1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 84 #include <crypto/hash.h> 85 #include <linux/scatterlist.h> 86 87 int sysctl_tcp_tw_reuse __read_mostly; 88 int sysctl_tcp_low_latency __read_mostly; 89 EXPORT_SYMBOL(sysctl_tcp_low_latency); 90 91 #ifdef CONFIG_TCP_MD5SIG 92 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 93 __be32 daddr, __be32 saddr, const struct tcphdr *th); 94 #endif 95 96 struct inet_hashinfo tcp_hashinfo; 97 EXPORT_SYMBOL(tcp_hashinfo); 98 99 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 100 { 101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 102 ip_hdr(skb)->saddr, 103 tcp_hdr(skb)->dest, 104 tcp_hdr(skb)->source); 105 } 106 107 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 108 { 109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 110 struct tcp_sock *tp = tcp_sk(sk); 111 112 /* With PAWS, it is safe from the viewpoint 113 of data integrity. Even without PAWS it is safe provided sequence 114 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 115 116 Actually, the idea is close to VJ's one, only timestamp cache is 117 held not per host, but per port pair and TW bucket is used as state 118 holder. 119 120 If TW bucket has been already destroyed we fall back to VJ's scheme 121 and use initial timestamp retrieved from peer table. 122 */ 123 if (tcptw->tw_ts_recent_stamp && 124 (!twp || (sysctl_tcp_tw_reuse && 125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 127 if (tp->write_seq == 0) 128 tp->write_seq = 1; 129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 131 sock_hold(sktw); 132 return 1; 133 } 134 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 138 139 /* This will initiate an outgoing connection. */ 140 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 141 { 142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 143 struct inet_sock *inet = inet_sk(sk); 144 struct tcp_sock *tp = tcp_sk(sk); 145 __be16 orig_sport, orig_dport; 146 __be32 daddr, nexthop; 147 struct flowi4 *fl4; 148 struct rtable *rt; 149 int err; 150 struct ip_options_rcu *inet_opt; 151 152 if (addr_len < sizeof(struct sockaddr_in)) 153 return -EINVAL; 154 155 if (usin->sin_family != AF_INET) 156 return -EAFNOSUPPORT; 157 158 nexthop = daddr = usin->sin_addr.s_addr; 159 inet_opt = rcu_dereference_protected(inet->inet_opt, 160 lockdep_sock_is_held(sk)); 161 if (inet_opt && inet_opt->opt.srr) { 162 if (!daddr) 163 return -EINVAL; 164 nexthop = inet_opt->opt.faddr; 165 } 166 167 orig_sport = inet->inet_sport; 168 orig_dport = usin->sin_port; 169 fl4 = &inet->cork.fl.u.ip4; 170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 172 IPPROTO_TCP, 173 orig_sport, orig_dport, sk); 174 if (IS_ERR(rt)) { 175 err = PTR_ERR(rt); 176 if (err == -ENETUNREACH) 177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 178 return err; 179 } 180 181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 182 ip_rt_put(rt); 183 return -ENETUNREACH; 184 } 185 186 if (!inet_opt || !inet_opt->opt.srr) 187 daddr = fl4->daddr; 188 189 if (!inet->inet_saddr) 190 inet->inet_saddr = fl4->saddr; 191 sk_rcv_saddr_set(sk, inet->inet_saddr); 192 193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 194 /* Reset inherited state */ 195 tp->rx_opt.ts_recent = 0; 196 tp->rx_opt.ts_recent_stamp = 0; 197 if (likely(!tp->repair)) 198 tp->write_seq = 0; 199 } 200 201 if (tcp_death_row.sysctl_tw_recycle && 202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 203 tcp_fetch_timewait_stamp(sk, &rt->dst); 204 205 inet->inet_dport = usin->sin_port; 206 sk_daddr_set(sk, daddr); 207 208 inet_csk(sk)->icsk_ext_hdr_len = 0; 209 if (inet_opt) 210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 211 212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 213 214 /* Socket identity is still unknown (sport may be zero). 215 * However we set state to SYN-SENT and not releasing socket 216 * lock select source port, enter ourselves into the hash tables and 217 * complete initialization after this. 218 */ 219 tcp_set_state(sk, TCP_SYN_SENT); 220 err = inet_hash_connect(&tcp_death_row, sk); 221 if (err) 222 goto failure; 223 224 sk_set_txhash(sk); 225 226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 227 inet->inet_sport, inet->inet_dport, sk); 228 if (IS_ERR(rt)) { 229 err = PTR_ERR(rt); 230 rt = NULL; 231 goto failure; 232 } 233 /* OK, now commit destination to socket. */ 234 sk->sk_gso_type = SKB_GSO_TCPV4; 235 sk_setup_caps(sk, &rt->dst); 236 237 if (!tp->write_seq && likely(!tp->repair)) 238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 239 inet->inet_daddr, 240 inet->inet_sport, 241 usin->sin_port); 242 243 inet->inet_id = tp->write_seq ^ jiffies; 244 245 err = tcp_connect(sk); 246 247 rt = NULL; 248 if (err) 249 goto failure; 250 251 return 0; 252 253 failure: 254 /* 255 * This unhashes the socket and releases the local port, 256 * if necessary. 257 */ 258 tcp_set_state(sk, TCP_CLOSE); 259 ip_rt_put(rt); 260 sk->sk_route_caps = 0; 261 inet->inet_dport = 0; 262 return err; 263 } 264 EXPORT_SYMBOL(tcp_v4_connect); 265 266 /* 267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 268 * It can be called through tcp_release_cb() if socket was owned by user 269 * at the time tcp_v4_err() was called to handle ICMP message. 270 */ 271 void tcp_v4_mtu_reduced(struct sock *sk) 272 { 273 struct dst_entry *dst; 274 struct inet_sock *inet = inet_sk(sk); 275 u32 mtu = tcp_sk(sk)->mtu_info; 276 277 dst = inet_csk_update_pmtu(sk, mtu); 278 if (!dst) 279 return; 280 281 /* Something is about to be wrong... Remember soft error 282 * for the case, if this connection will not able to recover. 283 */ 284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 285 sk->sk_err_soft = EMSGSIZE; 286 287 mtu = dst_mtu(dst); 288 289 if (inet->pmtudisc != IP_PMTUDISC_DONT && 290 ip_sk_accept_pmtu(sk) && 291 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 292 tcp_sync_mss(sk, mtu); 293 294 /* Resend the TCP packet because it's 295 * clear that the old packet has been 296 * dropped. This is the new "fast" path mtu 297 * discovery. 298 */ 299 tcp_simple_retransmit(sk); 300 } /* else let the usual retransmit timer handle it */ 301 } 302 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 303 304 static void do_redirect(struct sk_buff *skb, struct sock *sk) 305 { 306 struct dst_entry *dst = __sk_dst_check(sk, 0); 307 308 if (dst) 309 dst->ops->redirect(dst, sk, skb); 310 } 311 312 313 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 314 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 315 { 316 struct request_sock *req = inet_reqsk(sk); 317 struct net *net = sock_net(sk); 318 319 /* ICMPs are not backlogged, hence we cannot get 320 * an established socket here. 321 */ 322 if (seq != tcp_rsk(req)->snt_isn) { 323 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 324 } else if (abort) { 325 /* 326 * Still in SYN_RECV, just remove it silently. 327 * There is no good way to pass the error to the newly 328 * created socket, and POSIX does not want network 329 * errors returned from accept(). 330 */ 331 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 332 tcp_listendrop(req->rsk_listener); 333 } 334 reqsk_put(req); 335 } 336 EXPORT_SYMBOL(tcp_req_err); 337 338 /* 339 * This routine is called by the ICMP module when it gets some 340 * sort of error condition. If err < 0 then the socket should 341 * be closed and the error returned to the user. If err > 0 342 * it's just the icmp type << 8 | icmp code. After adjustment 343 * header points to the first 8 bytes of the tcp header. We need 344 * to find the appropriate port. 345 * 346 * The locking strategy used here is very "optimistic". When 347 * someone else accesses the socket the ICMP is just dropped 348 * and for some paths there is no check at all. 349 * A more general error queue to queue errors for later handling 350 * is probably better. 