~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/decnet/dn_neigh.c

Version: ~ [ linux-5.8 ] ~ [ linux-5.7.12 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.55 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.136 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.191 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.232 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.232 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * DECnet       An implementation of the DECnet protocol suite for the LINUX
  3  *              operating system.  DECnet is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              DECnet Neighbour Functions (Adjacency Database and
  7  *                                                        On-Ethernet Cache)
  8  *
  9  * Author:      Steve Whitehouse <SteveW@ACM.org>
 10  *
 11  *
 12  * Changes:
 13  *     Steve Whitehouse     : Fixed router listing routine
 14  *     Steve Whitehouse     : Added error_report functions
 15  *     Steve Whitehouse     : Added default router detection
 16  *     Steve Whitehouse     : Hop counts in outgoing messages
 17  *     Steve Whitehouse     : Fixed src/dst in outgoing messages so
 18  *                            forwarding now stands a good chance of
 19  *                            working.
 20  *     Steve Whitehouse     : Fixed neighbour states (for now anyway).
 21  *     Steve Whitehouse     : Made error_report functions dummies. This
 22  *                            is not the right place to return skbs.
 23  *     Steve Whitehouse     : Convert to seq_file
 24  *
 25  */
 26 
 27 #include <linux/net.h>
 28 #include <linux/module.h>
 29 #include <linux/socket.h>
 30 #include <linux/if_arp.h>
 31 #include <linux/slab.h>
 32 #include <linux/if_ether.h>
 33 #include <linux/init.h>
 34 #include <linux/proc_fs.h>
 35 #include <linux/string.h>
 36 #include <linux/netfilter_decnet.h>
 37 #include <linux/spinlock.h>
 38 #include <linux/seq_file.h>
 39 #include <linux/rcupdate.h>
 40 #include <linux/jhash.h>
 41 #include <linux/atomic.h>
 42 #include <net/net_namespace.h>
 43 #include <net/neighbour.h>
 44 #include <net/dst.h>
 45 #include <net/flow.h>
 46 #include <net/dn.h>
 47 #include <net/dn_dev.h>
 48 #include <net/dn_neigh.h>
 49 #include <net/dn_route.h>
 50 
 51 static int dn_neigh_construct(struct neighbour *);
 52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
 53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
 54 static int dn_long_output(struct neighbour *, struct sk_buff *);
 55 static int dn_short_output(struct neighbour *, struct sk_buff *);
 56 static int dn_phase3_output(struct neighbour *, struct sk_buff *);
 57 
 58 
 59 /*
 60  * For talking to broadcast devices: Ethernet & PPP
 61  */
 62 static const struct neigh_ops dn_long_ops = {
 63         .family =               AF_DECnet,
 64         .error_report =         dn_long_error_report,
 65         .output =               dn_long_output,
 66         .connected_output =     dn_long_output,
 67 };
 68 
 69 /*
 70  * For talking to pointopoint and multidrop devices: DDCMP and X.25
 71  */
 72 static const struct neigh_ops dn_short_ops = {
 73         .family =               AF_DECnet,
 74         .error_report =         dn_short_error_report,
 75         .output =               dn_short_output,
 76         .connected_output =     dn_short_output,
 77 };
 78 
 79 /*
 80  * For talking to DECnet phase III nodes
 81  */
 82 static const struct neigh_ops dn_phase3_ops = {
 83         .family =               AF_DECnet,
 84         .error_report =         dn_short_error_report, /* Can use short version here */
 85         .output =               dn_phase3_output,
 86         .connected_output =     dn_phase3_output,
 87 };
 88 
 89 static u32 dn_neigh_hash(const void *pkey,
 90                          const struct net_device *dev,
 91                          __u32 *hash_rnd)
 92 {
 93         return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
