1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/memblock.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_hslot *hslot, *hslot2; 244 struct udp_table *udptable = sk->sk_prot->h.udp_table; 245 int error = 1; 246 struct net *net = sock_net(sk); 247 248 if (!snum) { 249 int low, high, remaining; 250 unsigned int rand; 251 unsigned short first, last; 252 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 253 254 inet_get_local_port_range(net, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = prandom_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sk_add_node_rcu(sk, &hslot->head); 331 hslot->count++; 332 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 333 334 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 335 spin_lock(&hslot2->lock); 336 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 337 sk->sk_family == AF_INET6) 338 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 else 341 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 hslot2->count++; 344 spin_unlock(&hslot2->lock); 345 } 346 sock_set_flag(sk, SOCK_RCU_FREE); 347 error = 0; 348 fail_unlock: 349 spin_unlock_bh(&hslot->lock); 350 fail: 351 return error; 352 } 353 EXPORT_SYMBOL(udp_lib_get_port); 354 355 int udp_v4_get_port(struct sock *sk, unsigned short snum) 356 { 357 unsigned int hash2_nulladdr = 358 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 359 unsigned int hash2_partial = 360 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 361 362 /* precompute partial secondary hash */ 363 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 364 return udp_lib_get_port(sk, snum, hash2_nulladdr); 365 } 366 367 static int compute_score(struct sock *sk, struct net *net, 368 __be32 saddr, __be16 sport, 369 __be32 daddr, unsigned short hnum, 370 int dif, int sdif, bool exact_dif) 371 { 372 int score; 373 struct inet_sock *inet; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 score = (sk->sk_family == PF_INET) ? 2 : 1; 381 inet = inet_sk(sk); 382 383 if (inet->inet_rcv_saddr) { 384 if (inet->inet_rcv_saddr != daddr) 385 return -1; 386 score += 4; 387 } 388 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 if (sk->sk_bound_dev_if || exact_dif) { 402 bool dev_match = (sk->sk_bound_dev_if == dif || 403 sk->sk_bound_dev_if == sdif); 404 405 if (!dev_match) 406 return -1; 407 if (sk->sk_bound_dev_if) 408 score += 4; 409 } 410 411 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 412 score++; 413 return score; 414 } 415 416 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 417 const __u16 lport, const __be32 faddr, 418 const __be16 fport) 419 { 420 static u32 udp_ehash_secret __read_mostly; 421 422 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 423 424 return __inet_ehashfn(laddr, lport, faddr, fport, 425 udp_ehash_secret + net_hash_mix(net)); 426 } 427 428 /* called with rcu_read_lock() */ 429 static struct sock *udp4_lib_lookup2(struct net *net, 430 __be32 saddr, __be16 sport, 431 __be32 daddr, unsigned int hnum, 432 int dif, int sdif, bool exact_dif, 433 struct udp_hslot *hslot2, 434 struct sk_buff *skb) 435 { 436 struct sock *sk, *result; 437 int score, badness; 438 u32 hash = 0; 439 440 result = NULL; 441 badness = 0; 442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 443 score = compute_score(sk, net, saddr, sport, 444 daddr, hnum, dif, sdif, exact_dif); 445 if (score > badness) { 446 if (sk->sk_reuseport) { 447 hash = udp_ehashfn(net, daddr, hnum, 448 saddr, sport); 449 result = reuseport_select_sock(sk, hash, skb, 450 sizeof(struct udphdr)); 451 if (result) 452 return result; 453 } 454 badness = score; 455 result = sk; 456 } 457 } 458 return result; 459 } 460 461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 462 * harder than this. -DaveM 463 */ 464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 465 __be16 sport, __be32 daddr, __be16 dport, int dif, 466 int sdif, struct udp_table *udptable, struct sk_buff *skb) 467 { 468 struct sock *sk, *result; 469 unsigned short hnum = ntohs(dport); 470 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 471 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 472 bool exact_dif = udp_lib_exact_dif_match(net, skb); 473 int score, badness; 474 u32 hash = 0; 475 476 if (hslot->count > 10) { 477 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 478 slot2 = hash2 & udptable->mask; 479 hslot2 = &udptable->hash2[slot2]; 480 if (hslot->count < hslot2->count) 481 goto begin; 482 483 result = udp4_lib_lookup2(net, saddr, sport, 484 daddr, hnum, dif, sdif, 485 exact_dif, hslot2, skb); 486 if (!result) { 487 unsigned int old_slot2 = slot2; 488 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 489 slot2 = hash2 & udptable->mask; 490 /* avoid searching the same slot again. */ 491 if (unlikely(slot2 == old_slot2)) 492 return result; 493 494 hslot2 = &udptable->hash2[slot2]; 495 if (hslot->count < hslot2->count) 496 goto begin; 497 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, sdif, 500 exact_dif, hslot2, skb); 501 } 502 if (unlikely(IS_ERR(result))) 503 return NULL; 504 return result; 505 } 506 begin: 507 result = NULL; 508 badness = 0; 509 sk_for_each_rcu(sk, &hslot->head) { 510 score = compute_score(sk, net, saddr, sport, 511 daddr, hnum, dif, sdif, exact_dif); 512 if (score > badness) { 513 if (sk->sk_reuseport) { 514 hash = udp_ehashfn(net, daddr, hnum, 515 saddr, sport); 516 result = reuseport_select_sock(sk, hash, skb, 517 sizeof(struct udphdr)); 518 if (unlikely(IS_ERR(result))) 519 return NULL; 520 if (result) 521 return result; 522 } 523 result = sk; 524 badness = score; 525 } 526 } 527 return result; 528 } 529 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 530 531 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 532 __be16 sport, __be16 dport, 533 struct udp_table *udptable) 534 { 535 const struct iphdr *iph = ip_hdr(skb); 536 537 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 538 iph->daddr, dport, inet_iif(skb), 539 inet_sdif(skb), udptable, skb); 540 } 541 542 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 543 __be16 sport, __be16 dport) 544 { 545 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 546 } 547 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 548 549 /* Must be called under rcu_read_lock(). 550 * Does increment socket refcount. 551 */ 552 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 553 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 554 __be32 daddr, __be16 dport, int dif) 555 { 556 struct sock *sk; 557 558 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 559 dif, 0, &udp_table, NULL); 560 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 561 sk = NULL; 562 return sk; 563 } 564 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 565 #endif 566 567 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 568 __be16 loc_port, __be32 loc_addr, 569 __be16 rmt_port, __be32 rmt_addr, 570 int dif, int sdif, unsigned short hnum) 571 { 572 struct inet_sock *inet = inet_sk(sk); 573 574 if (!net_eq(sock_net(sk), net) || 575 udp_sk(sk)->udp_port_hash != hnum || 576 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 577 (inet->inet_dport != rmt_port && inet->inet_dport) || 578 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 579 ipv6_only_sock(sk) || 580 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 581 sk->sk_bound_dev_if != sdif)) 582 return false; 583 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 584 return false; 585 return true; 586 } 587 588 /* 589 * This routine is called by the ICMP module when it gets some 590 * sort of error condition. If err < 0 then the socket should 591 * be closed and the error returned to the user. If err > 0 592 * it's just the icmp type << 8 | icmp code. 593 * Header points to the ip header of the error packet. We move 594 * on past this. Then (as it used to claim before adjustment) 595 * header points to the first 8 bytes of the udp header. We need 596 * to find the appropriate port. 597 */ 598 599 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 600 { 601 struct inet_sock *inet; 602 const struct iphdr *iph = (const struct iphdr *)skb->data; 603 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 604 const int type = icmp_hdr(skb)->type; 605 const int code = icmp_hdr(skb)->code; 606 struct sock *sk; 607 int harderr; 608 int err; 609 struct net *net = dev_net(skb->dev); 610 611 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 612 iph->saddr, uh->source, skb->dev->ifindex, 613 inet_sdif(skb), udptable, NULL); 614 if (!sk) { 615 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 616 return; /* No socket for error */ 617 } 618 619 err = 0; 620 harderr = 0; 621 inet = inet_sk(sk); 622 623 switch (type) { 624 default: 625 case ICMP_TIME_EXCEEDED: 626 err = EHOSTUNREACH; 627 break; 628 case ICMP_SOURCE_QUENCH: 629 goto out; 630 case ICMP_PARAMETERPROB: 631 err = EPROTO; 632 harderr = 1; 633 break; 634 case ICMP_DEST_UNREACH: 635 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 636 ipv4_sk_update_pmtu(skb, sk, info); 637 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 638 err = EMSGSIZE; 639 harderr = 1; 640 break; 641 } 642 goto out; 643 } 644 err = EHOSTUNREACH; 645 if (code <= NR_ICMP_UNREACH) { 646 harderr = icmp_err_convert[code].fatal; 647 err = icmp_err_convert[code].errno; 648 } 649 break; 650 case ICMP_REDIRECT: 651 ipv4_sk_redirect(skb, sk); 652 goto out; 653 } 654 655 /* 656 * RFC1122: OK. Passes ICMP errors back to application, as per 657 * 4.1.3.3. 