351 * 352 */ 353 354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 355 { 356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 358 struct inet_connection_sock *icsk; 359 struct tcp_sock *tp; 360 struct inet_sock *inet; 361 const int type = icmp_hdr(icmp_skb)->type; 362 const int code = icmp_hdr(icmp_skb)->code; 363 struct sock *sk; 364 struct sk_buff *skb; 365 struct request_sock *fastopen; 366 __u32 seq, snd_una; 367 __u32 remaining; 368 int err; 369 struct net *net = dev_net(icmp_skb->dev); 370 371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 372 th->dest, iph->saddr, ntohs(th->source), 373 inet_iif(icmp_skb)); 374 if (!sk) { 375 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 376 return; 377 } 378 if (sk->sk_state == TCP_TIME_WAIT) { 379 inet_twsk_put(inet_twsk(sk)); 380 return; 381 } 382 seq = ntohl(th->seq); 383 if (sk->sk_state == TCP_NEW_SYN_RECV) 384 return tcp_req_err(sk, seq, 385 type == ICMP_PARAMETERPROB || 386 type == ICMP_TIME_EXCEEDED || 387 (type == ICMP_DEST_UNREACH && 388 (code == ICMP_NET_UNREACH || 389 code == ICMP_HOST_UNREACH))); 390 391 bh_lock_sock(sk); 392 /* If too many ICMPs get dropped on busy 393 * servers this needs to be solved differently. 394 * We do take care of PMTU discovery (RFC1191) special case : 395 * we can receive locally generated ICMP messages while socket is held. 396 */ 397 if (sock_owned_by_user(sk)) { 398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 399 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 400 } 401 if (sk->sk_state == TCP_CLOSE) 402 goto out; 403 404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 405 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 406 goto out; 407 } 408 409 icsk = inet_csk(sk); 410 tp = tcp_sk(sk); 411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 412 fastopen = tp->fastopen_rsk; 413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 414 if (sk->sk_state != TCP_LISTEN && 415 !between(seq, snd_una, tp->snd_nxt)) { 416 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 417 goto out; 418 } 419 420 switch (type) { 421 case ICMP_REDIRECT: 422 do_redirect(icmp_skb, sk); 423 goto out; 424 case ICMP_SOURCE_QUENCH: 425 /* Just silently ignore these. */ 426 goto out; 427 case ICMP_PARAMETERPROB: 428 err = EPROTO; 429 break; 430 case ICMP_DEST_UNREACH: 431 if (code > NR_ICMP_UNREACH) 432 goto out; 433 434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 435 /* We are not interested in TCP_LISTEN and open_requests 436 * (SYN-ACKs send out by Linux are always <576bytes so 437 * they should go through unfragmented). 438 */ 439 if (sk->sk_state == TCP_LISTEN) 440 goto out; 441 442 tp->mtu_info = info; 443 if (!sock_owned_by_user(sk)) { 444 tcp_v4_mtu_reduced(sk); 445 } else { 446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 447 sock_hold(sk); 448 } 449 goto out; 450 } 451 452 err = icmp_err_convert[code].errno; 453 /* check if icmp_skb allows revert of backoff 454 * (see draft-zimmermann-tcp-lcd) */ 455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 456 break; 457 if (seq != tp->snd_una || !icsk->icsk_retransmits || 458 !icsk->icsk_backoff || fastopen) 459 break; 460 461 if (sock_owned_by_user(sk)) 462 break; 463 464 icsk->icsk_backoff--; 465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 466 TCP_TIMEOUT_INIT; 467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 468 469 skb = tcp_write_queue_head(sk); 470 BUG_ON(!skb); 471 472 remaining = icsk->icsk_rto - 473 min(icsk->icsk_rto, 474 tcp_time_stamp - tcp_skb_timestamp(skb)); 475 476 if (remaining) { 477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 478 remaining, TCP_RTO_MAX); 479 } else { 480 /* RTO revert clocked out retransmission. 481 * Will retransmit now */ 482 tcp_retransmit_timer(sk); 483 } 484 485 break; 486 case ICMP_TIME_EXCEEDED: 487 err = EHOSTUNREACH; 488 break; 489 default: 490 goto out; 491 } 492 493 switch (sk->sk_state) { 494 case TCP_SYN_SENT: 495 case TCP_SYN_RECV: 496 /* Only in fast or simultaneous open. If a fast open socket is 497 * is already accepted it is treated as a connected one below. 498 */ 499 if (fastopen && !fastopen->sk) 500 break; 501 502 if (!sock_owned_by_user(sk)) { 503 sk->sk_err = err; 504 505 sk->sk_error_report(sk); 506 507 tcp_done(sk); 508 } else { 509 sk->sk_err_soft = err; 510 } 511 goto out; 512 } 513 514 /* If we've already connected we will keep trying 515 * until we time out, or the user gives up. 516 * 517 * rfc1122 4.2.3.9 allows to consider as hard errors 518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 519 * but it is obsoleted by pmtu discovery). 520 * 521 * Note, that in modern internet, where routing is unreliable 522 * and in each dark corner broken firewalls sit, sending random 523 * errors ordered by their masters even this two messages finally lose 524 * their original sense (even Linux sends invalid PORT_UNREACHs) 525 * 526 * Now we are in compliance with RFCs. 527 * --ANK (980905) 528 */ 529 530 inet = inet_sk(sk); 531 if (!sock_owned_by_user(sk) && inet->recverr) { 532 sk->sk_err = err; 533 sk->sk_error_report(sk); 534 } else { /* Only an error on timeout */ 535 sk->sk_err_soft = err; 536 } 537 538 out: 539 bh_unlock_sock(sk); 540 sock_put(sk); 541 } 542 543 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 544 { 545 struct tcphdr *th = tcp_hdr(skb); 546 547 if (skb->ip_summed == CHECKSUM_PARTIAL) { 548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 549 skb->csum_start = skb_transport_header(skb) - skb->head; 550 skb->csum_offset = offsetof(struct tcphdr, check); 551 } else { 552 th->check = tcp_v4_check(skb->len, saddr, daddr, 553 csum_partial(th, 554 th->doff << 2, 555 skb->csum)); 556 } 557 } 558 559 /* This routine computes an IPv4 TCP checksum. */ 560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 561 { 562 const struct inet_sock *inet = inet_sk(sk); 563 564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 565 } 566 EXPORT_SYMBOL(tcp_v4_send_check); 567 568 /* 569 * This routine will send an RST to the other tcp. 570 * 571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 572 * for reset. 573 * Answer: if a packet caused RST, it is not for a socket 574 * existing in our system, if it is matched to a socket, 575 * it is just duplicate segment or bug in other side's TCP. 576 * So that we build reply only basing on parameters 577 * arrived with segment. 578 * Exception: precedence violation. We do not implement it in any case. 579 */ 580 581 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 582 { 583 const struct tcphdr *th = tcp_hdr(skb); 584 struct { 585 struct tcphdr th; 586 #ifdef CONFIG_TCP_MD5SIG 587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 588 #endif 589 } rep; 590 struct ip_reply_arg arg; 591 #ifdef CONFIG_TCP_MD5SIG 592 struct tcp_md5sig_key *key = NULL; 593 const __u8 *hash_location = NULL; 594 unsigned char newhash[16]; 595 int genhash; 596 struct sock *sk1 = NULL; 597 #endif 598 struct net *net; 599 600 /* Never send a reset in response to a reset. */ 601 if (th->rst) 602 return; 603 604 /* If sk not NULL, it means we did a successful lookup and incoming 605 * route had to be correct. prequeue might have dropped our dst. 606 */ 607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 608 return; 609 610 /* Swap the send and the receive. */ 611 memset(&rep, 0, sizeof(rep)); 612 rep.th.dest = th->source; 613 rep.th.source = th->dest; 614 rep.th.doff = sizeof(struct tcphdr) / 4; 615 rep.th.rst = 1; 616 617 if (th->ack) { 618 rep.th.seq = th->ack_seq; 619 } else { 620 rep.th.ack = 1; 621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 622 skb->len - (th->doff << 2)); 623 } 624 625 memset(&arg, 0, sizeof(arg)); 626 arg.iov[0].iov_base = (unsigned char *)&rep; 627 arg.iov[0].iov_len = sizeof(rep.th); 628 629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 630 #ifdef CONFIG_TCP_MD5SIG 631 rcu_read_lock(); 632 hash_location = tcp_parse_md5sig_option(th); 633 if (sk && sk_fullsock(sk)) { 634 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 635 &ip_hdr(skb)->saddr, AF_INET); 636 } else if (hash_location) { 637 /* 638 * active side is lost. Try to find listening socket through 639 * source port, and then find md5 key through listening socket. 640 * we are not loose security here: 641 * Incoming packet is checked with md5 hash with finding key, 642 * no RST generated if md5 hash doesn't match. 