~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/udp.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              The User Datagram Protocol (UDP).
  7  *
  8  * Authors:     Ross Biro
  9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 11  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 12  *              Hirokazu Takahashi, <taka@valinux.co.jp>
 13  *
 14  * Fixes:
 15  *              Alan Cox        :       verify_area() calls
 16  *              Alan Cox        :       stopped close while in use off icmp
 17  *                                      messages. Not a fix but a botch that
 18  *                                      for udp at least is 'valid'.
 19  *              Alan Cox        :       Fixed icmp handling properly
 20  *              Alan Cox        :       Correct error for oversized datagrams
 21  *              Alan Cox        :       Tidied select() semantics.
 22  *              Alan Cox        :       udp_err() fixed properly, also now
 23  *                                      select and read wake correctly on errors
 24  *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
 25  *              Alan Cox        :       UDP can count its memory
 26  *              Alan Cox        :       send to an unknown connection causes
 27  *                                      an ECONNREFUSED off the icmp, but
 28  *                                      does NOT close.
 29  *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
 30  *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
 31  *                                      bug no longer crashes it.
 32  *              Fred Van Kempen :       Net2e support for sk->broadcast.
 33  *              Alan Cox        :       Uses skb_free_datagram
 34  *              Alan Cox        :       Added get/set sockopt support.
 35  *              Alan Cox        :       Broadcasting without option set returns EACCES.
 36  *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
 37  *              Alan Cox        :       Use ip_tos and ip_ttl
 38  *              Alan Cox        :       SNMP Mibs
 39  *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
 40  *              Matt Dillon     :       UDP length checks.
 41  *              Alan Cox        :       Smarter af_inet used properly.
 42  *              Alan Cox        :       Use new kernel side addressing.
 43  *              Alan Cox        :       Incorrect return on truncated datagram receive.
 44  *      Arnt Gulbrandsen        :       New udp_send and stuff
 45  *              Alan Cox        :       Cache last socket
 46  *              Alan Cox        :       Route cache
 47  *              Jon Peatfield   :       Minor efficiency fix to sendto().
 48  *              Mike Shaver     :       RFC1122 checks.
 49  *              Alan Cox        :       Nonblocking error fix.
 50  *      Willy Konynenberg       :       Transparent proxying support.
 51  *              Mike McLagan    :       Routing by source
 52  *              David S. Miller :       New socket lookup architecture.
 53  *                                      Last socket cache retained as it
 54  *                                      does have a high hit rate.
 55  *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
 56  *              Andi Kleen      :       Some cleanups, cache destination entry
 57  *                                      for connect.
 58  *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
 59  *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
 60  *                                      return ENOTCONN for unconnected sockets (POSIX)
 61  *              Janos Farkas    :       don't deliver multi/broadcasts to a different
 62  *                                      bound-to-device socket
 63  *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
 64  *                                      datagrams.
 65  *      Hirokazu Takahashi      :       sendfile() on UDP works now.
 66  *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
 67  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
 68  *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
 69  *                                      a single port at the same time.
 70  *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
 71  *      James Chapman           :       Add L2TP encapsulation type.
 72  *
 73  *
 74  *              This program is free software; you can redistribute it and/or
 75  *              modify it under the terms of the GNU General Public License
 76  *              as published by the Free Software Foundation; either version
 77  *              2 of the License, or (at your option) any later version.
 78  */
 79 
 80 #include <asm/system.h>
 81 #include <asm/uaccess.h>
 82 #include <asm/ioctls.h>
 83 #include <linux/bootmem.h>
 84 #include <linux/highmem.h>
 85 #include <linux/swap.h>
 86 #include <linux/types.h>
 87 #include <linux/fcntl.h>
 88 #include <linux/module.h>
 89 #include <linux/socket.h>
 90 #include <linux/sockios.h>
 91 #include <linux/igmp.h>
 92 #include <linux/in.h>
 93 #include <linux/errno.h>
 94 #include <linux/timer.h>
 95 #include <linux/mm.h>
 96 #include <linux/inet.h>
 97 #include <linux/netdevice.h>
 98 #include <net/tcp_states.h>
 99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 #include <linux/ccsecurity.h>
109 
110 struct udp_table udp_table;
111 EXPORT_SYMBOL(udp_table);
112 
113 int sysctl_udp_mem[3] __read_mostly;
114 EXPORT_SYMBOL(sysctl_udp_mem);
115 
116 int sysctl_udp_rmem_min __read_mostly;
117 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 
119 int sysctl_udp_wmem_min __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 
122 atomic_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define PORTS_PER_CHAIN (65536 / UDP_HTABLE_SIZE)
126 
127 static int udp_lib_lport_inuse(struct net *net, __u16 num,
128                                const struct udp_hslot *hslot,
129                                unsigned long *bitmap,
130                                struct sock *sk,
131                                int (*saddr_comp)(const struct sock *sk1,
132                                                  const struct sock *sk2))
133 {
134         struct sock *sk2;
135         struct hlist_nulls_node *node;
136 
137         sk_nulls_for_each(sk2, node, &hslot->head)
138                 if (net_eq(sock_net(sk2), net)                  &&
139                     sk2 != sk                                   &&
140                     (bitmap || sk2->sk_hash == num)             &&
141                     (!sk2->sk_reuse || !sk->sk_reuse)           &&
142                     (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
143                         || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
144                     (*saddr_comp)(sk, sk2)) {
145                         if (bitmap)
146                                 __set_bit(sk2->sk_hash / UDP_HTABLE_SIZE,
147                                           bitmap);
148                         else
149                                 return 1;
150                 }
151         return 0;
152 }
153 
154 /**
155  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
156  *
157  *  @sk:          socket struct in question
158  *  @snum:        port number to look up
159  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
160  */
161 int udp_lib_get_port(struct sock *sk, unsigned short snum,
162                        int (*saddr_comp)(const struct sock *sk1,
163                                          const struct sock *sk2))
164 {
165         struct udp_hslot *hslot;
166         struct udp_table *udptable = sk->sk_prot->h.udp_table;
167         int    error = 1;
168         struct net *net = sock_net(sk);
169 
170         if (!snum) {
171                 int low, high, remaining;
172                 unsigned rand;
173                 unsigned short first, last;
174                 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
175 
176                 inet_get_local_port_range(&low, &high);
177                 remaining = (high - low) + 1;
178 
179                 rand = net_random();
180                 first = (((u64)rand * remaining) >> 32) + low;
181                 /*
182                  * force rand to be an odd multiple of UDP_HTABLE_SIZE
183                  */
184                 rand = (rand | 1) * UDP_HTABLE_SIZE;
185                 for (last = first + UDP_HTABLE_SIZE; first != last; first++) {
186                         hslot = &udptable->hash[udp_hashfn(net, first)];
187                         bitmap_zero(bitmap, PORTS_PER_CHAIN);
188                         spin_lock_bh(&hslot->lock);
189                         udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
190                                             saddr_comp);
191 
192                         snum = first;
193                         /*
194                          * Iterate on all possible values of snum for this hash.
195                          * Using steps of an odd multiple of UDP_HTABLE_SIZE
196                          * give us randomization and full range coverage.