658 */ 659 if (!inet->recverr) { 660 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 661 goto out; 662 } else 663 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 664 665 sk->sk_err = err; 666 sk->sk_error_report(sk); 667 out: 668 return; 669 } 670 671 void udp_err(struct sk_buff *skb, u32 info) 672 { 673 __udp4_lib_err(skb, info, &udp_table); 674 } 675 676 /* 677 * Throw away all pending data and cancel the corking. Socket is locked. 678 */ 679 void udp_flush_pending_frames(struct sock *sk) 680 { 681 struct udp_sock *up = udp_sk(sk); 682 683 if (up->pending) { 684 up->len = 0; 685 up->pending = 0; 686 ip_flush_pending_frames(sk); 687 } 688 } 689 EXPORT_SYMBOL(udp_flush_pending_frames); 690 691 /** 692 * udp4_hwcsum - handle outgoing HW checksumming 693 * @skb: sk_buff containing the filled-in UDP header 694 * (checksum field must be zeroed out) 695 * @src: source IP address 696 * @dst: destination IP address 697 */ 698 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 699 { 700 struct udphdr *uh = udp_hdr(skb); 701 int offset = skb_transport_offset(skb); 702 int len = skb->len - offset; 703 int hlen = len; 704 __wsum csum = 0; 705 706 if (!skb_has_frag_list(skb)) { 707 /* 708 * Only one fragment on the socket. 709 */ 710 skb->csum_start = skb_transport_header(skb) - skb->head; 711 skb->csum_offset = offsetof(struct udphdr, check); 712 uh->check = ~csum_tcpudp_magic(src, dst, len, 713 IPPROTO_UDP, 0); 714 } else { 715 struct sk_buff *frags; 716 717 /* 718 * HW-checksum won't work as there are two or more 719 * fragments on the socket so that all csums of sk_buffs 720 * should be together 721 */ 722 skb_walk_frags(skb, frags) { 723 csum = csum_add(csum, frags->csum); 724 hlen -= frags->len; 725 } 726 727 csum = skb_checksum(skb, offset, hlen, csum); 728 skb->ip_summed = CHECKSUM_NONE; 729 730 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 731 if (uh->check == 0) 732 uh->check = CSUM_MANGLED_0; 733 } 734 } 735 EXPORT_SYMBOL_GPL(udp4_hwcsum); 736 737 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 738 * for the simple case like when setting the checksum for a UDP tunnel. 739 */ 740 void udp_set_csum(bool nocheck, struct sk_buff *skb, 741 __be32 saddr, __be32 daddr, int len) 742 { 743 struct udphdr *uh = udp_hdr(skb); 744 745 if (nocheck) { 746 uh->check = 0; 747 } else if (skb_is_gso(skb)) { 748 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 749 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 750 uh->check = 0; 751 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 752 if (uh->check == 0) 753 uh->check = CSUM_MANGLED_0; 754 } else { 755 skb->ip_summed = CHECKSUM_PARTIAL; 756 skb->csum_start = skb_transport_header(skb) - skb->head; 757 skb->csum_offset = offsetof(struct udphdr, check); 758 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 759 } 760 } 761 EXPORT_SYMBOL(udp_set_csum); 762 763 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 764 struct inet_cork *cork) 765 { 766 struct sock *sk = skb->sk; 767 struct inet_sock *inet = inet_sk(sk); 768 struct udphdr *uh; 769 int err = 0; 770 int is_udplite = IS_UDPLITE(sk); 771 int offset = skb_transport_offset(skb); 772 int len = skb->len - offset; 773 __wsum csum = 0; 774 775 /* 776 * Create a UDP header 777 */ 778 uh = udp_hdr(skb); 779 uh->source = inet->inet_sport; 780 uh->dest = fl4->fl4_dport; 781 uh->len = htons(len); 782 uh->check = 0; 783 784 if (cork->gso_size) { 785 const int hlen = skb_network_header_len(skb) + 786 sizeof(struct udphdr); 787 788 if (hlen + cork->gso_size > cork->fragsize) { 789 kfree_skb(skb); 790 return -EINVAL; 791 } 792 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 793 kfree_skb(skb); 794 return -EINVAL; 795 } 796 if (sk->sk_no_check_tx) { 797 kfree_skb(skb); 798 return -EINVAL; 799 } 800 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 801 dst_xfrm(skb_dst(skb))) { 802 kfree_skb(skb); 803 return -EIO; 804 } 805 806 skb_shinfo(skb)->gso_size = cork->gso_size; 807 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 808 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 809 cork->gso_size); 810 goto csum_partial; 811 } 812 813 if (is_udplite) /* UDP-Lite */ 814 csum = udplite_csum(skb); 815 816 else if (sk->sk_no_check_tx) { /* UDP csum off */ 817 818 skb->ip_summed = CHECKSUM_NONE; 819 goto send; 820 821 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 822 csum_partial: 823 824 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 825 goto send; 826 827 } else 828 csum = udp_csum(skb); 829 830 /* add protocol-dependent pseudo-header */ 831 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 832 sk->sk_protocol, csum); 833 if (uh->check == 0) 834 uh->check = CSUM_MANGLED_0; 835 836 send: 837 err = ip_send_skb(sock_net(sk), skb); 838 if (err) { 839 if (err == -ENOBUFS && !inet->recverr) { 840 UDP_INC_STATS(sock_net(sk), 841 UDP_MIB_SNDBUFERRORS, is_udplite); 842 err = 0; 843 } 844 } else 845 UDP_INC_STATS(sock_net(sk), 846 UDP_MIB_OUTDATAGRAMS, is_udplite); 847 return err; 848 } 849 850 /* 851 * Push out all pending data as one UDP datagram. Socket is locked. 852 */ 853 int udp_push_pending_frames(struct sock *sk) 854 { 855 struct udp_sock *up = udp_sk(sk); 856 struct inet_sock *inet = inet_sk(sk); 857 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 858 struct sk_buff *skb; 859 int err = 0; 860 861 skb = ip_finish_skb(sk, fl4); 862 if (!skb) 863 goto out; 864 865 err = udp_send_skb(skb, fl4, &inet->cork.base); 866 867 out: 868 up->len = 0; 869 up->pending = 0; 870 return err; 871 } 872 EXPORT_SYMBOL(udp_push_pending_frames); 873 874 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 875 { 876 switch (cmsg->cmsg_type) { 877 case UDP_SEGMENT: 878 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 879 return -EINVAL; 880 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 881 return 0; 882 default: 883 return -EINVAL; 884 } 885 } 886 887 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 888 { 889 struct cmsghdr *cmsg; 890 bool need_ip = false; 891 int err; 892 893 for_each_cmsghdr(cmsg, msg) { 894 if (!CMSG_OK(msg, cmsg)) 895 return -EINVAL; 896 897 if (cmsg->cmsg_level != SOL_UDP) { 898 need_ip = true; 899 continue; 900 } 901 902 err = __udp_cmsg_send(cmsg, gso_size); 903 if (err) 904 return err; 905 } 906 907 return need_ip; 908 } 909 EXPORT_SYMBOL_GPL(udp_cmsg_send); 910 911 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 912 { 913 struct inet_sock *inet = inet_sk(sk); 914 struct udp_sock *up = udp_sk(sk); 915 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 916 struct flowi4 fl4_stack; 917 struct flowi4 *fl4; 918 int ulen = len; 919 struct ipcm_cookie ipc; 920 struct rtable *rt = NULL; 921 int free = 0; 922 int connected = 0; 923 __be32 daddr, faddr, saddr; 924 __be16 dport; 925 u8 tos; 926 int err, is_udplite = IS_UDPLITE(sk); 927 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 928 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 929 struct sk_buff *skb; 930 struct ip_options_data opt_copy; 931 932 if (len > 0xFFFF) 933 return -EMSGSIZE; 934 935 /* 936 * Check the flags. 937 */ 938 939 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 940 return -EOPNOTSUPP; 941 942 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 943 944 fl4 = &inet->cork.fl.u.ip4; 945 if (up->pending) { 946 /* 947 * There are pending frames. 948 * The socket lock must be held while it's corked. 949 */ 950 lock_sock(sk); 951 if (likely(up->pending)) { 952 if (unlikely(up->pending != AF_INET)) { 953 release_sock(sk); 954 return -EINVAL; 955 } 956 goto do_append_data; 957 } 958 release_sock(sk); 959 } 960 ulen += sizeof(struct udphdr); 961 962 /* 963 * Get and verify the address. 964 */ 965 if (usin) { 966 if (msg->msg_namelen < sizeof(*usin)) 967 return -EINVAL; 968 if (usin->sin_family != AF_INET) { 969 if (usin->sin_family != AF_UNSPEC) 970 return -EAFNOSUPPORT; 971 } 972 973 daddr = usin->sin_addr.s_addr; 974 dport = usin->sin_port; 975 if (dport == 0) 976 return -EINVAL; 977 } else { 978 if (sk->sk_state != TCP_ESTABLISHED) 979 return -EDESTADDRREQ; 980 daddr = inet->inet_daddr; 981 dport = inet->inet_dport; 982 /* Open fast path for connected socket. 983 Route will not be used, if at least one option is set. 984 */ 985 connected = 1; 986 } 987 988 ipcm_init_sk(&ipc, inet); 989 ipc.gso_size = up->gso_size; 990 991 if (msg->msg_controllen) { 992 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 993 if (err > 0) 994 err = ip_cmsg_send(sk, msg, &ipc, 995 sk->sk_family == AF_INET6); 996 if (unlikely(err < 0)) { 997 kfree(ipc.opt); 998 return err; 999 } 1000 if (ipc.opt) 1001 free = 1; 1002 connected = 0; 1003 } 1004 if (!ipc.opt) { 1005 struct ip_options_rcu *inet_opt; 1006 1007 rcu_read_lock(); 1008 inet_opt = rcu_dereference(inet->inet_opt); 1009 if (inet_opt) { 1010 memcpy(&opt_copy, inet_opt, 1011 sizeof(*inet_opt) + inet_opt->opt.optlen); 1012 ipc.opt = &opt_copy.opt; 1013 } 1014 rcu_read_unlock(); 1015 } 1016 1017 if (cgroup_bpf_enabled && !connected) { 1018 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1019 (struct sockaddr *)usin, &ipc.addr); 1020 if (err) 1021 goto out_free; 1022 if (usin) { 1023 if (usin->sin_port == 0) { 1024 /* BPF program set invalid port. Reject it. */ 1025 err = -EINVAL; 1026 goto out_free; 1027 } 1028 daddr = usin->sin_addr.s_addr; 1029 dport = usin->sin_port; 1030 } 1031 } 1032 1033 saddr = ipc.addr; 1034 ipc.addr = faddr = daddr; 1035 1036 if (ipc.opt && ipc.opt->opt.srr) { 1037 if (!daddr) { 1038 err = -EINVAL; 1039 goto out_free; 1040 } 1041 faddr = ipc.opt->opt.faddr; 1042 connected = 0; 1043 } 1044 tos = get_rttos(&ipc, inet); 1045 if (sock_flag(sk, SOCK_LOCALROUTE) || 1046 (msg->msg_flags & MSG_DONTROUTE) || 1047 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1048 tos |= RTO_ONLINK; 1049 connected = 0; 1050 } 1051 1052 if (ipv4_is_multicast(daddr)) { 1053 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1054 ipc.oif = inet->mc_index; 1055 if (!saddr) 1056 saddr = inet->mc_addr; 1057 connected = 0; 1058 } else if (!ipc.oif) { 1059 ipc.oif = inet->uc_index; 1060 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1061 /* oif is set, packet is to local broadcast and 1062 * and uc_index is set. oif is most likely set 1063 * by sk_bound_dev_if. If uc_index != oif check if the 1064 * oif is an L3 master and uc_index is an L3 slave. 1065 * If so, we want to allow the send using the uc_index. 1066 */ 1067 if (ipc.oif != inet->uc_index && 1068 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1069 inet->uc_index)) { 1070 ipc.oif = inet->uc_index; 1071 } 1072 } 1073 1074 if (connected) 1075 rt = (struct rtable *)sk_dst_check(sk, 0); 1076 1077 if (!rt) { 1078 struct net *net = sock_net(sk); 1079 __u8 flow_flags = inet_sk_flowi_flags(sk); 1080 1081 fl4 = &fl4_stack; 1082 1083 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1084 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1085 flow_flags, 1086 faddr, saddr, dport, inet->inet_sport, 1087 sk->sk_uid); 1088 1089 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1090 rt = ip_route_output_flow(net, fl4, sk); 1091 if (IS_ERR(rt)) { 1092 err = PTR_ERR(rt); 1093 rt = NULL; 1094 if (err == -ENETUNREACH) 1095 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1096 goto out; 1097 } 1098 1099 err = -EACCES; 1100 if ((rt->rt_flags & RTCF_BROADCAST) && 1101 !sock_flag(sk, SOCK_BROADCAST)) 1102 goto out; 1103 if (connected) 1104 sk_dst_set(sk, dst_clone(&rt->dst)); 1105 } 1106 1107 if (msg->msg_flags&MSG_CONFIRM) 1108 goto do_confirm; 1109 back_from_confirm: 1110 1111 saddr = fl4->saddr; 1112 if (!ipc.addr) 1113 daddr = ipc.addr = fl4->daddr; 1114 1115 /* Lockless fast path for the non-corking case. */ 1116 if (!corkreq) { 1117 struct inet_cork cork; 1118 1119 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1120 sizeof(struct udphdr), &ipc, &rt, 1121 &cork, msg->msg_flags); 1122 err = PTR_ERR(skb); 1123 if (!IS_ERR_OR_NULL(skb)) 1124 err = udp_send_skb(skb, fl4, &cork); 1125 goto out; 1126 } 1127 1128 lock_sock(sk); 1129 if (unlikely(up->pending)) { 1130 /* The socket is already corked while preparing it. */ 1131 /* ... which is an evident application bug. --ANK */ 1132 release_sock(sk); 1133 1134 net_dbg_ratelimited("socket already corked\n"); 1135 err = -EINVAL; 1136 goto out; 1137 } 1138 /* 1139 * Now cork the socket to pend data. 1140 */ 1141 fl4 = &inet->cork.fl.u.ip4; 1142 fl4->daddr = daddr; 1143 fl4->saddr = saddr; 1144 fl4->fl4_dport = dport; 1145 fl4->fl4_sport = inet->inet_sport; 1146 up->pending = AF_INET; 1147 1148 do_append_data: 1149 up->len += ulen; 1150 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1151 sizeof(struct udphdr), &ipc, &rt, 1152 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1153 if (err) 1154 udp_flush_pending_frames(sk); 1155 else if (!corkreq) 1156 err = udp_push_pending_frames(sk); 1157 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1158 up->pending = 0; 1159 release_sock(sk); 1160 1161 out: 1162 ip_rt_put(rt); 1163 out_free: 1164 if (free) 1165 kfree(ipc.opt); 1166 if (!err) 1167 return len; 1168 /* 1169 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1170 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1171 * we don't have a good statistic (IpOutDiscards but it can be too many 1172 * things). We could add another new stat but at least for now that 1173 * seems like overkill. 1174 */ 1175 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1176 UDP_INC_STATS(sock_net(sk), 1177 UDP_MIB_SNDBUFERRORS, is_udplite); 1178 } 1179 return err; 1180 1181 do_confirm: 1182 if (msg->msg_flags & MSG_PROBE) 1183 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1184 if (!(msg->msg_flags&MSG_PROBE) || len) 1185 goto back_from_confirm; 1186 err = 0; 1187 goto out; 1188 } 1189 EXPORT_SYMBOL(udp_sendmsg); 1190 1191 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1192 size_t size, int flags) 1193 { 1194 struct inet_sock *inet = inet_sk(sk); 1195 struct udp_sock *up = udp_sk(sk); 1196 int ret; 1197 1198 if (flags & MSG_SENDPAGE_NOTLAST) 1199 flags |= MSG_MORE; 1200 1201 if (!up->pending) { 1202 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1203 1204 /* Call udp_sendmsg to specify destination address which 1205 * sendpage interface can't pass. 1206 * This will succeed only when the socket is connected. 1207 */ 1208 ret = udp_sendmsg(sk, &msg, 0); 1209 if (ret < 0) 1210 return ret; 1211 } 1212 1213 lock_sock(sk); 1214 1215 if (unlikely(!up->pending)) { 1216 release_sock(sk); 1217 1218 net_dbg_ratelimited("cork failed\n"); 1219 return -EINVAL; 1220 } 1221 1222 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1223 page, offset, size, flags); 1224 if (ret == -EOPNOTSUPP) { 1225 release_sock(sk); 1226 return sock_no_sendpage(sk->sk_socket, page, offset, 1227 size, flags); 1228 } 1229 if (ret < 0) { 1230 udp_flush_pending_frames(sk); 1231 goto out; 1232 } 1233 1234 up->len += size; 1235 if (!(up->corkflag || (flags&MSG_MORE))) 1236 ret = udp_push_pending_frames(sk); 1237 if (!ret) 1238 ret = size; 1239 out: 1240 release_sock(sk); 1241 return ret; 1242 } 1243 1244 #define UDP_SKB_IS_STATELESS 0x80000000 1245 1246 static void udp_set_dev_scratch(struct sk_buff *skb) 1247 { 1248 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1249 1250 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1251 scratch->_tsize_state = skb->truesize; 1252 #if BITS_PER_LONG == 64 1253 scratch->len = skb->len; 1254 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1255 scratch->is_linear = !skb_is_nonlinear(skb); 1256 #endif 1257 /* all head states execept sp (dst, sk, nf) are always cleared by 1258 * udp_rcv() and we need to preserve secpath, if present, to eventually 1259 * process IP_CMSG_PASSSEC at recvmsg() time 1260 */ 1261 if (likely(!skb_sec_path(skb))) 1262 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1263 } 1264 1265 static int udp_skb_truesize(struct sk_buff *skb) 1266 { 1267 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1268 } 1269 1270 static bool udp_skb_has_head_state(struct sk_buff *skb) 1271 { 1272 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1273 } 1274 1275 /* fully reclaim rmem/fwd memory allocated for skb */ 1276 static void udp_rmem_release(struct sock *sk, int size, int partial, 1277 bool rx_queue_lock_held) 1278 { 1279 struct udp_sock *up = udp_sk(sk); 1280 struct sk_buff_head *sk_queue; 1281 int amt; 1282 1283 if (likely(partial)) { 1284 up->forward_deficit += size; 1285 size = up->forward_deficit; 1286 if (size < (sk->sk_rcvbuf >> 2)) 1287 return; 1288 } else { 1289 size += up->forward_deficit; 1290 } 1291 up->forward_deficit = 0; 1292 1293 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1294 * if the called don't held it already 1295 */ 1296 sk_queue = &sk->sk_receive_queue; 1297 if (!rx_queue_lock_held) 1298 spin_lock(&sk_queue->lock); 1299 1300 1301 sk->sk_forward_alloc += size; 1302 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1303 sk->sk_forward_alloc -= amt; 1304 1305 if (amt) 1306 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1307 1308 atomic_sub(size, &sk->sk_rmem_alloc); 1309 1310 /* this can save us from acquiring the rx queue lock on next receive */ 1311 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1312 1313 if (!rx_queue_lock_held) 1314 spin_unlock(&sk_queue->lock); 1315 } 1316 1317 /* Note: called with reader_queue.lock held. 1318 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1319 * This avoids a cache line miss while receive_queue lock is held. 1320 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1321 */ 1322 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1323 { 1324 prefetch(&skb->data); 1325 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1326 } 1327 EXPORT_SYMBOL(udp_skb_destructor); 1328 1329 /* as above, but the caller held the rx queue lock, too */ 1330 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1331 { 1332 prefetch(&skb->data); 1333 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1334 } 1335 1336 /* Idea of busylocks is to let producers grab an extra spinlock 1337 * to relieve pressure on the receive_queue spinlock shared by consumer. 1338 * Under flood, this means that only one producer can be in line 1339 * trying to acquire the receive_queue spinlock. 1340 * These busylock can be allocated on a per cpu manner, instead of a 1341 * per socket one (that would consume a cache line per socket) 1342 */ 1343 static int udp_busylocks_log __read_mostly; 1344 static spinlock_t *udp_busylocks __read_mostly; 1345 1346 static spinlock_t *busylock_acquire(void *ptr) 1347 { 1348 spinlock_t *busy; 1349 1350 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1351 spin_lock(busy); 1352 return busy; 1353 } 1354 1355 static void busylock_release(spinlock_t *busy) 1356 { 1357 if (busy) 1358 spin_unlock(busy); 1359 } 1360 1361 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1362 { 1363 struct sk_buff_head *list = &sk->sk_receive_queue; 1364 int rmem, delta, amt, err = -ENOMEM; 1365 spinlock_t *busy = NULL; 1366 int size; 1367 1368 /* try to avoid the costly atomic add/sub pair when the receive 1369 * queue is full; always allow at least a packet 1370 */ 1371 rmem = atomic_read(&sk->sk_rmem_alloc); 1372 if (rmem > sk->sk_rcvbuf) 1373 goto drop; 1374 1375 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1376 * having linear skbs : 1377 * - Reduce memory overhead and thus increase receive queue capacity 1378 * - Less cache line misses at copyout() time 1379 * - Less work at consume_skb() (less alien page frag freeing) 1380 */ 1381 if (rmem > (sk->sk_rcvbuf >> 1)) { 1382 skb_condense(skb); 1383 1384 busy = busylock_acquire(sk); 1385 } 1386 size = skb->truesize; 1387 udp_set_dev_scratch(skb); 1388 1389 /* we drop only if the receive buf is full and the receive 1390 * queue contains some other skb 1391 */ 1392 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1393 if (rmem > (size + sk->sk_rcvbuf)) 1394 goto uncharge_drop; 1395 1396 spin_lock(&list->lock); 1397 if (size >= sk->sk_forward_alloc) { 1398 amt = sk_mem_pages(size); 1399 delta = amt << SK_MEM_QUANTUM_SHIFT; 1400 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1401 err = -ENOBUFS; 1402 spin_unlock(&list->lock); 1403 goto uncharge_drop; 1404 } 1405 1406 sk->sk_forward_alloc += delta; 1407 } 1408 1409 sk->sk_forward_alloc -= size; 1410 1411 /* no need to setup a destructor, we will explicitly release the 1412 * forward allocated memory on dequeue 1413 */ 1414 sock_skb_set_dropcount(sk, skb); 1415 1416 __skb_queue_tail(list, skb); 1417 spin_unlock(&list->lock); 1418 1419 if (!sock_flag(sk, SOCK_DEAD)) 1420 sk->sk_data_ready(sk); 1421 1422 busylock_release(busy); 1423 return 0; 1424 1425 uncharge_drop: 1426 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1427 1428 drop: 1429 atomic_inc(&sk->sk_drops); 1430 busylock_release(busy); 1431 return err; 1432 } 1433 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1434 1435 void udp_destruct_sock(struct sock *sk) 1436 { 1437 /* reclaim completely the forward allocated memory */ 1438 struct udp_sock *up = udp_sk(sk); 1439 unsigned int total = 0; 1440 struct sk_buff *skb; 1441 1442 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1443 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1444 total += skb->truesize; 1445 kfree_skb(skb); 1446 } 1447 udp_rmem_release(sk, total, 0, true); 1448 1449 inet_sock_destruct(sk); 1450 } 1451 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1452 1453 int udp_init_sock(struct sock *sk) 1454 { 1455 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1456 sk->sk_destruct = udp_destruct_sock; 1457 return 0; 1458 } 1459 EXPORT_SYMBOL_GPL(udp_init_sock); 1460 1461 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1462 { 1463 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1464 bool slow = lock_sock_fast(sk); 1465 1466 sk_peek_offset_bwd(sk, len); 1467 unlock_sock_fast(sk, slow); 1468 } 1469 1470 if (!skb_unref(skb)) 1471 return; 1472 1473 /* In the more common cases we cleared the head states previously, 1474 * see __udp_queue_rcv_skb(). 1475 */ 1476 if (unlikely(udp_skb_has_head_state(skb))) 1477 skb_release_head_state(skb); 1478 __consume_stateless_skb(skb); 1479 } 1480 EXPORT_SYMBOL_GPL(skb_consume_udp); 1481 1482 static struct sk_buff *__first_packet_length(struct sock *sk, 1483 struct sk_buff_head *rcvq, 1484 int *total) 1485 { 1486 struct sk_buff *skb; 1487 1488 while ((skb = skb_peek(rcvq)) != NULL) { 1489 if (udp_lib_checksum_complete(skb)) { 1490 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1491 IS_UDPLITE(sk)); 1492 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1493 IS_UDPLITE(sk)); 1494 atomic_inc(&sk->sk_drops); 1495 __skb_unlink(skb, rcvq); 1496 *total += skb->truesize; 1497 kfree_skb(skb); 1498 } else { 1499 /* the csum related bits could be changed, refresh 1500 * the scratch area 1501 */ 1502 udp_set_dev_scratch(skb); 1503 break; 1504 } 1505 } 1506 return skb; 1507 } 1508 1509 /** 1510 * first_packet_length - return length of first packet in receive queue 1511 * @sk: socket 1512 * 1513 * Drops all bad checksum frames, until a valid one is found. 1514 * Returns the length of found skb, or -1 if none is found. 1515 */ 1516 static int first_packet_length(struct sock *sk) 1517 { 1518 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1519 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1520 struct sk_buff *skb; 1521 int total = 0; 1522 int res; 1523 1524 spin_lock_bh(&rcvq->lock); 1525 skb = __first_packet_length(sk, rcvq, &total); 1526 if (!skb && !skb_queue_empty(sk_queue)) { 1527 spin_lock(&sk_queue->lock); 1528 skb_queue_splice_tail_init(sk_queue, rcvq); 1529 spin_unlock(&sk_queue->lock); 1530 1531 skb = __first_packet_length(sk, rcvq, &total); 1532 } 1533 res = skb ? skb->len : -1; 1534 if (total) 1535 udp_rmem_release(sk, total, 1, false); 1536 spin_unlock_bh(&rcvq->lock); 1537 return res; 1538 } 1539 1540 /* 1541 * IOCTL requests applicable to the UDP protocol 1542 */ 1543 1544 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1545 { 1546 switch (cmd) { 1547 case SIOCOUTQ: 1548 { 1549 int amount = sk_wmem_alloc_get(sk); 1550 1551 return put_user(amount, (int __user *)arg); 1552 } 1553 1554 case SIOCINQ: 1555 { 1556 int amount = max_t(int, 0, first_packet_length(sk)); 1557 1558 return put_user(amount, (int __user *)arg); 1559 } 1560 1561 default: 1562 return -ENOIOCTLCMD; 1563 } 1564 1565 return 0; 1566 } 1567 EXPORT_SYMBOL(udp_ioctl); 1568 1569 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1570 int noblock, int *peeked, int *off, int *err) 1571 { 1572 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1573 struct sk_buff_head *queue; 1574 struct sk_buff *last; 1575 long timeo; 1576 int error; 1577 1578 queue = &udp_sk(sk)->reader_queue; 1579 flags |= noblock ? MSG_DONTWAIT : 0; 1580 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1581 do { 1582 struct sk_buff *skb; 1583 1584 error = sock_error(sk); 1585 if (error) 1586 break; 1587 1588 error = -EAGAIN; 1589 *peeked = 0; 1590 do { 1591 spin_lock_bh(&queue->lock); 1592 skb = __skb_try_recv_from_queue(sk, queue, flags, 1593 udp_skb_destructor, 1594 peeked, off, err, 1595 &last); 1596 if (skb) { 1597 spin_unlock_bh(&queue->lock); 1598 return skb; 1599 } 1600 1601 if (skb_queue_empty(sk_queue)) { 1602 spin_unlock_bh(&queue->lock); 1603 goto busy_check; 1604 } 1605 1606 /* refill the reader queue and walk it again 1607 * keep both queues locked to avoid re-acquiring 1608 * the sk_receive_queue lock if fwd memory scheduling 1609 * is needed. 1610 */ 1611 spin_lock(&sk_queue->lock); 1612 skb_queue_splice_tail_init(sk_queue, queue); 1613 1614 skb = __skb_try_recv_from_queue(sk, queue, flags, 1615 udp_skb_dtor_locked, 1616 peeked, off, err, 1617 &last); 1618 spin_unlock(&sk_queue->lock); 1619 spin_unlock_bh(&queue->lock); 1620 if (skb) 1621 return skb; 1622 1623 busy_check: 1624 if (!sk_can_busy_loop(sk)) 1625 break; 1626 1627 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1628 } while (!skb_queue_empty(sk_queue)); 1629 1630 /* sk_queue is empty, reader_queue may contain peeked packets */ 1631 } while (timeo && 1632 !__skb_wait_for_more_packets(sk, &error, &timeo, 1633 (struct sk_buff *)sk_queue)); 1634 1635 *err = error; 1636 return NULL; 1637 } 1638 EXPORT_SYMBOL(__skb_recv_udp); 1639 1640 /* 1641 * This should be easy, if there is something there we 1642 * return it, otherwise we block. 1643 */ 1644 1645 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1646 int flags, int *addr_len) 1647 { 1648 struct inet_sock *inet = inet_sk(sk); 1649 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1650 struct sk_buff *skb; 1651 unsigned int ulen, copied; 1652 int peeked, peeking, off; 1653 int err; 1654 int is_udplite = IS_UDPLITE(sk); 1655 bool checksum_valid = false; 1656 1657 if (flags & MSG_ERRQUEUE) 1658 return ip_recv_error(sk, msg, len, addr_len); 1659 1660 try_again: 1661 peeking = flags & MSG_PEEK; 1662 off = sk_peek_offset(sk, flags); 1663 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1664 if (!skb) 1665 return err; 1666 if (ccs_socket_post_recvmsg_permission(sk, skb, flags)) 1667 return -EAGAIN; /* Hope less harmful than -EPERM. */ 1668 1669 ulen = udp_skb_len(skb); 1670 copied = len; 1671 if (copied > ulen - off) 1672 copied = ulen - off; 1673 else if (copied < ulen) 1674 msg->msg_flags |= MSG_TRUNC; 1675 1676 /* 1677 * If checksum is needed at all, try to do it while copying the 1678 * data. If the data is truncated, or if we only want a partial 1679 * coverage checksum (UDP-Lite), do it before the copy. 1680 */ 1681 1682 if (copied < ulen || peeking || 1683 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1684 checksum_valid = udp_skb_csum_unnecessary(skb) || 1685 !