643 */ 644 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 645 ip_hdr(skb)->saddr, 646 th->source, ip_hdr(skb)->daddr, 647 ntohs(th->source), inet_iif(skb)); 648 /* don't send rst if it can't find key */ 649 if (!sk1) 650 goto out; 651 652 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 653 &ip_hdr(skb)->saddr, AF_INET); 654 if (!key) 655 goto out; 656 657 658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 659 if (genhash || memcmp(hash_location, newhash, 16) != 0) 660 goto out; 661 662 } 663 664 if (key) { 665 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 666 (TCPOPT_NOP << 16) | 667 (TCPOPT_MD5SIG << 8) | 668 TCPOLEN_MD5SIG); 669 /* Update length and the length the header thinks exists */ 670 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 671 rep.th.doff = arg.iov[0].iov_len / 4; 672 673 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 674 key, ip_hdr(skb)->saddr, 675 ip_hdr(skb)->daddr, &rep.th); 676 } 677 #endif 678 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 679 ip_hdr(skb)->saddr, /* XXX */ 680 arg.iov[0].iov_len, IPPROTO_TCP, 0); 681 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 682 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 683 684 /* When socket is gone, all binding information is lost. 685 * routing might fail in this case. No choice here, if we choose to force 686 * input interface, we will misroute in case of asymmetric route. 687 */ 688 if (sk) 689 arg.bound_dev_if = sk->sk_bound_dev_if; 690 691 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 692 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 693 694 arg.tos = ip_hdr(skb)->tos; 695 local_bh_disable(); 696 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 697 skb, &TCP_SKB_CB(skb)->header.h4.opt, 698 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 699 &arg, arg.iov[0].iov_len); 700 701 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 702 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 703 local_bh_enable(); 704 705 #ifdef CONFIG_TCP_MD5SIG 706 out: 707 rcu_read_unlock(); 708 #endif 709 } 710 711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 712 outside socket context is ugly, certainly. What can I do? 713 */ 714 715 static void tcp_v4_send_ack(struct net *net, 716 struct sk_buff *skb, u32 seq, u32 ack, 717 u32 win, u32 tsval, u32 tsecr, int oif, 718 struct tcp_md5sig_key *key, 719 int reply_flags, u8 tos) 720 { 721 const struct tcphdr *th = tcp_hdr(skb); 722 struct { 723 struct tcphdr th; 724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 725 #ifdef CONFIG_TCP_MD5SIG 726 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 727 #endif 728 ]; 729 } rep; 730 struct ip_reply_arg arg; 731 732 memset(&rep.th, 0, sizeof(struct tcphdr)); 733 memset(&arg, 0, sizeof(arg)); 734 735 arg.iov[0].iov_base = (unsigned char *)&rep; 736 arg.iov[0].iov_len = sizeof(rep.th); 737 if (tsecr) { 738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 739 (TCPOPT_TIMESTAMP << 8) | 740 TCPOLEN_TIMESTAMP); 741 rep.opt[1] = htonl(tsval); 742 rep.opt[2] = htonl(tsecr); 743 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 744 } 745 746 /* Swap the send and the receive. */ 747 rep.th.dest = th->source; 748 rep.th.source = th->dest; 749 rep.th.doff = arg.iov[0].iov_len / 4; 750 rep.th.seq = htonl(seq); 751 rep.th.ack_seq = htonl(ack); 752 rep.th.ack = 1; 753 rep.th.window = htons(win); 754 755 #ifdef CONFIG_TCP_MD5SIG 756 if (key) { 757 int offset = (tsecr) ? 3 : 0; 758 759 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 760 (TCPOPT_NOP << 16) | 761 (TCPOPT_MD5SIG << 8) | 762 TCPOLEN_MD5SIG); 763 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 764 rep.th.doff = arg.iov[0].iov_len/4; 765 766 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 767 key, ip_hdr(skb)->saddr, 768 ip_hdr(skb)->daddr, &rep.th); 769 } 770 #endif 771 arg.flags = reply_flags; 772 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 773 ip_hdr(skb)->saddr, /* XXX */ 774 arg.iov[0].iov_len, IPPROTO_TCP, 0); 775 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 776 if (oif) 777 arg.bound_dev_if = oif; 778 arg.tos = tos; 779 local_bh_disable(); 780 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 781 skb, &TCP_SKB_CB(skb)->header.h4.opt, 782 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 783 &arg, arg.iov[0].iov_len); 784 785 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 786 local_bh_enable(); 787 } 788 789 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 790 { 791 struct inet_timewait_sock *tw = inet_twsk(sk); 792 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 793 794 tcp_v4_send_ack(sock_net(sk), skb, 795 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 797 tcp_time_stamp + tcptw->tw_ts_offset, 798 tcptw->tw_ts_recent, 799 tw->tw_bound_dev_if, 800 tcp_twsk_md5_key(tcptw), 801 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 802 tw->tw_tos 803 ); 804 805 inet_twsk_put(tw); 806 } 807 808 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 809 struct request_sock *req) 810 { 811 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 812 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 813 */ 814 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 815 tcp_sk(sk)->snd_nxt; 816 817 /* RFC 7323 2.3 818 * The window field (SEG.WND) of every outgoing segment, with the 819 * exception of <SYN> segments, MUST be right-shifted by 820 * Rcv.Wind.Shift bits: 821 */ 822 tcp_v4_send_ack(sock_net(sk), skb, seq, 823 tcp_rsk(req)->rcv_nxt, 824 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 825 tcp_time_stamp, 826 req->ts_recent, 827 0, 828 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 829 AF_INET), 830 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 831 ip_hdr(skb)->tos); 832 } 833 834 /* 835 * Send a SYN-ACK after having received a SYN. 836 * This still operates on a request_sock only, not on a big 837 * socket. 838 */ 839 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 840 struct flowi *fl, 841 struct request_sock *req, 842 struct tcp_fastopen_cookie *foc, 843 enum tcp_synack_type synack_type) 844 { 845 const struct inet_request_sock *ireq = inet_rsk(req); 846 struct flowi4 fl4; 847 int err = -1; 848 struct sk_buff *skb; 849 850 /* First, grab a route. */ 851 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 852 return -1; 853 854 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 855 856 if (skb) { 857 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 858 859 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 860 ireq->ir_rmt_addr, 861 ireq->opt); 862 err = net_xmit_eval(err); 863 } 864 865 return err; 866 } 867 868 /* 869 * IPv4 request_sock destructor. 870 */ 871 static void tcp_v4_reqsk_destructor(struct request_sock *req) 872 { 873 kfree(inet_rsk(req)->opt); 874 } 875 876 #ifdef CONFIG_TCP_MD5SIG 877 /* 878 * RFC2385 MD5 checksumming requires a mapping of 879 * IP address->MD5 Key. 880 * We need to maintain these in the sk structure. 881 */ 882 883 /* Find the Key structure for an address. */ 884 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 885 const union tcp_md5_addr *addr, 886 int family) 887 { 888 const struct tcp_sock *tp = tcp_sk(sk); 889 struct tcp_md5sig_key *key; 890 unsigned int size = sizeof(struct in_addr); 891 const struct tcp_md5sig_info *md5sig; 892 893 /* caller either holds rcu_read_lock() or socket lock */ 894 md5sig = rcu_dereference_check(tp->md5sig_info, 895 lockdep_sock_is_held(sk)); 896 if (!md5sig) 897 return NULL; 898 #if IS_ENABLED(CONFIG_IPV6) 899 if (family == AF_INET6) 900 size = sizeof(struct in6_addr); 901 #endif 902 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 903 if (key->family != family) 904 continue; 905 if (!memcmp(&key->addr, addr, size)) 906 return key; 907 } 908 return NULL; 909 } 910 EXPORT_SYMBOL(tcp_md5_do_lookup); 911 912 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 913 const struct sock *addr_sk) 914 { 915 const union tcp_md5_addr *addr; 916 917 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 918 return tcp_md5_do_lookup(sk, addr, AF_INET); 919 } 920 EXPORT_SYMBOL(tcp_v4_md5_lookup); 921 922 /* This can be called on a newly created socket, from other files */ 923 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 924 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 925 { 926 /* Add Key to the list */ 927 struct tcp_md5sig_key *key; 928 struct tcp_sock *tp = tcp_sk(sk); 929 struct tcp_md5sig_info *md5sig; 930 931 key = tcp_md5_do_lookup(sk, addr, family); 932 if (key) { 933 /* Pre-existing entry - just update that one. */ 934 memcpy(key->key, newkey, newkeylen); 935 key->keylen = newkeylen; 936 return 0; 937 } 938 939 md5sig = rcu_dereference_protected(tp->md5sig_info, 940 lockdep_sock_is_held(sk)); 941 if (!md5sig) { 942 md5sig = kmalloc(sizeof(*md5sig), gfp); 943 if (!md5sig) 944 return -ENOMEM; 945 946 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 947 INIT_HLIST_HEAD(&md5sig->head); 948 rcu_assign_pointer(tp->md5sig_info, md5sig); 949 } 950 951 key = sock_kmalloc(sk, sizeof(*key), gfp); 952 if (!key) 953 return -ENOMEM; 