197                          */
198                         do {
199                                 if (low <= snum && snum <= high &&
200                                     !test_bit(snum / UDP_HTABLE_SIZE, bitmap)
201                                     && !ccs_lport_reserved(snum))
202                                         goto found;
203                                 snum += rand;
204                         } while (snum != first);
205                         spin_unlock_bh(&hslot->lock);
206                 }
207                 goto fail;
208         } else {
209                 hslot = &udptable->hash[udp_hashfn(net, snum)];
210                 spin_lock_bh(&hslot->lock);
211                 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, saddr_comp))
212                         goto fail_unlock;
213         }
214 found:
215         inet_sk(sk)->num = snum;
216         sk->sk_hash = snum;
217         if (sk_unhashed(sk)) {
218                 sk_nulls_add_node_rcu(sk, &hslot->head);
219                 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
220         }
221         error = 0;
222 fail_unlock:
223         spin_unlock_bh(&hslot->lock);
224 fail:
225         return error;
226 }
227 EXPORT_SYMBOL(udp_lib_get_port);
228 
229 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
230 {
231         struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
232 
233         return  (!ipv6_only_sock(sk2)  &&
234                  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
235                    inet1->rcv_saddr == inet2->rcv_saddr));
236 }
237 
238 int udp_v4_get_port(struct sock *sk, unsigned short snum)
239 {
240         return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
241 }
242 
243 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
244                          unsigned short hnum,
245                          __be16 sport, __be32 daddr, __be16 dport, int dif)
246 {
247         int score = -1;
248 
249         if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
250                         !ipv6_only_sock(sk)) {
251                 struct inet_sock *inet = inet_sk(sk);
252 
253                 score = (sk->sk_family == PF_INET ? 1 : 0);
254                 if (inet->rcv_saddr) {
255                         if (inet->rcv_saddr != daddr)
256                                 return -1;
257                         score += 2;
258                 }
259                 if (inet->daddr) {
260                         if (inet->daddr != saddr)
261                                 return -1;
262                         score += 2;
263                 }
264                 if (inet->dport) {
265                         if (inet->dport != sport)
266                                 return -1;
267                         score += 2;
268                 }
269                 if (sk->sk_bound_dev_if) {
270                         if (sk->sk_bound_dev_if != dif)
271                                 return -1;
272                         score += 2;
273                 }
274         }
275         return score;
276 }
277 
278 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
279  * harder than this. -DaveM
280  */
281 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
282                 __be16 sport, __be32 daddr, __be16 dport,
283                 int dif, struct udp_table *udptable)
284 {
285         struct sock *sk, *result;
286         struct hlist_nulls_node *node;
287         unsigned short hnum = ntohs(dport);
288         unsigned int hash = udp_hashfn(net, hnum);
289         struct udp_hslot *hslot = &udptable->hash[hash];
290         int score, badness;
291 
292         rcu_read_lock();
293 begin:
294         result = NULL;
295         badness = -1;
296         sk_nulls_for_each_rcu(sk, node, &hslot->head) {
297                 score = compute_score(sk, net, saddr, hnum, sport,
298                                       daddr, dport, dif);
299                 if (score > badness) {
300                         result = sk;
301                         badness = score;
302                 }
303         }
304         /*
305          * if the nulls value we got at the end of this lookup is
306          * not the expected one, we must restart lookup.
307          * We probably met an item that was moved to another chain.
308          */
309         if (get_nulls_value(node) != hash)
310                 goto begin;
311 
312         if (result) {
313                 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
314                         result = NULL;
315                 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
316                                   daddr, dport, dif) < badness)) {
317                         sock_put(result);
318                         goto begin;
319                 }
320         }
321         rcu_read_unlock();
322         return result;
323 }
324 
325 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
326                                                  __be16 sport, __be16 dport,
327                                                  struct udp_table *udptable)
328 {
329         struct sock *sk;
330         const struct iphdr *iph = ip_hdr(skb);
331 
332         if (unlikely(sk = skb_steal_sock(skb)))
333                 return sk;
334         else
335                 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
336                                          iph->daddr, dport, inet_iif(skb),
337                                          udptable);
338 }
339 
340 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
341                              __be32 daddr, __be16 dport, int dif)
342 {
343         return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
344 }
345 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
346 
347 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
348                                              __be16 loc_port, __be32 loc_addr,
349                                              __be16 rmt_port, __be32 rmt_addr,
350                                              int dif)
351 {
352         struct hlist_nulls_node *node;
353         struct sock *s = sk;
354         unsigned short hnum = ntohs(loc_port);
355 
356         sk_nulls_for_each_from(s, node) {
357                 struct inet_sock *inet = inet_sk(s);
358 
359                 if (!net_eq(sock_net(s), net)                           ||
360                     s->sk_hash != hnum                                  ||
361                     (inet->daddr && inet->daddr != rmt_addr)            ||
362                     (inet->dport != rmt_port && inet->dport)            ||
363                     (inet->rcv_saddr && inet->rcv_saddr != loc_addr)    ||
364                     ipv6_only_sock(s)                                   ||
365                     (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
366                         continue;
367                 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
368                         continue;
369                 goto found;
370         }
371         s = NULL;
372 found:
373         return s;
374 }
375 
376 /*
377  * This routine is called by the ICMP module when it gets some
378  * sort of error condition.  If err < 0 then the socket should
379  * be closed and the error returned to the user.  If err > 0
380  * it's just the icmp type << 8 | icmp code.
381  * Header points to the ip header of the error packet. We move
382  * on past this. Then (as it used to claim before adjustment)
383  * header points to the first 8 bytes of the udp header.  We need
384  * to find the appropriate port.
385  */
386 
387 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
388 {
389         struct inet_sock *inet;
390         struct iphdr *iph = (struct iphdr *)skb->data;
391         struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
392         const int type = icmp_hdr(skb)->type;
393         const int code = icmp_hdr(skb)->code;
394         struct sock *sk;
395         int harderr;
396         int err;
397         struct net *net = dev_net(skb->dev);
398 
399         sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
400                         iph->saddr, uh->source, skb->dev->ifindex, udptable);
401         if (sk == NULL) {
402                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
403                 return; /* No socket for error */
404         }
405 
406         err = 0;
407         harderr = 0;
408         inet = inet_sk(sk);
409 
410         switch (type) {
411         default:
412         case ICMP_TIME_EXCEEDED:
413                 err = EHOSTUNREACH;
414                 break;
415         case ICMP_SOURCE_QUENCH:
416                 goto out;
417         case ICMP_PARAMETERPROB:
418                 err = EPROTO;
419                 harderr = 1;
420                 break;
421         case ICMP_DEST_UNREACH:
422                 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
423                         if (inet->pmtudisc != IP_PMTUDISC_DONT) {
424                                 err = EMSGSIZE;
425                                 harderr = 1;
426                                 break;
427                         }
428                         goto out;
429                 }
430                 err = EHOSTUNREACH;
431                 if (code <= NR_ICMP_UNREACH) {
432                         harderr = icmp_err_convert[code].fatal;
433                         err = icmp_err_convert[code].errno;
434                 }
435                 break;
436         }
437 
438         /*
439          *      RFC1122: OK.  Passes ICMP errors back to application, as per
440          *      4.1.3.3.
441          */
442         if (!inet->recverr) {
443                 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
444                         goto out;
445         } else
446                 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
447 
448         sk->sk_err = err;
449         sk->sk_error_report(sk);
450 out:
451         sock_put(sk);
452 }
453 
454 void udp_err(struct sk_buff *skb, u32 info)
455 {
456         __udp4_lib_err(skb, info, &udp_table);
457 }
458 
459 /*
460  * Throw away all pending data and cancel the corking. Socket is locked.
461  */
462 void udp_flush_pending_frames(struct sock *sk)
463 {
464         struct udp_sock *up = udp_sk(sk);
465 
466         if (up->pending) {
467                 up->len = 0;
468                 up->pending = 0;
469                 ip_flush_pending_frames(sk);
470         }
471 }
472 EXPORT_SYMBOL(udp_flush_pending_frames);
473 
474 /**
475  *      udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
476  *      @sk:    socket we are sending on
477  *      @skb:   sk_buff containing the filled-in UDP header
478  *              (checksum field must be zeroed out)
479  */
480 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
481                                  __be32 src, __be32 dst, int len)
482 {
483         unsigned int offset;
484         struct udphdr *uh = udp_hdr(skb);
485         __wsum csum = 0;
486 
487         if (skb_queue_len(&sk->sk_write_queue) == 1) {
488                 /*
489                  * Only one fragment on the socket.
490                  */
491                 skb->csum_start = skb_transport_header(skb) - skb->head;
492                 skb->csum_offset = offsetof(struct udphdr, check);
493                 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
494         } else {
495                 /*
496                  * HW-checksum won't work as there are two or more
497                  * fragments on the socket so that all csums of sk_buffs
498                  * should be together
499                  */
500                 offset = skb_transport_offset(skb);
501                 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
502 
503                 skb->ip_summed = CHECKSUM_NONE;
504 
505                 skb_queue_walk(&sk->sk_write_queue, skb) {
506                         csum = csum_add(csum, skb->csum);
507                 }
508 
509                 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
510                 if (uh->check == 0)
511                         uh->check = CSUM_MANGLED_0;
512         }
513 }
514 
515 /*
516  * Push out all pending data as one UDP datagram. Socket is locked.
517  */
518 int udp_push_pending_frames(struct sock *sk)
519 {
520         struct udp_sock  *up = udp_sk(sk);
521         struct inet_sock *inet = inet_sk(sk);
522         struct flowi *fl = &inet->cork.fl;
523         struct sk_buff *skb;
524         struct udphdr *uh;
525         int err = 0;
526         int is_udplite = IS_UDPLITE(sk);
527         __wsum csum = 0;
528 
529         /* Grab the skbuff where UDP header space exists. */
530         if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
531                 goto out;
532 
533         /*
534          * Create a UDP header
535          */
536         uh = udp_hdr(skb);
537         uh->source = fl->fl_ip_sport;
538         uh->dest = fl->fl_ip_dport;
539         uh->len = htons(up->len);
540         uh->check = 0;
541 
542         if (is_udplite)                                  /*     UDP-Lite      */
543                 csum  = udplite_csum_outgoing(sk, skb);
544 
545         else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
546 
547                 skb->ip_summed = CHECKSUM_NONE;
548                 goto send;
549 
550         } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
551 
552                 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
553                 goto send;
554 
555         } else                                           /*   `normal' UDP    */
556                 csum = udp_csum_outgoing(sk, skb);
557 
558         /* add protocol-dependent pseudo-header */
559         uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
560                                       sk->sk_protocol, csum);
561         if (uh->check == 0)
562                 uh->check = CSUM_MANGLED_0;
563 
564 send:
565         err = ip_push_pending_frames(sk);
566         if (err) {
567                 if (err == -ENOBUFS && !inet->recverr) {
568                         UDP_INC_STATS_USER(sock_net(sk),
569                                            UDP_MIB_SNDBUFERRORS, is_udplite);
570                         err = 0;
571                 }
572         } else
573                 UDP_INC_STATS_USER(sock_net(sk),
574                                    UDP_MIB_OUTDATAGRAMS, is_udplite);
575 out:
576         up->len = 0;
577         up->pending = 0;
578         return err;
579 }
580 EXPORT_SYMBOL(udp_push_pending_frames);
581 
582 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
583                 size_t len)
584 {
585         struct inet_sock *inet = inet_sk(sk);
586         struct udp_sock *up = udp_sk(sk);
587         int ulen = len;
588         struct ipcm_cookie ipc;
589         struct rtable *rt = NULL;
590         int free = 0;
591         int connected = 0;
592         __be32 daddr, faddr, saddr;
593         __be16 dport;
594         u8  tos;
595         int err, is_udplite = IS_UDPLITE(sk);
596         int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
597         int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
598         struct ip_options_data opt_copy;
599 
600         if (len > 0xFFFF)
601                 return -EMSGSIZE;
602 
603         /*
604          *      Check the flags.
605          */
606 
607         if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
608                 return -EOPNOTSUPP;
609 
610         ipc.opt = NULL;
611         ipc.shtx.flags = 0;
612 
613         if (up->pending) {
614                 /*
615                  * There are pending frames.
616                  * The socket lock must be held while it's corked.
617                  */
618                 lock_sock(sk);
619                 if (likely(up->pending)) {
620                         if (unlikely(up->pending != AF_INET)) {
621                                 release_sock(sk);
622                                 return -EINVAL;
623                         }
624                         goto do_append_data;
625                 }
626                 release_sock(sk);
627         }
628         ulen += sizeof(struct udphdr);
629 
630         /*
631          *      Get and verify the address.
632          */
633         if (msg->msg_name) {
634                 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
635                 if (msg->msg_namelen < sizeof(*usin))
636                         return -EINVAL;
637                 if (usin->sin_family != AF_INET) {
638                         if (usin->sin_family != AF_UNSPEC)
639                                 return -EAFNOSUPPORT;
640                 }
641 
642                 daddr = usin->sin_addr.s_addr;
643                 dport = usin->sin_port;
644                 if (dport == 0)
645                         return -EINVAL;
646         } else {
647                 if (sk->sk_state != TCP_ESTABLISHED)
648                         return -EDESTADDRREQ;
649                 daddr = inet->daddr;
650                 dport = inet->dport;
651                 /* Open fast path for connected socket.
652                    Route will not be used, if at least one option is set.
653                  */
654                 connected = 1;
655         }
656         ipc.addr = inet->saddr;
657 
658         ipc.oif = sk->sk_bound_dev_if;
659         err = sock_tx_timestamp(msg, sk, &ipc.shtx);
660         if (err)
661                 return err;
662         if (msg->msg_controllen) {
663                 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
664                 if (err)
665                         return err;
666                 if (ipc.opt)
667                         free = 1;
668                 connected = 0;
669         }
670         if (!ipc.opt) {
671                 struct ip_options_rcu *inet_opt;
672 
673                 rcu_read_lock();
674                 inet_opt = rcu_dereference(inet->inet_opt);
675                 if (inet_opt) {
676                         memcpy(&opt_copy, inet_opt,
677                                sizeof(*inet_opt) + inet_opt->opt.optlen);
678                         ipc.opt = &opt_copy.opt;
679                 }
680                 rcu_read_unlock();
681         }
682 
683         saddr = ipc.addr;
684         ipc.addr = faddr = daddr;
685 
686         if (ipc.opt && ipc.opt->opt.srr) {
687                 if (!daddr)
688                         return -EINVAL;
689                 faddr = ipc.opt->opt.faddr;
690                 connected = 0;
691         }
692         tos = RT_TOS(inet->tos);
693         if (sock_flag(sk, SOCK_LOCALROUTE) ||
694             (msg->msg_flags & MSG_DONTROUTE) ||
695             (ipc.opt && ipc.opt->opt.is_strictroute)) {
696                 tos |= RTO_ONLINK;
697                 connected = 0;
698         }
699 
700         if (ipv4_is_multicast(daddr)) {
701                 if (!ipc.oif)
702                         ipc.oif = inet->mc_index;
703                 if (!saddr)
704                         saddr = inet->mc_addr;
705                 connected = 0;
706         }
707 
708         if (connected)
709                 rt = (struct rtable *)sk_dst_check(sk, 0);
710 
711         if (rt == NULL) {
712                 struct flowi fl = { .oif = ipc.oif,
713                                     .mark = sk->sk_mark,
714                                     .nl_u = { .ip4_u =
715                                               { .daddr = faddr,
716                                                 .saddr = saddr,
717                                                 .tos = tos } },
718                                     .proto = sk->sk_protocol,
719                                     .flags = inet_sk_flowi_flags(sk),
720                                     .uli_u = { .ports =
721                                                { .sport = inet->sport,
722                                                  .dport = dport } } };
723                 struct net *net = sock_net(sk);
724 
725                 security_sk_classify_flow(sk, &fl);
726                 err = ip_route_output_flow(net, &rt, &fl, sk, 1);
727                 if (err) {
728                         if (err == -ENETUNREACH)
729                                 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
730                         goto out;
731                 }
732 
733                 err = -EACCES;
734                 if ((rt->rt_flags & RTCF_BROADCAST) &&
735                     !sock_flag(sk, SOCK_BROADCAST))
736                         goto out;
737                 if (connected)
738                         sk_dst_set(sk, dst_clone(&rt->u.dst));
739         }
740 
741         if (msg->msg_flags&MSG_CONFIRM)
742                 goto do_confirm;
743 back_from_confirm:
744 
745         saddr = rt->rt_src;
746         if (!ipc.addr)
747                 daddr = ipc.addr = rt->rt_dst;
748 
749         lock_sock(sk);
750         if (unlikely(up->pending)) {
751                 /* The socket is already corked while preparing it. */
752                 /* ... which is an evident application bug. --ANK */
753                 release_sock(sk);
754 
755                 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
756                 err = -EINVAL;
757                 goto out;
758         }
759         /*
760          *      Now cork the socket to pend data.
761          */
762         inet->cork.fl.fl4_dst = daddr;
763         inet->cork.fl.fl_ip_dport = dport;
764         inet->cork.fl.fl4_src = saddr;
765         inet->cork.fl.fl_ip_sport = inet->sport;
766         up->pending = AF_INET;
767 
768 do_append_data:
769         up->len += ulen;
770         getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
771         err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
772                         sizeof(struct udphdr), &ipc, &rt,
773                         corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
774         if (err)
775                 udp_flush_pending_frames(sk);
776         else if (!corkreq)
777                 err = udp_push_pending_frames(sk);
778         else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
779                 up->pending = 0;
780         release_sock(sk);
781 
782 out:
783         ip_rt_put(rt);
784         if (free)
785                 kfree(ipc.opt);
786         if (!err)
787                 return len;
788         /*
789          * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
790          * ENOBUFS might not be good (it's not tunable per se), but otherwise
791          * we don't have a good statistic (IpOutDiscards but it can be too many
792          * things).  We could add another new stat but at least for now that
793          * seems like overkill.
794          */
795         if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
796                 UDP_INC_STATS_USER(sock_net(sk),
797                                 UDP_MIB_SNDBUFERRORS, is_udplite);
798         }
799         return err;
800 
801 do_confirm:
802         dst_confirm(&rt->u.dst);
803         if (!(msg->msg_flags&MSG_PROBE) || len)
804                 goto back_from_confirm;
805         err = 0;
806         goto out;
807 }
808 EXPORT_SYMBOL(udp_sendmsg);
809 
810 int udp_sendpage(struct sock *sk, struct page *page, int offset,
811                  size_t size, int flags)
812 {
813         struct udp_sock *up = udp_sk(sk);
814         int ret;
815 
816         if (!up->pending) {
817                 struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
818 
819                 /* Call udp_sendmsg to specify destination address which
820                  * sendpage interface can't pass.
821                  * This will succeed only when the socket is connected.
822                  */
823                 ret = udp_sendmsg(NULL, sk, &msg, 0);
824                 if (ret < 0)
825                         return ret;
826         }
827 
828         lock_sock(sk);
829 
830         if (unlikely(!up->pending)) {
831                 release_sock(sk);
832 
833                 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
834                 return -EINVAL;
835         }
836 
837         ret = ip_append_page(sk, page, offset, size, flags);
838         if (ret == -EOPNOTSUPP) {
839                 release_sock(sk);
840                 return sock_no_sendpage(sk->sk_socket, page, offset,
841                                         size, flags);
842         }
843         if (ret < 0) {
844                 udp_flush_pending_frames(sk);
845                 goto out;
846         }
847 
848         up->len += size;
849         if (!(up->corkflag || (flags&MSG_MORE)))
850                 ret = udp_push_pending_frames(sk);
851         if (!ret)
852                 ret = size;
853 out:
854         release_sock(sk);
855         return ret;
856 }
857 
858 
859 /**
860  *      first_packet_length     - return length of first packet in receive queue
861  *      @sk: socket
862  *
863  *      Drops all bad checksum frames, until a valid one is found.
864  *      Returns the length of found skb, or 0 if none is found.
865  */
866 static unsigned int first_packet_length(struct sock *sk)
867 {
868         struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
869         struct sk_buff *skb;
870         unsigned int res;
871 
872         __skb_queue_head_init(&list_kill);
873 
874         spin_lock_bh(&rcvq->lock);
875         while ((skb = skb_peek(rcvq)) != NULL &&
876                 udp_lib_checksum_complete(skb)) {
877                 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
878                                  IS_UDPLITE(sk));
879                 __skb_unlink(skb, rcvq);
880                 __skb_queue_tail(&list_kill, skb);
881         }
882         res = skb ? skb->len : 0;
883         spin_unlock_bh(&rcvq->lock);
884 
885         if (!skb_queue_empty(&list_kill)) {
886                 lock_sock(sk);
887                 __skb_queue_purge(&list_kill);
888                 sk_mem_reclaim_partial(sk);
889                 release_sock(sk);
890         }
891         return res;
892 }
893 
894 /*
895  *      IOCTL requests applicable to the UDP protocol
896  */
897 
898 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
899 {
900         switch (cmd) {
901         case SIOCOUTQ:
902         {
903                 int amount = sk_wmem_alloc_get(sk);
904 
905                 return put_user(amount, (int __user *)arg);
906         }
907 
908         case SIOCINQ:
909         {
910                 unsigned int amount = first_packet_length(sk);
911 
912                 if (amount)
913                         /*
914                          * We will only return the amount
915                          * of this packet since that is all
916                          * that will be read.
917                          */
918                         amount -= sizeof(struct udphdr);
919 
920                 return put_user(amount, (int __user *)arg);
921         }
922 
923         default:
924                 return -ENOIOCTLCMD;
925         }
926 
927         return 0;
928 }
929 EXPORT_SYMBOL(udp_ioctl);
930 
931 /*
932  *      This should be easy, if there is something there we
933  *      return it, otherwise we block.
934  */
935 
936 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
937                 size_t len, int noblock, int flags, int *addr_len)
938 {
939         struct inet_sock *inet = inet_sk(sk);
940         struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
941         struct sk_buff *skb;
942         unsigned int ulen, copied;
943         int peeked;
944         int err;
945         int is_udplite = IS_UDPLITE(sk);
946         bool checksum_valid = false;
947 
948         if (flags & MSG_ERRQUEUE)
949                 return ip_recv_error(sk, msg, len, addr_len);
950 
951 try_again:
952         skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
953                                   &peeked, &err);
954         if (!skb)
955                 goto out;
956         if (ccs_socket_post_recvmsg_permission(sk, skb, flags)) {
957                 err = -EAGAIN; /* Hope less harmful than -EPERM. */
958                 goto out;
959         }
960 
961         ulen = skb->len - sizeof(struct udphdr);
962         copied = len;
963         if (copied > ulen)
964                 copied = ulen;
965         else if (copied < ulen)
966                 msg->msg_flags |= MSG_TRUNC;
967 
968         /*
969          * If checksum is needed at all, try to do it while copying the
970          * data.  If the data is truncated, or if we only want a partial
971          * coverage checksum (UDP-Lite), do it before the copy.
972          */
973 
974         if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
975                 checksum_valid = !udp_lib_checksum_complete(skb);
976                 if (!checksum_valid)
977                         goto csum_copy_err;
978         }
979 
980         if (checksum_valid || skb_csum_unnecessary(skb))
981                 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
982                                               msg->msg_iov, copied);
983         else {
984                 err = skb_copy_and_csum_datagram_iovec(skb,
985                                                        sizeof(struct udphdr),
986                                                        msg->msg_iov);
987 
988                 if (err == -EINVAL)
989                         goto csum_copy_err;
990         }
991 
992         if (err)
993                 goto out_free;
994 
995         if (!peeked)
996                 UDP_INC_STATS_USER(sock_net(sk),
997                                 UDP_MIB_INDATAGRAMS, is_udplite);
998 
999         sock_recv_timestamp(msg, sk, skb);
1000 
1001         /* Copy the address. */
1002         if (sin) {
1003                 sin->sin_family = AF_INET;
1004                 sin->sin_port = udp_hdr(skb)->source;
1005                 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1006                 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1007                 *addr_len = sizeof(*sin);
1008         }
1009         if (inet->cmsg_flags)
1010                 ip_cmsg_recv(msg, skb);
1011 
1012         err = copied;
1013         if (flags & MSG_TRUNC)
1014                 err = ulen;
1015 
1016 out_free:
1017         skb_free_datagram_locked(sk, skb);
1018 out:
1019         return err;
1020 
1021 csum_copy_err:
1022         lock_sock(sk);
1023         if (!skb_kill_datagram(sk, skb, flags))
1024                 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1025         release_sock(sk);
1026 
1027         /* starting over for a new packet, but check if we need to yield */
1028         cond_resched();
1029         msg->msg_flags &= ~MSG_TRUNC;
1030         goto try_again;
1031 }
1032 
1033 
1034 int udp_disconnect(struct sock *sk, int flags)
1035 {
1036         struct inet_sock *inet = inet_sk(sk);
1037         /*
1038          *      1003.1g - break association.
1039          */
1040 
1041         sk->sk_state = TCP_CLOSE;
1042         inet->daddr = 0;
1043         inet->dport = 0;
1044         sk->sk_bound_dev_if = 0;
1045         if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1046                 inet_reset_saddr(sk);
1047 
1048         if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1049                 sk->sk_prot->unhash(sk);
1050                 inet->sport = 0;
1051         }
1052         sk_dst_reset(sk);
1053         return 0;
1054 }
1055 EXPORT_SYMBOL(udp_disconnect);
1056 
1057 void udp_lib_unhash(struct sock *sk)
1058 {
1059         if (sk_hashed(sk)) {
1060                 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1061                 unsigned int hash = udp_hashfn(sock_net(sk), sk->sk_hash);
1062                 struct udp_hslot *hslot = &udptable->hash[hash];
1063 
1064                 spin_lock_bh(&hslot->lock);
1065                 if (sk_nulls_del_node_init_rcu(sk)) {
1066                         inet_sk(sk)->num = 0;
1067                         sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1068                 }
1069                 spin_unlock_bh(&hslot->lock);
1070         }
1071 }
1072 EXPORT_SYMBOL(udp_lib_unhash);
1073 
1074 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1075 {
1076         int is_udplite = IS_UDPLITE(sk);
1077         int rc;
1078 
1079         if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
1080                 /* Note that an ENOMEM error is charged twice */
1081                 if (rc == -ENOMEM) {
1082                         UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1083                                          is_udplite);
1084                         atomic_inc(&sk->sk_drops);
1085                 }
1086                 goto drop;
1087         }
1088 
1089         return 0;
1090 
1091 drop:
1092         UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1093         kfree_skb(skb);
1094         return -1;
1095 }
1096 
1097 /* returns:
1098  *  -1: error
1099  *   0: success
1100  *  >0: "udp encap" protocol resubmission
1101  *
1102  * Note that in the success and error cases, the skb is assumed to
1103  * have either been requeued or freed.
1104  */
1105 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1106 {
1107         struct udp_sock *up = udp_sk(sk);
1108         int rc;
1109         int is_udplite = IS_UDPLITE(sk);
1110 
1111         /*
1112          *      Charge it to the socket, dropping if the queue is full.
1113          */
1114         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1115                 goto drop;
1116         nf_reset(skb);
1117 
1118         if (up->encap_type) {
1119                 /*
1120                  * This is an encapsulation socket so pass the skb to
1121                  * the socket's udp_encap_rcv() hook. Otherwise, just
1122                  * fall through and pass this up the UDP socket.
1123                  * up->encap_rcv() returns the following value:
1124                  * =0 if skb was successfully passed to the encap
1125                  *    handler or was discarded by it.
1126                  * >0 if skb should be passed on to UDP.
1127                  * <0 if skb should be resubmitted as proto -N
1128                  */
1129 
1130                 /* if we're overly short, let UDP handle it */
1131                 if (skb->len > sizeof(struct udphdr) &&
1132                     up->encap_rcv != NULL) {
1133                         int ret;
1134 
1135                         ret = (*up->encap_rcv)(sk, skb);
1136                         if (ret <= 0) {
1137                                 UDP_INC_STATS_BH(sock_net(sk),
1138                                                  UDP_MIB_INDATAGRAMS,
1139                                                  is_udplite);
1140                                 return -ret;
1141                         }
1142                 }
1143 
1144                 /* FALLTHROUGH -- it's a UDP Packet */
1145         }
1146 
1147         /*
1148          *      UDP-Lite specific tests, ignored on UDP sockets
1149          */
1150         if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1151 
1152                 /*
1153                  * MIB statistics other than incrementing the error count are
1154                  * disabled for the following two types of errors: these depend
1155                  * on the application settings, not on the functioning of the
1156                  * protocol stack as such.
1157                  *
1158                  * RFC 3828 here recommends (sec 3.3): "There should also be a
1159                  * way ... to ... at least let the receiving application block
1160                  * delivery of packets with coverage values less than a value
1161                  * provided by the application."
1162                  */
1163                 if (up->pcrlen == 0) {          /* full coverage was set  */
1164                         LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1165                                 "%d while full coverage %d requested\n",
1166                                 UDP_SKB_CB(skb)->cscov, skb->len);
1167                         goto drop;
1168                 }
1169                 /* The next case involves violating the min. coverage requested
1170                  * by the receiver. This is subtle: if receiver wants x and x is
1171                  * greater than the buffersize/MTU then receiver will complain
1172                  * that it wants x while sender emits packets of smaller size y.
1173                  * Therefore the above ...()->partial_cov statement is essential.
1174                  */
1175                 if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1176                         LIMIT_NETDEBUG(KERN_WARNING
1177                                 "UDPLITE: coverage %d too small, need min %d\n",
1178                                 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1179                         goto drop;
1180                 }
1181         }
1182 
1183         if (sk->sk_filter) {
1184                 if (udp_lib_checksum_complete(skb))
1185                         goto drop;
1186         }
1187 
1188         rc = 0;
1189 
1190         bh_lock_sock(sk);
1191         if (!sock_owned_by_user(sk))
1192                 rc = __udp_queue_rcv_skb(sk, skb);
1193         else
1194                 sk_add_backlog(sk, skb);
1195         bh_unlock_sock(sk);
1196 
1197         return rc;
1198 
1199 drop:
1200         UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1201         kfree_skb(skb);
1202         return -1;
1203 }
1204 
1205 /*
1206  *      Multicasts and broadcasts go to each listener.
1207  *
1208  *      Note: called only from the BH handler context,
1209  *      so we don't need to lock the hashes.
1210  */
1211 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1212                                     struct udphdr  *uh,
1213                                     __be32 saddr, __be32 daddr,
1214                                     struct udp_table *udptable)
1215 {
1216         struct sock *sk;
1217         struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
1218         int dif;
1219 
1220         spin_lock(&hslot->lock);
1221         sk = sk_nulls_head(&hslot->head);
1222         dif = skb->dev->ifindex;
1223         sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1224         if (sk) {
1225                 struct sock *sknext = NULL;
1226 
1227                 do {
1228                         struct sk_buff *skb1 = skb;
1229 
1230                         sknext = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1231                                                    daddr, uh->source, saddr,
1232                                                    dif);
1233                         if (sknext)
1234                                 skb1 = skb_clone(skb, GFP_ATOMIC);
1235 
1236                         if (skb1) {
1237                                 int ret = udp_queue_rcv_skb(sk, skb1);
1238                                 if (ret > 0)
1239                                         /* we should probably re-process instead
1240                                          * of dropping packets here. */
1241                                         kfree_skb(skb1);
1242                         }
1243                         sk = sknext;
1244                 } while (sknext);
1245         } else
1246                 consume_skb(skb);
1247         spin_unlock(&hslot->lock);
1248         return 0;
1249 }
1250 
1251 /* Initialize UDP checksum. If exited with zero value (success),
1252  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1253  * Otherwise, csum completion requires chacksumming packet body,
1254  * including udp header and folding it to skb->csum.
1255  */
1256 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1257                                  int proto)
1258 {
1259         const struct iphdr *iph;
1260         int err;
1261 
1262         UDP_SKB_CB(skb)->partial_cov = 0;
1263         UDP_SKB_CB(skb)->cscov = skb->len;
1264 
1265         if (proto == IPPROTO_UDPLITE) {
1266                 err = udplite_checksum_init(skb, uh);
1267                 if (err)
1268                         return err;
1269         }
1270 
1271         iph = ip_hdr(skb);
1272         if (uh->check == 0) {
1273                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1274         } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1275                 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1276                                       proto, skb->csum))
1277                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1278         }
1279         if (!skb_csum_unnecessary(skb))
1280                 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1281                                                skb->len, proto, 0);
1282         /* Probably, we should checksum udp header (it should be in cache
1283          * in any case) and data in tiny packets (< rx copybreak).
1284          */
1285 
1286         return 0;
1287 }
1288 
1289 /*
1290  *      All we need to do is get the socket, and then do a checksum.
1291  */
1292 
1293 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1294                    int proto)
1295 {
1296         struct sock *sk;
1297         struct udphdr *uh;
1298         unsigned short ulen;
1299         struct rtable *rt = skb_rtable(skb);
1300         __be32 saddr, daddr;
1301         struct net *net = dev_net(skb->dev);
1302 
1303         /*
1304          *  Validate the packet.
1305          */
1306         if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1307                 goto drop;              /* No space for header. */
1308 
1309         uh   = udp_hdr(skb);
1310         ulen = ntohs(uh->len);
1311         saddr = ip_hdr(skb)->saddr;
1312         daddr = ip_hdr(skb)->daddr;
1313 
1314         if (ulen > skb->len)
1315                 goto short_packet;
1316 
1317         if (proto == IPPROTO_UDP) {
1318                 /* UDP validates ulen. */
1319                 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1320                         goto short_packet;
1321                 uh = udp_hdr(skb);
1322         }
1323 
1324         if (udp4_csum_init(skb, uh, proto))
1325                 goto csum_error;
1326 
1327         if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1328                 return __udp4_lib_mcast_deliver(net, skb, uh,
1329                                 saddr, daddr, udptable);
1330 
1331         sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1332 
1333         if (sk != NULL) {
1334                 int ret = udp_queue_rcv_skb(sk, skb);
1335                 sock_put(sk);
1336 
1337                 /* a return value > 0 means to resubmit the input, but
1338                  * it wants the return to be -protocol, or 0
1339                  */
1340                 if (ret > 0)
1341                         return -ret;
1342                 return 0;
1343         }
1344 
1345         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1346                 goto drop;
1347         nf_reset(skb);
1348 
1349         /* No socket. Drop packet silently, if checksum is wrong */
1350         if (udp_lib_checksum_complete(skb))
1351                 goto csum_error;
1352 
1353         UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1354         icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1355 
1356         /*
1357          * Hmm.  We got an UDP packet to a port to which we
1358          * don't wanna listen.  Ignore it.
1359          */
1360         kfree_skb(skb);
1361         return 0;
1362 
1363 short_packet:
1364         LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1365                        proto == IPPROTO_UDPLITE ? "-Lite" : "",
1366                        &saddr,
1367                        ntohs(uh->source),
1368                        ulen,
1369                        skb->len,
1370                        &daddr,
1371                        ntohs(uh->dest));
1372         goto drop;
1373 
1374 csum_error:
1375         /*
1376          * RFC1122: OK.  Discards the bad packet silently (as far as
1377          * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1378          */
1379         LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1380                        proto == IPPROTO_UDPLITE ? "-Lite" : "",
1381                        &saddr,
1382                        ntohs(uh->source),
1383                        &daddr,
1384                        ntohs(uh->dest),
1385                        ulen);
1386 drop:
1387         UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1388         kfree_skb(skb);
1389         return 0;
1390 }
1391 
1392 int udp_rcv(struct sk_buff *skb)
1393 {
1394         return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1395 }
1396 
1397 void udp_destroy_sock(struct sock *sk)
1398 {
1399         lock_sock(sk);
1400         udp_flush_pending_frames(sk);
1401         release_sock(sk);
1402 }
1403 
1404 /*
1405  *      Socket option code for UDP
1406  */
1407 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1408                        char __user *optval, unsigned int optlen,
1409                        int (*push_pending_frames)(struct sock *))
1410 {
1411         struct udp_sock *up = udp_sk(sk);
1412         int val;
1413         int err = 0;
1414         int is_udplite = IS_UDPLITE(sk);
1415 
1416         if (optlen < sizeof(int))
1417                 return -EINVAL;
1418 
1419         if (get_user(val, (int __user *)optval))
1420                 return -EFAULT;
1421 
1422         switch (optname) {
1423         case UDP_CORK:
1424                 if (val != 0) {
1425                         up->corkflag = 1;
1426                 } else {
1427                         up->corkflag = 0;
1428                         lock_sock(sk);
1429                         (*push_pending_frames)(sk);
1430                         release_sock(sk);
1431                 }
1432                 break;
1433 
1434         case UDP_ENCAP:
1435                 switch (val) {
1436                 case 0:
1437                 case UDP_ENCAP_ESPINUDP:
1438                 case UDP_ENCAP_ESPINUDP_NON_IKE:
1439                         up->encap_rcv = xfrm4_udp_encap_rcv;
1440                         /* FALLTHROUGH */
1441                 case UDP_ENCAP_L2TPINUDP:
1442                         up->encap_type = val;
1443                         break;
1444                 default:
1445                         err = -ENOPROTOOPT;
1446                         break;
1447                 }
1448                 break;
1449 
1450         /*
1451          *      UDP-Lite's partial checksum coverage (RFC 3828).
1452          */
1453         /* The sender sets actual checksum coverage length via this option.
1454          * The case coverage > packet length is handled by send module. */
1455         case UDPLITE_SEND_CSCOV:
1456                 if (!is_udplite)         /* Disable the option on UDP sockets */
1457                         return -ENOPROTOOPT;
1458                 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1459                         val = 8;
1460                 else if (val > USHORT_MAX)
1461                         val = USHORT_MAX;
1462                 up->pcslen = val;
1463                 up->pcflag |= UDPLITE_SEND_CC;
1464                 break;
1465 
1466         /* The receiver specifies a minimum checksum coverage value. To make
1467          * sense, this should be set to at least 8 (as done below). If zero is
1468          * used, this again means full checksum coverage.                     */
1469         case UDPLITE_RECV_CSCOV:
1470                 if (!is_udplite)         /* Disable the option on UDP sockets */
1471                         return -ENOPROTOOPT;
1472                 if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1473                         val = 8;
1474                 else if (val > USHORT_MAX)
1475                         val = USHORT_MAX;
1476                 up->pcrlen = val;
1477                 up->pcflag |= UDPLITE_RECV_CC;
1478                 break;
1479 
1480         default:
1481                 err = -ENOPROTOOPT;
1482                 break;
1483         }
1484 
1485         return err;
1486 }
1487 EXPORT_SYMBOL(udp_lib_setsockopt);
1488 
1489 int udp_setsockopt(struct sock *sk, int level, int optname,
1490                    char __user *optval, unsigned int optlen)
1491 {
1492         if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1493                 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1494                                           udp_push_pending_frames);
1495         return ip_setsockopt(sk, level, optname, optval, optlen);
1496 }
1497 
1498 #ifdef CONFIG_COMPAT
1499 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1500                           char __user *optval, unsigned int optlen)
1501 {
1502         if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1503                 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1504                                           udp_push_pending_frames);
1505         return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1506 }
1507 #endif
1508 
1509 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1510                        char __user *optval, int __user *optlen)
1511 {
1512         struct udp_sock *up = udp_sk(sk);
1513         int val, len;
1514 
1515         if (get_user(len, optlen))
1516                 return -EFAULT;
1517 
1518         len = min_t(unsigned int, len, sizeof(int));
1519 
1520         if (len < 0)
1521                 return -EINVAL;
1522 
1523         switch (optname) {
1524         case UDP_CORK:
1525                 val = up->corkflag;
1526                 break;
1527 
1528         case UDP_ENCAP:
1529                 val = up->encap_type;
1530                 break;
1531 
1532         /* The following two cannot be changed on UDP sockets, the return is
1533          * always 0 (which corresponds to the full checksum coverage of UDP). */
1534         case UDPLITE_SEND_CSCOV:
1535                 val = up->pcslen;
1536                 break;
1537 
1538         case UDPLITE_RECV_CSCOV:
1539                 val = up->pcrlen;
1540                 break;
1541 
1542         default:
1543                 return -ENOPROTOOPT;
1544         }
1545 
1546         if (put_user(len, optlen))
1547                 return -EFAULT;
1548         if (copy_to_user(optval, &val, len))
1549                 return -EFAULT;
1550         return 0;
1551 }
1552 EXPORT_SYMBOL(udp_lib_getsockopt);
1553 
1554 int udp_getsockopt(struct sock *sk, int level, int optname,
1555                    char __user *optval, int __user *optlen)
1556 {
1557         if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1558                 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1559         return ip_getsockopt(sk, level, optname, optval, optlen);
1560 }
1561 
1562 #ifdef CONFIG_COMPAT
1563 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1564                                  char __user *optval, int __user *optlen)
1565 {
1566         if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1567                 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1568         return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1569 }
1570 #endif
1571 /**
1572  *      udp_poll - wait for a UDP event.
1573  *      @file - file struct
1574  *      @sock - socket
1575  *      @wait - poll table
1576  *
1577  *      This is same as datagram poll, except for the special case of
1578  *      blocking sockets. If application is using a blocking fd
1579  *      and a packet with checksum error is in the queue;
1580  *      then it could get return from select indicating data available
1581  *      but then block when reading it. Add special case code
1582  *      to work around these arguably broken applications.
1583  */
1584 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1585 {
1586         unsigned int mask = datagram_poll(file, sock, wait);
1587         struct sock *sk = sock->sk;
1588 
1589         /* Check for false positives due to checksum errors */
1590         if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1591             !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1592                 mask &= ~(POLLIN | POLLRDNORM);
1593 
1594         return mask;
1595 
1596 }
1597 EXPORT_SYMBOL(udp_poll);
1598 
1599 struct proto udp_prot = {
1600         .name              = "UDP",
1601         .owner             = THIS_MODULE,
1602         .close             = udp_lib_close,
1603         .connect           = ip4_datagram_connect,
1604         .disconnect        = udp_disconnect,
1605         .ioctl             = udp_ioctl,
1606         .destroy           = udp_destroy_sock,
1607         .setsockopt        = udp_setsockopt,
1608         .getsockopt        = udp_getsockopt,
1609         .sendmsg           = udp_sendmsg,
1610         .recvmsg           = udp_recvmsg,
1611         .sendpage          = udp_sendpage,
1612         .backlog_rcv       = __udp_queue_rcv_skb,
1613         .hash              = udp_lib_hash,
1614         .unhash            = udp_lib_unhash,
1615         .get_port          = udp_v4_get_port,
1616         .memory_allocated  = &udp_memory_allocated,
1617         .sysctl_mem        = sysctl_udp_mem,
1618         .sysctl_wmem       = &sysctl_udp_wmem_min,
1619         .sysctl_rmem       = &sysctl_udp_rmem_min,
1620         .obj_size          = sizeof(struct udp_sock),
1621         .slab_flags        = SLAB_DESTROY_BY_RCU,
1622         .h.udp_table       = &udp_table,
1623 #ifdef CONFIG_COMPAT
1624         .compat_setsockopt = compat_udp_setsockopt,
1625         .compat_getsockopt = compat_udp_getsockopt,
1626 #endif
1627 };
1628 EXPORT_SYMBOL(udp_prot);
1629 
1630 /* ------------------------------------------------------------------------ */
1631 #ifdef CONFIG_PROC_FS
1632 
1633 static struct sock *udp_get_first(struct seq_file *seq, int start)
1634 {
1635         struct sock *sk;
1636         struct udp_iter_state *state = seq->private;
1637         struct net *net = seq_file_net(seq);
1638 
1639         for (state->bucket = start; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1640                 struct hlist_nulls_node *node;
1641                 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1642                 spin_lock_bh(&hslot->lock);
1643                 sk_nulls_for_each(sk, node, &hslot->head) {
1644                         if (!net_eq(sock_net(sk), net))
1645                                 continue;
1646                         if (sk->sk_family == state->family)
1647                                 goto found;
1648                 }
1649                 spin_unlock_bh(&hslot->lock);
1650         }
1651         sk = NULL;
1652 found:
1653         return sk;
1654 }
1655 
1656 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1657 {
1658         struct udp_iter_state *state = seq->private;
1659         struct net *net = seq_file_net(seq);
1660 
1661         do {
1662                 sk = sk_nulls_next(sk);
1663         } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1664 
1665         if (!sk) {
1666                 if (state->bucket < UDP_HTABLE_SIZE)
1667                         spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1668                 return udp_get_first(seq, state->bucket + 1);
1669         }
1670         return sk;
1671 }
1672 
1673 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1674 {
1675         struct sock *sk = udp_get_first(seq, 0);
1676 
1677         if (sk)
1678                 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1679                         --pos;
1680         return pos ? NULL : sk;
1681 }
1682 
1683 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1684 {
1685         struct udp_iter_state *state = seq->private;
1686         state->bucket = UDP_HTABLE_SIZE;
1687 
1688         return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1689 }
1690 
1691 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1692 {
1693         struct sock *sk;
1694 
1695         if (v == SEQ_START_TOKEN)
1696                 sk = udp_get_idx(seq, 0);
1697         else
1698                 sk = udp_get_next(seq, v);
1699 
1700         ++*pos;
1701         return sk;
1702 }
1703 
1704 static void udp_seq_stop(struct seq_file *seq, void *v)
1705 {
1706         struct udp_iter_state *state = seq->private;
1707 
1708         if (state->bucket < UDP_HTABLE_SIZE)
1709                 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1710 }
1711 
1712 static int udp_seq_open(struct inode *inode, struct file *file)
1713 {
1714         struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1715         struct udp_iter_state *s;
1716         int err;
1717 
1718         err = seq_open_net(inode, file, &afinfo->seq_ops,
1719                            sizeof(struct udp_iter_state));
1720         if (err < 0)
1721                 return err;
1722 
1723         s = ((struct seq_file *)file->private_data)->private;
1724         s->family               = afinfo->family;
1725         s->udp_table            = afinfo->udp_table;
1726         return err;
1727 }
1728 
1729 /* ------------------------------------------------------------------------ */
1730 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1731 {
1732         struct proc_dir_entry *p;
1733         int rc = 0;
1734 
1735         afinfo->seq_fops.open           = udp_seq_open;
1736         afinfo->seq_fops.read           = seq_read;
1737         afinfo->seq_fops.llseek         = seq_lseek;
1738         afinfo->seq_fops.release        = seq_release_net;
1739 
1740         afinfo->seq_ops.start           = udp_seq_start;
1741         afinfo->seq_ops.next            = udp_seq_next;
1742         afinfo->seq_ops.stop            = udp_seq_stop;
1743 
1744         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1745                              &afinfo->seq_fops, afinfo);
1746         if (!p)
1747                 rc = -ENOMEM;
1748         return rc;
1749 }
1750 EXPORT_SYMBOL(udp_proc_register);
1751 
1752 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1753 {
1754         proc_net_remove(net, afinfo->name);
1755 }
1756 EXPORT_SYMBOL(udp_proc_unregister);
1757 
1758 /* ------------------------------------------------------------------------ */
1759 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1760                 int bucket, int *len)
1761 {
1762         struct inet_sock *inet = inet_sk(sp);
1763         __be32 dest = inet->daddr;
1764         __be32 src  = inet->rcv_saddr;
1765         __u16 destp       = ntohs(inet->dport);
1766         __u16 srcp        = ntohs(inet->sport);
1767 
1768         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1769                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1770                 bucket, src, srcp, dest, destp, sp->sk_state,
1771                 sk_wmem_alloc_get(sp),
1772                 sk_rmem_alloc_get(sp),
1773                 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1774                 atomic_read(&sp->sk_refcnt), sp,
1775                 atomic_read(&sp->sk_drops), len);
1776 }
1777 
1778 int udp4_seq_show(struct seq_file *seq, void *v)
1779 {
1780         if (v == SEQ_START_TOKEN)
1781                 seq_printf(seq, "%-127s\n",
1782                            "  sl  local_address rem_address   st tx_queue "
1783                            "rx_queue tr tm->when retrnsmt   uid  timeout "
1784                            "inode ref pointer drops");
1785         else {
1786                 struct udp_iter_state *state = seq->private;
1787                 int len;
1788 
1789                 udp4_format_sock(v, seq, state->bucket, &len);
1790                 seq_printf(seq, "%*s\n", 127 - len, "");
1791         }
1792         return 0;
1793 }
1794 
1795 /* ------------------------------------------------------------------------ */
1796 static struct udp_seq_afinfo udp4_seq_afinfo = {
1797         .name           = "udp",
1798         .family         = AF_INET,
1799         .udp_table      = &udp_table,
1800         .seq_fops       = {
1801                 .owner  =       THIS_MODULE,
1802         },
1803         .seq_ops        = {
1804                 .show           = udp4_seq_show,
1805         },
1806 };
1807 
1808 static int udp4_proc_init_net(struct net *net)
1809 {
1810         return udp_proc_register(net, &udp4_seq_afinfo);
1811 }
1812 
1813 static void udp4_proc_exit_net(struct net *net)
1814 {
1815         udp_proc_unregister(net, &udp4_seq_afinfo);
1816 }
1817 
1818 static struct pernet_operations udp4_net_ops = {
1819         .init = udp4_proc_init_net,
1820         .exit = udp4_proc_exit_net,
1821 };
1822 
1823 int __init udp4_proc_init(void)
1824 {
1825         return register_pernet_subsys(&udp4_net_ops);
1826 }
1827 
1828 void udp4_proc_exit(void)
1829 {
1830         unregister_pernet_subsys(&udp4_net_ops);
1831 }
1832 #endif /* CONFIG_PROC_FS */
1833 
1834 void __init udp_table_init(struct udp_table *table)
1835 {
1836         int i;
1837 
1838         for (i = 0; i < UDP_HTABLE_SIZE; i++) {
1839                 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
1840                 spin_lock_init(&table->hash[i].lock);
1841         }
1842 }
1843 
1844 void __init udp_init(void)
1845 {
1846         unsigned long nr_pages, limit;
1847 
1848         udp_table_init(&udp_table);
1849         /* Set the pressure threshold up by the same strategy of TCP. It is a
1850          * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1851          * toward zero with the amount of memory, with a floor of 128 pages,
1852          * and a ceiling that prevents an integer overflow.
1853          */
1854         nr_pages = totalram_pages - totalhigh_pages;
1855         limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1856         limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1857         limit = max(limit, 128UL);
1858         limit = min(limit, INT_MAX * 4UL / 3 / 2);
1859         sysctl_udp_mem[0] = limit / 4 * 3;
1860         sysctl_udp_mem[1] = limit;
1861         sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1862 
1863         sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1864         sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1865 }
1866 
1867 int udp4_ufo_send_check(struct sk_buff *skb)
1868 {
1869         const struct iphdr *iph;
1870         struct udphdr *uh;
1871 
1872         if (!pskb_may_pull(skb, sizeof(*uh)))
1873                 return -EINVAL;
1874 
1875         iph = ip_hdr(skb);
1876         uh = udp_hdr(skb);
1877 
1878         uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1879                                        IPPROTO_UDP, 0);
1880         skb->csum_start = skb_transport_header(skb) - skb->head;
1881         skb->csum_offset = offsetof(struct udphdr, check);
1882         skb->ip_summed = CHECKSUM_PARTIAL;
1883         return 0;
1884 }
1885 
1886 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
1887 {
1888         struct sk_buff *segs = ERR_PTR(-EINVAL);
1889         unsigned int mss;
1890         int offset;
1891         __wsum csum;
1892 
1893         mss = skb_shinfo(skb)->gso_size;
1894         if (unlikely(skb->len <= mss))
1895                 goto out;
1896 
1897         if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
1898                 /* Packet is from an untrusted source, reset gso_segs. */
1899                 int type = skb_shinfo(skb)->gso_type;
1900 
1901                 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
1902                              !(type & (SKB_GSO_UDP))))
1903                         goto out;
1904 
1905                 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
1906 
1907                 segs = NULL;
1908                 goto out;
1909         }
1910 
1911         /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
1912          * do checksum of UDP packets sent as multiple IP fragments.
1913          */
1914         offset = skb->csum_start - skb_headroom(skb);
1915         csum = skb_checksum(skb, offset, skb->len - offset, 0);
1916         offset += skb->csum_offset;
1917         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1918         skb->ip_summed = CHECKSUM_NONE;
1919 
1920         /* Fragment the skb. IP headers of the fragments are updated in
1921          * inet_gso_segment()
1922          */
1923         segs = skb_segment(skb, features);
1924 out:
1925         return segs;
1926 }
1927 
1928 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp