory_allocated(proto), 3512 sock_prot_memory_pressure(proto), 3513 proto->max_header, 3514 proto->slab == NULL ? "no" : "yes", 3515 module_name(proto->owner), 3516 proto_method_implemented(proto->close), 3517 proto_method_implemented(proto->connect), 3518 proto_method_implemented(proto->disconnect), 3519 proto_method_implemented(proto->accept), 3520 proto_method_implemented(proto->ioctl), 3521 proto_method_implemented(proto->init), 3522 proto_method_implemented(proto->destroy), 3523 proto_method_implemented(proto->shutdown), 3524 proto_method_implemented(proto->setsockopt), 3525 proto_method_implemented(proto->getsockopt), 3526 proto_method_implemented(proto->sendmsg), 3527 proto_method_implemented(proto->recvmsg), 3528 proto_method_implemented(proto->sendpage), 3529 proto_method_implemented(proto->bind), 3530 proto_method_implemented(proto->backlog_rcv), 3531 proto_method_implemented(proto->hash), 3532 proto_method_implemented(proto->unhash), 3533 proto_method_implemented(proto->get_port), 3534 proto_method_implemented(proto->enter_memory_pressure)); 3535 } 3536 3537 static int proto_seq_show(struct seq_file *seq, void *v) 3538 { 3539 if (v == &proto_list) 3540 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 3541 "protocol", 3542 "size", 3543 "sockets", 3544 "memory", 3545 "press", 3546 "maxhdr", 3547 "slab", 3548 "module", 3549 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 3550 else 3551 proto_seq_printf(seq, list_entry(v, struct proto, node)); 3552 return 0; 3553 } 3554 3555 static const struct seq_operations proto_seq_ops = { 3556 .start = proto_seq_start, 3557 .next = proto_seq_next, 3558 .stop = proto_seq_stop, 3559 .show = proto_seq_show, 3560 }; 3561 3562 static __net_init int proto_init_net(struct net *net) 3563 { 3564 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 3565 sizeof(struct seq_net_private))) 3566 return -ENOMEM; 3567 3568 return 0; 3569 } 3570 3571 static __net_exit void proto_exit_net(struct net *net) 3572 { 3573 remove_proc_entry("protocols", net->proc_net); 3574 } 3575 3576 3577 static __net_initdata struct pernet_operations proto_net_ops = { 3578 .init = proto_init_net, 3579 .exit = proto_exit_net, 3580 }; 3581 3582 static int __init proto_init(void) 3583 { 3584 return register_pernet_subsys(&proto_net_ops); 3585 } 3586 3587 subsys_initcall(proto_init); 3588 3589 #endif /* PROC_FS */ 3590 3591 #ifdef CONFIG_NET_RX_BUSY_POLL 3592 bool sk_busy_loop_end(void *p, unsigned long start_time) 3593 { 3594 struct sock *sk = p; 3595 3596 return !skb_queue_empty_lockless(&sk->sk_receive_queue) || 3597 sk_busy_loop_timeout(sk, start_time); 3598 } 3599 EXPORT_SYMBOL(sk_busy_loop_end); 3600 #endif /* CONFIG_NET_RX_BUSY_POLL */ 3601
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.