 94 }
 95 
 96 struct neigh_table dn_neigh_table = {
 97         .family =                       PF_DECnet,
 98         .entry_size =                   NEIGH_ENTRY_SIZE(sizeof(struct dn_neigh)),
 99         .key_len =                      sizeof(__le16),
100         .hash =                         dn_neigh_hash,
101         .constructor =                  dn_neigh_construct,
102         .id =                           "dn_neigh_cache",
103         .parms ={
104                 .tbl =                  &dn_neigh_table,
105                 .reachable_time =       30 * HZ,
106                 .data = {
107                         [NEIGH_VAR_MCAST_PROBES] = 0,
108                         [NEIGH_VAR_UCAST_PROBES] = 0,
109                         [NEIGH_VAR_APP_PROBES] = 0,
110                         [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
111                         [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
112                         [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
113                         [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
114                         [NEIGH_VAR_QUEUE_LEN_BYTES] = 64*1024,
115                         [NEIGH_VAR_PROXY_QLEN] = 0,
116                         [NEIGH_VAR_ANYCAST_DELAY] = 0,
117                         [NEIGH_VAR_PROXY_DELAY] = 0,
118                         [NEIGH_VAR_LOCKTIME] = 1 * HZ,
119                 },
120         },
121         .gc_interval =                  30 * HZ,
122         .gc_thresh1 =                   128,
123         .gc_thresh2 =                   512,
124         .gc_thresh3 =                   1024,
125 };
126 
127 static int dn_neigh_construct(struct neighbour *neigh)
128 {
129         struct net_device *dev = neigh->dev;
130         struct dn_neigh *dn = (struct dn_neigh *)neigh;
131         struct dn_dev *dn_db;
132         struct neigh_parms *parms;
133 
134         rcu_read_lock();
135         dn_db = rcu_dereference(dev->dn_ptr);
136         if (dn_db == NULL) {
137                 rcu_read_unlock();
138                 return -EINVAL;
139         }
140 
141         parms = dn_db->neigh_parms;
142         if (!parms) {
143                 rcu_read_unlock();
144                 return -EINVAL;
145         }
146 
147         __neigh_parms_put(neigh->parms);
148         neigh->parms = neigh_parms_clone(parms);
149 
150         if (dn_db->use_long)
151                 neigh->ops = &dn_long_ops;
152         else
153                 neigh->ops = &dn_short_ops;
154         rcu_read_unlock();
155 
156         if (dn->flags & DN_NDFLAG_P3)
157                 neigh->ops = &dn_phase3_ops;
158 
159         neigh->nud_state = NUD_NOARP;
160         neigh->output = neigh->ops->connected_output;
161 
162         if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
163                 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
164         else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
165                 dn_dn2eth(neigh->ha, dn->addr);
166         else {
167                 net_dbg_ratelimited("Trying to create neigh for hw %d\n",
168                                     dev->type);
169                 return -EINVAL;
170         }
171 
172         /*
173          * Make an estimate of the remote block size by assuming that its
174          * two less then the device mtu, which it true for ethernet (and
175          * other things which support long format headers) since there is
176          * an extra length field (of 16 bits) which isn't part of the
177          * ethernet headers and which the DECnet specs won't admit is part
178          * of the DECnet routing headers either.
179          *
180          * If we over estimate here its no big deal, the NSP negotiations
181          * will prevent us from sending packets which are too large for the
182          * remote node to handle. In any case this figure is normally updated
183          * by a hello message in most cases.
