1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include <net/switchdev.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 #define MAX_STAT_DEPTH 32 88 89 #define KEYLENGTH (8*sizeof(t_key)) 90 #define KEY_MAX ((t_key)~0) 91 92 typedef unsigned int t_key; 93 94 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 95 #define IS_TNODE(n) ((n)->bits) 96 #define IS_LEAF(n) (!(n)->bits) 97 98 struct key_vector { 99 t_key key; 100 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 101 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 102 unsigned char slen; 103 union { 104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 105 struct hlist_head leaf; 106 /* This array is valid if (pos | bits) > 0 (TNODE) */ 107 struct key_vector __rcu *tnode[0]; 108 }; 109 }; 110 111 struct tnode { 112 struct rcu_head rcu; 113 t_key empty_children; /* KEYLENGTH bits needed */ 114 t_key full_children; /* KEYLENGTH bits needed */ 115 struct key_vector __rcu *parent; 116 struct key_vector kv[1]; 117 #define tn_bits kv[0].bits 118 }; 119 120 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 121 #define LEAF_SIZE TNODE_SIZE(1) 122 123 #ifdef CONFIG_IP_FIB_TRIE_STATS 124 struct trie_use_stats { 125 unsigned int gets; 126 unsigned int backtrack; 127 unsigned int semantic_match_passed; 128 unsigned int semantic_match_miss; 129 unsigned int null_node_hit; 130 unsigned int resize_node_skipped; 131 }; 132 #endif 133 134 struct trie_stat { 135 unsigned int totdepth; 136 unsigned int maxdepth; 137 unsigned int tnodes; 138 unsigned int leaves; 139 unsigned int nullpointers; 140 unsigned int prefixes; 141 unsigned int nodesizes[MAX_STAT_DEPTH]; 142 }; 143 144 struct trie { 145 struct key_vector kv[1]; 146 #ifdef CONFIG_IP_FIB_TRIE_STATS 147 struct trie_use_stats __percpu *stats; 148 #endif 149 }; 150 151 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 152 static size_t tnode_free_size; 153 154 /* 155 * synchronize_rcu after call_rcu for that many pages; it should be especially 156 * useful before resizing the root node with PREEMPT_NONE configs; the value was 157 * obtained experimentally, aiming to avoid visible slowdown. 158 */ 159 static const int sync_pages = 128; 160 161 static struct kmem_cache *fn_alias_kmem __read_mostly; 162 static struct kmem_cache *trie_leaf_kmem __read_mostly; 163 164 static inline struct tnode *tn_info(struct key_vector *kv) 165 { 166 return container_of(kv, struct tnode, kv[0]); 167 } 168 169 /* caller must hold RTNL */ 170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 172 173 /* caller must hold RCU read lock or RTNL */ 174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 176 177 /* wrapper for rcu_assign_pointer */ 178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 179 { 180 if (n) 181 rcu_assign_pointer(tn_info(n)->parent, tp); 182 } 183 184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 185 186 /* This provides us with the number of children in this node, in the case of a 187 * leaf this will return 0 meaning none of the children are accessible. 188 */ 189 static inline unsigned long child_length(const struct key_vector *tn) 190 { 191 return (1ul << tn->bits) & ~(1ul); 192 } 193 194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 195 196 static inline unsigned long get_index(t_key key, struct key_vector *kv) 197 { 198 unsigned long index = key ^ kv->key; 199 200 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 201 return 0; 202 203 return index >> kv->pos; 204 } 205 206 /* To understand this stuff, an understanding of keys and all their bits is 207 * necessary. Every node in the trie has a key associated with it, but not 208 * all of the bits in that key are significant. 209 * 210 * Consider a node 'n' and its parent 'tp'. 211 * 212 * If n is a leaf, every bit in its key is significant. Its presence is 213 * necessitated by path compression, since during a tree traversal (when 214 * searching for a leaf - unless we are doing an insertion) we will completely 215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 216 * a potentially successful search, that we have indeed been walking the 217 * correct key path. 218 * 219 * Note that we can never "miss" the correct key in the tree if present by 220 * following the wrong path. Path compression ensures that segments of the key 221 * that are the same for all keys with a given prefix are skipped, but the 222 * skipped part *is* identical for each node in the subtrie below the skipped 223 * bit! trie_insert() in this implementation takes care of that. 224 * 225 * if n is an internal node - a 'tnode' here, the various parts of its key 226 * have many different meanings. 227 * 228 * Example: 229 * _________________________________________________________________ 230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 231 * ----------------------------------------------------------------- 232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 233 * 234 * _________________________________________________________________ 235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 236 * ----------------------------------------------------------------- 237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 238 * 239 * tp->pos = 22 240 * tp->bits = 3 241 * n->pos = 13 242 * n->bits = 4 243 * 244 * First, let's just ignore the bits that come before the parent tp, that is 245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 246 * point we do not use them for anything. 247 * 248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 249 * index into the parent's child array. That is, they will be used to find 250 * 'n' among tp's children. 251 * 252 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 253 * for the node n. 254 * 255 * All the bits we have seen so far are significant to the node n. The rest 256 * of the bits are really not needed or indeed known in n->key. 257 * 258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 259 * n's child array, and will of course be different for each child. 260 * 261 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 262 * at this point. 263 */ 264 265 static const int halve_threshold = 25; 266 static const int inflate_threshold = 50; 267 static const int halve_threshold_root = 15; 268 static const int inflate_threshold_root = 30; 269 270 static void __alias_free_mem(struct rcu_head *head) 271 { 272 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 273 kmem_cache_free(fn_alias_kmem, fa); 274 } 275 276 static inline void alias_free_mem_rcu(struct fib_alias *fa) 277 { 278 call_rcu(&fa->rcu, __alias_free_mem); 279 } 280 281 #define TNODE_KMALLOC_MAX \ 282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 283 #define TNODE_VMALLOC_MAX \ 284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 285 286 static void __node_free_rcu(struct rcu_head *head) 287 { 288 struct tnode *n = container_of(head, struct tnode, rcu); 289 290 if (!n->tn_bits) 291 kmem_cache_free(trie_leaf_kmem, n); 292 else 293 kvfree(n); 294 } 295 296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 297 298 static struct tnode *tnode_alloc(int bits) 299 { 300 size_t size; 301 302 /* verify bits is within bounds */ 303 if (bits > TNODE_VMALLOC_MAX) 304 return NULL; 305 306 /* determine size and verify it is non-zero and didn't overflow */ 307 size = TNODE_SIZE(1ul << bits); 308 309 if (size <= PAGE_SIZE) 310 return kzalloc(size, GFP_KERNEL); 311 else 312 return vzalloc(size); 313 } 314 315 static inline void empty_child_inc(struct key_vector *n) 316 { 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 318 } 319 320 static inline void empty_child_dec(struct key_vector *n) 321 { 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 323 } 324 325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 326 { 327 struct key_vector *l; 328 struct tnode *kv; 329 330 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 331 if (!kv) 332 return NULL; 333 334 /* initialize key vector */ 335 l = kv->kv; 336 l->key = key; 337 l->pos = 0; 338 l->bits = 0; 339 l->slen = fa->fa_slen; 340 341 /* link leaf to fib alias */ 342 INIT_HLIST_HEAD(&l->leaf); 343 hlist_add_head(&fa->fa_list, &l->leaf); 344 345 return l; 346 } 347 348 static struct key_vector *tnode_new(t_key key, int pos, int bits) 349 { 350 unsigned int shift = pos + bits; 351 struct key_vector *tn; 352 struct tnode *tnode; 353 354 /* verify bits and pos their msb bits clear and values are valid */ 355 BUG_ON(!bits || (shift > KEYLENGTH)); 356 357 tnode = tnode_alloc(bits); 358 if (!tnode) 359 return NULL; 360 361 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 362 sizeof(struct key_vector *) << bits); 363 364 if (bits == KEYLENGTH) 365 tnode->full_children = 1; 366 else 367 tnode->empty_children = 1ul << bits; 368 369 tn = tnode->kv; 370 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 371 tn->pos = pos; 372 tn->bits = bits; 373 tn->slen = pos; 374 375 return tn; 376 } 377 378 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 379 * and no bits are skipped. See discussion in dyntree paper p. 6 380 */ 381 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 382 { 383 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 384 } 385 386 /* Add a child at position i overwriting the old value. 