954 if (!tcp_alloc_md5sig_pool()) { 955 sock_kfree_s(sk, key, sizeof(*key)); 956 return -ENOMEM; 957 } 958 959 memcpy(key->key, newkey, newkeylen); 960 key->keylen = newkeylen; 961 key->family = family; 962 memcpy(&key->addr, addr, 963 (family == AF_INET6) ? sizeof(struct in6_addr) : 964 sizeof(struct in_addr)); 965 hlist_add_head_rcu(&key->node, &md5sig->head); 966 return 0; 967 } 968 EXPORT_SYMBOL(tcp_md5_do_add); 969 970 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 971 { 972 struct tcp_md5sig_key *key; 973 974 key = tcp_md5_do_lookup(sk, addr, family); 975 if (!key) 976 return -ENOENT; 977 hlist_del_rcu(&key->node); 978 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 979 kfree_rcu(key, rcu); 980 return 0; 981 } 982 EXPORT_SYMBOL(tcp_md5_do_del); 983 984 static void tcp_clear_md5_list(struct sock *sk) 985 { 986 struct tcp_sock *tp = tcp_sk(sk); 987 struct tcp_md5sig_key *key; 988 struct hlist_node *n; 989 struct tcp_md5sig_info *md5sig; 990 991 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 992 993 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 994 hlist_del_rcu(&key->node); 995 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 996 kfree_rcu(key, rcu); 997 } 998 } 999 1000 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1001 int optlen) 1002 { 1003 struct tcp_md5sig cmd; 1004 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1005 1006 if (optlen < sizeof(cmd)) 1007 return -EINVAL; 1008 1009 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1010 return -EFAULT; 1011 1012 if (sin->sin_family != AF_INET) 1013 return -EINVAL; 1014 1015 if (!cmd.tcpm_keylen) 1016 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1017 AF_INET); 1018 1019 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1020 return -EINVAL; 1021 1022 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1023 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1024 GFP_KERNEL); 1025 } 1026 1027 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1028 __be32 daddr, __be32 saddr, 1029 const struct tcphdr *th, int nbytes) 1030 { 1031 struct tcp4_pseudohdr *bp; 1032 struct scatterlist sg; 1033 struct tcphdr *_th; 1034 1035 bp = hp->scratch; 1036 bp->saddr = saddr; 1037 bp->daddr = daddr; 1038 bp->pad = 0; 1039 bp->protocol = IPPROTO_TCP; 1040 bp->len = cpu_to_be16(nbytes); 1041 1042 _th = (struct tcphdr *)(bp + 1); 1043 memcpy(_th, th, sizeof(*th)); 1044 _th->check = 0; 1045 1046 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1047 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1048 sizeof(*bp) + sizeof(*th)); 1049 return crypto_ahash_update(hp->md5_req); 1050 } 1051 1052 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1053 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1054 { 1055 struct tcp_md5sig_pool *hp; 1056 struct ahash_request *req; 1057 1058 hp = tcp_get_md5sig_pool(); 1059 if (!hp) 1060 goto clear_hash_noput; 1061 req = hp->md5_req; 1062 1063 if (crypto_ahash_init(req)) 1064 goto clear_hash; 1065 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1066 goto clear_hash; 1067 if (tcp_md5_hash_key(hp, key)) 1068 goto clear_hash; 1069 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1070 if (crypto_ahash_final(req)) 1071 goto clear_hash; 1072 1073 tcp_put_md5sig_pool(); 1074 return 0; 1075 1076 clear_hash: 1077 tcp_put_md5sig_pool(); 1078 clear_hash_noput: 1079 memset(md5_hash, 0, 16); 1080 return 1; 1081 } 1082 1083 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1084 const struct sock *sk, 1085 const struct sk_buff *skb) 1086 { 1087 struct tcp_md5sig_pool *hp; 1088 struct ahash_request *req; 1089 const struct tcphdr *th = tcp_hdr(skb); 1090 __be32 saddr, daddr; 1091 1092 if (sk) { /* valid for establish/request sockets */ 1093 saddr = sk->sk_rcv_saddr; 1094 daddr = sk->sk_daddr; 1095 } else { 1096 const struct iphdr *iph = ip_hdr(skb); 1097 saddr = iph->saddr; 1098 daddr = iph->daddr; 1099 } 1100 1101 hp = tcp_get_md5sig_pool(); 1102 if (!hp) 1103 goto clear_hash_noput; 1104 req = hp->md5_req; 1105 1106 if (crypto_ahash_init(req)) 1107 goto clear_hash; 1108 1109 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1110 goto clear_hash; 1111 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1112 goto clear_hash; 1113 if (tcp_md5_hash_key(hp, key)) 1114 goto clear_hash; 1115 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1116 if (crypto_ahash_final(req)) 1117 goto clear_hash; 1118 1119 tcp_put_md5sig_pool(); 1120 return 0; 1121 1122 clear_hash: 1123 tcp_put_md5sig_pool(); 1124 clear_hash_noput: 1125 memset(md5_hash, 0, 16); 1126 return 1; 1127 } 1128 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1129 1130 #endif 1131 1132 /* Called with rcu_read_lock() */ 1133 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1134 const struct sk_buff *skb) 1135 { 1136 #ifdef CONFIG_TCP_MD5SIG 1137 /* 1138 * This gets called for each TCP segment that arrives 1139 * so we want to be efficient. 1140 * We have 3 drop cases: 1141 * o No MD5 hash and one expected. 1142 * o MD5 hash and we're not expecting one. 1143 * o MD5 hash and its wrong. 1144 */ 1145 const __u8 *hash_location = NULL; 1146 struct tcp_md5sig_key *hash_expected; 1147 const struct iphdr *iph = ip_hdr(skb); 1148 const struct tcphdr *th = tcp_hdr(skb); 1149 int genhash; 1150 unsigned char newhash[16]; 1151 1152 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1153 AF_INET); 1154 hash_location = tcp_parse_md5sig_option(th); 1155 1156 /* We've parsed the options - do we have a hash? */ 1157 if (!hash_expected && !hash_location) 1158 return false; 1159 1160 if (hash_expected && !hash_location) { 1161 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1162 return true; 1163 } 1164 1165 if (!hash_expected && hash_location) { 1166 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1167 return true; 1168 } 1169 1170 /* Okay, so this is hash_expected and hash_location - 1171 * so we need to calculate the checksum. 1172 */ 1173 genhash = tcp_v4_md5_hash_skb(newhash, 1174 hash_expected, 1175 NULL, skb); 1176 1177 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1178 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1179 &iph->saddr, ntohs(th->source), 1180 &iph->daddr, ntohs(th->dest), 1181 genhash ? " tcp_v4_calc_md5_hash failed" 1182 : ""); 1183 return true; 1184 } 1185 return false; 1186 #endif 1187 return false; 1188 } 1189 1190 static void tcp_v4_init_req(struct request_sock *req, 1191 const struct sock *sk_listener, 1192 struct sk_buff *skb) 1193 { 1194 struct inet_request_sock *ireq = inet_rsk(req); 1195 1196 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1197 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1198 ireq->no_srccheck = inet_sk(sk_listener)->transparent; 1199 ireq->opt = tcp_v4_save_options(skb); 1200 } 1201 1202 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1203 struct flowi *fl, 1204 const struct request_sock *req, 1205 bool *strict) 1206 { 1207 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req); 1208 1209 if (strict) { 1210 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr) 1211 *strict = true; 1212 else 1213 *strict = false; 1214 } 1215 1216 return dst; 1217 } 1218 1219 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1220 .family = PF_INET, 1221 .obj_size = sizeof(struct tcp_request_sock), 1222 .rtx_syn_ack = tcp_rtx_synack, 1223 .send_ack = tcp_v4_reqsk_send_ack, 1224 .destructor = tcp_v4_reqsk_destructor, 1225 .send_reset = tcp_v4_send_reset, 1226 .syn_ack_timeout = tcp_syn_ack_timeout, 1227 }; 1228 1229 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1230 .mss_clamp = TCP_MSS_DEFAULT, 1231 #ifdef CONFIG_TCP_MD5SIG 1232 .req_md5_lookup = tcp_v4_md5_lookup, 1233 .calc_md5_hash = tcp_v4_md5_hash_skb, 1234 #endif 1235 .init_req = tcp_v4_init_req, 1236 #ifdef CONFIG_SYN_COOKIES 1237 .cookie_init_seq = cookie_v4_init_sequence, 1238 #endif 1239 .route_req = tcp_v4_route_req, 1240 .init_seq = tcp_v4_init_sequence, 1241 .send_synack = tcp_v4_send_synack, 1242 }; 1243 1244 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1245 { 1246 /* Never answer to SYNs send to broadcast or multicast */ 1247 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1248 goto drop; 1249 1250 return tcp_conn_request(&tcp_request_sock_ops, 1251 &tcp_request_sock_ipv4_ops, sk, skb); 1252 1253 drop: 1254 tcp_listendrop(sk); 1255 return 0; 1256 } 1257 EXPORT_SYMBOL(tcp_v4_conn_request); 1258 1259 1260 /* 1261 * The three way handshake has completed - we got a valid synack - 1262 * now create the new socket. 