184          */
185         dn->blksize = dev->mtu - 2;
186 
187         return 0;
188 }
189 
190 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
191 {
192         printk(KERN_DEBUG "dn_long_error_report: called\n");
193         kfree_skb(skb);
194 }
195 
196 
197 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
198 {
199         printk(KERN_DEBUG "dn_short_error_report: called\n");
200         kfree_skb(skb);
201 }
202 
203 static int dn_neigh_output_packet(struct sk_buff *skb)
204 {
205         struct dst_entry *dst = skb_dst(skb);
206         struct dn_route *rt = (struct dn_route *)dst;
207         struct neighbour *neigh = rt->n;
208         struct net_device *dev = neigh->dev;
209         char mac_addr[ETH_ALEN];
210         unsigned int seq;
211         int err;
212 
213         dn_dn2eth(mac_addr, rt->rt_local_src);
214         do {
215                 seq = read_seqbegin(&neigh->ha_lock);
216                 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
217                                       neigh->ha, mac_addr, skb->len);
218         } while (read_seqretry(&neigh->ha_lock, seq));
219 
220         if (err >= 0)
221                 err = dev_queue_xmit(skb);
222         else {
223                 kfree_skb(skb);
224                 err = -EINVAL;
225         }
226         return err;
227 }
228 
229 static int dn_long_output(struct neighbour *neigh, struct sk_buff *skb)
230 {
231         struct net_device *dev = neigh->dev;
232         int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
233         unsigned char *data;
234         struct dn_long_packet *lp;
235         struct dn_skb_cb *cb = DN_SKB_CB(skb);
236 
237 
238         if (skb_headroom(skb) < headroom) {
239                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
240                 if (skb2 == NULL) {
241                         net_crit_ratelimited("dn_long_output: no memory\n");
242                         kfree_skb(skb);
243                         return -ENOBUFS;
244                 }
245                 consume_skb(skb);
246                 skb = skb2;
247                 net_info_ratelimited("dn_long_output: Increasing headroom\n");
248         }
249 
250         data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
251         lp = (struct dn_long_packet *)(data+3);
252 
253         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
254         *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
255 
256         lp->msgflg   = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
257         lp->d_area   = lp->d_subarea = 0;
258         dn_dn2eth(lp->d_id, cb->dst);
259         lp->s_area   = lp->s_subarea = 0;
260         dn_dn2eth(lp->s_id, cb->src);
261         lp->nl2      = 0;
262         lp->visit_ct = cb->hops & 0x3f;
263         lp->s_class  = 0;
264         lp->pt       = 0;
265 
266         skb_reset_network_header(skb);
267 
268         return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
269                        neigh->dev, dn_neigh_output_packet);
270 }
271 
272 static int dn_short_output(struct neighbour *neigh, struct sk_buff *skb)
273 {
274         struct net_device *dev = neigh->dev;
275         int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
276         struct dn_short_packet *sp;
277         unsigned char *data;
278         struct dn_skb_cb *cb = DN_SKB_CB(skb);
279 
280 
281         if (skb_headroom(skb) < headroom) {
282                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
283                 if (skb2 == NULL) {
284                         net_crit_ratelimited("dn_short_output: no memory\n");
285                         kfree_skb(skb);
286                         return -ENOBUFS;
287                 }
288                 consume_skb(skb);
289                 skb = skb2;
290                 net_info_ratelimited("dn_short_output: Increasing headroom\n");
291         }
292 
293         data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
294         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
295         sp = (struct dn_short_packet *)(data+2);
296 
297         sp->msgflg     = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
298         sp->dstnode    = cb->dst;
299         sp->srcnode    = cb->src;
300         sp->forward    = cb->hops & 0x3f;
301 
302         skb_reset_network_header(skb);
303 
304         return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
305                        neigh->dev, dn_neigh_output_packet);
306 }
307 
308 /*
309  * Phase 3 output is the same is short output, execpt that
310  * it clears the area bits before transmission.