387 * Update the value of full_children and empty_children. 388 */ 389 static void put_child(struct key_vector *tn, unsigned long i, 390 struct key_vector *n) 391 { 392 struct key_vector *chi = get_child(tn, i); 393 int isfull, wasfull; 394 395 BUG_ON(i >= child_length(tn)); 396 397 /* update emptyChildren, overflow into fullChildren */ 398 if (!n && chi) 399 empty_child_inc(tn); 400 if (n && !chi) 401 empty_child_dec(tn); 402 403 /* update fullChildren */ 404 wasfull = tnode_full(tn, chi); 405 isfull = tnode_full(tn, n); 406 407 if (wasfull && !isfull) 408 tn_info(tn)->full_children--; 409 else if (!wasfull && isfull) 410 tn_info(tn)->full_children++; 411 412 if (n && (tn->slen < n->slen)) 413 tn->slen = n->slen; 414 415 rcu_assign_pointer(tn->tnode[i], n); 416 } 417 418 static void update_children(struct key_vector *tn) 419 { 420 unsigned long i; 421 422 /* update all of the child parent pointers */ 423 for (i = child_length(tn); i;) { 424 struct key_vector *inode = get_child(tn, --i); 425 426 if (!inode) 427 continue; 428 429 /* Either update the children of a tnode that 430 * already belongs to us or update the child 431 * to point to ourselves. 432 */ 433 if (node_parent(inode) == tn) 434 update_children(inode); 435 else 436 node_set_parent(inode, tn); 437 } 438 } 439 440 static inline void put_child_root(struct key_vector *tp, t_key key, 441 struct key_vector *n) 442 { 443 if (IS_TRIE(tp)) 444 rcu_assign_pointer(tp->tnode[0], n); 445 else 446 put_child(tp, get_index(key, tp), n); 447 } 448 449 static inline void tnode_free_init(struct key_vector *tn) 450 { 451 tn_info(tn)->rcu.next = NULL; 452 } 453 454 static inline void tnode_free_append(struct key_vector *tn, 455 struct key_vector *n) 456 { 457 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 458 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 459 } 460 461 static void tnode_free(struct key_vector *tn) 462 { 463 struct callback_head *head = &tn_info(tn)->rcu; 464 465 while (head) { 466 head = head->next; 467 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 468 node_free(tn); 469 470 tn = container_of(head, struct tnode, rcu)->kv; 471 } 472 473 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 474 tnode_free_size = 0; 475 synchronize_rcu(); 476 } 477 } 478 479 static struct key_vector *replace(struct trie *t, 480 struct key_vector *oldtnode, 481 struct key_vector *tn) 482 { 483 struct key_vector *tp = node_parent(oldtnode); 484 unsigned long i; 485 486 /* setup the parent pointer out of and back into this node */ 487 NODE_INIT_PARENT(tn, tp); 488 put_child_root(tp, tn->key, tn); 489 490 /* update all of the child parent pointers */ 491 update_children(tn); 492 493 /* all pointers should be clean so we are done */ 494 tnode_free(oldtnode); 495 496 /* resize children now that oldtnode is freed */ 497 for (i = child_length(tn); i;) { 498 struct key_vector *inode = get_child(tn, --i); 499 500 /* resize child node */ 501 if (tnode_full(tn, inode)) 502 tn = resize(t, inode); 503 } 504 505 return tp; 506 } 507 508 static struct key_vector *inflate(struct trie *t, 509 struct key_vector *oldtnode) 510 { 511 struct key_vector *tn; 512 unsigned long i; 513 t_key m; 514 515 pr_debug("In inflate\n"); 516 517 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 518 if (!tn) 519 goto notnode; 520 521 /* prepare oldtnode to be freed */ 522 tnode_free_init(oldtnode); 523 524 /* Assemble all of the pointers in our cluster, in this case that 525 * represents all of the pointers out of our allocated nodes that 526 * point to existing tnodes and the links between our allocated 527 * nodes. 528 */ 529 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 530 struct key_vector *inode = get_child(oldtnode, --i); 531 struct key_vector *node0, *node1; 532 unsigned long j, k; 533 534 /* An empty child */ 535 if (!inode) 536 continue; 537 538 /* A leaf or an internal node with skipped bits */ 539 if (!tnode_full(oldtnode, inode)) { 540 put_child(tn, get_index(inode->key, tn), inode); 541 continue; 542 } 543 544 /* drop the node in the old tnode free list */ 545 tnode_free_append(oldtnode, inode); 546 547 /* An internal node with two children */ 548 if (inode->bits == 1) { 549 put_child(tn, 2 * i + 1, get_child(inode, 1)); 550 put_child(tn, 2 * i, get_child(inode, 0)); 551 continue; 552 } 553 554 /* We will replace this node 'inode' with two new 555 * ones, 'node0' and 'node1', each with half of the 556 * original children. The two new nodes will have 557 * a position one bit further down the key and this 558 * means that the "significant" part of their keys 559 * (see the discussion near the top of this file) 560 * will differ by one bit, which will be "" in 561 * node0's key and "1" in node1's key. Since we are 562 * moving the key position by one step, the bit that 563 * we are moving away from - the bit at position 564 * (tn->pos) - is the one that will differ between 565 * node0 and node1. So... we synthesize that bit in the 566 * two new keys. 567 */ 568 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 569 if (!node1) 570 goto nomem; 571 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 572 573 tnode_free_append(tn, node1); 574 if (!node0) 575 goto nomem; 576 tnode_free_append(tn, node0); 577 578 /* populate child pointers in new nodes */ 579 for (k = child_length(inode), j = k / 2; j;) { 580 put_child(node1, --j, get_child(inode, --k)); 581 put_child(node0, j, get_child(inode, j)); 582 put_child(node1, --j, get_child(inode, --k)); 583 put_child(node0, j, get_child(inode, j)); 584 } 585 586 /* link new nodes to parent */ 587 NODE_INIT_PARENT(node1, tn); 588 NODE_INIT_PARENT(node0, tn); 589 590 /* link parent to nodes */ 591 put_child(tn, 2 * i + 1, node1); 592 put_child(tn, 2 * i, node0); 593 } 594 595 /* setup the parent pointers into and out of this node */ 596 return replace(t, oldtnode, tn); 597 nomem: 598 /* all pointers should be clean so we are done */ 599 tnode_free(tn); 600 notnode: 601 return NULL; 602 } 603 604 static struct key_vector *halve(struct trie *t, 605 struct key_vector *oldtnode) 606 { 607 struct key_vector *tn; 608 unsigned long i; 609 610 pr_debug("In halve\n"); 611 612 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 613 if (!tn) 614 goto notnode; 615 616 /* prepare oldtnode to be freed */ 617 tnode_free_init(oldtnode); 618 619 /* Assemble all of the pointers in our cluster, in this case that 620 * represents all of the pointers out of our allocated nodes that 621 * point to existing tnodes and the links between our allocated 622 * nodes. 623 */ 624 for (i = child_length(oldtnode); i;) { 625 struct key_vector *node1 = get_child(oldtnode, --i); 626 struct key_vector *node0 = get_child(oldtnode, --i); 627 struct key_vector *inode; 628 629 /* At least one of the children is empty */ 630 if (!node1 || !node0) { 631 put_child(tn, i / 2, node1 ? : node0); 632 continue; 633 } 634 635 /* Two nonempty children */ 636 inode = tnode_new(node0->key, oldtnode->pos, 1); 637 if (!inode) 638 goto nomem; 639 tnode_free_append(tn, inode); 640 641 /* initialize pointers out of node */ 642 put_child(inode, 1, node1); 643 put_child(inode, 0, node0); 644 NODE_INIT_PARENT(inode, tn); 645 646 /* link parent to node */ 647 put_child(tn, i / 2, inode); 648 } 649 650 /* setup the parent pointers into and out of this node */ 651 return replace(t, oldtnode, tn); 652 nomem: 653 /* all pointers should be clean so we are done */ 654 tnode_free(tn); 655 notnode: 656 return NULL; 657 } 658 659 static struct key_vector *collapse(struct trie *t, 660 struct key_vector *oldtnode) 661 { 662 struct key_vector *n, *tp; 663 unsigned long i; 664 665 /* scan the tnode looking for that one child that might still exist */ 666 for (n = NULL, i = child_length(oldtnode); !n && i;) 667 n = get_child(oldtnode, --i); 668 669 /* compress one level */ 670 tp = node_parent(oldtnode); 671 put_child_root(tp, oldtnode->key, n); 672 node_set_parent(n, tp); 673 674 /* drop dead node */ 675 node_free(oldtnode); 676 677 return tp; 678 } 679 680 static unsigned char update_suffix(struct key_vector *tn) 681 { 682 