1263 */ 1264 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1265 struct request_sock *req, 1266 struct dst_entry *dst, 1267 struct request_sock *req_unhash, 1268 bool *own_req) 1269 { 1270 struct inet_request_sock *ireq; 1271 struct inet_sock *newinet; 1272 struct tcp_sock *newtp; 1273 struct sock *newsk; 1274 #ifdef CONFIG_TCP_MD5SIG 1275 struct tcp_md5sig_key *key; 1276 #endif 1277 struct ip_options_rcu *inet_opt; 1278 1279 if (sk_acceptq_is_full(sk)) 1280 goto exit_overflow; 1281 1282 newsk = tcp_create_openreq_child(sk, req, skb); 1283 if (!newsk) 1284 goto exit_nonewsk; 1285 1286 newsk->sk_gso_type = SKB_GSO_TCPV4; 1287 inet_sk_rx_dst_set(newsk, skb); 1288 1289 newtp = tcp_sk(newsk); 1290 newinet = inet_sk(newsk); 1291 ireq = inet_rsk(req); 1292 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1293 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1294 newsk->sk_bound_dev_if = ireq->ir_iif; 1295 newinet->inet_saddr = ireq->ir_loc_addr; 1296 inet_opt = ireq->opt; 1297 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1298 ireq->opt = NULL; 1299 newinet->mc_index = inet_iif(skb); 1300 newinet->mc_ttl = ip_hdr(skb)->ttl; 1301 newinet->rcv_tos = ip_hdr(skb)->tos; 1302 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1303 if (inet_opt) 1304 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1305 newinet->inet_id = newtp->write_seq ^ jiffies; 1306 1307 if (!dst) { 1308 dst = inet_csk_route_child_sock(sk, newsk, req); 1309 if (!dst) 1310 goto put_and_exit; 1311 } else { 1312 /* syncookie case : see end of cookie_v4_check() */ 1313 } 1314 sk_setup_caps(newsk, dst); 1315 1316 tcp_ca_openreq_child(newsk, dst); 1317 1318 tcp_sync_mss(newsk, dst_mtu(dst)); 1319 newtp->advmss = dst_metric_advmss(dst); 1320 if (tcp_sk(sk)->rx_opt.user_mss && 1321 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1322 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1323 1324 tcp_initialize_rcv_mss(newsk); 1325 1326 #ifdef CONFIG_TCP_MD5SIG 1327 /* Copy over the MD5 key from the original socket */ 1328 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1329 AF_INET); 1330 if (key) { 1331 /* 1332 * We're using one, so create a matching key 1333 * on the newsk structure. If we fail to get 1334 * memory, then we end up not copying the key 1335 * across. Shucks. 1336 */ 1337 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1338 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1339 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1340 } 1341 #endif 1342 1343 if (__inet_inherit_port(sk, newsk) < 0) 1344 goto put_and_exit; 1345 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1346 if (*own_req) 1347 tcp_move_syn(newtp, req); 1348 1349 return newsk; 1350 1351 exit_overflow: 1352 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1353 exit_nonewsk: 1354 dst_release(dst); 1355 exit: 1356 tcp_listendrop(sk); 1357 return NULL; 1358 put_and_exit: 1359 inet_csk_prepare_forced_close(newsk); 1360 tcp_done(newsk); 1361 goto exit; 1362 } 1363 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1364 1365 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1366 { 1367 #ifdef CONFIG_SYN_COOKIES 1368 const struct tcphdr *th = tcp_hdr(skb); 1369 1370 if (!th->syn) 1371 sk = cookie_v4_check(sk, skb); 1372 #endif 1373 return sk; 1374 } 1375 1376 /* The socket must have it's spinlock held when we get 1377 * here, unless it is a TCP_LISTEN socket. 1378 * 1379 * We have a potential double-lock case here, so even when 1380 * doing backlog processing we use the BH locking scheme. 1381 * This is because we cannot sleep with the original spinlock 1382 * held. 1383 */ 1384 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1385 { 1386 struct sock *rsk; 1387 1388 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1389 struct dst_entry *dst = sk->sk_rx_dst; 1390 1391 sock_rps_save_rxhash(sk, skb); 1392 sk_mark_napi_id(sk, skb); 1393 if (dst) { 1394 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1395 !dst->ops->check(dst, 0)) { 1396 dst_release(dst); 1397 sk->sk_rx_dst = NULL; 1398 } 1399 } 1400 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len); 1401 return 0; 1402 } 1403 1404 if (tcp_checksum_complete(skb)) 1405 goto csum_err; 1406 1407 if (sk->sk_state == TCP_LISTEN) { 1408 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1409 1410 if (!nsk) 1411 goto discard; 1412 if (nsk != sk) { 1413 sock_rps_save_rxhash(nsk, skb); 1414 sk_mark_napi_id(nsk, skb); 1415 if (tcp_child_process(sk, nsk, skb)) { 1416 rsk = nsk; 1417 goto reset; 1418 } 1419 return 0; 1420 } 1421 } else 1422 sock_rps_save_rxhash(sk, skb); 1423 1424 if (tcp_rcv_state_process(sk, skb)) { 1425 rsk = sk; 1426 goto reset; 1427 } 1428 return 0; 1429 1430 reset: 1431 tcp_v4_send_reset(rsk, skb); 1432 discard: 1433 kfree_skb(skb); 1434 /* Be careful here. If this function gets more complicated and 1435 * gcc suffers from register pressure on the x86, sk (in %ebx) 1436 * might be destroyed here. This current version compiles correctly, 1437 * but you have been warned. 1438 */ 1439 return 0; 1440 1441 csum_err: 1442 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1443 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1444 goto discard; 1445 } 1446 EXPORT_SYMBOL(tcp_v4_do_rcv); 1447 1448 void tcp_v4_early_demux(struct sk_buff *skb) 1449 { 1450 const struct iphdr *iph; 1451 const struct tcphdr *th; 1452 struct sock *sk; 1453 1454 if (skb->pkt_type != PACKET_HOST) 1455 return; 1456 1457 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1458 return; 1459 1460 iph = ip_hdr(skb); 1461 th = tcp_hdr(skb); 1462 1463 if (th->doff < sizeof(struct tcphdr) / 4) 1464 return; 1465 1466 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1467 iph->saddr, th->source, 1468 iph->daddr, ntohs(th->dest), 1469 skb->skb_iif); 1470 if (sk) { 1471 skb->sk = sk; 1472 skb->destructor = sock_edemux; 1473 if (sk_fullsock(sk)) { 1474 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1475 1476 if (dst) 1477 dst = dst_check(dst, 0); 1478 if (dst && 1479 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1480 skb_dst_set_noref(skb, dst); 1481 } 1482 } 1483 } 1484 1485 /* Packet is added to VJ-style prequeue for processing in process 1486 * context, if a reader task is waiting. Apparently, this exciting 1487 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1488 * failed somewhere. Latency? Burstiness? Well, at least now we will 1489 * see, why it failed. 8)8) --ANK 1490 * 1491 */ 1492 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1493 { 1494 struct tcp_sock *tp = tcp_sk(sk); 1495 1496 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1497 return false; 1498 1499 if (skb->len <= tcp_hdrlen(skb) && 1500 skb_queue_len(&tp->ucopy.prequeue) == 0) 1501 return false; 1502 1503 /* Before escaping RCU protected region, we need to take care of skb 1504 * dst. Prequeue is only enabled for established sockets. 1505 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst 1506 * Instead of doing full sk_rx_dst validity here, let's perform 1507 * an optimistic check. 1508 */ 1509 if (likely(sk->sk_rx_dst)) 1510 skb_dst_drop(skb); 1511 else 1512 skb_dst_force_safe(skb); 1513 1514 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1515 tp->ucopy.memory += skb->truesize; 1516 if (skb_queue_len(&tp->ucopy.prequeue) >= 32 || 1517 tp->ucopy.memory + atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) { 1518 struct sk_buff *skb1; 1519 1520 BUG_ON(sock_owned_by_user(sk)); 1521 __NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUEDROPPED, 1522 skb_queue_len(&tp->ucopy.prequeue)); 1523 1524 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1525 sk_backlog_rcv(sk, skb1); 1526 1527 tp->ucopy.memory = 0; 1528 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1529 wake_up_interruptible_sync_poll(sk_sleep(sk), 1530 POLLIN | POLLRDNORM | POLLRDBAND); 1531 if (!inet_csk_ack_scheduled(sk)) 1532 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1533 (3 * tcp_rto_min(sk)) / 4, 1534 TCP_RTO_MAX); 1535 } 1536 return true; 1537 } 1538 EXPORT_SYMBOL(tcp_prequeue); 1539 1540 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1541 { 1542 struct tcphdr *th = (struct tcphdr *)skb->data; 1543 unsigned int eaten = skb->len; 1544 int err; 1545 1546 err = sk_filter_trim_cap(sk, skb, th->doff * 4); 1547 if (!err) { 1548 eaten -= skb->len; 1549 TCP_SKB_CB(skb)->end_seq -= eaten; 1550 } 1551 return err; 1552 } 1553 EXPORT_SYMBOL(tcp_filter); 1554 1555 /* 1556 * From tcp_input.c 1557 */ 1558 1559 int tcp_v4_rcv(struct sk_buff *skb) 1560 { 1561 struct net *net = dev_net(skb->dev); 1562 const struct iphdr *iph; 1563 const struct tcphdr *th; 1564 bool refcounted; 1565 struct sock *sk; 1566 int ret; 1567 1568 if (skb->pkt_type != PACKET_HOST) 1569 goto discard_it; 1570 1571 /* Count it even if it's bad */ 1572 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1573 1574 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1575 goto discard_it; 1576 1577 th = (const struct tcphdr *)skb->data; 1578 1579 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1580 goto bad_packet; 1581 if (!pskb_may_pull(skb, th->doff * 4)) 1582 goto discard_it; 1583 1584 /* An explanation is required here, I think. 