311  */
312 static int dn_phase3_output(struct neighbour *neigh, struct sk_buff *skb)
313 {
314         struct net_device *dev = neigh->dev;
315         int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
316         struct dn_short_packet *sp;
317         unsigned char *data;
318         struct dn_skb_cb *cb = DN_SKB_CB(skb);
319 
320         if (skb_headroom(skb) < headroom) {
321                 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
322                 if (skb2 == NULL) {
323                         net_crit_ratelimited("dn_phase3_output: no memory\n");
324                         kfree_skb(skb);
325                         return -ENOBUFS;
326                 }
327                 consume_skb(skb);
328                 skb = skb2;
329                 net_info_ratelimited("dn_phase3_output: Increasing headroom\n");
330         }
331 
332         data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
333         *((__le16 *)data) = cpu_to_le16(skb->len - 2);
334         sp = (struct dn_short_packet *)(data + 2);
335 
336         sp->msgflg   = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
337         sp->dstnode  = cb->dst & cpu_to_le16(0x03ff);
338         sp->srcnode  = cb->src & cpu_to_le16(0x03ff);
339         sp->forward  = cb->hops & 0x3f;
340 
341         skb_reset_network_header(skb);
342 
343         return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
344                        neigh->dev, dn_neigh_output_packet);
345 }
346 
347 /*
348  * Unfortunately, the neighbour code uses the device in its hash
349  * function, so we don't get any advantage from it. This function
350  * basically does a neigh_lookup(), but without comparing the device
351  * field. This is required for the On-Ethernet cache
352  */
353 
354 /*
355  * Pointopoint link receives a hello message
356  */
357 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
358 {
359         kfree_skb(skb);
360 }
361 
362 /*
363  * Ethernet router hello message received
364  */
365 int dn_neigh_router_hello(struct sk_buff *skb)
366 {
367         struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
368 
369         struct neighbour *neigh;
370         struct dn_neigh *dn;
371         struct dn_dev *dn_db;
372         __le16 src;
373 
374         src = dn_eth2dn(msg->id);
375 
376         neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
377 
378         dn = (struct dn_neigh *)neigh;
379 
380         if (neigh) {
381                 write_lock(&neigh->lock);
382 
383                 neigh->used = jiffies;
384                 dn_db = rcu_dereference(neigh->dev->dn_ptr);
385 
386                 if (!(neigh->nud_state & NUD_PERMANENT)) {
387                         neigh->updated = jiffies;
388 
389                         if (neigh->dev->type == ARPHRD_ETHER)
390                                 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
391 
392                         dn->blksize  = le16_to_cpu(msg->blksize);
393                         dn->priority = msg->priority;
394 
395                         dn->flags &= ~DN_NDFLAG_P3;
396 
397                         switch (msg->iinfo & DN_RT_INFO_TYPE) {
398                         case DN_RT_INFO_L1RT:
399                                 dn->flags &=~DN_NDFLAG_R2;
400                                 dn->flags |= DN_NDFLAG_R1;
401                                 break;
402                         case DN_RT_INFO_L2RT:
403                                 dn->flags |= DN_NDFLAG_R2;
404                         }
405                 }
406 
407                 /* Only use routers in our area */
408                 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
409                         if (!dn_db->router) {
410                                 dn_db->router = neigh_clone(neigh);
411                         } else {
412                                 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
413                                         neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
414                         }
415                 }
416                 write_unlock(&neigh->lock);
417                 neigh_release(neigh);
418         }
419 
420         kfree_skb(skb);
421         return 0;
422 }
423 
424 /*
425  * Endnode hello message received
426  */
427 int dn_neigh_endnode_hello(struct sk_buff *skb)
428 {
429         struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
430         struct neighbour *neigh;
431         struct dn_neigh *dn;
432         __le16 src;
433 
434         src = dn_eth2dn(msg->id);
435 
436         neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
437 
438         dn = (struct dn_neigh *)neigh;
439 
440         if (neigh) {
441                 write_lock(&neigh->lock);
442 
443                 neigh->used = jiffies;
444 
445                 if (!(neigh->nud_state & NUD_PERMANENT)) {
446                         neigh->updated = jiffies;
447 
448                         if (neigh->dev->type == ARPHRD_ETHER)
449                                 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
450                         dn->flags   &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
451                         dn->blksize  = le16_to_cpu(msg->blksize);
452                         dn->priority = 0;
453                 }
454 
455                 write_unlock(&neigh->lock);
456                 neigh_release(neigh);
457         }
458 
459         kfree_skb(skb);
460         return 0;
461 }
462 
463 static char *dn_find_slot(char *base, int max, int priority)
464 {
465         int i;
466         unsigned char *min = NULL;
467 
468         base += 6; /* skip first id */
469 
470         for(i = 0; i < max; i++) {
471                 if (!min || (*base < *min))
472                         min = base;
473                 base += 7; /* find next priority */
474         }
475 
476         if (!min)
477                 return NULL;
478 
479         return (*min < priority) ? (min - 6) : NULL;
480 }
481 
482 struct elist_cb_state {
483         struct net_device *dev;
484         unsigned char *ptr;
485         unsigned char *rs;
486         int t, n;
487 };
488 
489 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
490 {
491         struct elist_cb_state *s = _info;
492         struct dn_neigh *dn;
493 
494         if (neigh->dev != s->dev)
495                 return;
496 
497         dn = (struct dn_neigh *) neigh;
498         if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
499                 return;
500 
501         if (s->t == s->n)
502                 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
503         else
504                 s->t++;
505         if (s->rs == NULL)
506                 return;
507 
508         dn_dn2eth(s->rs, dn->addr);
509         s->rs += 6;
510         *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
511         *(s->rs) |= dn->priority;
512         s->rs++;
513 }
514 
515 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
516 {
517         struct elist_cb_state state;
518 
519         state.dev = dev;
520         state.t = 0;
521         state.n = n;
522         state.ptr = ptr;
523         state.rs = ptr;
524 
525         neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
526 
527         return state.t;
528 }
529 
530 
531 #ifdef CONFIG_PROC_FS
532 
533 static inline void dn_neigh_format_entry(struct seq_file *seq,
534                                          struct neighbour *n)
535 {
536         struct dn_neigh *dn = (struct dn_neigh *) n;
537         char buf[DN_ASCBUF_LEN];
538 
539         read_lock(&n->lock);
540         seq_printf(seq, "%-7s %s%s%s   %02x    %02d  %07ld %-8s\n",
541                    dn_addr2asc(le16_to_cpu(dn->addr), buf),
542                    (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
543                    (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
544                    (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
545                    dn->n.nud_state,
546                    atomic_read(&dn->n.refcnt),
547                    dn->blksize,
548                    (dn->n.dev) ? dn->n.dev->name : "?");
549         read_unlock(&n->lock);
550 }
551 
552 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
553 {
554         if (v == SEQ_START_TOKEN) {
555                 seq_puts(seq, "Addr    Flags State Use Blksize Dev\n");
556         } else {
557                 dn_neigh_format_entry(seq, v);
558         }
559 
560         return 0;
561 }
562 
563 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
564 {
565         return neigh_seq_start(seq, pos, &dn_neigh_table,
566                                NEIGH_SEQ_NEIGH_ONLY);
567 }
568 
569 static const struct seq_operations dn_neigh_seq_ops = {
570         .start = dn_neigh_seq_start,
571         .next  = neigh_seq_next,
572         .stop  = neigh_seq_stop,
573         .show  = dn_neigh_seq_show,
574 };
575 
576 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
577 {
578         return seq_open_net(inode, file, &dn_neigh_seq_ops,
579                             sizeof(struct neigh_seq_state));
580 }
581 
582 static const struct file_operations dn_neigh_seq_fops = {
583         .owner          = THIS_MODULE,
584         .open           = dn_neigh_seq_open,
585         .read           = seq_read,
586         .llseek         = seq_lseek,
587         .release        = seq_release_net,
588 };
589 
590 #endif
591 
592 void __init dn_neigh_init(void)
593 {
594         neigh_table_init(&dn_neigh_table);
595         proc_create("decnet_neigh", S_IRUGO, init_net.proc_net,
596                     &dn_neigh_seq_fops);
597 }
598 
599 void __exit dn_neigh_cleanup(void)
600 {
601         remove_proc_entry("decnet_neigh", init_net.proc_net);
602         neigh_table_clear(&dn_neigh_table);
603 }
604 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp