1 /********************************************************************* 2 * 3 * Filename: af_irda.c 4 * Version: 0.9 5 * Description: IrDA sockets implementation 6 * Status: Stable 7 * Author: Dag Brattli <dagb@cs.uit.no> 8 * Created at: Sun May 31 10:12:43 1998 9 * Modified at: Sat Dec 25 21:10:23 1999 10 * Modified by: Dag Brattli <dag@brattli.net> 11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc. 12 * 13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no> 14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com> 15 * All Rights Reserved. 16 * 17 * This program is free software; you can redistribute it and/or 18 * modify it under the terms of the GNU General Public License as 19 * published by the Free Software Foundation; either version 2 of 20 * the License, or (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 * 27 * You should have received a copy of the GNU General Public License 28 * along with this program; if not, see <http://www.gnu.org/licenses/>. 29 * 30 * Linux-IrDA now supports four different types of IrDA sockets: 31 * 32 * o SOCK_STREAM: TinyTP connections with SAR disabled. The 33 * max SDU size is 0 for conn. of this type 34 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may 35 * fragment the messages, but will preserve 36 * the message boundaries 37 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata 38 * (unreliable) transfers 39 * IRDAPROTO_ULTRA: Connectionless and unreliable data 40 * 41 ********************************************************************/ 42 43 #include <linux/capability.h> 44 #include <linux/module.h> 45 #include <linux/types.h> 46 #include <linux/socket.h> 47 #include <linux/sockios.h> 48 #include <linux/slab.h> 49 #include <linux/init.h> 50 #include <linux/net.h> 51 #include <linux/irda.h> 52 #include <linux/poll.h> 53 54 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */ 55 #include <asm/uaccess.h> 56 57 #include <net/sock.h> 58 #include <net/tcp_states.h> 59 60 #include <net/irda/af_irda.h> 61 62 static int irda_create(struct net *net, struct socket *sock, int protocol, int kern); 63 64 static const struct proto_ops irda_stream_ops; 65 static const struct proto_ops irda_seqpacket_ops; 66 static const struct proto_ops irda_dgram_ops; 67 68 #ifdef CONFIG_IRDA_ULTRA 69 static const struct proto_ops irda_ultra_ops; 70 #define ULTRA_MAX_DATA 382 71 #endif /* CONFIG_IRDA_ULTRA */ 72 73 #define IRDA_MAX_HEADER (TTP_MAX_HEADER) 74 75 /* 76 * Function irda_data_indication (instance, sap, skb) 77 * 78 * Received some data from TinyTP. Just queue it on the receive queue 79 * 80 */ 81 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb) 82 { 83 struct irda_sock *self; 84 struct sock *sk; 85 int err; 86 87 IRDA_DEBUG(3, "%s()\n", __func__); 88 89 self = instance; 90 sk = instance; 91 92 err = sock_queue_rcv_skb(sk, skb); 93 if (err) { 94 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __func__); 95 self->rx_flow = FLOW_STOP; 96 97 /* When we return error, TTP will need to requeue the skb */ 98 return err; 99 } 100 101 return 0; 102 } 103 104 /* 105 * Function irda_disconnect_indication (instance, sap, reason, skb) 106 * 107 * Connection has been closed. Check reason to find out why 108 * 109 */ 110 static void irda_disconnect_indication(void *instance, void *sap, 111 LM_REASON reason, struct sk_buff *skb) 112 { 113 struct irda_sock *self; 114 struct sock *sk; 115 116 self = instance; 117 118 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 119 120 /* Don't care about it, but let's not leak it */ 121 if(skb) 122 dev_kfree_skb(skb); 123 124 sk = instance; 125 if (sk == NULL) { 126 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n", 127 __func__, self); 128 return; 129 } 130 131 /* Prevent race conditions with irda_release() and irda_shutdown() */ 132 bh_lock_sock(sk); 133 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) { 134 sk->sk_state = TCP_CLOSE; 135 sk->sk_shutdown |= SEND_SHUTDOWN; 136 137 sk->sk_state_change(sk); 138 139 /* Close our TSAP. 140 * If we leave it open, IrLMP put it back into the list of 141 * unconnected LSAPs. The problem is that any incoming request 142 * can then be matched to this socket (and it will be, because 143 * it is at the head of the list). This would prevent any 144 * listening socket waiting on the same TSAP to get those 145 * requests. Some apps forget to close sockets, or hang to it 146 * a bit too long, so we may stay in this dead state long 147 * enough to be noticed... 