__udp_lib_checksum_complete(skb); 1686 if (!checksum_valid) 1687 goto csum_copy_err; 1688 } 1689 1690 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1691 if (udp_skb_is_linear(skb)) 1692 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1693 else 1694 err = skb_copy_datagram_msg(skb, off, msg, copied); 1695 } else { 1696 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1697 1698 if (err == -EINVAL) 1699 goto csum_copy_err; 1700 } 1701 1702 if (unlikely(err)) { 1703 if (!peeked) { 1704 atomic_inc(&sk->sk_drops); 1705 UDP_INC_STATS(sock_net(sk), 1706 UDP_MIB_INERRORS, is_udplite); 1707 } 1708 kfree_skb(skb); 1709 return err; 1710 } 1711 1712 if (!peeked) 1713 UDP_INC_STATS(sock_net(sk), 1714 UDP_MIB_INDATAGRAMS, is_udplite); 1715 1716 sock_recv_ts_and_drops(msg, sk, skb); 1717 1718 /* Copy the address. */ 1719 if (sin) { 1720 sin->sin_family = AF_INET; 1721 sin->sin_port = udp_hdr(skb)->source; 1722 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1723 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1724 *addr_len = sizeof(*sin); 1725 } 1726 if (inet->cmsg_flags) 1727 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1728 1729 err = copied; 1730 if (flags & MSG_TRUNC) 1731 err = ulen; 1732 1733 skb_consume_udp(sk, skb, peeking ? -err : err); 1734 return err; 1735 1736 csum_copy_err: 1737 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1738 udp_skb_destructor)) { 1739 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1740 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1741 } 1742 kfree_skb(skb); 1743 1744 /* starting over for a new packet, but check if we need to yield */ 1745 cond_resched(); 1746 msg->msg_flags &= ~MSG_TRUNC; 1747 goto try_again; 1748 } 1749 1750 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1751 { 1752 /* This check is replicated from __ip4_datagram_connect() and 1753 * intended to prevent BPF program called below from accessing bytes 1754 * that are out of the bound specified by user in addr_len. 1755 */ 1756 if (addr_len < sizeof(struct sockaddr_in)) 1757 return -EINVAL; 1758 1759 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1760 } 1761 EXPORT_SYMBOL(udp_pre_connect); 1762 1763 int __udp_disconnect(struct sock *sk, int flags) 1764 { 1765 struct inet_sock *inet = inet_sk(sk); 1766 /* 1767 * 1003.1g - break association. 1768 */ 1769 1770 sk->sk_state = TCP_CLOSE; 1771 inet->inet_daddr = 0; 1772 inet->inet_dport = 0; 1773 sock_rps_reset_rxhash(sk); 1774 sk->sk_bound_dev_if = 0; 1775 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1776 inet_reset_saddr(sk); 1777 1778 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1779 sk->sk_prot->unhash(sk); 1780 inet->inet_sport = 0; 1781 } 1782 sk_dst_reset(sk); 1783 return 0; 1784 } 1785 EXPORT_SYMBOL(__udp_disconnect); 1786 1787 int udp_disconnect(struct sock *sk, int flags) 1788 { 1789 lock_sock(sk); 1790 __udp_disconnect(sk, flags); 1791 release_sock(sk); 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(udp_disconnect); 1795 1796 void udp_lib_unhash(struct sock *sk) 1797 { 1798 if (sk_hashed(sk)) { 1799 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1800 struct udp_hslot *hslot, *hslot2; 1801 1802 hslot = udp_hashslot(udptable, sock_net(sk), 1803 udp_sk(sk)->udp_port_hash); 1804 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1805 1806 spin_lock_bh(&hslot->lock); 1807 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1808 reuseport_detach_sock(sk); 1809 if (sk_del_node_init_rcu(sk)) { 1810 hslot->count--; 1811 inet_sk(sk)->inet_num = 0; 1812 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1813 1814 spin_lock(&hslot2->lock); 1815 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1816 hslot2->count--; 1817 spin_unlock(&hslot2->lock); 1818 } 1819 spin_unlock_bh(&hslot->lock); 1820 } 1821 } 1822 EXPORT_SYMBOL(udp_lib_unhash); 1823 1824 /* 1825 * inet_rcv_saddr was changed, we must rehash secondary hash 1826 */ 1827 void udp_lib_rehash(struct sock *sk, u16 newhash) 1828 { 1829 if (sk_hashed(sk)) { 1830 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1831 struct udp_hslot *hslot, *hslot2, *nhslot2; 1832 1833 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1834 nhslot2 = udp_hashslot2(udptable, newhash); 1835 udp_sk(sk)->udp_portaddr_hash = newhash; 1836 1837 if (hslot2 != nhslot2 || 1838 rcu_access_pointer(sk->sk_reuseport_cb)) { 1839 hslot = udp_hashslot(udptable, sock_net(sk), 1840 udp_sk(sk)->udp_port_hash); 1841 /* we must lock primary chain too */ 1842 spin_lock_bh(&hslot->lock); 1843 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1844 reuseport_detach_sock(sk); 1845 1846 if (hslot2 != nhslot2) { 1847 spin_lock(&hslot2->lock); 1848 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1849 hslot2->count--; 1850 spin_unlock(&hslot2->lock); 1851 1852 spin_lock(&nhslot2->lock); 1853 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1854 &nhslot2->head); 1855 nhslot2->count++; 1856 spin_unlock(&nhslot2->lock); 1857 } 1858 1859 spin_unlock_bh(&hslot->lock); 1860 } 1861 } 1862 } 1863 EXPORT_SYMBOL(udp_lib_rehash); 1864 1865 static void udp_v4_rehash(struct sock *sk) 1866 { 1867 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1868 inet_sk(sk)->inet_rcv_saddr, 1869 inet_sk(sk)->inet_num); 1870 udp_lib_rehash(sk, new_hash); 1871 } 1872 1873 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1874 { 1875 int rc; 1876 1877 if (inet_sk(sk)->inet_daddr) { 1878 sock_rps_save_rxhash(sk, skb); 1879 sk_mark_napi_id(sk, skb); 1880 sk_incoming_cpu_update(sk); 1881 } else { 1882 sk_mark_napi_id_once(sk, skb); 1883 } 1884 1885 rc = __udp_enqueue_schedule_skb(sk, skb); 1886 if (rc < 0) { 1887 int is_udplite = IS_UDPLITE(sk); 1888 1889 /* Note that an ENOMEM error is charged twice */ 1890 if (rc == -ENOMEM) 1891 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1892 is_udplite); 1893 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1894 kfree_skb(skb); 1895 trace_udp_fail_queue_rcv_skb(rc, sk); 1896 return -1; 1897 } 1898 1899 return 0; 1900 } 1901 1902 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1903 void udp_encap_enable(void) 1904 { 1905 static_branch_enable(&udp_encap_needed_key); 1906 } 1907 EXPORT_SYMBOL(udp_encap_enable); 1908 1909 /* returns: 1910 * -1: error 1911 * 0: success 1912 * >0: "udp encap" protocol resubmission 1913 * 1914 * Note that in the success and error cases, the skb is assumed to 1915 * have either been requeued or freed. 1916 */ 1917 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1918 { 1919 struct udp_sock *up = udp_sk(sk); 1920 int is_udplite = IS_UDPLITE(sk); 1921 1922 /* 1923 * Charge it to the socket, dropping if the queue is full. 1924 */ 1925 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1926 goto drop; 1927 nf_reset(skb); 1928 1929 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1930 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1931 1932 /* 1933 * This is an encapsulation socket so pass the skb to 1934 * the socket's udp_encap_rcv() hook. Otherwise, just 1935 * fall through and pass this up the UDP socket. 1936 * up->encap_rcv() returns the following value: 1937 * =0 if skb was successfully passed to the encap 1938 * handler or was discarded by it. 1939 * >0 if skb should be passed on to UDP. 1940 * <0 if skb should be resubmitted as proto -N 1941 */ 1942 1943 /* if we're overly short, let UDP handle it */ 1944 encap_rcv = READ_ONCE(up->encap_rcv); 1945 if (encap_rcv) { 1946 int ret; 1947 1948 /* Verify checksum before giving to encap */ 1949 if (udp_lib_checksum_complete(skb)) 1950 goto csum_error; 1951 1952 ret = encap_rcv(sk, skb); 1953 if (ret <= 0) { 1954 __UDP_INC_STATS(sock_net(sk), 1955 UDP_MIB_INDATAGRAMS, 1956 is_udplite); 1957 return -ret; 1958 } 1959 } 1960 1961 /* FALLTHROUGH -- it's a UDP Packet */ 1962 } 1963 1964 /* 1965 * UDP-Lite specific tests, ignored on UDP sockets 1966 */ 1967 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1968 1969 /* 1970 * MIB statistics other than incrementing the error count are 1971 * disabled for the following two types of errors: these depend 1972 * on the application settings, not on the functioning of the 1973 * protocol stack as such. 1974 * 1975 * RFC 3828 here recommends (sec 3.3): "There should also be a 1976 * way ... to ... at least let the receiving application block 1977 * delivery of packets with coverage values less than a value 1978 * provided by the application." 