unsigned char slen = tn->pos; 683 unsigned long stride, i; 684 unsigned char slen_max; 685 686 /* only vector 0 can have a suffix length greater than or equal to 687 * tn->pos + tn->bits, the second highest node will have a suffix 688 * length at most of tn->pos + tn->bits - 1 689 */ 690 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 691 692 /* search though the list of children looking for nodes that might 693 * have a suffix greater than the one we currently have. This is 694 * why we start with a stride of 2 since a stride of 1 would 695 * represent the nodes with suffix length equal to tn->pos 696 */ 697 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 698 struct key_vector *n = get_child(tn, i); 699 700 if (!n || (n->slen <= slen)) 701 continue; 702 703 /* update stride and slen based on new value */ 704 stride <<= (n->slen - slen); 705 slen = n->slen; 706 i &= ~(stride - 1); 707 708 /* stop searching if we have hit the maximum possible value */ 709 if (slen >= slen_max) 710 break; 711 } 712 713 tn->slen = slen; 714 715 return slen; 716 } 717 718 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 719 * the Helsinki University of Technology and Matti Tikkanen of Nokia 720 * Telecommunications, page 6: 721 * "A node is doubled if the ratio of non-empty children to all 722 * children in the *doubled* node is at least 'high'." 723 * 724 * 'high' in this instance is the variable 'inflate_threshold'. It 725 * is expressed as a percentage, so we multiply it with 726 * child_length() and instead of multiplying by 2 (since the 727 * child array will be doubled by inflate()) and multiplying 728 * the left-hand side by 100 (to handle the percentage thing) we 729 * multiply the left-hand side by 50. 730 * 731 * The left-hand side may look a bit weird: child_length(tn) 732 * - tn->empty_children is of course the number of non-null children 733 * in the current node. tn->full_children is the number of "full" 734 * children, that is non-null tnodes with a skip value of 0. 735 * All of those will be doubled in the resulting inflated tnode, so 736 * we just count them one extra time here. 737 * 738 * A clearer way to write this would be: 739 * 740 * to_be_doubled = tn->full_children; 741 * not_to_be_doubled = child_length(tn) - tn->empty_children - 742 * tn->full_children; 743 * 744 * new_child_length = child_length(tn) * 2; 745 * 746 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 747 * new_child_length; 748 * if (new_fill_factor >= inflate_threshold) 749 * 750 * ...and so on, tho it would mess up the while () loop. 751 * 752 * anyway, 753 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 754 * inflate_threshold 755 * 756 * avoid a division: 757 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 758 * inflate_threshold * new_child_length 759 * 760 * expand not_to_be_doubled and to_be_doubled, and shorten: 761 * 100 * (child_length(tn) - tn->empty_children + 762 * tn->full_children) >= inflate_threshold * new_child_length 763 * 764 * expand new_child_length: 765 * 100 * (child_length(tn) - tn->empty_children + 766 * tn->full_children) >= 767 * inflate_threshold * child_length(tn) * 2 768 * 769 * shorten again: 770 * 50 * (tn->full_children + child_length(tn) - 771 * tn->empty_children) >= inflate_threshold * 772 * child_length(tn) 773 * 774 */ 775 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 776 { 777 unsigned long used = child_length(tn); 778 unsigned long threshold = used; 779 780 /* Keep root node larger */ 781 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 782 used -= tn_info(tn)->empty_children; 783 used += tn_info(tn)->full_children; 784 785 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 786 787 return (used > 1) && tn->pos && ((50 * used) >= threshold); 788 } 789 790 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 791 { 792 unsigned long used = child_length(tn); 793 unsigned long threshold = used; 794 795 /* Keep root node larger */ 796 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 797 used -= tn_info(tn)->empty_children; 798 799 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 800 801 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 802 } 803 804 static inline bool should_collapse(struct key_vector *tn) 805 { 806 unsigned long used = child_length(tn); 807 808 used -= tn_info(tn)->empty_children; 809 810 /* account for bits == KEYLENGTH case */ 811 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 812 used -= KEY_MAX; 813 814 /* One child or none, time to drop us from the trie */ 815 return used < 2; 816 } 817 818 #define MAX_WORK 10 819 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 820 { 821 #ifdef CONFIG_IP_FIB_TRIE_STATS 822 struct trie_use_stats __percpu *stats = t->stats; 823 #endif 824 struct key_vector *tp = node_parent(tn); 825 unsigned long cindex = get_index(tn->key, tp); 826 int max_work = MAX_WORK; 827 828 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 829 tn, inflate_threshold, halve_threshold); 830 831 /* track the tnode via the pointer from the parent instead of 832 * doing it ourselves. This way we can let RCU fully do its 833 * thing without us interfering 834 */ 835 BUG_ON(tn != get_child(tp, cindex)); 836 837 /* Double as long as the resulting node has a number of 838 * nonempty nodes that are above the threshold. 839 */ 840 while (should_inflate(tp, tn) && max_work) { 841 tp = inflate(t, tn); 842 if (!tp) { 843 #ifdef CONFIG_IP_FIB_TRIE_STATS 844 this_cpu_inc(stats->resize_node_skipped); 845 #endif 846 break; 847 } 848 849 max_work--; 850 tn = get_child(tp, cindex); 851 } 852 853 /* update parent in case inflate failed */ 854 tp = node_parent(tn); 855 856 /* Return if at least one inflate is run */ 857 if (max_work != MAX_WORK) 858 return tp; 859 860 /* Halve as long as the number of empty children in this 861 * node is above threshold. 862 */ 863 while (should_halve(tp, tn) && max_work) { 864 tp = halve(t, tn); 865 if (!tp) { 866 #ifdef CONFIG_IP_FIB_TRIE_STATS 867 this_cpu_inc(stats->resize_node_skipped); 868 #endif 869 break; 870 } 871 872 max_work--; 873 tn = get_child(tp, cindex); 874 } 875 876 /* Only one child remains */ 877 if (should_collapse(tn)) 878 return collapse(t, tn); 879 880 /* update parent in case halve failed */ 881 return node_parent(tn); 882 } 883 884 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 885 { 886 unsigned char node_slen = tn->slen; 887 888 while ((node_slen > tn->pos) && (node_slen > slen)) { 889 slen = update_suffix(tn); 890 if (node_slen == slen) 891 break; 892 893 tn = node_parent(tn); 894 node_slen = tn->slen; 895 } 896 } 897 898 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 899 { 900 while (tn->slen < slen) { 901 tn->slen = slen; 902 tn = node_parent(tn); 903 } 904 } 905 906 /* rcu_read_lock needs to be hold by caller from readside */ 907 static struct key_vector *fib_find_node(struct trie *t, 908 struct key_vector **tp, u32 key) 909 { 910 struct key_vector *pn, *n = t->kv; 911 unsigned long index = 0; 912 913 do { 914 pn = n; 915 n = get_child_rcu(n, index); 916 917 if (!n) 918 break; 919 920 index = get_cindex(key, n); 921 922 /* This bit of code is a bit tricky but it combines multiple 923 * checks into a single check. The prefix consists of the 924 * prefix plus zeros for the bits in the cindex. The index 925 * is the difference between the key and this value. From 926 * this we can actually derive several pieces of data. 927 * if (index >= (1ul << bits)) 928 * we have a mismatch in skip bits and failed 929 * else 930 * we know the value is cindex 931 * 932 * This check is safe even if bits == KEYLENGTH due to the 933 * fact that we can only allocate a node with 32 bits if a 934 * long is greater than 32 bits. 935 */ 936 if (index >= (1ul << n->bits)) { 937 n = NULL; 938 break; 939 } 940 941 /* keep searching until we find a perfect match leaf or NULL */ 942 } while (IS_TNODE(n)); 943 944 *tp = pn; 945 946 return n; 947 } 948 949 /* Return the first fib alias matching TOS with 950 * priority less than or equal to PRIO. 951 */ 952 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 953 u8 tos, u32 prio, u32 tb_id) 954 { 955 struct fib_alias *fa; 956 957 if (!fah) 958 return NULL; 959 960 hlist_for_each_entry(fa, fah, fa_list) { 961 if (fa->fa_slen < slen) 962 continue; 963 if (fa->fa_slen != slen) 964 break; 965 if (fa->tb_id > tb_id) 966 continue; 967 if (fa->tb_id != tb_id) 968 break; 969 if (fa->fa_tos > tos) 970 continue; 971 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 972 return fa; 973 } 974 975 return NULL; 976 } 977 978 static void trie_rebalance(struct trie *t, struct key_vector *tn) 979 { 980 while (!IS_TRIE(tn)) 981 tn = resize(t, tn); 982 } 983 984 static int fib_insert_node(struct trie *t, struct key_vector *tp, 985 struct fib_alias *new, t_key key) 986 { 987 struct key_vector *n, *l; 988 989 l = leaf_new(key, new); 990 if (!l) 991 goto noleaf; 992 993 /* retrieve child from parent node */ 994 n = get_child(tp, get_index(key, tp)); 995 996 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 997 * 998 * Add a new tnode here 999 * first tnode need some special handling 1000 * leaves us in position for handling as case 3 1001 */ 1002 if (n) { 1003 struct key_vector *tn; 1004 1005 tn = tnode_new(key, __fls(key ^ n->key), 1); 1006 if (!tn) 1007 goto notnode; 1008 1009 /* initialize routes out of node */ 1010 NODE_INIT_PARENT(tn, tp); 1011 put_child(tn, get_index(key, tn) ^ 1, n); 1012 1013 /* start adding routes into the node */ 1014 put_child_root(tp, key, tn); 1015 node_set_parent(n, tn); 1016 1017 /* parent now has a NULL spot where the leaf can go */ 1018 tp = tn; 1019 } 1020 1021 /* Case 3: n is NULL, and will just insert a new leaf */ 1022 node_push_suffix(tp, new->fa_slen); 1023 NODE_INIT_PARENT(l, tp); 1024 put_child_root(tp, key, l); 1025 trie_rebalance(t, tp); 1026 1027 return 0; 1028 notnode: 1029 node_free(l); 1030 noleaf: 1031 return -ENOMEM; 1032 } 1033 1034 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1035 struct key_vector *l, struct fib_alias *new, 1036 struct fib_alias *fa, t_key key) 1037 { 1038 if (!l) 1039 return fib_insert_node(t, tp, new, key); 1040 1041 if (fa) { 1042 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1043 } else { 1044 struct fib_alias *last; 1045 1046 hlist_for_each_entry(last, &l->leaf, fa_list) { 1047 if (new->fa_slen < last->fa_slen) 1048 break; 1049 if ((new->fa_slen == last->fa_slen) && 1050 (new->tb_id > last->tb_id)) 1051 break; 1052 fa = last; 1053 } 1054 1055 if (fa) 1056 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1057 else 1058 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1059 } 1060 1061 /* if we added to the tail node then we need to update slen */ 1062 if (l->slen < new->fa_slen) { 1063 l->slen = new->fa_slen; 1064 node_push_suffix(tp, new->fa_slen); 1065 } 1066 1067 return 0; 1068 } 1069 1070 /* Caller must hold RTNL. */ 1071 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1072 { 1073 struct trie *t = (struct trie *)tb->tb_data; 1074 struct fib_alias *fa, *new_fa; 1075 struct key_vector *l, *tp; 1076 unsigned int nlflags = 0; 1077 struct fib_info *fi; 1078 u8 plen = cfg->fc_dst_len; 1079 u8 slen = KEYLENGTH - plen; 1080 u8 tos = cfg->fc_tos; 1081 u32 key; 1082 int err; 1083 1084 if (plen > KEYLENGTH) 1085 return -EINVAL; 1086 1087 key = ntohl(cfg->fc_dst); 1088 1089 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1090 1091 if ((plen < KEYLENGTH) && (key << plen)) 1092 return -EINVAL; 1093 1094 fi = fib_create_info(cfg); 1095 if (IS_ERR(fi)) { 1096 err = PTR_ERR(fi); 1097 goto err; 1098 } 1099 1100 l = fib_find_node(t, &tp, key); 1101 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1102 tb->tb_id) : NULL; 1103 1104 /* Now fa, if non-NULL, points to the first fib alias 1105 * with the same keys [prefix,tos,priority], if such key already 1106 * exists or to the node before which we will insert new one. 1107 * 1108 * If fa is NULL, we will need to allocate a new one and 1109 * insert to the tail of the section matching the suffix length 1110 * of the new alias. 1111 */ 1112 1113 if (fa && fa->fa_tos == tos && 1114 fa->fa_info->fib_priority == fi->fib_priority) { 1115 struct fib_alias *fa_first, *fa_match; 1116 1117 err = -EEXIST; 1118 if (cfg->fc_nlflags & NLM_F_EXCL) 1119 goto out; 1120 1121 /* We have 2 goals: 1122 * 1. Find exact match for type, scope, fib_info to avoid 1123 * duplicate routes 1124 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1125 */ 1126 fa_match = NULL; 1127 fa_first = fa; 1128 hlist_for_each_entry_from(fa, fa_list) { 1129 if ((fa->fa_slen != slen) || 1130 (fa->tb_id != tb->tb_id) || 1131 (fa->fa_tos != tos)) 1132 break; 1133 if (fa->fa_info->fib_priority != fi->fib_priority) 1134 break; 1135 if (fa->fa_type == cfg->fc_type && 1136 fa->fa_info == fi) { 1137 fa_match = fa; 1138 break; 1139 } 1140 } 1141 1142 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1143 struct fib_info *fi_drop; 1144 u8 state; 1145 1146 fa = fa_first; 1147 if (fa_match) { 1148 if (fa == fa_match) 1149 err = 0; 1150 goto out; 1151 } 1152 err = -ENOBUFS; 1153 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1154 if (!new_fa) 1155 goto out; 1156 1157 fi_drop = fa->fa_info; 1158 new_fa->fa_tos = fa->fa_tos; 1159 new_fa->fa_info = fi; 1160 new_fa->fa_type = cfg->fc_type; 1161 state = fa->fa_state; 1162 new_fa->fa_state = state & ~FA_S_ACCESSED; 1163 new_fa->fa_slen = fa->fa_slen; 1164 new_fa->tb_id = tb->tb_id; 1165 new_fa->fa_default = -1; 1166 1167 err = switchdev_fib_ipv4_add(key, plen, fi, 1168 new_fa->fa_tos, 1169 cfg->fc_type, 1170 cfg->fc_nlflags, 1171 tb->tb_id); 1172 if (err) { 1173 switchdev_fib_ipv4_abort(fi); 1174 kmem_cache_free(fn_alias_kmem, new_fa); 1175 goto out; 1176 } 1177 1178 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1179 1180 alias_free_mem_rcu(fa); 1181 1182 fib_release_info(fi_drop); 1183 if (state & FA_S_ACCESSED) 1184 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1185 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1186 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1187 1188 goto succeeded; 1189 } 1190 /* Error if we find a perfect match which 1191 * uses the same scope, type, and nexthop 1192 * information. 1193 */ 1194 if (fa_match) 1195 goto out; 1196 1197 if (cfg->fc_nlflags & NLM_F_APPEND) 1198 nlflags = NLM_F_APPEND; 1199 else 1200 fa = fa_first; 1201 } 1202 err = -ENOENT; 1203 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1204 goto out; 1205 1206 err = -ENOBUFS; 1207 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1208 if (!new_fa) 1209 goto out; 1210 1211 new_fa->fa_info = fi; 1212 new_fa->fa_tos = tos; 1213 new_fa->fa_type = cfg->fc_type; 1214 new_fa->fa_state = 0; 1215 new_fa->fa_slen = slen; 1216 new_fa->tb_id = tb->tb_id; 1217 new_fa->fa_default = -1; 1218 1219 /* (Optionally) offload fib entry to switch hardware. */ 1220 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type, 1221 cfg->fc_nlflags, tb->tb_id); 1222 if (err) { 1223 switchdev_fib_ipv4_abort(fi); 1224 goto out_free_new_fa; 1225 } 1226 1227 /* Insert new entry to the list. */ 1228 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1229 if (err) 1230 goto out_sw_fib_del; 1231 1232 if (!plen) 1233 tb->tb_num_default++; 1234 1235 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1236 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1237 &cfg->fc_nlinfo, nlflags); 1238 succeeded: 1239 return 0; 1240 1241 out_sw_fib_del: 1242 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id); 1243 out_free_new_fa: 1244 kmem_cache_free(fn_alias_kmem, new_fa); 1245 out: 1246 fib_release_info(fi); 1247 err: 1248 return err; 1249 } 1250 1251 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1252 { 1253 t_key prefix = n->key; 1254 1255 return (key ^ prefix) & (prefix | -prefix); 1256 } 1257 1258 /* should be called with rcu_read_lock */ 1259 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1260 struct fib_result *res, int fib_flags) 1261 { 1262 struct trie *t = (struct trie *) tb->tb_data; 1263 #ifdef CONFIG_IP_FIB_TRIE_STATS 1264 struct trie_use_stats __percpu *stats = t->stats; 1265 #endif 1266 const t_key key = ntohl(flp->daddr); 1267 struct key_vector *n, *pn; 1268 struct fib_alias *fa; 1269 unsigned long index; 1270 t_key cindex; 1271 1272 trace_fib_table_lookup(tb->tb_id, flp); 1273 1274 pn = t->kv; 1275 cindex = 0; 1276 1277 n = get_child_rcu(pn, cindex); 1278 if (!n) 1279 return -EAGAIN; 1280 1281 #ifdef CONFIG_IP_FIB_TRIE_STATS 1282 this_cpu_inc(stats->gets); 1283 #endif 1284 1285 /* Step 1: Travel to the longest prefix match in the trie */ 1286 for (;;) { 1287 index = get_cindex(key, n); 1288 1289 /* This bit of code is a bit tricky but it combines multiple 1290 * checks into a single check. The prefix consists of the 1291 * prefix plus zeros for the "bits" in the prefix. The index 1292 * is the difference between the key and this value. From 1293 * this we can actually derive several pieces of data. 1294 * if (index >= (1ul << bits)) 1295 * we have a mismatch in skip bits and failed 1296 * else 1297 * we know the value is cindex 1298 * 1299 * This check is safe even if bits == KEYLENGTH due to the 1300 * fact that we can only allocate a node with 32 bits if a 1301 * long is greater than 32 bits. 1302 */ 1303 if (index >= (1ul << n->bits)) 1304 break; 1305 1306 /* we have found a leaf. Prefixes have already been compared */ 1307 if (IS_LEAF(n)) 1308 goto found; 1309 1310 /* only record pn and cindex if we are going to be chopping 1311 * bits later. Otherwise we are just wasting cycles. 1312 */ 1313 if (n->slen > n->pos) { 1314 pn = n; 1315 cindex = index; 1316 } 1317 1318 n = get_child_rcu(n, index); 1319 if (unlikely(!n)) 1320 goto backtrace; 1321 } 1322 1323 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1324 for (;;) { 1325 /* record the pointer where our next node pointer is stored */ 1326 struct key_vector __rcu **cptr = n->tnode; 1327 1328 /* This test verifies that none of the bits that differ 1329 * between the key and the prefix exist in the region of 1330 * the lsb and higher in the prefix. 1331 */ 1332 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1333 goto backtrace; 1334 1335 /* exit out and process leaf */ 1336 if (unlikely(IS_LEAF(n))) 1337 break; 1338 1339 /* Don't bother recording parent info. Since we are in 1340 * prefix match mode we will have to come back to wherever 1341 * we started this traversal anyway 1342 */ 1343 1344 while ((n = rcu_dereference(*cptr)) == NULL) { 1345 backtrace: 1346 #ifdef CONFIG_IP_FIB_TRIE_STATS 1347 if (!n) 1348 this_cpu_inc(stats->null_node_hit); 1349 #endif 1350 /* If we are at cindex 0 there are no more bits for 1351 * us to strip at this level so we must ascend back 1352 * up one level to see if there are any more bits to 1353 * be stripped there. 1354 */ 1355 while (!cindex) { 1356 t_key pkey = pn->key; 1357 1358 /* If we don't have a parent then there is 1359 * nothing for us to do as we do not have any 1360 * further nodes to parse. 1361 */ 1362 if (IS_TRIE(pn)) 1363 return -EAGAIN; 1364 #ifdef CONFIG_IP_FIB_TRIE_STATS 1365 this_cpu_inc(stats->backtrack); 1366 #endif 1367 /* Get Child's index */ 1368 pn = node_parent_rcu(pn); 1369 cindex = get_index(pkey, pn); 1370 } 1371 1372 /* strip the least significant bit from the cindex */ 1373 cindex &= cindex - 1; 1374 1375 /* grab pointer for next child node */ 1376 cptr = &pn->tnode[cindex]; 1377 } 1378 } 1379 1380 found: 1381 /* this line carries forward the xor from earlier in the function */ 1382 index = key ^ n->key; 1383 1384 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1385 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1386 struct fib_info *fi = fa->fa_info; 1387 int nhsel, err; 1388 1389 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1390 if (index >= (1ul << fa->fa_slen)) 1391 continue; 1392 } 1393 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1394 continue; 1395 if (fi->fib_dead) 1396 continue; 1397 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1398 continue; 1399 fib_alias_accessed(fa); 1400 err = fib_props[fa->fa_type].error; 1401 if (unlikely(err < 0)) { 1402 #ifdef CONFIG_IP_FIB_TRIE_STATS 1403 this_cpu_inc(stats->semantic_match_passed); 1404 #endif 1405 return err; 1406 } 1407 if (fi->fib_flags & RTNH_F_DEAD) 1408 continue; 1409 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1410 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1411 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1412 1413 if (nh->nh_flags & RTNH_F_DEAD) 1414 continue; 1415 if (in_dev && 1416 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1417 nh->nh_flags & RTNH_F_LINKDOWN && 1418 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1419 continue; 1420 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1421 if (flp->flowi4_oif && 1422 flp->flowi4_oif != nh->nh_oif) 1423 continue; 1424 } 1425 1426 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1427 atomic_inc(&fi->fib_clntref); 1428 1429 res->prefixlen = KEYLENGTH - fa->fa_slen; 1430 res->nh_sel = nhsel; 1431 res->type = fa->fa_type; 1432 res->scope = fi->fib_scope; 1433 res->fi = fi; 1434 res->table = tb; 1435 res->fa_head = &n->leaf; 1436 #ifdef CONFIG_IP_FIB_TRIE_STATS 1437 this_cpu_inc(stats->semantic_match_passed); 1438 #endif 1439 trace_fib_table_lookup_nh(nh); 1440 1441 return err; 1442 } 1443 } 1444 #ifdef CONFIG_IP_FIB_TRIE_STATS 1445 this_cpu_inc(stats->semantic_match_miss); 1446 #endif 1447 goto backtrace; 1448 } 1449 EXPORT_SYMBOL_GPL(fib_table_lookup); 1450 1451 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1452 struct key_vector *l, struct fib_alias *old) 1453 { 1454 /* record the location of the previous list_info entry */ 1455 struct hlist_node **pprev = old->fa_list.pprev; 1456 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1457 1458 /* remove the fib_alias from the list */ 1459 hlist_del_rcu(&old->fa_list); 1460 1461 /* if we emptied the list this leaf will be freed and we can sort 1462 * out parent suffix lengths as a part of trie_rebalance 1463 */ 1464 if (hlist_empty(&l->leaf)) { 1465 if (tp->slen == l->slen) 1466 node_pull_suffix(tp, tp->pos); 1467 put_child_root(tp, l->key, NULL); 1468 node_free(l); 1469 trie_rebalance(t, tp); 1470 return; 1471 } 1472 1473 /* only access fa if it is pointing at the last valid hlist_node */ 1474 if (*pprev) 1475 return; 1476 1477 /* update the trie with the latest suffix length */ 1478 l->slen = fa->fa_slen; 1479 node_pull_suffix(tp, fa->fa_slen); 1480 } 1481 1482 /* Caller must hold RTNL. */ 1483 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1484 { 1485 struct trie *t = (struct trie *) tb->tb_data; 1486 struct fib_alias *fa, *fa_to_delete; 1487 struct key_vector *l, *tp; 1488 u8 plen = cfg->fc_dst_len; 1489 u8 slen = KEYLENGTH - plen; 1490 u8 tos = cfg->fc_tos; 1491 u32 key; 1492 1493 if (plen > KEYLENGTH) 1494 return -EINVAL; 1495 1496 key = ntohl(cfg->fc_dst); 1497 1498 if ((plen < KEYLENGTH) && (key << plen)) 1499 return -EINVAL; 1500 1501 l = fib_find_node(t, &tp, key); 1502 if (!l) 1503 return -ESRCH; 1504 1505 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1506 if (!fa) 1507 return -ESRCH; 1508 1509 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1510 1511 fa_to_delete = NULL; 1512 hlist_for_each_entry_from(fa, fa_list) { 1513 struct fib_info *fi = fa->fa_info; 1514 1515 if ((fa->fa_slen != slen) || 1516 (fa->tb_id != tb->tb_id) || 1517 (fa->fa_tos != tos)) 1518 break; 1519 1520 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1521 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1522 fa->fa_info->fib_scope == cfg->fc_scope) && 1523 (!cfg->fc_prefsrc || 1524 fi->fib_prefsrc == cfg->fc_prefsrc) && 1525 (!cfg->fc_protocol || 1526 fi->fib_protocol == cfg->fc_protocol) && 1527 fib_nh_match(cfg, fi) == 0) { 1528 fa_to_delete = fa; 1529 break; 1530 } 1531 } 1532 1533 if (!fa_to_delete) 1534 return -ESRCH; 1535 1536 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos, 1537 cfg->fc_type, tb->tb_id); 1538 1539 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1540 &cfg->fc_nlinfo, 0); 1541 1542 if (!plen) 1543 tb->tb_num_default--; 1544 1545 fib_remove_alias(t, tp, l, fa_to_delete); 1546 1547 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1548 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1549 1550 fib_release_info(fa_to_delete->fa_info); 1551 alias_free_mem_rcu(fa_to_delete); 1552 return 0; 1553 } 1554 1555 /* Scan for the next leaf starting at the provided key value */ 1556 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1557 { 1558 struct key_vector *pn, *n = *tn; 1559 unsigned long cindex; 1560 1561 /* this loop is meant to try and find the key in the trie */ 1562 do { 1563 /* record parent and next child index */ 1564 pn = n; 1565 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1566 1567 if (cindex >> pn->bits) 1568 break; 1569 1570 /* descend into the next child */ 1571 n = get_child_rcu(pn, cindex++); 1572 if (!n) 1573 break; 1574 1575 /* guarantee forward progress on the keys */ 1576 if (IS_LEAF(n) && (n->key >= key)) 1577 goto found; 1578 } while (IS_TNODE(n)); 1579 1580 /* this loop will search for the next leaf with a greater key */ 1581 while (!IS_TRIE(pn)) { 1582 /* if we exhausted the parent node we will need to climb */ 1583 if (cindex >= (1ul << pn->bits)) { 1584 t_key pkey = pn->key; 1585 1586 pn = node_parent_rcu(pn); 1587 cindex = get_index(pkey, pn) + 1; 1588 continue; 1589 } 1590 1591 /* grab the next available node */ 1592 n = get_child_rcu(pn, cindex++); 1593 if (!n) 1594 continue; 1595 1596 /* no need to compare keys since we bumped the index */ 1597 if (IS_LEAF(n)) 1598 goto found; 1599 1600 /* Rescan start scanning in new node */ 1601 pn = n; 1602 cindex = 0; 1603 } 1604 1605 *tn = pn; 1606 return NULL; /* Root of trie */ 1607 found: 1608 /* if we are at the limit for keys just return NULL for the tnode */ 1609 *tn = pn; 1610 return n; 1611 } 1612 1613 static void fib_trie_free(struct fib_table *tb) 1614 { 1615 struct trie *t = (struct trie *)tb->tb_data; 1616 struct key_vector *pn = t->kv; 1617 unsigned long cindex = 1; 1618 struct hlist_node *tmp; 1619 struct fib_alias *fa; 1620 1621 /* walk trie in reverse order and free everything */ 1622 for (;;) { 1623 struct key_vector *n; 1624 1625 if (!(cindex--)) { 1626 t_key pkey = pn->key; 1627 1628 if (IS_TRIE(pn)) 1629 break; 1630 1631 n = pn; 1632 pn = node_parent(pn); 1633 1634 /* drop emptied tnode */ 1635 put_child_root(pn, n->key, NULL); 1636 node_free(n); 1637 1638 cindex = get_index(pkey, pn); 1639 1640 continue; 1641 } 1642 1643 /* grab the next available node */ 1644 n = get_child(pn, cindex); 1645 if (!n) 1646 continue; 1647 1648 if (IS_TNODE(n)) { 1649 /* record pn and cindex for leaf walking */ 1650 pn = n; 1651 cindex = 1ul << n->bits; 1652 1653 continue; 1654 } 1655 1656 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1657 hlist_del_rcu(&fa->fa_list); 1658 alias_free_mem_rcu(fa); 1659 } 1660 1661 put_child_root(pn, n->key, NULL); 1662 node_free(n); 1663 } 1664 1665 #ifdef CONFIG_IP_FIB_TRIE_STATS 1666 free_percpu(t->stats); 1667 #endif 1668 kfree(tb); 1669 } 1670 1671 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1672 { 1673 struct trie *ot = (struct trie *)oldtb->tb_data; 1674 struct key_vector *l, *tp = ot->kv; 1675 struct fib_table *local_tb; 1676 struct fib_alias *fa; 1677 struct trie *lt; 1678 t_key key = 0; 1679 1680 if (oldtb->tb_data == oldtb->__data) 1681 return oldtb; 1682 1683 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1684 if (!local_tb) 1685 return NULL; 1686 1687 lt = (struct trie *)local_tb->tb_data; 1688 1689 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1690 struct key_vector *local_l = NULL, *local_tp; 1691 1692 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1693 struct fib_alias *new_fa; 1694 1695 if (local_tb->tb_id != fa->tb_id) 1696 continue; 1697 1698 /* clone fa for new local table */ 1699 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1700 if (!new_fa) 1701 goto out; 1702 1703 memcpy(new_fa, fa, sizeof(*fa)); 1704 1705 /* insert clone into table */ 1706 if (!local_l) 1707 local_l = fib_find_node(lt, &local_tp, l->key); 1708 1709 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1710 NULL, l->key)) { 1711 kmem_cache_free(fn_alias_kmem, new_fa); 1712 goto out; 1713 } 1714 } 1715 1716 /* stop loop if key wrapped back to 0 */ 1717 key = l->key + 1; 1718 if (key < l->key) 1719 break; 1720 } 1721 1722 return local_tb; 1723 out: 1724 fib_trie_free(local_tb); 1725 1726 return NULL; 1727 } 1728 1729 /* Caller must hold RTNL */ 1730 void fib_table_flush_external(struct fib_table *tb) 1731 { 1732 struct trie *t = (struct trie *)tb->tb_data; 1733 struct key_vector *pn = t->kv; 1734 unsigned long cindex = 1; 1735 struct hlist_node *tmp; 1736 struct fib_alias *fa; 1737 1738 /* walk trie in reverse order */ 1739 for (;;) { 1740 unsigned char slen = 0; 1741 struct key_vector *n; 1742 1743 if (!(cindex--)) { 1744 t_key pkey = pn->key; 1745 1746 /* cannot resize the trie vector */ 1747 if (IS_TRIE(pn)) 1748 break; 1749 1750 /* update the suffix to address pulled leaves */ 1751 if (pn->slen > pn->pos) 1752 update_suffix(pn); 1753 1754 /* resize completed node */ 1755 pn = resize(t, pn); 1756 cindex = get_index(pkey, pn); 1757 1758 continue; 1759 } 1760 1761 /* grab the next available node */ 1762 n = get_child(pn, cindex); 1763 if (!n) 1764 continue; 1765 1766 if (IS_TNODE(n)) { 1767 /* record pn and cindex for leaf walking */ 1768 pn = n; 1769 cindex = 1ul << n->bits; 1770 1771 continue; 1772 } 1773 1774 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1775 struct fib_info *fi = fa->fa_info; 1776 1777 /* if alias was cloned to local then we just 1778 * need to remove the local copy from main 1779 */ 1780 if (tb->tb_id != fa->tb_id) { 1781 hlist_del_rcu(&fa->fa_list); 1782 alias_free_mem_rcu(fa); 1783 continue; 1784 } 1785 1786 /* record local slen */ 1787 slen = fa->fa_slen; 1788 1789 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD)) 1790 continue; 1791 1792 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, 1793 fi, fa->fa_tos, fa->fa_type, 1794 tb->tb_id); 1795 } 1796 1797 /* update leaf slen */ 1798 n->slen = slen; 1799 1800 if (hlist_empty(&n->leaf)) { 1801 put_child_root(pn, n->key, NULL); 1802 node_free(n); 1803 } 1804 } 1805 } 1806 1807 /* Caller must hold RTNL. */ 1808 int fib_table_flush(struct fib_table *tb) 1809 { 1810 struct trie *t = (struct trie *)tb->tb_data; 1811 struct key_vector *pn = t->kv; 1812 unsigned long cindex = 1; 1813 struct hlist_node *tmp; 1814 struct fib_alias *fa; 1815 int found = 0; 1816 1817 /* walk trie in reverse order */ 1818 for (;;) { 1819 unsigned char slen = 0; 1820 struct key_vector *n; 1821 1822 if (!(cindex--)) { 1823 t_key pkey = pn->key; 1824 1825 /* cannot resize the trie vector */ 1826 if (IS_TRIE(pn)) 1827 break; 1828 1829 /* update the suffix to address pulled leaves */ 1830 if (pn->slen > pn->pos) 1831 update_suffix(pn); 1832 1833 /* resize completed node */ 1834 pn = resize(t, pn); 1835 cindex = get_index(pkey, pn); 1836 1837 continue; 1838 } 1839 1840 /* grab the next available node */ 1841 n = get_child(pn, cindex); 1842 if (!n) 1843 continue; 1844 1845 if (IS_TNODE(n)) { 1846 /* record pn and cindex for leaf walking */ 1847 pn = n; 1848 cindex = 1ul << n->bits; 1849 1850 continue; 1851 } 1852 1853 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1854 struct fib_info *fi = fa->fa_info; 1855 1856 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { 1857 slen = fa->fa_slen; 1858 continue; 1859 } 1860 1861 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, 1862 fi, fa->fa_tos, fa->fa_type, 1863 tb->tb_id); 1864 hlist_del_rcu(&fa->fa_list); 1865 fib_release_info(fa->fa_info); 1866 alias_free_mem_rcu(fa); 1867 found++; 1868 } 1869 1870 /* update leaf slen */ 1871 n->slen = slen; 1872 1873 if (hlist_empty(&n->leaf)) { 1874 put_child_root(pn, n->key, NULL); 1875 node_free(n); 1876 } 1877 } 1878 1879 pr_debug("trie_flush found=%d\n", found); 1880 return found; 1881 } 1882 1883 static void __trie_free_rcu(struct rcu_head *head) 1884 { 1885 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1886 #ifdef CONFIG_IP_FIB_TRIE_STATS 1887 struct trie *t = (struct trie *)tb->tb_data; 1888 1889 if (tb->tb_data == tb->__data) 1890 free_percpu(t->stats); 1891 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1892 kfree(tb); 1893 } 1894 1895 void fib_free_table(struct fib_table *tb) 1896 { 1897 call_rcu(&tb->rcu, __trie_free_rcu); 1898 } 1899 1900 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1901 struct sk_buff *skb, struct netlink_callback *cb) 1902 { 1903 __be32 xkey = htonl(l->key); 1904 struct fib_alias *fa; 1905 int i, s_i; 1906 1907 s_i = cb->args[4]; 1908 i = 0; 1909 1910 /* rcu_read_lock is hold by caller */ 1911 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1912 if (i < s_i) { 1913 i++; 1914 continue; 1915 } 1916 1917 if (tb->tb_id != fa->tb_id) { 1918 i++; 1919 continue; 1920 } 1921 1922 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1923 cb->nlh->nlmsg_seq, 1924 RTM_NEWROUTE, 1925 tb->tb_id, 1926 fa->fa_type, 1927 xkey, 1928 KEYLENGTH - fa->fa_slen, 1929 fa->fa_tos, 1930 fa->fa_info, NLM_F_MULTI) < 0) { 1931 cb->args[4] = i; 1932 return -1; 1933 } 1934 i++; 1935 } 1936 1937 cb->args[4] = i; 1938 return skb->len; 1939 } 1940 1941 /* rcu_read_lock needs to be hold by caller from readside */ 1942 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1943 struct netlink_callback *cb) 1944 { 1945 struct trie *t = (struct trie *)tb->tb_data; 1946 struct key_vector *l, *tp = t->kv; 1947 /* Dump starting at last key. 1948 * Note: 0.0.0.0/0 (ie default) is first key. 1949 */ 1950 int count = cb->args[2]; 1951 t_key key = cb->args[3]; 1952 1953 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1954 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1955 cb->args[3] = key; 1956 cb->args[2] = count; 1957 return -1; 1958 } 1959 1960 ++count; 1961 key = l->key + 1; 1962 1963 memset(&cb->args[4], 0, 1964 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1965 1966 /* stop loop if key wrapped back to 0 */ 1967 if (key < l->key) 1968 break; 1969 } 1970 1971 cb->args[3] = key; 1972 cb->args[2] = count; 1973 1974 return skb->len; 1975 } 1976 1977 void __init fib_trie_init(void) 1978 { 1979 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1980 sizeof(struct fib_alias), 1981 0, SLAB_PANIC, NULL); 1982 1983 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1984 LEAF_SIZE, 1985 0, SLAB_PANIC, NULL); 1986 } 1987 1988 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 1989 { 1990 struct fib_table *tb; 1991 struct trie *t; 1992 size_t sz = sizeof(*tb); 1993 1994 if (!alias) 1995 sz += sizeof(struct trie); 1996 1997 tb = kzalloc(sz, GFP_KERNEL); 1998 if (!tb) 1999 return NULL; 2000 2001 tb->tb_id = id; 2002 tb->tb_num_default = 0; 2003 tb->tb_data = (alias ? alias->__data : tb->__data); 2004 2005 if (alias) 2006 return tb; 2007 2008 t = (struct trie *) tb->tb_data; 2009 t->kv[0].pos = KEYLENGTH; 2010 t->kv[0].slen = KEYLENGTH; 2011 #ifdef CONFIG_IP_FIB_TRIE_STATS 2012 t->stats = alloc_percpu(struct trie_use_stats); 2013 if (!t->stats) { 2014 kfree(tb); 2015 tb = NULL; 2016 } 2017 #endif 2018 2019 return tb; 2020 } 2021 2022 #ifdef CONFIG_PROC_FS 2023 /* Depth first Trie walk iterator */ 2024 struct fib_trie_iter { 2025 struct seq_net_private p; 2026 struct fib_table *tb; 2027 struct key_vector *tnode; 2028 unsigned int index; 2029 unsigned int depth; 2030 }; 2031 2032 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2033 { 2034 unsigned long cindex = iter->index; 2035 struct key_vector *pn = iter->tnode; 2036 t_key pkey; 2037 2038 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2039 iter->tnode, iter->index, iter->depth); 2040 2041 while (!IS_TRIE(pn)) { 2042 while (cindex < child_length(pn)) { 2043 struct key_vector *n = get_child_rcu(pn, cindex++); 2044 2045 if (!n) 2046 continue; 2047 2048 if (IS_LEAF(n)) { 2049 iter->tnode = pn; 2050 iter->index = cindex; 2051 } else { 2052 /* push down one level */ 2053 iter->tnode = n; 2054 iter->index = 0; 2055 ++iter->depth; 2056 } 2057 2058 return n; 2059 } 2060 2061 /* Current node exhausted, pop back up */ 2062 pkey = pn->key; 2063 pn = node_parent_rcu(pn); 2064 cindex = get_index(pkey, pn) + 1; 2065 --iter->depth; 2066 } 2067 2068 /* record root node so further searches know we are done */ 2069 iter->tnode = pn; 2070 iter->index = 0; 2071 2072 return NULL; 2073 } 2074 2075 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2076 struct trie *t) 2077 { 2078 struct key_vector *n, *pn; 2079 2080 if (!t) 2081 return NULL; 2082 2083 pn = t->kv; 2084 n = rcu_dereference(pn->tnode[0]); 2085 if (!n) 2086 return NULL; 2087 2088 if (IS_TNODE(n)) { 2089 iter->tnode = n; 2090 iter->index = 0; 2091 iter->depth = 1; 2092 } else { 2093 iter->tnode = pn; 2094 iter->index = 0; 2095 iter->depth = 0; 2096 } 2097 2098 return n; 2099 } 2100 2101 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2102 { 2103 struct key_vector *n; 2104 struct fib_trie_iter iter; 2105 2106 memset(s, 0, sizeof(*s)); 2107 2108 rcu_read_lock(); 2109 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2110 if (IS_LEAF(n)) { 2111 struct fib_alias *fa; 2112 2113 s->leaves++; 2114 s->totdepth += iter.depth; 2115 if (iter.depth > s->maxdepth) 2116 s->maxdepth = iter.depth; 2117 2118 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2119 ++s->prefixes; 2120 } else { 2121 s->tnodes++; 2122 if (n->bits < MAX_STAT_DEPTH) 2123 s->nodesizes[n->bits]++; 2124 s->nullpointers += tn_info(n)->empty_children; 2125 } 2126 } 2127 rcu_read_unlock(); 2128 } 2129 2130 /* 2131 * This outputs /proc/net/fib_triestats 2132 */ 2133 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2134 { 2135 unsigned int i, max, pointers, bytes, avdepth; 2136 2137 if (stat->leaves) 2138 avdepth = stat->totdepth*100 / stat->leaves; 2139 else 2140 avdepth = 0; 2141 2142 seq_printf(seq, "\tAver depth: %u.%02d\n", 2143 avdepth / 100, avdepth % 100); 2144 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2145 2146 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2147 bytes = LEAF_SIZE * stat->leaves; 2148 2149 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2150 bytes += sizeof(struct fib_alias) * stat->prefixes; 2151 2152 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2153 bytes += TNODE_SIZE(0) * stat->tnodes; 2154 2155 max = MAX_STAT_DEPTH; 2156 while (max > 0 && stat->nodesizes[max-1] == 0) 2157 max--; 2158 2159 pointers = 0; 2160 for (i = 1; i < max; i++) 2161 if (stat->nodesizes[i] != 0) { 2162 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2163 pointers += (1<<i) * stat->nodesizes[i]; 2164 } 2165 seq_putc(seq, '\n'); 2166 seq_printf(seq, "\tPointers: %u\n", pointers); 2167 2168 bytes += sizeof(struct key_vector *) * pointers; 2169 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2170 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2171 } 2172 2173 #ifdef CONFIG_IP_FIB_TRIE_STATS 2174 static void trie_show_usage(struct seq_file *seq, 2175 const struct trie_use_stats __percpu *stats) 2176 { 2177 struct trie_use_stats s = { 0 }; 2178 int cpu; 2179 2180 /* loop through all of the CPUs and gather up the stats */ 2181 for_each_possible_cpu(cpu) { 2182 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2183 2184 s.gets += pcpu->gets; 2185 s.backtrack += pcpu->backtrack; 2186 s.semantic_match_passed += pcpu->semantic_match_passed; 2187 s.semantic_match_miss += pcpu->semantic_match_miss; 2188 s.null_node_hit += pcpu->null_node_hit; 2189 s.resize_node_skipped += pcpu->resize_node_skipped; 2190 } 2191 2192 seq_printf(seq, "\nCounters:\n---------\n"); 2193 seq_printf(seq, "gets = %u\n", s.gets); 2194 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2195 seq_printf(seq, "semantic match passed = %u\n", 2196 s.semantic_match_passed); 2197 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2198 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2199 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2200 } 2201 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2202 2203 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2204 { 2205 if (tb->tb_id == RT_TABLE_LOCAL) 2206 seq_puts(seq, "Local:\n"); 2207 else if (tb->tb_id == RT_TABLE_MAIN) 2208 seq_puts(seq, "Main:\n"); 2209 else 2210 seq_printf(seq, "Id %d:\n", tb->tb_id); 2211 } 2212 2213 2214 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2215 { 2216 struct net *net = (struct net *)seq->private; 2217 unsigned int h; 2218 2219 seq_printf(seq, 2220 "Basic info: size of leaf:" 2221 " %Zd bytes, size of tnode: %Zd bytes.\n", 2222 LEAF_SIZE, TNODE_SIZE(0)); 2223 2224 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2225 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2226 struct fib_table *tb; 2227 2228 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2229 struct trie *t = (struct trie *) tb->tb_data; 2230 struct trie_stat stat; 2231 2232 if (!t) 2233 continue; 2234 2235 fib_table_print(seq, tb); 2236 2237 trie_collect_stats(t, &stat); 2238 trie_show_stats(seq, &stat); 2239 #ifdef CONFIG_IP_FIB_TRIE_STATS 2240 trie_show_usage(seq, t->stats); 2241 #endif 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2249 { 2250 return single_open_net(inode, file, fib_triestat_seq_show); 2251 } 2252 2253 static const struct file_operations fib_triestat_fops = { 2254 .owner = THIS_MODULE, 2255 .open = fib_triestat_seq_open, 2256 .read = seq_read, 2257 .llseek = seq_lseek, 2258 .release = single_release_net, 2259 }; 2260 2261 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2262 { 2263 struct fib_trie_iter *iter = seq->private; 2264 struct net *net = seq_file_net(seq); 2265 loff_t idx = 0; 2266 unsigned int h; 2267 2268 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2269 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2270 struct fib_table *tb; 2271 2272 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2273 struct key_vector *n; 2274 2275 for (n = fib_trie_get_first(iter, 2276 (struct trie *) tb->tb_data); 2277 n; n = fib_trie_get_next(iter)) 2278 if (pos == idx++) { 2279 iter->tb = tb; 2280 return n; 2281 } 2282 } 2283 } 2284 2285 return NULL; 2286 } 2287 2288 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2289 __acquires(RCU) 2290 { 2291 rcu_read_lock(); 2292 return fib_trie_get_idx(seq, *pos); 2293 } 2294 2295 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2296 { 2297 struct fib_trie_iter *iter = seq->private; 2298 struct net *net = seq_file_net(seq); 2299 struct fib_table *tb = iter->tb; 2300 struct hlist_node *tb_node; 2301 unsigned int h; 2302 struct key_vector *n; 2303 2304 ++*pos; 2305 /* next node in same table */ 2306 n = fib_trie_get_next(iter); 2307 if (n) 2308 return n; 2309 2310 /* walk rest of this hash chain */ 2311 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2312 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2313 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2314 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2315 if (n) 2316 goto found; 2317 } 2318 2319 /* new hash chain */ 2320 while (++h < FIB_TABLE_HASHSZ) { 2321 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2322 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2323 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2324 if (n) 2325 goto found; 2326 } 2327 } 2328 return NULL; 2329 2330 found: 2331 iter->tb = tb; 2332 return n; 2333 } 2334 2335 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2336 __releases(RCU) 2337 { 2338 rcu_read_unlock(); 2339 } 2340 2341 static void seq_indent(struct seq_file *seq, int n) 2342 { 2343 while (n-- > 0) 2344 seq_puts(seq, " "); 2345 } 2346 2347 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2348 { 2349 switch (s) { 2350 case RT_SCOPE_UNIVERSE: return "universe"; 2351 case RT_SCOPE_SITE: return "site"; 2352 case RT_SCOPE_LINK: return "link"; 2353 case RT_SCOPE_HOST: return "host"; 2354 case RT_SCOPE_NOWHERE: return "nowhere"; 2355 default: 2356 snprintf(buf, len, "scope=%d", s); 2357 return buf; 2358 } 2359 } 2360 2361 static const char *const rtn_type_names[__RTN_MAX] = { 2362 [RTN_UNSPEC] = "UNSPEC", 2363 [RTN_UNICAST] = "UNICAST", 2364 [RTN_LOCAL] = "LOCAL", 2365 [RTN_BROADCAST] = "BROADCAST", 2366 [RTN_ANYCAST] = "ANYCAST", 2367 [RTN_MULTICAST] = "MULTICAST", 2368 [RTN_BLACKHOLE] = "BLACKHOLE", 2369 [RTN_UNREACHABLE] = "UNREACHABLE", 2370 [RTN_PROHIBIT] = "PROHIBIT", 2371 [RTN_THROW] = "THROW", 2372 [RTN_NAT] = "NAT", 2373 [RTN_XRESOLVE] = "XRESOLVE", 2374 }; 2375 2376 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2377 { 2378 if (t < __RTN_MAX && rtn_type_names[t]) 2379 return rtn_type_names[t]; 2380 snprintf(buf, len, "type %u", t); 2381 return buf; 2382 } 2383 2384 /* Pretty print the trie */ 2385 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2386 { 2387 const struct fib_trie_iter *iter = seq->private; 2388 struct key_vector *n = v; 2389 2390 if (IS_TRIE(node_parent_rcu(n))) 2391 fib_table_print(seq, iter->tb); 2392 2393 if (IS_TNODE(n)) { 2394 __be32 prf = htonl(n->key); 2395 2396 seq_indent(seq, iter->depth-1); 2397 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2398 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2399 tn_info(n)->full_children, 2400 tn_info(n)->empty_children); 2401 } else { 2402 __be32 val = htonl(n->key); 2403 struct fib_alias *fa; 2404 2405 seq_indent(seq, iter->depth); 2406 seq_printf(seq, " |-- %pI4\n", &val); 2407 2408 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2409 char buf1[32], buf2[32]; 2410 2411 seq_indent(seq, iter->depth + 1); 2412 seq_printf(seq, " /%zu %s %s", 2413 KEYLENGTH - fa->fa_slen, 2414 rtn_scope(buf1, sizeof(buf1), 2415 fa->fa_info->fib_scope), 2416 rtn_type(buf2, sizeof(buf2), 2417 fa->fa_type)); 2418 if (fa->fa_tos) 2419 seq_printf(seq, " tos=%d", fa->fa_tos); 2420 seq_putc(seq, '\n'); 2421 } 2422 } 2423 2424 return 0; 2425 } 2426 2427 static const struct seq_operations fib_trie_seq_ops = { 2428 .start = fib_trie_seq_start, 2429 .next = fib_trie_seq_next, 2430 .stop = fib_trie_seq_stop, 2431 .show = fib_trie_seq_show, 2432 }; 2433 2434 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2435 { 2436 return seq_open_net(inode, file, &fib_trie_seq_ops, 2437 sizeof(struct fib_trie_iter)); 2438 } 2439 2440 static const struct file_operations fib_trie_fops = { 2441 .owner = THIS_MODULE, 2442 .open = fib_trie_seq_open, 2443 .read = seq_read, 2444 .llseek = seq_lseek, 2445 .release = seq_release_net, 2446 }; 2447 2448 struct fib_route_iter { 2449 struct seq_net_private p; 2450 struct fib_table *main_tb; 2451 struct key_vector *tnode; 2452 loff_t pos; 2453 t_key key; 2454 }; 2455 2456 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2457 loff_t pos) 2458 { 2459 struct key_vector *l, **tp = &iter->tnode; 2460 t_key key; 2461 2462 /* use cached location of previously found key */ 2463 if (iter->pos > 0 && pos >= iter->pos) { 2464 key = iter->key; 2465 } else { 2466 iter->pos = 1; 2467 key = 0; 2468 } 2469 2470 pos -= iter->pos; 2471 2472 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2473 key = l->key + 1; 2474 iter->pos++; 2475 l = NULL; 2476 2477 /* handle unlikely case of a key wrap */ 2478 if (!key) 2479 break; 2480 } 2481 2482 if (l) 2483 iter->key = l->key; /* remember it */ 2484 else 2485 iter->pos = 0; /* forget it */ 2486 2487 return l; 2488 } 2489 2490 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2491 __acquires(RCU) 2492 { 2493 struct fib_route_iter *iter = seq->private; 2494 struct fib_table *tb; 2495 struct trie *t; 2496 2497 rcu_read_lock(); 2498 2499 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2500 if (!tb) 2501 return NULL; 2502 2503 iter->main_tb = tb; 2504 t = (struct trie *)tb->tb_data; 2505 iter->tnode = t->kv; 2506 2507 if (*pos != 0) 2508 return fib_route_get_idx(iter, *pos); 2509 2510 iter->pos = 0; 2511 iter->key = KEY_MAX; 2512 2513 return SEQ_START_TOKEN; 2514 } 2515 2516 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2517 { 2518 struct fib_route_iter *iter = seq->private; 2519 struct key_vector *l = NULL; 2520 t_key key = iter->key + 1; 2521 2522 ++*pos; 2523 2524 /* only allow key of 0 for start of sequence */ 2525 if ((v == SEQ_START_TOKEN) || key) 2526 l = leaf_walk_rcu(&iter->tnode, key); 2527 2528 if (l) { 2529 iter->key = l->key; 2530 iter->pos++; 2531 } else { 2532 iter->pos = 0; 2533 } 2534 2535 return l; 2536 } 2537 2538 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2539 __releases(RCU) 2540 { 2541 rcu_read_unlock(); 2542 } 2543 2544 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2545 { 2546 unsigned int flags = 0; 2547 2548 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2549 flags = RTF_REJECT; 2550 if (fi && fi->fib_nh->nh_gw) 2551 flags |= RTF_GATEWAY; 2552 if (mask == htonl(0xFFFFFFFF)) 2553 flags |= RTF_HOST; 2554 flags |= RTF_UP; 2555 return flags; 2556 } 2557 2558 /* 2559 * This outputs /proc/net/route. 2560 * The format of the file is not supposed to be changed 2561 * and needs to be same as fib_hash output to avoid breaking 2562 * legacy utilities 2563 */ 2564 static int fib_route_seq_show(struct seq_file *seq, void *v) 2565 { 2566 struct fib_route_iter *iter = seq->private; 2567 struct fib_table *tb = iter->main_tb; 2568 struct fib_alias *fa; 2569 struct key_vector *l = v; 2570 __be32 prefix; 2571 2572 if (v == SEQ_START_TOKEN) { 2573 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2574 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2575 "\tWindow\tIRTT"); 2576 return 0; 2577 } 2578 2579 prefix = htonl(l->key); 2580 2581 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2582 const struct fib_info *fi = fa->fa_info; 2583 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2584 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2585 2586 if ((fa->fa_type == RTN_BROADCAST) || 2587 (fa->fa_type == RTN_MULTICAST)) 2588 continue; 2589 2590 if (fa->tb_id != tb->tb_id) 2591 continue; 2592 2593 seq_setwidth(seq, 127); 2594 2595 if (fi) 2596 seq_printf(seq, 2597 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2598 "%d\t%08X\t%d\t%u\t%u", 2599 fi->fib_dev ? fi->fib_dev->name : "*", 2600 prefix, 2601 fi->fib_nh->nh_gw, flags, 0, 0, 2602 fi->fib_priority, 2603 mask, 2604 (fi->fib_advmss ? 2605 fi->fib_advmss + 40 : 0), 2606 fi->fib_window, 2607 fi->fib_rtt >> 3); 2608 else 2609 seq_printf(seq, 2610 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2611 "%d\t%08X\t%d\t%u\t%u", 2612 prefix, 0, flags, 0, 0, 0, 2613 mask, 0, 0, 0); 2614 2615 seq_pad(seq, '\n'); 2616 } 2617 2618 return 0; 2619 } 2620 2621 static const struct seq_operations fib_route_seq_ops = { 2622 .start = fib_route_seq_start, 2623 .next = fib_route_seq_next, 2624 .stop = fib_route_seq_stop, 2625 .show = fib_route_seq_show, 2626 }; 2627 2628 static int fib_route_seq_open(struct inode *inode, struct file *file) 2629 { 2630 return seq_open_net(inode, file, &fib_route_seq_ops, 2631 sizeof(struct fib_route_iter)); 2632 } 2633 2634 static const struct file_operations fib_route_fops = { 2635 .owner = THIS_MODULE, 2636 .open = fib_route_seq_open, 2637 .read = seq_read, 2638 .llseek = seq_lseek, 2639 .release = seq_release_net, 2640 }; 2641 2642 int __net_init fib_proc_init(struct net *net) 2643 { 2644 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2645 goto out1; 2646 2647 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2648 &fib_triestat_fops)) 2649 goto out2; 2650 2651 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2652 goto out3; 2653 2654 return 0; 2655 2656 out3: 2657 remove_proc_entry("fib_triestat", net->proc_net); 2658 out2: 2659 remove_proc_entry("fib_trie", net->proc_net); 2660 out1: 2661 return -ENOMEM; 2662 } 2663 2664 void __net_exit fib_proc_exit(struct net *net) 2665 { 2666 remove_proc_entry("fib_trie", net->proc_net); 2667 remove_proc_entry("fib_triestat", net->proc_net); 2668 remove_proc_entry("route", net->proc_net); 2669 } 2670 2671 #endif /* CONFIG_PROC_FS */ 2672
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.