1585 * Packet length and doff are validated by header prediction, 1586 * provided case of th->doff==0 is eliminated. 1587 * So, we defer the checks. */ 1588 1589 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1590 goto csum_error; 1591 1592 th = (const struct tcphdr *)skb->data; 1593 iph = ip_hdr(skb); 1594 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1595 * barrier() makes sure compiler wont play fool^Waliasing games. 1596 */ 1597 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1598 sizeof(struct inet_skb_parm)); 1599 barrier(); 1600 1601 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1602 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1603 skb->len - th->doff * 4); 1604 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1605 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1606 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1607 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1608 TCP_SKB_CB(skb)->sacked = 0; 1609 1610 lookup: 1611 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1612 th->dest, &refcounted); 1613 if (!sk) 1614 goto no_tcp_socket; 1615 1616 process: 1617 if (sk->sk_state == TCP_TIME_WAIT) 1618 goto do_time_wait; 1619 1620 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1621 struct request_sock *req = inet_reqsk(sk); 1622 struct sock *nsk; 1623 1624 sk = req->rsk_listener; 1625 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1626 reqsk_put(req); 1627 goto discard_it; 1628 } 1629 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1630 inet_csk_reqsk_queue_drop_and_put(sk, req); 1631 goto lookup; 1632 } 1633 /* We own a reference on the listener, increase it again 1634 * as we might lose it too soon. 1635 */ 1636 sock_hold(sk); 1637 refcounted = true; 1638 nsk = tcp_check_req(sk, skb, req, false); 1639 if (!nsk) { 1640 reqsk_put(req); 1641 goto discard_and_relse; 1642 } 1643 if (nsk == sk) { 1644 reqsk_put(req); 1645 } else if (tcp_child_process(sk, nsk, skb)) { 1646 tcp_v4_send_reset(nsk, skb); 1647 goto discard_and_relse; 1648 } else { 1649 sock_put(sk); 1650 return 0; 1651 } 1652 } 1653 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1654 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1655 goto discard_and_relse; 1656 } 1657 1658 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1659 goto discard_and_relse; 1660 1661 if (tcp_v4_inbound_md5_hash(sk, skb)) 1662 goto discard_and_relse; 1663 1664 nf_reset(skb); 1665 1666 if (tcp_filter(sk, skb)) 1667 goto discard_and_relse; 1668 th = (const struct tcphdr *)skb->data; 1669 iph = ip_hdr(skb); 1670 1671 skb->dev = NULL; 1672 1673 if (sk->sk_state == TCP_LISTEN) { 1674 ret = tcp_v4_do_rcv(sk, skb); 1675 goto put_and_return; 1676 } 1677 1678 sk_incoming_cpu_update(sk); 1679 1680 bh_lock_sock_nested(sk); 1681 tcp_segs_in(tcp_sk(sk), skb); 1682 ret = 0; 1683 if (!sock_owned_by_user(sk)) { 1684 if (!tcp_prequeue(sk, skb)) 1685 ret = tcp_v4_do_rcv(sk, skb); 1686 } else if (unlikely(sk_add_backlog(sk, skb, 1687 sk->sk_rcvbuf + sk->sk_sndbuf))) { 1688 bh_unlock_sock(sk); 1689 __NET_INC_STATS(net, LINUX_MIB_TCPBACKLOGDROP); 1690 goto discard_and_relse; 1691 } 1692 bh_unlock_sock(sk); 1693 1694 put_and_return: 1695 if (refcounted) 1696 sock_put(sk); 1697 1698 return ret; 1699 1700 no_tcp_socket: 1701 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1702 goto discard_it; 1703 1704 if (tcp_checksum_complete(skb)) { 1705 csum_error: 1706 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1707 bad_packet: 1708 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1709 } else { 1710 tcp_v4_send_reset(NULL, skb); 1711 } 1712 1713 discard_it: 1714 /* Discard frame. */ 1715 kfree_skb(skb); 1716 return 0; 1717 1718 discard_and_relse: 1719 sk_drops_add(sk, skb); 1720 if (refcounted) 1721 sock_put(sk); 1722 goto discard_it; 1723 1724 do_time_wait: 1725 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1726 inet_twsk_put(inet_twsk(sk)); 1727 goto discard_it; 1728 } 1729 1730 if (tcp_checksum_complete(skb)) { 1731 inet_twsk_put(inet_twsk(sk)); 1732 goto csum_error; 1733 } 1734 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1735 case TCP_TW_SYN: { 1736 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1737 &tcp_hashinfo, skb, 1738 __tcp_hdrlen(th), 1739 iph->saddr, th->source, 1740 iph->daddr, th->dest, 1741 inet_iif(skb)); 1742 if (sk2) { 1743 inet_twsk_deschedule_put(inet_twsk(sk)); 1744 sk = sk2; 1745 refcounted = false; 1746 goto process; 1747 } 1748 /* Fall through to ACK */ 1749 } 1750 case TCP_TW_ACK: 1751 tcp_v4_timewait_ack(sk, skb); 1752 break; 1753 case TCP_TW_RST: 1754 tcp_v4_send_reset(sk, skb); 1755 inet_twsk_deschedule_put(inet_twsk(sk)); 1756 goto discard_it; 1757 case TCP_TW_SUCCESS:; 1758 } 1759 goto discard_it; 1760 } 1761 1762 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1763 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1764 .twsk_unique = tcp_twsk_unique, 1765 .twsk_destructor= tcp_twsk_destructor, 1766 }; 1767 1768 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1769 { 1770 struct dst_entry *dst = skb_dst(skb); 1771 1772 if (dst && dst_hold_safe(dst)) { 1773 sk->sk_rx_dst = dst; 1774 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1775 } 1776 } 1777 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1778 1779 const struct inet_connection_sock_af_ops ipv4_specific = { 1780 .queue_xmit = ip_queue_xmit, 1781 .send_check = tcp_v4_send_check, 1782 .rebuild_header = inet_sk_rebuild_header, 1783 .sk_rx_dst_set = inet_sk_rx_dst_set, 1784 .conn_request = tcp_v4_conn_request, 1785 .syn_recv_sock = tcp_v4_syn_recv_sock, 1786 .net_header_len = sizeof(struct iphdr), 1787 .setsockopt = ip_setsockopt, 1788 .getsockopt = ip_getsockopt, 1789 .addr2sockaddr = inet_csk_addr2sockaddr, 1790 .sockaddr_len = sizeof(struct sockaddr_in), 1791 .bind_conflict = inet_csk_bind_conflict, 1792 #ifdef CONFIG_COMPAT 1793 .compat_setsockopt = compat_ip_setsockopt, 1794 .compat_getsockopt = compat_ip_getsockopt, 1795 #endif 1796 .mtu_reduced = tcp_v4_mtu_reduced, 1797 }; 1798 EXPORT_SYMBOL(ipv4_specific); 1799 1800 #ifdef CONFIG_TCP_MD5SIG 1801 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1802 .md5_lookup = tcp_v4_md5_lookup, 1803 .calc_md5_hash = tcp_v4_md5_hash_skb, 1804 .md5_parse = tcp_v4_parse_md5_keys, 1805 }; 1806 #endif 1807 1808 /* NOTE: A lot of things set to zero explicitly by call to 1809 * sk_alloc() so need not be done here. 1810 */ 1811 static int tcp_v4_init_sock(struct sock *sk) 1812 { 1813 struct inet_connection_sock *icsk = inet_csk(sk); 1814 1815 tcp_init_sock(sk); 1816 1817 icsk->icsk_af_ops = &ipv4_specific; 1818 1819 #ifdef CONFIG_TCP_MD5SIG 1820 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1821 #endif 1822 1823 return 0; 1824 } 1825 1826 void tcp_v4_destroy_sock(struct sock *sk) 1827 { 1828 struct tcp_sock *tp = tcp_sk(sk); 1829 1830 tcp_clear_xmit_timers(sk); 1831 1832 tcp_cleanup_congestion_control(sk); 1833 1834 /* Cleanup up the write buffer. */ 1835 tcp_write_queue_purge(sk); 1836 1837 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1838 __skb_queue_purge(&tp->out_of_order_queue); 1839 1840 #ifdef CONFIG_TCP_MD5SIG 1841 /* Clean up the MD5 key list, if any */ 1842 if (tp->md5sig_info) { 1843 tcp_clear_md5_list(sk); 1844 kfree_rcu(tp->md5sig_info, rcu); 1845 tp->md5sig_info = NULL; 1846 } 1847 #endif 1848 1849 /* Clean prequeue, it must be empty really */ 1850 __skb_queue_purge(&tp->ucopy.prequeue); 1851 1852 /* Clean up a referenced TCP bind bucket. */ 1853 if (inet_csk(sk)->icsk_bind_hash) 1854 inet_put_port(sk); 1855 1856 BUG_ON(tp->fastopen_rsk); 1857 1858 /* If socket is aborted during connect operation */ 1859 tcp_free_fastopen_req(tp); 1860 tcp_saved_syn_free(tp); 1861 1862 local_bh_disable(); 1863 sk_sockets_allocated_dec(sk); 1864 local_bh_enable(); 1865 1866 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 1867 sock_release_memcg(sk); 1868 } 1869 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1870 1871 #ifdef CONFIG_PROC_FS 1872 /* Proc filesystem TCP sock list dumping. */ 1873 1874 /* 1875 * Get next listener socket follow cur. If cur is NULL, get first socket 1876 * starting from bucket given in st->bucket; when st->bucket is zero the 1877 * very first socket in the hash table is returned. 1878 */ 1879 static void *listening_get_next(struct seq_file *seq, void *cur) 1880 { 1881 struct tcp_iter_state *st = seq->private; 1882 struct net *net = seq_file_net(seq); 1883 struct inet_listen_hashbucket *ilb; 1884 struct inet_connection_sock *icsk; 1885 struct sock *sk = cur; 1886 1887 if (!sk) { 1888 get_head: 1889 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1890 spin_lock_bh(&ilb->lock); 1891 sk = sk_head(&ilb->head); 1892 st->offset = 0; 1893 goto get_sk; 1894 } 1895 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1896 ++st->num; 1897 ++st->offset; 1898 1899 sk = sk_next(sk); 1900 get_sk: 1901 sk_for_each_from(sk) { 1902 if (!net_eq(sock_net(sk), net)) 1903 continue; 1904 if (sk->sk_family == st->family) 1905 return sk; 1906 icsk = inet_csk(sk); 1907 } 1908 spin_unlock_bh(&ilb->lock); 1909 st->offset = 0; 1910 if (++st->bucket < INET_LHTABLE_SIZE) 1911 goto get_head; 1912 return NULL; 1913 } 1914 1915 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1916 { 1917 struct tcp_iter_state *st = seq->private; 1918 void *rc; 1919 1920 st->bucket = 0; 1921 st->offset = 0; 1922 rc = listening_get_next(seq, NULL); 1923 1924 while (rc && *pos) { 1925 rc = listening_get_next(seq, rc); 1926 --*pos; 1927 } 1928 return rc; 1929 } 1930 1931 static inline bool empty_bucket(const struct tcp_iter_state *st) 1932 { 1933 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 1934 } 1935 1936 /* 1937 * Get first established socket starting from bucket given in st->bucket. 1938 * If st->bucket is zero, the very first socket in the hash is returned. 1939 */ 1940 static void *established_get_first(struct seq_file *seq) 1941 { 1942 struct tcp_iter_state *st = seq->private; 1943 struct net *net = seq_file_net(seq); 1944 void *rc = NULL; 1945 1946 st->offset = 0; 1947 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 1948 struct sock *sk; 1949 struct hlist_nulls_node *node; 1950 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 1951 1952 /* Lockless fast path for the common case of empty buckets */ 1953 if (empty_bucket(st)) 1954 continue; 1955 1956 spin_lock_bh(lock); 1957 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 1958 if (sk->sk_family != st->family || 1959 !net_eq(sock_net(sk), net)) { 1960 continue; 1961 } 1962 rc = sk; 1963 goto out; 1964 } 1965 spin_unlock_bh(lock); 1966 } 1967 out: 1968 return rc; 1969 } 1970 1971 static void *established_get_next(struct seq_file *seq, void *cur) 1972 { 1973 struct sock *sk = cur; 1974 struct hlist_nulls_node *node; 1975 struct tcp_iter_state *st = seq->private; 1976 struct net *net = seq_file_net(seq); 1977 1978 ++st->num; 1979 ++st->offset; 1980 1981 sk = sk_nulls_next(sk); 1982 1983 sk_nulls_for_each_from(sk, node) { 1984 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 1985 return sk; 1986 } 1987 1988 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 1989 ++st->bucket; 1990 return established_get_first(seq); 1991 } 1992 1993 static void *established_get_idx(struct seq_file *seq, loff_t pos) 1994 { 1995 struct tcp_iter_state *st = seq->private; 1996 void *rc; 1997 1998 st->bucket = 0; 1999 rc = established_get_first(seq); 2000 2001 while (rc && pos) { 2002 rc = established_get_next(seq, rc); 2003 --pos; 2004 } 2005 return rc; 2006 } 2007 2008 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2009 { 2010 void *rc; 2011 struct tcp_iter_state *st = seq->private; 2012 2013 st->state = TCP_SEQ_STATE_LISTENING; 2014 rc = listening_get_idx(seq, &pos); 2015 2016 if (!rc) { 2017 st->state = TCP_SEQ_STATE_ESTABLISHED; 2018 rc = established_get_idx(seq, pos); 2019 } 2020 2021 return rc; 2022 } 2023 2024 static void *tcp_seek_last_pos(struct seq_file *seq) 2025 { 2026 struct tcp_iter_state *st = seq->private; 2027 int offset = st->offset; 2028 int orig_num = st->num; 2029 void *rc = NULL; 2030 2031 switch (st->state) { 2032 case TCP_SEQ_STATE_LISTENING: 2033 if (st->bucket >= INET_LHTABLE_SIZE) 2034 break; 2035 st->state = TCP_SEQ_STATE_LISTENING; 2036 rc = listening_get_next(seq, NULL); 2037 while (offset-- && rc) 2038 rc = listening_get_next(seq, rc); 2039 if (rc) 2040 break; 2041 st->bucket = 0; 2042 st->state = TCP_SEQ_STATE_ESTABLISHED; 2043 /* Fallthrough */ 2044 case TCP_SEQ_STATE_ESTABLISHED: 2045 if (st->bucket > tcp_hashinfo.ehash_mask) 2046 break; 2047 rc = established_get_first(seq); 2048 while (offset-- && rc) 2049 rc = established_get_next(seq, rc); 2050 } 2051 2052 st->num = orig_num; 2053 2054 return rc; 2055 } 2056 2057 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2058 { 2059 struct tcp_iter_state *st = seq->private; 2060 void *rc; 2061 2062 if (*pos && *pos == st->last_pos) { 2063 rc = tcp_seek_last_pos(seq); 2064 if (rc) 2065 goto out; 2066 } 2067 2068 st->state = TCP_SEQ_STATE_LISTENING; 2069 st->num = 0; 2070 st->bucket = 0; 2071 st->offset = 0; 2072 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2073 2074 out: 2075 st->last_pos = *pos; 2076 return rc; 2077 } 2078 2079 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2080 { 2081 struct tcp_iter_state *st = seq->private; 2082 void *rc = NULL; 2083 2084 if (v == SEQ_START_TOKEN) { 2085 rc = tcp_get_idx(seq, 0); 2086 goto out; 2087 } 2088 2089 switch (st->state) { 2090 case TCP_SEQ_STATE_LISTENING: 2091 rc = listening_get_next(seq, v); 2092 if (!rc) { 2093 st->state = TCP_SEQ_STATE_ESTABLISHED; 2094 st->bucket = 0; 2095 st->offset = 0; 2096 rc = established_get_first(seq); 2097 } 2098 break; 2099 case TCP_SEQ_STATE_ESTABLISHED: 2100 rc = established_get_next(seq, v); 2101 break; 2102 } 2103 out: 2104 ++*pos; 2105 st->last_pos = *pos; 2106 return rc; 2107 } 2108 2109 static void tcp_seq_stop(struct seq_file *seq, void *v) 2110 { 2111 struct tcp_iter_state *st = seq->private; 2112 2113 switch (st->state) { 2114 case TCP_SEQ_STATE_LISTENING: 2115 if (v != SEQ_START_TOKEN) 2116 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2117 break; 2118 case TCP_SEQ_STATE_ESTABLISHED: 2119 if (v) 2120 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2121 break; 2122 } 2123 } 2124 2125 int tcp_seq_open(struct inode *inode, struct file *file) 2126 { 2127 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2128 struct tcp_iter_state *s; 2129 int err; 2130 2131 err = seq_open_net(inode, file, &afinfo->seq_ops, 2132 sizeof(struct tcp_iter_state)); 2133 if (err < 0) 2134 return err; 2135 2136 s = ((struct seq_file *)file->private_data)->private; 2137 s->family = afinfo->family; 2138 s->last_pos = 0; 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(tcp_seq_open); 2142 2143 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2144 { 2145 int rc = 0; 2146 struct proc_dir_entry *p; 2147 2148 afinfo->seq_ops.start = tcp_seq_start; 2149 afinfo->seq_ops.next = tcp_seq_next; 2150 afinfo->seq_ops.stop = tcp_seq_stop; 2151 2152 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2153 afinfo->seq_fops, afinfo); 2154 if (!p) 2155 rc = -ENOMEM; 2156 return rc; 2157 } 2158 EXPORT_SYMBOL(tcp_proc_register); 2159 2160 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2161 { 2162 remove_proc_entry(afinfo->name, net->proc_net); 2163 } 2164 EXPORT_SYMBOL(tcp_proc_unregister); 2165 2166 static void get_openreq4(const struct request_sock *req, 2167 struct seq_file *f, int i) 2168 { 2169 const struct inet_request_sock *ireq = inet_rsk(req); 2170 long delta = req->rsk_timer.expires - jiffies; 2171 2172 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2173 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2174 i, 2175 ireq->ir_loc_addr, 2176 ireq->ir_num, 2177 ireq->ir_rmt_addr, 2178 ntohs(ireq->ir_rmt_port), 2179 TCP_SYN_RECV, 2180 0, 0, /* could print option size, but that is af dependent. */ 2181 1, /* timers active (only the expire timer) */ 2182 jiffies_delta_to_clock_t(delta), 2183 req->num_timeout, 2184 from_kuid_munged(seq_user_ns(f), 2185 sock_i_uid(req->rsk_listener)), 2186 0, /* non standard timer */ 2187 0, /* open_requests have no inode */ 2188 0, 2189 req); 2190 } 2191 2192 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2193 { 2194 int timer_active; 2195 unsigned long timer_expires; 2196 const struct tcp_sock *tp = tcp_sk(sk); 2197 const struct inet_connection_sock *icsk = inet_csk(sk); 2198 const struct inet_sock *inet = inet_sk(sk); 2199 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2200 __be32 dest = inet->inet_daddr; 2201 __be32 src = inet->inet_rcv_saddr; 2202 __u16 destp = ntohs(inet->inet_dport); 2203 __u16 srcp = ntohs(inet->inet_sport); 2204 int rx_queue; 2205 int state; 2206 2207 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2208 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2209 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2210 timer_active = 1; 2211 timer_expires = icsk->icsk_timeout; 2212 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2213 timer_active = 4; 2214 timer_expires = icsk->icsk_timeout; 2215 } else if (timer_pending(&sk->sk_timer)) { 2216 timer_active = 2; 2217 timer_expires = sk->sk_timer.expires; 2218 } else { 2219 timer_active = 0; 2220 timer_expires = jiffies; 2221 } 2222 2223 state = sk_state_load(sk); 2224 if (state == TCP_LISTEN) 2225 rx_queue = sk->sk_ack_backlog; 2226 else 2227 /* Because we don't lock the socket, 2228 * we might find a transient negative value. 2229 */ 2230 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2231 2232 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2233 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2234 i, src, srcp, dest, destp, state, 2235 tp->write_seq - tp->snd_una, 2236 rx_queue, 2237 timer_active, 2238 jiffies_delta_to_clock_t(timer_expires - jiffies), 2239 icsk->icsk_retransmits, 2240 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2241 icsk->icsk_probes_out, 2242 sock_i_ino(sk), 2243 atomic_read(&sk->sk_refcnt), sk, 2244 jiffies_to_clock_t(icsk->icsk_rto), 2245 jiffies_to_clock_t(icsk->icsk_ack.ato), 2246 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2247 tp->snd_cwnd, 2248 state == TCP_LISTEN ? 2249 fastopenq->max_qlen : 2250 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2251 } 2252 2253 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2254 struct seq_file *f, int i) 2255 { 2256 long delta = tw->tw_timer.expires - jiffies; 2257 __be32 dest, src; 2258 __u16 destp, srcp; 2259 2260 dest = tw->tw_daddr; 2261 src = tw->tw_rcv_saddr; 2262 destp = ntohs(tw->tw_dport); 2263 srcp = ntohs(tw->tw_sport); 2264 2265 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2266 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2267 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2268 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2269 atomic_read(&tw->tw_refcnt), tw); 2270 } 2271 2272 #define TMPSZ 150 2273 2274 static int tcp4_seq_show(struct seq_file *seq, void *v) 2275 { 2276 struct tcp_iter_state *st; 2277 struct sock *sk = v; 2278 2279 seq_setwidth(seq, TMPSZ - 1); 2280 if (v == SEQ_START_TOKEN) { 2281 seq_puts(seq, " sl local_address rem_address st tx_queue " 2282 "rx_queue tr tm->when retrnsmt uid timeout " 2283 "inode"); 2284 goto out; 2285 } 2286 st = seq->private; 2287 2288 if (sk->sk_state == TCP_TIME_WAIT) 2289 get_timewait4_sock(v, seq, st->num); 2290 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2291 get_openreq4(v, seq, st->num); 2292 else 2293 get_tcp4_sock(v, seq, st->num); 2294 out: 2295 seq_pad(seq, '\n'); 2296 return 0; 2297 } 2298 2299 static const struct file_operations tcp_afinfo_seq_fops = { 2300 .owner = THIS_MODULE, 2301 .open = tcp_seq_open, 2302 .read = seq_read, 2303 .llseek = seq_lseek, 2304 .release = seq_release_net 2305 }; 2306 2307 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2308 .name = "tcp", 2309 .family = AF_INET, 2310 .seq_fops = &tcp_afinfo_seq_fops, 2311 .seq_ops = { 2312 .show = tcp4_seq_show, 2313 }, 2314 }; 2315 2316 static int __net_init tcp4_proc_init_net(struct net *net) 2317 { 2318 return tcp_proc_register(net, &tcp4_seq_afinfo); 2319 } 2320 2321 static void __net_exit tcp4_proc_exit_net(struct net *net) 2322 { 2323 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2324 } 2325 2326 static struct pernet_operations tcp4_net_ops = { 2327 .init = tcp4_proc_init_net, 2328 .exit = tcp4_proc_exit_net, 2329 }; 2330 2331 int __init tcp4_proc_init(void) 2332 { 2333 return register_pernet_subsys(&tcp4_net_ops); 2334 } 2335 2336 void tcp4_proc_exit(void) 2337 { 2338 unregister_pernet_subsys(&tcp4_net_ops); 2339 } 2340 #endif /* CONFIG_PROC_FS */ 2341 2342 struct proto tcp_prot = { 2343 .name = "TCP", 2344 .owner = THIS_MODULE, 2345 .close = tcp_close, 2346 .connect = tcp_v4_connect, 2347 .disconnect = tcp_disconnect, 2348 .accept = inet_csk_accept, 2349 .ioctl = tcp_ioctl, 2350 .init = tcp_v4_init_sock, 2351 .destroy = tcp_v4_destroy_sock, 2352 .shutdown = tcp_shutdown, 2353 .setsockopt = tcp_setsockopt, 2354 .getsockopt = tcp_getsockopt, 2355 .recvmsg = tcp_recvmsg, 2356 .sendmsg = tcp_sendmsg, 2357 .sendpage = tcp_sendpage, 2358 .backlog_rcv = tcp_v4_do_rcv, 2359 .release_cb = tcp_release_cb, 2360 .hash = inet_hash, 2361 .unhash = inet_unhash, 2362 .get_port = inet_csk_get_port, 2363 .enter_memory_pressure = tcp_enter_memory_pressure, 2364 .stream_memory_free = tcp_stream_memory_free, 2365 .sockets_allocated = &tcp_sockets_allocated, 2366 .orphan_count = &tcp_orphan_count, 2367 .memory_allocated = &tcp_memory_allocated, 2368 .memory_pressure = &tcp_memory_pressure, 2369 .sysctl_mem = sysctl_tcp_mem, 2370 .sysctl_wmem = sysctl_tcp_wmem, 2371 .sysctl_rmem = sysctl_tcp_rmem, 2372 .max_header = MAX_TCP_HEADER, 2373 .obj_size = sizeof(struct tcp_sock), 2374 .slab_flags = SLAB_DESTROY_BY_RCU, 2375 .twsk_prot = &tcp_timewait_sock_ops, 2376 .rsk_prot = &tcp_request_sock_ops, 2377 .h.hashinfo = &tcp_hashinfo, 2378 .no_autobind = true, 2379 #ifdef CONFIG_COMPAT 2380 .compat_setsockopt = compat_tcp_setsockopt, 2381 .compat_getsockopt = compat_tcp_getsockopt, 2382 #endif 2383 .diag_destroy = tcp_abort, 2384 }; 2385 EXPORT_SYMBOL(tcp_prot); 2386 2387 static void __net_exit tcp_sk_exit(struct net *net) 2388 { 2389 int cpu; 2390 2391 for_each_possible_cpu(cpu) 2392 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2393 free_percpu(net->ipv4.tcp_sk); 2394 } 2395 2396 static int __net_init tcp_sk_init(struct net *net) 2397 { 2398 int res, cpu; 2399 2400 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2401 if (!net->ipv4.tcp_sk) 2402 return -ENOMEM; 2403 2404 for_each_possible_cpu(cpu) { 2405 struct sock *sk; 2406 2407 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2408 IPPROTO_TCP, net); 2409 if (res) 2410 goto fail; 2411 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2412 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2413 } 2414 2415 net->ipv4.sysctl_tcp_ecn = 2; 2416 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2417 2418 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2419 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2420 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2421 2422 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2423 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2424 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2425 2426 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2427 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2428 net->ipv4.sysctl_tcp_syncookies = 1; 2429 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2430 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2431 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2432 net->ipv4.sysctl_tcp_orphan_retries = 0; 2433 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2434 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2435 2436 return 0; 2437 fail: 2438 tcp_sk_exit(net); 2439 2440 return res; 2441 } 2442 2443 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2444 { 2445 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2446 } 2447 2448 static struct pernet_operations __net_initdata tcp_sk_ops = { 2449 .init = tcp_sk_init, 2450 .exit = tcp_sk_exit, 2451 .exit_batch = tcp_sk_exit_batch, 2452 }; 2453 2454 void __init tcp_v4_init(void) 2455 { 2456 inet_hashinfo_init(&tcp_hashinfo); 2457 if (register_pernet_subsys(&tcp_sk_ops)) 2458 panic("Failed to create the TCP control socket.\n"); 2459 } 2460
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.