1979 */ 1980 if (up->pcrlen == 0) { /* full coverage was set */ 1981 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1982 UDP_SKB_CB(skb)->cscov, skb->len); 1983 goto drop; 1984 } 1985 /* The next case involves violating the min. coverage requested 1986 * by the receiver. This is subtle: if receiver wants x and x is 1987 * greater than the buffersize/MTU then receiver will complain 1988 * that it wants x while sender emits packets of smaller size y. 1989 * Therefore the above ...()->partial_cov statement is essential. 1990 */ 1991 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1992 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1993 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1994 goto drop; 1995 } 1996 } 1997 1998 prefetch(&sk->sk_rmem_alloc); 1999 if (rcu_access_pointer(sk->sk_filter) && 2000 udp_lib_checksum_complete(skb)) 2001 goto csum_error; 2002 2003 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2004 goto drop; 2005 2006 udp_csum_pull_header(skb); 2007 2008 ipv4_pktinfo_prepare(sk, skb); 2009 return __udp_queue_rcv_skb(sk, skb); 2010 2011 csum_error: 2012 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2013 drop: 2014 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2015 atomic_inc(&sk->sk_drops); 2016 kfree_skb(skb); 2017 return -1; 2018 } 2019 2020 /* For TCP sockets, sk_rx_dst is protected by socket lock 2021 * For UDP, we use xchg() to guard against concurrent changes. 2022 */ 2023 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2024 { 2025 struct dst_entry *old; 2026 2027 if (dst_hold_safe(dst)) { 2028 old = xchg(&sk->sk_rx_dst, dst); 2029 dst_release(old); 2030 return old != dst; 2031 } 2032 return false; 2033 } 2034 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2035 2036 /* 2037 * Multicasts and broadcasts go to each listener. 2038 * 2039 * Note: called only from the BH handler context. 2040 */ 2041 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2042 struct udphdr *uh, 2043 __be32 saddr, __be32 daddr, 2044 struct udp_table *udptable, 2045 int proto) 2046 { 2047 struct sock *sk, *first = NULL; 2048 unsigned short hnum = ntohs(uh->dest); 2049 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2050 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2051 unsigned int offset = offsetof(typeof(*sk), sk_node); 2052 int dif = skb->dev->ifindex; 2053 int sdif = inet_sdif(skb); 2054 struct hlist_node *node; 2055 struct sk_buff *nskb; 2056 2057 if (use_hash2) { 2058 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2059 udptable->mask; 2060 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2061 start_lookup: 2062 hslot = &udptable->hash2[hash2]; 2063 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2064 } 2065 2066 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2067 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2068 uh->source, saddr, dif, sdif, hnum)) 2069 continue; 2070 2071 if (!first) { 2072 first = sk; 2073 continue; 2074 } 2075 nskb = skb_clone(skb, GFP_ATOMIC); 2076 2077 if (unlikely(!nskb)) { 2078 atomic_inc(&sk->sk_drops); 2079 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2080 IS_UDPLITE(sk)); 2081 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2082 IS_UDPLITE(sk)); 2083 continue; 2084 } 2085 if (udp_queue_rcv_skb(sk, nskb) > 0) 2086 consume_skb(nskb); 2087 } 2088 2089 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2090 if (use_hash2 && hash2 != hash2_any) { 2091 hash2 = hash2_any; 2092 goto start_lookup; 2093 } 2094 2095 if (first) { 2096 if (udp_queue_rcv_skb(first, skb) > 0) 2097 consume_skb(skb); 2098 } else { 2099 kfree_skb(skb); 2100 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2101 proto == IPPROTO_UDPLITE); 2102 } 2103 return 0; 2104 } 2105 2106 /* Initialize UDP checksum. If exited with zero value (success), 2107 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2108 * Otherwise, csum completion requires chacksumming packet body, 2109 * including udp header and folding it to skb->csum. 2110 */ 2111 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2112 int proto) 2113 { 2114 int err; 2115 2116 UDP_SKB_CB(skb)->partial_cov = 0; 2117 UDP_SKB_CB(skb)->cscov = skb->len; 2118 2119 if (proto == IPPROTO_UDPLITE) { 2120 err = udplite_checksum_init(skb, uh); 2121 if (err) 2122 return err; 2123 2124 if (UDP_SKB_CB(skb)->partial_cov) { 2125 skb->csum = inet_compute_pseudo(skb, proto); 2126 return 0; 2127 } 2128 } 2129 2130 /* Note, we are only interested in != 0 or == 0, thus the 2131 * force to int. 2132 */ 2133 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2134 inet_compute_pseudo); 2135 if (err) 2136 return err; 2137 2138 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2139 /* If SW calculated the value, we know it's bad */ 2140 if (skb->csum_complete_sw) 2141 return 1; 2142 2143 /* HW says the value is bad. Let's validate that. 2144 * skb->csum is no longer the full packet checksum, 2145 * so don't treat it as such. 2146 */ 2147 skb_checksum_complete_unset(skb); 2148 } 2149 2150 return 0; 2151 } 2152 2153 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2154 * return code conversion for ip layer consumption 2155 */ 2156 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2157 struct udphdr *uh) 2158 { 2159 int ret; 2160 2161 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2162 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2163 inet_compute_pseudo); 2164 2165 ret = udp_queue_rcv_skb(sk, skb); 2166 2167 /* a return value > 0 means to resubmit the input, but 2168 * it wants the return to be -protocol, or 0 2169 */ 2170 if (ret > 0) 2171 return -ret; 2172 return 0; 2173 } 2174 2175 /* 2176 * All we need to do is get the socket, and then do a checksum. 2177 */ 2178 2179 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2180 int proto) 2181 { 2182 struct sock *sk; 2183 struct udphdr *uh; 2184 unsigned short ulen; 2185 struct rtable *rt = skb_rtable(skb); 2186 __be32 saddr, daddr; 2187 struct net *net = dev_net(skb->dev); 2188 2189 /* 2190 * Validate the packet. 2191 */ 2192 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2193 goto drop; /* No space for header. */ 2194 2195 uh = udp_hdr(skb); 2196 ulen = ntohs(uh->len); 2197 saddr = ip_hdr(skb)->saddr; 2198 daddr = ip_hdr(skb)->daddr; 2199 2200 if (ulen > skb->len) 2201 goto short_packet; 2202 2203 if (proto == IPPROTO_UDP) { 2204 /* UDP validates ulen. */ 2205 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2206 goto short_packet; 2207 uh = udp_hdr(skb); 2208 } 2209 2210 if (udp4_csum_init(skb, uh, proto)) 2211 goto csum_error; 2212 2213 sk = skb_steal_sock(skb); 2214 if (sk) { 2215 struct dst_entry *dst = skb_dst(skb); 2216 int ret; 2217 2218 if (unlikely(sk->sk_rx_dst != dst)) 2219 udp_sk_rx_dst_set(sk, dst); 2220 2221 ret = udp_unicast_rcv_skb(sk, skb, uh); 2222 sock_put(sk); 2223 return ret; 2224 } 2225 2226 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2227 return __udp4_lib_mcast_deliver(net, skb, uh, 2228 saddr, daddr, udptable, proto); 2229 2230 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2231 if (sk) 2232 return udp_unicast_rcv_skb(sk, skb, uh); 2233 2234 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2235 goto drop; 2236 nf_reset(skb); 2237 2238 /* No socket. Drop packet silently, if checksum is wrong */ 2239 if (udp_lib_checksum_complete(skb)) 2240 goto csum_error; 2241 2242 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2243 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2244 2245 /* 2246 * Hmm. We got an UDP packet to a port to which we 2247 * don't wanna listen. Ignore it. 2248 */ 2249 kfree_skb(skb); 2250 return 0; 2251 2252 short_packet: 2253 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2254 proto == IPPROTO_UDPLITE ? "Lite" : "", 2255 &saddr, ntohs(uh->source), 2256 ulen, skb->len, 2257 &daddr, ntohs(uh->dest)); 2258 goto drop; 2259 2260 csum_error: 2261 /* 2262 * RFC1122: OK. Discards the bad packet silently (as far as 2263 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2264 */ 2265 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2266 proto == IPPROTO_UDPLITE ? "Lite" : "", 2267 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2268 ulen); 2269 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2270 drop: 2271 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2272 kfree_skb(skb); 2273 return 0; 2274 } 2275 2276 /* We can only early demux multicast if there is a single matching socket. 2277 * If more than one socket found returns NULL 2278 */ 2279 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2280 __be16 loc_port, __be32 loc_addr, 2281 __be16 rmt_port, __be32 rmt_addr, 2282 int dif, int sdif) 2283 { 2284 struct sock *sk, *result; 2285 unsigned short hnum = ntohs(loc_port); 2286 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2287 struct udp_hslot *hslot = &udp_table.hash[slot]; 2288 2289 /* Do not bother scanning a too big list */ 2290 if (hslot->count > 10) 2291 return NULL; 2292 2293 result = NULL; 2294 sk_for_each_rcu(sk, &hslot->head) { 2295 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2296 rmt_port, rmt_addr, dif, sdif, hnum)) { 2297 if (result) 2298 return NULL; 2299 result = sk; 2300 } 2301 } 2302 2303 return result; 2304 } 2305 2306 /* For unicast we should only early demux connected sockets or we can 2307 * break forwarding setups. The chains here can be long so only check 2308 * if the first socket is an exact match and if not move on. 2309 */ 2310 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2311 __be16 loc_port, __be32 loc_addr, 2312 __be16 rmt_port, __be32 rmt_addr, 2313 int dif, int sdif) 2314 { 2315 unsigned short hnum = ntohs(loc_port); 2316 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2317 unsigned int slot2 = hash2 & udp_table.mask; 2318 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2319 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2320 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2321 struct sock *sk; 2322 2323 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2324 if (INET_MATCH(sk, net, acookie, rmt_addr, 2325 loc_addr, ports, dif, sdif)) 2326 return sk; 2327 /* Only check first socket in chain */ 2328 break; 2329 } 2330 return NULL; 2331 } 2332 2333 int udp_v4_early_demux(struct sk_buff *skb) 2334 { 2335 struct net *net = dev_net(skb->dev); 2336 struct in_device *in_dev = NULL; 2337 const struct iphdr *iph; 2338 const struct udphdr *uh; 2339 struct sock *sk = NULL; 2340 struct dst_entry *dst; 2341 int dif = skb->dev->ifindex; 2342 int sdif = inet_sdif(skb); 2343 int ours; 2344 2345 /* validate the packet */ 2346 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2347 return 0; 2348 2349 iph = ip_hdr(skb); 2350 uh = udp_hdr(skb); 2351 2352 if (skb->pkt_type == PACKET_MULTICAST) { 2353 in_dev = __in_dev_get_rcu(skb->dev); 2354 2355 if (!in_dev) 2356 return 0; 2357 2358 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2359 iph->protocol); 2360 if (!ours) 2361 return 0; 2362 2363 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2364 uh->source, iph->saddr, 2365 dif, sdif); 2366 } else if (skb->pkt_type == PACKET_HOST) { 2367 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2368 uh->source, iph->saddr, dif, sdif); 2369 } 2370 2371 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2372 return 0; 2373 2374 skb->sk = sk; 2375 skb->destructor = sock_efree; 2376 dst = READ_ONCE(sk->sk_rx_dst); 2377 2378 if (dst) 2379 dst = dst_check(dst, 0); 2380 if (dst) { 2381 u32 itag = 0; 2382 2383 /* set noref for now. 2384 * any place which wants to hold dst has to call 2385 * dst_hold_safe() 2386 */ 2387 skb_dst_set_noref(skb, dst); 2388 2389 /* for unconnected multicast sockets we need to validate 2390 * the source on each packet 2391 */ 2392 if (!inet_sk(sk)->inet_daddr && in_dev) 2393 return ip_mc_validate_source(skb, iph->daddr, 2394 iph->saddr, iph->tos, 2395 skb->dev, in_dev, &itag); 2396 } 2397 return 0; 2398 } 2399 2400 int udp_rcv(struct sk_buff *skb) 2401 { 2402 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2403 } 2404 2405 void udp_destroy_sock(struct sock *sk) 2406 { 2407 struct udp_sock *up = udp_sk(sk); 2408 bool slow = lock_sock_fast(sk); 2409 udp_flush_pending_frames(sk); 2410 unlock_sock_fast(sk, slow); 2411 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2412 void (*encap_destroy)(struct sock *sk); 2413 encap_destroy = READ_ONCE(up->encap_destroy); 2414 if (encap_destroy) 2415 encap_destroy(sk); 2416 } 2417 } 2418 2419 /* 2420 * Socket option code for UDP 2421 */ 2422 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2423 char __user *optval, unsigned int optlen, 2424 int (*push_pending_frames)(struct sock *)) 2425 { 2426 struct udp_sock *up = udp_sk(sk); 2427 int val, valbool; 2428 int err = 0; 2429 int is_udplite = IS_UDPLITE(sk); 2430 2431 if (optlen < sizeof(int)) 2432 return -EINVAL; 2433 2434 if (get_user(val, (int __user *)optval)) 2435 return -EFAULT; 2436 2437 valbool = val ? 1 : 0; 2438 2439 switch (optname) { 2440 case UDP_CORK: 2441 if (val != 0) { 2442 up->corkflag = 1; 2443 } else { 2444 up->corkflag = 0; 2445 lock_sock(sk); 2446 push_pending_frames(sk); 2447 release_sock(sk); 2448 } 2449 break; 2450 2451 case UDP_ENCAP: 2452 switch (val) { 2453 case 0: 2454 case UDP_ENCAP_ESPINUDP: 2455 case UDP_ENCAP_ESPINUDP_NON_IKE: 2456 up->encap_rcv = xfrm4_udp_encap_rcv; 2457 /* FALLTHROUGH */ 2458 case UDP_ENCAP_L2TPINUDP: 2459 up->encap_type = val; 2460 udp_encap_enable(); 2461 break; 2462 default: 2463 err = -ENOPROTOOPT; 2464 break; 2465 } 2466 break; 2467 2468 case UDP_NO_CHECK6_TX: 2469 up->no_check6_tx = valbool; 2470 break; 2471 2472 case UDP_NO_CHECK6_RX: 2473 up->no_check6_rx = valbool; 2474 break; 2475 2476 case UDP_SEGMENT: 2477 if (val < 0 || val > USHRT_MAX) 2478 return -EINVAL; 2479 up->gso_size = val; 2480 break; 2481 2482 /* 2483 * UDP-Lite's partial checksum coverage (RFC 3828). 2484 */ 2485 /* The sender sets actual checksum coverage length via this option. 2486 * The case coverage > packet length is handled by send module. */ 2487 case UDPLITE_SEND_CSCOV: 2488 if (!is_udplite) /* Disable the option on UDP sockets */ 2489 return -ENOPROTOOPT; 2490 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2491 val = 8; 2492 else if (val > USHRT_MAX) 2493 val = USHRT_MAX; 2494 up->pcslen = val; 2495 up->pcflag |= UDPLITE_SEND_CC; 2496 break; 2497 2498 /* The receiver specifies a minimum checksum coverage value. To make 2499 * sense, this should be set to at least 8 (as done below). If zero is 2500 * used, this again means full checksum coverage. */ 2501 case UDPLITE_RECV_CSCOV: 2502 if (!is_udplite) /* Disable the option on UDP sockets */ 2503 return -ENOPROTOOPT; 2504 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2505 val = 8; 2506 else if (val > USHRT_MAX) 2507 val = USHRT_MAX; 2508 up->pcrlen = val; 2509 up->pcflag |= UDPLITE_RECV_CC; 2510 break; 2511 2512 default: 2513 err = -ENOPROTOOPT; 2514 break; 2515 } 2516 2517 return err; 2518 } 2519 EXPORT_SYMBOL(udp_lib_setsockopt); 2520 2521 int udp_setsockopt(struct sock *sk, int level, int optname, 2522 char __user *optval, unsigned int optlen) 2523 { 2524 if (level == SOL_UDP || level == SOL_UDPLITE) 2525 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2526 udp_push_pending_frames); 2527 return ip_setsockopt(sk, level, optname, optval, optlen); 2528 } 2529 2530 #ifdef CONFIG_COMPAT 2531 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2532 char __user *optval, unsigned int optlen) 2533 { 2534 if (level == SOL_UDP || level == SOL_UDPLITE) 2535 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2536 udp_push_pending_frames); 2537 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2538 } 2539 #endif 2540 2541 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2542 char __user *optval, int __user *optlen) 2543 { 2544 struct udp_sock *up = udp_sk(sk); 2545 int val, len; 2546 2547 if (get_user(len, optlen)) 2548 return -EFAULT; 2549 2550 len = min_t(unsigned int, len, sizeof(int)); 2551 2552 if (len < 0) 2553 return -EINVAL; 2554 2555 switch (optname) { 2556 case UDP_CORK: 2557 val = up->corkflag; 2558 break; 2559 2560 case UDP_ENCAP: 2561 val = up->encap_type; 2562 break; 2563 2564 case UDP_NO_CHECK6_TX: 2565 val = up->no_check6_tx; 2566 break; 2567 2568 case UDP_NO_CHECK6_RX: 2569 val = up->no_check6_rx; 2570 break; 2571 2572 case UDP_SEGMENT: 2573 val = up->gso_size; 2574 break; 2575 2576 /* The following two cannot be changed on UDP sockets, the return is 2577 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2578 case UDPLITE_SEND_CSCOV: 2579 val = up->pcslen; 2580 break; 2581 2582 case UDPLITE_RECV_CSCOV: 2583 val = up->pcrlen; 2584 break; 2585 2586 default: 2587 return -ENOPROTOOPT; 2588 } 2589 2590 if (put_user(len, optlen)) 2591 return -EFAULT; 2592 if (copy_to_user(optval, &val, len)) 2593 return -EFAULT; 2594 return 0; 2595 } 2596 EXPORT_SYMBOL(udp_lib_getsockopt); 2597 2598 int udp_getsockopt(struct sock *sk, int level, int optname, 2599 char __user *optval, int __user *optlen) 2600 { 2601 if (level == SOL_UDP || level == SOL_UDPLITE) 2602 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2603 return ip_getsockopt(sk, level, optname, optval, optlen); 2604 } 2605 2606 #ifdef CONFIG_COMPAT 2607 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2608 char __user *optval, int __user *optlen) 2609 { 2610 if (level == SOL_UDP || level == SOL_UDPLITE) 2611 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2612 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2613 } 2614 #endif 2615 /** 2616 * udp_poll - wait for a UDP event. 2617 * @file - file struct 2618 * @sock - socket 2619 * @wait - poll table 2620 * 2621 * This is same as datagram poll, except for the special case of 2622 * blocking sockets. If application is using a blocking fd 2623 * and a packet with checksum error is in the queue; 2624 * then it could get return from select indicating data available 2625 * but then block when reading it. Add special case code 2626 * to work around these arguably broken applications. 2627 */ 2628 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2629 { 2630 __poll_t mask = datagram_poll(file, sock, wait); 2631 struct sock *sk = sock->sk; 2632 2633 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2634 mask |= EPOLLIN | EPOLLRDNORM; 2635 2636 /* Check for false positives due to checksum errors */ 2637 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2638 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2639 mask &= ~(EPOLLIN | EPOLLRDNORM); 2640 2641 return mask; 2642 2643 } 2644 EXPORT_SYMBOL(udp_poll); 2645 2646 int udp_abort(struct sock *sk, int err) 2647 { 2648 lock_sock(sk); 2649 2650 sk->sk_err = err; 2651 sk->sk_error_report(sk); 2652 __udp_disconnect(sk, 0); 2653 2654 release_sock(sk); 2655 2656 return 0; 2657 } 2658 EXPORT_SYMBOL_GPL(udp_abort); 2659 2660 struct proto udp_prot = { 2661 .name = "UDP", 2662 .owner = THIS_MODULE, 2663 .close = udp_lib_close, 2664 .pre_connect = udp_pre_connect, 2665 .connect = ip4_datagram_connect, 2666 .disconnect = udp_disconnect, 2667 .ioctl = udp_ioctl, 2668 .init = udp_init_sock, 2669 .destroy = udp_destroy_sock, 2670 .setsockopt = udp_setsockopt, 2671 .getsockopt = udp_getsockopt, 2672 .sendmsg = udp_sendmsg, 2673 .recvmsg = udp_recvmsg, 2674 .sendpage = udp_sendpage, 2675 .release_cb = ip4_datagram_release_cb, 2676 .hash = udp_lib_hash, 2677 .unhash = udp_lib_unhash, 2678 .rehash = udp_v4_rehash, 2679 .get_port = udp_v4_get_port, 2680 .memory_allocated = &udp_memory_allocated, 2681 .sysctl_mem = sysctl_udp_mem, 2682 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2683 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2684 .obj_size = sizeof(struct udp_sock), 2685 .h.udp_table = &udp_table, 2686 #ifdef CONFIG_COMPAT 2687 .compat_setsockopt = compat_udp_setsockopt, 2688 .compat_getsockopt = compat_udp_getsockopt, 2689 #endif 2690 .diag_destroy = udp_abort, 2691 }; 2692 EXPORT_SYMBOL(udp_prot); 2693 2694 /* ------------------------------------------------------------------------ */ 2695 #ifdef CONFIG_PROC_FS 2696 2697 static struct sock *udp_get_first(struct seq_file *seq, int start) 2698 { 2699 struct sock *sk; 2700 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2701 struct udp_iter_state *state = seq->private; 2702 struct net *net = seq_file_net(seq); 2703 2704 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2705 ++state->bucket) { 2706 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2707 2708 if (hlist_empty(&hslot->head)) 2709 continue; 2710 2711 spin_lock_bh(&hslot->lock); 2712 sk_for_each(sk, &hslot->head) { 2713 if (!net_eq(sock_net(sk), net)) 2714 continue; 2715 if (sk->sk_family == afinfo->family) 2716 goto found; 2717 } 2718 spin_unlock_bh(&hslot->lock); 2719 } 2720 sk = NULL; 2721 found: 2722 return sk; 2723 } 2724 2725 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2726 { 2727 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2728 struct udp_iter_state *state = seq->private; 2729 struct net *net = seq_file_net(seq); 2730 2731 do { 2732 sk = sk_next(sk); 2733 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2734 2735 if (!sk) { 2736 if (state->bucket <= afinfo->udp_table->mask) 2737 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2738 return udp_get_first(seq, state->bucket + 1); 2739 } 2740 return sk; 2741 } 2742 2743 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2744 { 2745 struct sock *sk = udp_get_first(seq, 0); 2746 2747 if (sk) 2748 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2749 --pos; 2750 return pos ? NULL : sk; 2751 } 2752 2753 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2754 { 2755 struct udp_iter_state *state = seq->private; 2756 state->bucket = MAX_UDP_PORTS; 2757 2758 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2759 } 2760 EXPORT_SYMBOL(udp_seq_start); 2761 2762 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2763 { 2764 struct sock *sk; 2765 2766 if (v == SEQ_START_TOKEN) 2767 sk = udp_get_idx(seq, 0); 2768 else 2769 sk = udp_get_next(seq, v); 2770 2771 ++*pos; 2772 return sk; 2773 } 2774 EXPORT_SYMBOL(udp_seq_next); 2775 2776 void udp_seq_stop(struct seq_file *seq, void *v) 2777 { 2778 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2779 struct udp_iter_state *state = seq->private; 2780 2781 if (state->bucket <= afinfo->udp_table->mask) 2782 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2783 } 2784 EXPORT_SYMBOL(udp_seq_stop); 2785 2786 /* ------------------------------------------------------------------------ */ 2787 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2788 int bucket) 2789 { 2790 struct inet_sock *inet = inet_sk(sp); 2791 __be32 dest = inet->inet_daddr; 2792 __be32 src = inet->inet_rcv_saddr; 2793 __u16 destp = ntohs(inet->inet_dport); 2794 __u16 srcp = ntohs(inet->inet_sport); 2795 2796 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2797 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2798 bucket, src, srcp, dest, destp, sp->sk_state, 2799 sk_wmem_alloc_get(sp), 2800 udp_rqueue_get(sp), 2801 0, 0L, 0, 2802 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2803 0, sock_i_ino(sp), 2804 refcount_read(&sp->sk_refcnt), sp, 2805 atomic_read(&sp->sk_drops)); 2806 } 2807 2808 int udp4_seq_show(struct seq_file *seq, void *v) 2809 { 2810 seq_setwidth(seq, 127); 2811 if (v == SEQ_START_TOKEN) 2812 seq_puts(seq, " sl local_address rem_address st tx_queue " 2813 "rx_queue tr tm->when retrnsmt uid timeout " 2814 "inode ref pointer drops"); 2815 else { 2816 struct udp_iter_state *state = seq->private; 2817 2818 udp4_format_sock(v, seq, state->bucket); 2819 } 2820 seq_pad(seq, '\n'); 2821 return 0; 2822 } 2823 2824 const struct seq_operations udp_seq_ops = { 2825 .start = udp_seq_start, 2826 .next = udp_seq_next, 2827 .stop = udp_seq_stop, 2828 .show = udp4_seq_show, 2829 }; 2830 EXPORT_SYMBOL(udp_seq_ops); 2831 2832 static struct udp_seq_afinfo udp4_seq_afinfo = { 2833 .family = AF_INET, 2834 .udp_table = &udp_table, 2835 }; 2836 2837 static int __net_init udp4_proc_init_net(struct net *net) 2838 { 2839 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2840 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2841 return -ENOMEM; 2842 return 0; 2843 } 2844 2845 static void __net_exit udp4_proc_exit_net(struct net *net) 2846 { 2847 remove_proc_entry("udp", net->proc_net); 2848 } 2849 2850 static struct pernet_operations udp4_net_ops = { 2851 .init = udp4_proc_init_net, 2852 .exit = udp4_proc_exit_net, 2853 }; 2854 2855 int __init udp4_proc_init(void) 2856 { 2857 return register_pernet_subsys(&udp4_net_ops); 2858 } 2859 2860 void udp4_proc_exit(void) 2861 { 2862 unregister_pernet_subsys(&udp4_net_ops); 2863 } 2864 #endif /* CONFIG_PROC_FS */ 2865 2866 static __initdata unsigned long uhash_entries; 2867 static int __init set_uhash_entries(char *str) 2868 { 2869 ssize_t ret; 2870 2871 if (!str) 2872 return 0; 2873 2874 ret = kstrtoul(str, 0, &uhash_entries); 2875 if (ret) 2876 return 0; 2877 2878 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2879 uhash_entries = UDP_HTABLE_SIZE_MIN; 2880 return 1; 2881 } 2882 __setup("uhash_entries=", set_uhash_entries); 2883 2884 void __init udp_table_init(struct udp_table *table, const char *name) 2885 { 2886 unsigned int i; 2887 2888 table->hash = alloc_large_system_hash(name, 2889 2 * sizeof(struct udp_hslot), 2890 uhash_entries, 2891 21, /* one slot per 2 MB */ 2892 0, 2893 &table->log, 2894 &table->mask, 2895 UDP_HTABLE_SIZE_MIN, 2896 64 * 1024); 2897 2898 table->hash2 = table->hash + (table->mask + 1); 2899 for (i = 0; i <= table->mask; i++) { 2900 INIT_HLIST_HEAD(&table->hash[i].head); 2901 table->hash[i].count = 0; 2902 spin_lock_init(&table->hash[i].lock); 2903 } 2904 for (i = 0; i <= table->mask; i++) { 2905 INIT_HLIST_HEAD(&table->hash2[i].head); 2906 table->hash2[i].count = 0; 2907 spin_lock_init(&table->hash2[i].lock); 2908 } 2909 } 2910 2911 u32 udp_flow_hashrnd(void) 2912 { 2913 static u32 hashrnd __read_mostly; 2914 2915 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2916 2917 return hashrnd; 2918 } 2919 EXPORT_SYMBOL(udp_flow_hashrnd); 2920 2921 static void __udp_sysctl_init(struct net *net) 2922 { 2923 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2924 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2925 2926 #ifdef CONFIG_NET_L3_MASTER_DEV 2927 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2928 #endif 2929 } 2930 2931 static int __net_init udp_sysctl_init(struct net *net) 2932 { 2933 __udp_sysctl_init(net); 2934 return 0; 2935 } 2936 2937 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2938 .init = udp_sysctl_init, 2939 }; 2940 2941 void __init udp_init(void) 2942 { 2943 unsigned long limit; 2944 unsigned int i; 2945 2946 udp_table_init(&udp_table, "UDP"); 2947 limit = nr_free_buffer_pages() / 8; 2948 limit = max(limit, 128UL); 2949 sysctl_udp_mem[0] = limit / 4 * 3; 2950 sysctl_udp_mem[1] = limit; 2951 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2952 2953 __udp_sysctl_init(&init_net); 2954 2955 /* 16 spinlocks per cpu */ 2956 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2957 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2958 GFP_KERNEL); 2959 if (!udp_busylocks) 2960 panic("UDP: failed to alloc udp_busylocks\n"); 2961 for (i = 0; i < (1U << udp_busylocks_log); i++) 2962 spin_lock_init(udp_busylocks + i); 2963 2964 if (register_pernet_subsys(&udp_sysctl_ops)) 2965 panic("UDP: failed to init sysctl parameters.\n"); 2966 } 2967
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.