148 * Note : all socket function do check sk->sk_state, so we are 149 * safe... 150 * Jean II 151 */ 152 if (self->tsap) { 153 irttp_close_tsap(self->tsap); 154 self->tsap = NULL; 155 } 156 } 157 bh_unlock_sock(sk); 158 159 /* Note : once we are there, there is not much you want to do 160 * with the socket anymore, apart from closing it. 161 * For example, bind() and connect() won't reset sk->sk_err, 162 * sk->sk_shutdown and sk->sk_flags to valid values... 163 * Jean II 164 */ 165 } 166 167 /* 168 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb) 169 * 170 * Connections has been confirmed by the remote device 171 * 172 */ 173 static void irda_connect_confirm(void *instance, void *sap, 174 struct qos_info *qos, 175 __u32 max_sdu_size, __u8 max_header_size, 176 struct sk_buff *skb) 177 { 178 struct irda_sock *self; 179 struct sock *sk; 180 181 self = instance; 182 183 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 184 185 sk = instance; 186 if (sk == NULL) { 187 dev_kfree_skb(skb); 188 return; 189 } 190 191 dev_kfree_skb(skb); 192 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb); 193 194 /* How much header space do we need to reserve */ 195 self->max_header_size = max_header_size; 196 197 /* IrTTP max SDU size in transmit direction */ 198 self->max_sdu_size_tx = max_sdu_size; 199 200 /* Find out what the largest chunk of data that we can transmit is */ 201 switch (sk->sk_type) { 202 case SOCK_STREAM: 203 if (max_sdu_size != 0) { 204 IRDA_ERROR("%s: max_sdu_size must be 0\n", 205 __func__); 206 return; 207 } 208 self->max_data_size = irttp_get_max_seg_size(self->tsap); 209 break; 210 case SOCK_SEQPACKET: 211 if (max_sdu_size == 0) { 212 IRDA_ERROR("%s: max_sdu_size cannot be 0\n", 213 __func__); 214 return; 215 } 216 self->max_data_size = max_sdu_size; 217 break; 218 default: 219 self->max_data_size = irttp_get_max_seg_size(self->tsap); 220 } 221 222 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__, 223 self->max_data_size); 224 225 memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); 226 227 /* We are now connected! */ 228 sk->sk_state = TCP_ESTABLISHED; 229 sk->sk_state_change(sk); 230 } 231 232 /* 233 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata) 234 * 235 * Incoming connection 236 * 237 */ 238 static void irda_connect_indication(void *instance, void *sap, 239 struct qos_info *qos, __u32 max_sdu_size, 240 __u8 max_header_size, struct sk_buff *skb) 241 { 242 struct irda_sock *self; 243 struct sock *sk; 244 245 self = instance; 246 247 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 248 249 sk = instance; 250 if (sk == NULL) { 251 dev_kfree_skb(skb); 252 return; 253 } 254 255 /* How much header space do we need to reserve */ 256 self->max_header_size = max_header_size; 257 258 /* IrTTP max SDU size in transmit direction */ 259 self->max_sdu_size_tx = max_sdu_size; 260 261 /* Find out what the largest chunk of data that we can transmit is */ 262 switch (sk->sk_type) { 263 case SOCK_STREAM: 264 if (max_sdu_size != 0) { 265 IRDA_ERROR("%s: max_sdu_size must be 0\n", 266 __func__); 267 kfree_skb(skb); 268 return; 269 } 270 self->max_data_size = irttp_get_max_seg_size(self->tsap); 271 break; 272 case SOCK_SEQPACKET: 273 if (max_sdu_size == 0) { 274 IRDA_ERROR("%s: max_sdu_size cannot be 0\n", 275 __func__); 276 kfree_skb(skb); 277 return; 278 } 279 self->max_data_size = max_sdu_size; 280 break; 281 default: 282 self->max_data_size = irttp_get_max_seg_size(self->tsap); 283 } 284 285 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __func__, 286 self->max_data_size); 287 288 memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); 289 290 skb_queue_tail(&sk->sk_receive_queue, skb); 291 sk->sk_state_change(sk); 292 } 293 294 /* 295 * Function irda_connect_response (handle) 296 * 297 * Accept incoming connection 298 * 299 */ 300 static void irda_connect_response(struct irda_sock *self) 301 { 302 struct sk_buff *skb; 303 304 IRDA_DEBUG(2, "%s()\n", __func__); 305 306 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER, GFP_KERNEL); 307 if (skb == NULL) { 308 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n", 309 __func__); 310 return; 311 } 312 313 /* Reserve space for MUX_CONTROL and LAP header */ 314 skb_reserve(skb, IRDA_MAX_HEADER); 315 316 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb); 317 } 318 319 /* 320 * Function irda_flow_indication (instance, sap, flow) 321 * 322 * Used by TinyTP to tell us if it can accept more data or not 323 * 324 */ 325 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow) 326 { 327 struct irda_sock *self; 328 struct sock *sk; 329 330 IRDA_DEBUG(2, "%s()\n", __func__); 331 332 self = instance; 333 sk = instance; 334 BUG_ON(sk == NULL); 335 336 switch (flow) { 337 case FLOW_STOP: 338 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n", 339 __func__); 340 self->tx_flow = flow; 341 break; 342 case FLOW_START: 343 self->tx_flow = flow; 344 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n", 345 __func__); 346 wake_up_interruptible(sk_sleep(sk)); 347 break; 348 default: 349 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __func__); 350 /* Unknown flow command, better stop */ 351 self->tx_flow = flow; 352 break; 353 } 354 } 355 356 /* 357 * Function irda_getvalue_confirm (obj_id, value, priv) 358 * 359 * Got answer from remote LM-IAS, just pass object to requester... 360 * 361 * Note : duplicate from above, but we need our own version that 362 * doesn't touch the dtsap_sel and save the full value structure... 363 */ 364 static void irda_getvalue_confirm(int result, __u16 obj_id, 365 struct ias_value *value, void *priv) 366 { 367 struct irda_sock *self; 368 369 self = priv; 370 if (!self) { 371 IRDA_WARNING("%s: lost myself!\n", __func__); 372 return; 373 } 374 375 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 376 377 /* We probably don't need to make any more queries */ 378 iriap_close(self->iriap); 379 self->iriap = NULL; 380 381 /* Check if request succeeded */ 382 if (result != IAS_SUCCESS) { 383 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __func__, 384 result); 385 386 self->errno = result; /* We really need it later */ 387 388 /* Wake up any processes waiting for result */ 389 wake_up_interruptible(&self->query_wait); 390 391 return; 392 } 393 394 /* Pass the object to the caller (so the caller must delete it) */ 395 self->ias_result = value; 396 self->errno = 0; 397 398 /* Wake up any processes waiting for result */ 399 wake_up_interruptible(&self->query_wait); 400 } 401 402 /* 403 * Function irda_selective_discovery_indication (discovery) 404 * 405 * Got a selective discovery indication from IrLMP. 406 * 407 * IrLMP is telling us that this node is new and matching our hint bit 408 * filter. Wake up any process waiting for answer... 409 */ 410 static void irda_selective_discovery_indication(discinfo_t *discovery, 411 DISCOVERY_MODE mode, 412 void *priv) 413 { 414 struct irda_sock *self; 415 416 IRDA_DEBUG(2, "%s()\n", __func__); 417 418 self = priv; 419 if (!self) { 420 IRDA_WARNING("%s: lost myself!\n", __func__); 421 return; 422 } 423 424 /* Pass parameter to the caller */ 425 self->cachedaddr = discovery->daddr; 426 427 /* Wake up process if its waiting for device to be discovered */ 428 wake_up_interruptible(&self->query_wait); 429 } 430 431 /* 432 * Function irda_discovery_timeout (priv) 433 * 434 * Timeout in the selective discovery process 435 * 436 * We were waiting for a node to be discovered, but nothing has come up 437 * so far. Wake up the user and tell him that we failed... 438 */ 439 static void irda_discovery_timeout(u_long priv) 440 { 441 struct irda_sock *self; 442 443 IRDA_DEBUG(2, "%s()\n", __func__); 444 445 self = (struct irda_sock *) priv; 446 BUG_ON(self == NULL); 447 448 /* Nothing for the caller */ 449 self->cachelog = NULL; 450 self->cachedaddr = 0; 451 self->errno = -ETIME; 452 453 /* Wake up process if its still waiting... */ 454 wake_up_interruptible(&self->query_wait); 455 } 456 457 /* 458 * Function irda_open_tsap (self) 459 * 460 * Open local Transport Service Access Point (TSAP) 461 * 462 */ 463 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name) 464 { 465 notify_t notify; 466 467 if (self->tsap) { 468 IRDA_DEBUG(0, "%s: busy!\n", __func__); 469 return -EBUSY; 470 } 471 472 /* Initialize callbacks to be used by the IrDA stack */ 473 irda_notify_init(¬ify); 474 notify.connect_confirm = irda_connect_confirm; 475 notify.connect_indication = irda_connect_indication; 476 notify.disconnect_indication = irda_disconnect_indication; 477 notify.data_indication = irda_data_indication; 478 notify.udata_indication = irda_data_indication; 479 notify.flow_indication = irda_flow_indication; 480 notify.instance = self; 481 strncpy(notify.name, name, NOTIFY_MAX_NAME); 482 483 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT, 484 ¬ify); 485 if (self->tsap == NULL) { 486 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n", 487 __func__); 488 return -ENOMEM; 489 } 490 /* Remember which TSAP selector we actually got */ 491 self->stsap_sel = self->tsap->stsap_sel; 492 493 return 0; 494 } 495 496 /* 497 * Function irda_open_lsap (self) 498 * 499 * Open local Link Service Access Point (LSAP). Used for opening Ultra 500 * sockets 501 */ 502 #ifdef CONFIG_IRDA_ULTRA 503 static int irda_open_lsap(struct irda_sock *self, int pid) 504 { 505 notify_t notify; 506 507 if (self->lsap) { 508 IRDA_WARNING("%s(), busy!\n", __func__); 509 return -EBUSY; 510 } 511 512 /* Initialize callbacks to be used by the IrDA stack */ 513 irda_notify_init(¬ify); 514 notify.udata_indication = irda_data_indication; 515 notify.instance = self; 516 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME); 517 518 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, ¬ify, pid); 519 if (self->lsap == NULL) { 520 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __func__); 521 return -ENOMEM; 522 } 523 524 return 0; 525 } 526 #endif /* CONFIG_IRDA_ULTRA */ 527 528 /* 529 * Function irda_find_lsap_sel (self, name) 530 * 531 * Try to lookup LSAP selector in remote LM-IAS 532 * 533 * Basically, we start a IAP query, and then go to sleep. When the query 534 * return, irda_getvalue_confirm will wake us up, and we can examine the 535 * result of the query... 536 * Note that in some case, the query fail even before we go to sleep, 537 * creating some races... 538 */ 539 static int irda_find_lsap_sel(struct irda_sock *self, char *name) 540 { 541 IRDA_DEBUG(2, "%s(%p, %s)\n", __func__, self, name); 542 543 if (self->iriap) { 544 IRDA_WARNING("%s(): busy with a previous query\n", 545 __func__); 546 return -EBUSY; 547 } 548 549 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, 550 irda_getvalue_confirm); 551 if(self->iriap == NULL) 552 return -ENOMEM; 553 554 /* Treat unexpected wakeup as disconnect */ 555 self->errno = -EHOSTUNREACH; 556 557 /* Query remote LM-IAS */ 558 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr, 559 name, "IrDA:TinyTP:LsapSel"); 560 561 /* Wait for answer, if not yet finished (or failed) */ 562 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL))) 563 /* Treat signals as disconnect */ 564 return -EHOSTUNREACH; 565 566 /* Check what happened */ 567 if (self->errno) 568 { 569 /* Requested object/attribute doesn't exist */ 570 if((self->errno == IAS_CLASS_UNKNOWN) || 571 (self->errno == IAS_ATTRIB_UNKNOWN)) 572 return -EADDRNOTAVAIL; 573 else 574 return -EHOSTUNREACH; 575 } 576 577 /* Get the remote TSAP selector */ 578 switch (self->ias_result->type) { 579 case IAS_INTEGER: 580 IRDA_DEBUG(4, "%s() int=%d\n", 581 __func__, self->ias_result->t.integer); 582 583 if (self->ias_result->t.integer != -1) 584 self->dtsap_sel = self->ias_result->t.integer; 585 else 586 self->dtsap_sel = 0; 587 break; 588 default: 589 self->dtsap_sel = 0; 590 IRDA_DEBUG(0, "%s(), bad type!\n", __func__); 591 break; 592 } 593 if (self->ias_result) 594 irias_delete_value(self->ias_result); 595 596 if (self->dtsap_sel) 597 return 0; 598 599 return -EADDRNOTAVAIL; 600 } 601 602 /* 603 * Function irda_discover_daddr_and_lsap_sel (self, name) 604 * 605 * This try to find a device with the requested service. 606 * 607 * It basically look into the discovery log. For each address in the list, 608 * it queries the LM-IAS of the device to find if this device offer 609 * the requested service. 610 * If there is more than one node supporting the service, we complain 611 * to the user (it should move devices around). 612 * The, we set both the destination address and the lsap selector to point 613 * on the service on the unique device we have found. 614 * 615 * Note : this function fails if there is more than one device in range, 616 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed. 617 * Moreover, we would need to wait the LAP disconnection... 618 */ 619 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name) 620 { 621 discinfo_t *discoveries; /* Copy of the discovery log */ 622 int number; /* Number of nodes in the log */ 623 int i; 624 int err = -ENETUNREACH; 625 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */ 626 __u8 dtsap_sel = 0x0; /* TSAP associated with it */ 627 628 IRDA_DEBUG(2, "%s(), name=%s\n", __func__, name); 629 630 /* Ask lmp for the current discovery log 631 * Note : we have to use irlmp_get_discoveries(), as opposed 632 * to play with the cachelog directly, because while we are 633 * making our ias query, le log might change... */ 634 discoveries = irlmp_get_discoveries(&number, self->mask.word, 635 self->nslots); 636 /* Check if the we got some results */ 637 if (discoveries == NULL) 638 return -ENETUNREACH; /* No nodes discovered */ 639 640 /* 641 * Now, check all discovered devices (if any), and connect 642 * client only about the services that the client is 643 * interested in... 644 */ 645 for(i = 0; i < number; i++) { 646 /* Try the address in the log */ 647 self->daddr = discoveries[i].daddr; 648 self->saddr = 0x0; 649 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n", 650 __func__, self->daddr); 651 652 /* Query remote LM-IAS for this service */ 653 err = irda_find_lsap_sel(self, name); 654 switch (err) { 655 case 0: 656 /* We found the requested service */ 657 if(daddr != DEV_ADDR_ANY) { 658 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n", 659 __func__, name); 660 self->daddr = DEV_ADDR_ANY; 661 kfree(discoveries); 662 return -ENOTUNIQ; 663 } 664 /* First time we found that one, save it ! */ 665 daddr = self->daddr; 666 dtsap_sel = self->dtsap_sel; 667 break; 668 case -EADDRNOTAVAIL: 669 /* Requested service simply doesn't exist on this node */ 670 break; 671 default: 672 /* Something bad did happen :-( */ 673 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __func__); 674 self->daddr = DEV_ADDR_ANY; 675 kfree(discoveries); 676 return -EHOSTUNREACH; 677 break; 678 } 679 } 680 /* Cleanup our copy of the discovery log */ 681 kfree(discoveries); 682 683 /* Check out what we found */ 684 if(daddr == DEV_ADDR_ANY) { 685 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n", 686 __func__, name); 687 self->daddr = DEV_ADDR_ANY; 688 return -EADDRNOTAVAIL; 689 } 690 691 /* Revert back to discovered device & service */ 692 self->daddr = daddr; 693 self->saddr = 0x0; 694 self->dtsap_sel = dtsap_sel; 695 696 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n", 697 __func__, name, self->daddr); 698 699 return 0; 700 } 701 702 /* 703 * Function irda_getname (sock, uaddr, uaddr_len, peer) 704 * 705 * Return the our own, or peers socket address (sockaddr_irda) 706 * 707 */ 708 static int irda_getname(struct socket *sock, struct sockaddr *uaddr, 709 int *uaddr_len, int peer) 710 { 711 struct sockaddr_irda saddr; 712 struct sock *sk = sock->sk; 713 struct irda_sock *self = irda_sk(sk); 714 715 memset(&saddr, 0, sizeof(saddr)); 716 if (peer) { 717 if (sk->sk_state != TCP_ESTABLISHED) 718 return -ENOTCONN; 719 720 saddr.sir_family = AF_IRDA; 721 saddr.sir_lsap_sel = self->dtsap_sel; 722 saddr.sir_addr = self->daddr; 723 } else { 724 saddr.sir_family = AF_IRDA; 725 saddr.sir_lsap_sel = self->stsap_sel; 726 saddr.sir_addr = self->saddr; 727 } 728 729 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel); 730 IRDA_DEBUG(1, "%s(), addr = %08x\n", __func__, saddr.sir_addr); 731 732 /* uaddr_len come to us uninitialised */ 733 *uaddr_len = sizeof (struct sockaddr_irda); 734 memcpy(uaddr, &saddr, *uaddr_len); 735 736 return 0; 737 } 738 739 /* 740 * Function irda_listen (sock, backlog) 741 * 742 * Just move to the listen state 743 * 744 */ 745 static int irda_listen(struct socket *sock, int backlog) 746 { 747 struct sock *sk = sock->sk; 748 int err = -EOPNOTSUPP; 749 750 IRDA_DEBUG(2, "%s()\n", __func__); 751 752 lock_sock(sk); 753 754 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && 755 (sk->sk_type != SOCK_DGRAM)) 756 goto out; 757 758 if (sk->sk_state != TCP_LISTEN) { 759 sk->sk_max_ack_backlog = backlog; 760 sk->sk_state = TCP_LISTEN; 761 762 err = 0; 763 } 764 out: 765 release_sock(sk); 766 767 return err; 768 } 769 770 /* 771 * Function irda_bind (sock, uaddr, addr_len) 772 * 773 * Used by servers to register their well known TSAP 774 * 775 */ 776 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 777 { 778 struct sock *sk = sock->sk; 779 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; 780 struct irda_sock *self = irda_sk(sk); 781 int err; 782 783 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 784 785 if (addr_len != sizeof(struct sockaddr_irda)) 786 return -EINVAL; 787 788 lock_sock(sk); 789 #ifdef CONFIG_IRDA_ULTRA 790 /* Special care for Ultra sockets */ 791 if ((sk->sk_type == SOCK_DGRAM) && 792 (sk->sk_protocol == IRDAPROTO_ULTRA)) { 793 self->pid = addr->sir_lsap_sel; 794 err = -EOPNOTSUPP; 795 if (self->pid & 0x80) { 796 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__); 797 goto out; 798 } 799 err = irda_open_lsap(self, self->pid); 800 if (err < 0) 801 goto out; 802 803 /* Pretend we are connected */ 804 sock->state = SS_CONNECTED; 805 sk->sk_state = TCP_ESTABLISHED; 806 err = 0; 807 808 goto out; 809 } 810 #endif /* CONFIG_IRDA_ULTRA */ 811 812 self->ias_obj = irias_new_object(addr->sir_name, jiffies); 813 err = -ENOMEM; 814 if (self->ias_obj == NULL) 815 goto out; 816 817 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name); 818 if (err < 0) { 819 irias_delete_object(self->ias_obj); 820 self->ias_obj = NULL; 821 goto out; 822 } 823 824 /* Register with LM-IAS */ 825 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel", 826 self->stsap_sel, IAS_KERNEL_ATTR); 827 irias_insert_object(self->ias_obj); 828 829 err = 0; 830 out: 831 release_sock(sk); 832 return err; 833 } 834 835 /* 836 * Function irda_accept (sock, newsock, flags) 837 * 838 * Wait for incoming connection 839 * 840 */ 841 static int irda_accept(struct socket *sock, struct socket *newsock, int flags) 842 { 843 struct sock *sk = sock->sk; 844 struct irda_sock *new, *self = irda_sk(sk); 845 struct sock *newsk; 846 struct sk_buff *skb; 847 int err; 848 849 IRDA_DEBUG(2, "%s()\n", __func__); 850 851 err = irda_create(sock_net(sk), newsock, sk->sk_protocol, 0); 852 if (err) 853 return err; 854 855 err = -EINVAL; 856 857 lock_sock(sk); 858 if (sock->state != SS_UNCONNECTED) 859 goto out; 860 861 if ((sk = sock->sk) == NULL) 862 goto out; 863 864 err = -EOPNOTSUPP; 865 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && 866 (sk->sk_type != SOCK_DGRAM)) 867 goto out; 868 869 err = -EINVAL; 870 if (sk->sk_state != TCP_LISTEN) 871 goto out; 872 873 /* 874 * The read queue this time is holding sockets ready to use 875 * hooked into the SABM we saved 876 */ 877 878 /* 879 * We can perform the accept only if there is incoming data 880 * on the listening socket. 881 * So, we will block the caller until we receive any data. 882 * If the caller was waiting on select() or poll() before 883 * calling us, the data is waiting for us ;-) 884 * Jean II 885 */ 886 while (1) { 887 skb = skb_dequeue(&sk->sk_receive_queue); 888 if (skb) 889 break; 890 891 /* Non blocking operation */ 892 err = -EWOULDBLOCK; 893 if (flags & O_NONBLOCK) 894 goto out; 895 896 err = wait_event_interruptible(*(sk_sleep(sk)), 897 skb_peek(&sk->sk_receive_queue)); 898 if (err) 899 goto out; 900 } 901 902 newsk = newsock->sk; 903 err = -EIO; 904 if (newsk == NULL) 905 goto out; 906 907 newsk->sk_state = TCP_ESTABLISHED; 908 909 new = irda_sk(newsk); 910 911 /* Now attach up the new socket */ 912 new->tsap = irttp_dup(self->tsap, new); 913 err = -EPERM; /* value does not seem to make sense. -arnd */ 914 if (!new->tsap) { 915 IRDA_DEBUG(0, "%s(), dup failed!\n", __func__); 916 kfree_skb(skb); 917 goto out; 918 } 919 920 new->stsap_sel = new->tsap->stsap_sel; 921 new->dtsap_sel = new->tsap->dtsap_sel; 922 new->saddr = irttp_get_saddr(new->tsap); 923 new->daddr = irttp_get_daddr(new->tsap); 924 925 new->max_sdu_size_tx = self->max_sdu_size_tx; 926 new->max_sdu_size_rx = self->max_sdu_size_rx; 927 new->max_data_size = self->max_data_size; 928 new->max_header_size = self->max_header_size; 929 930 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info)); 931 932 /* Clean up the original one to keep it in listen state */ 933 irttp_listen(self->tsap); 934 935 kfree_skb(skb); 936 sk->sk_ack_backlog--; 937 938 newsock->state = SS_CONNECTED; 939 940 irda_connect_response(new); 941 err = 0; 942 out: 943 release_sock(sk); 944 return err; 945 } 946 947 /* 948 * Function irda_connect (sock, uaddr, addr_len, flags) 949 * 950 * Connect to a IrDA device 951 * 952 * The main difference with a "standard" connect is that with IrDA we need 953 * to resolve the service name into a TSAP selector (in TCP, port number 954 * doesn't have to be resolved). 955 * Because of this service name resolution, we can offer "auto-connect", 956 * where we connect to a service without specifying a destination address. 957 * 958 * Note : by consulting "errno", the user space caller may learn the cause 959 * of the failure. Most of them are visible in the function, others may come 960 * from subroutines called and are listed here : 961 * o EBUSY : already processing a connect 962 * o EHOSTUNREACH : bad addr->sir_addr argument 963 * o EADDRNOTAVAIL : bad addr->sir_name argument 964 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect) 965 * o ENETUNREACH : no node found on the network (auto-connect) 966 */ 967 static int irda_connect(struct socket *sock, struct sockaddr *uaddr, 968 int addr_len, int flags) 969 { 970 struct sock *sk = sock->sk; 971 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; 972 struct irda_sock *self = irda_sk(sk); 973 int err; 974 975 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 976 977 lock_sock(sk); 978 /* Don't allow connect for Ultra sockets */ 979 err = -ESOCKTNOSUPPORT; 980 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA)) 981 goto out; 982 983 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 984 sock->state = SS_CONNECTED; 985 err = 0; 986 goto out; /* Connect completed during a ERESTARTSYS event */ 987 } 988 989 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 990 sock->state = SS_UNCONNECTED; 991 err = -ECONNREFUSED; 992 goto out; 993 } 994 995 err = -EISCONN; /* No reconnect on a seqpacket socket */ 996 if (sk->sk_state == TCP_ESTABLISHED) 997 goto out; 998 999 sk->sk_state = TCP_CLOSE; 1000 sock->state = SS_UNCONNECTED; 1001 1002 err = -EINVAL; 1003 if (addr_len != sizeof(struct sockaddr_irda)) 1004 goto out; 1005 1006 /* Check if user supplied any destination device address */ 1007 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) { 1008 /* Try to find one suitable */ 1009 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name); 1010 if (err) { 1011 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __func__); 1012 goto out; 1013 } 1014 } else { 1015 /* Use the one provided by the user */ 1016 self->daddr = addr->sir_addr; 1017 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __func__, self->daddr); 1018 1019 /* If we don't have a valid service name, we assume the 1020 * user want to connect on a specific LSAP. Prevent 1021 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */ 1022 if((addr->sir_name[0] != '\0') || 1023 (addr->sir_lsap_sel >= 0x70)) { 1024 /* Query remote LM-IAS using service name */ 1025 err = irda_find_lsap_sel(self, addr->sir_name); 1026 if (err) { 1027 IRDA_DEBUG(0, "%s(), connect failed!\n", __func__); 1028 goto out; 1029 } 1030 } else { 1031 /* Directly connect to the remote LSAP 1032 * specified by the sir_lsap field. 1033 * Please use with caution, in IrDA LSAPs are 1034 * dynamic and there is no "well-known" LSAP. */ 1035 self->dtsap_sel = addr->sir_lsap_sel; 1036 } 1037 } 1038 1039 /* Check if we have opened a local TSAP */ 1040 if (!self->tsap) 1041 irda_open_tsap(self, LSAP_ANY, addr->sir_name); 1042 1043 /* Move to connecting socket, start sending Connect Requests */ 1044 sock->state = SS_CONNECTING; 1045 sk->sk_state = TCP_SYN_SENT; 1046 1047 /* Connect to remote device */ 1048 err = irttp_connect_request(self->tsap, self->dtsap_sel, 1049 self->saddr, self->daddr, NULL, 1050 self->max_sdu_size_rx, NULL); 1051 if (err) { 1052 IRDA_DEBUG(0, "%s(), connect failed!\n", __func__); 1053 goto out; 1054 } 1055 1056 /* Now the loop */ 1057 err = -EINPROGRESS; 1058 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) 1059 goto out; 1060 1061 err = -ERESTARTSYS; 1062 if (wait_event_interruptible(*(sk_sleep(sk)), 1063 (sk->sk_state != TCP_SYN_SENT))) 1064 goto out; 1065 1066 if (sk->sk_state != TCP_ESTABLISHED) { 1067 sock->state = SS_UNCONNECTED; 1068 if (sk->sk_prot->disconnect(sk, flags)) 1069 sock->state = SS_DISCONNECTING; 1070 err = sock_error(sk); 1071 if (!err) 1072 err = -ECONNRESET; 1073 goto out; 1074 } 1075 1076 sock->state = SS_CONNECTED; 1077 1078 /* At this point, IrLMP has assigned our source address */ 1079 self->saddr = irttp_get_saddr(self->tsap); 1080 err = 0; 1081 out: 1082 release_sock(sk); 1083 return err; 1084 } 1085 1086 static struct proto irda_proto = { 1087 .name = "IRDA", 1088 .owner = THIS_MODULE, 1089 .obj_size = sizeof(struct irda_sock), 1090 }; 1091 1092 /* 1093 * Function irda_create (sock, protocol) 1094 * 1095 * Create IrDA socket 1096 * 1097 */ 1098 static int irda_create(struct net *net, struct socket *sock, int protocol, 1099 int kern) 1100 { 1101 struct sock *sk; 1102 struct irda_sock *self; 1103 1104 IRDA_DEBUG(2, "%s()\n", __func__); 1105 1106 if (net != &init_net) 1107 return -EAFNOSUPPORT; 1108 1109 /* Check for valid socket type */ 1110 switch (sock->type) { 1111 case SOCK_STREAM: /* For TTP connections with SAR disabled */ 1112 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */ 1113 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */ 1114 break; 1115 default: 1116 return -ESOCKTNOSUPPORT; 1117 } 1118 1119 /* Allocate networking socket */ 1120 sk = sk_alloc(net, PF_IRDA, GFP_KERNEL, &irda_proto); 1121 if (sk == NULL) 1122 return -ENOMEM; 1123 1124 self = irda_sk(sk); 1125 IRDA_DEBUG(2, "%s() : self is %p\n", __func__, self); 1126 1127 init_waitqueue_head(&self->query_wait); 1128 1129 switch (sock->type) { 1130 case SOCK_STREAM: 1131 sock->ops = &irda_stream_ops; 1132 self->max_sdu_size_rx = TTP_SAR_DISABLE; 1133 break; 1134 case SOCK_SEQPACKET: 1135 sock->ops = &irda_seqpacket_ops; 1136 self->max_sdu_size_rx = TTP_SAR_UNBOUND; 1137 break; 1138 case SOCK_DGRAM: 1139 switch (protocol) { 1140 #ifdef CONFIG_IRDA_ULTRA 1141 case IRDAPROTO_ULTRA: 1142 sock->ops = &irda_ultra_ops; 1143 /* Initialise now, because we may send on unbound 1144 * sockets. Jean II */ 1145 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER; 1146 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER; 1147 break; 1148 #endif /* CONFIG_IRDA_ULTRA */ 1149 case IRDAPROTO_UNITDATA: 1150 sock->ops = &irda_dgram_ops; 1151 /* We let Unitdata conn. be like seqpack conn. */ 1152 self->max_sdu_size_rx = TTP_SAR_UNBOUND; 1153 break; 1154 default: 1155 sk_free(sk); 1156 return -ESOCKTNOSUPPORT; 1157 } 1158 break; 1159 default: 1160 sk_free(sk); 1161 return -ESOCKTNOSUPPORT; 1162 } 1163 1164 /* Initialise networking socket struct */ 1165 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */ 1166 sk->sk_family = PF_IRDA; 1167 sk->sk_protocol = protocol; 1168 1169 /* Register as a client with IrLMP */ 1170 self->ckey = irlmp_register_client(0, NULL, NULL, NULL); 1171 self->mask.word = 0xffff; 1172 self->rx_flow = self->tx_flow = FLOW_START; 1173 self->nslots = DISCOVERY_DEFAULT_SLOTS; 1174 self->daddr = DEV_ADDR_ANY; /* Until we get connected */ 1175 self->saddr = 0x0; /* so IrLMP assign us any link */ 1176 return 0; 1177 } 1178 1179 /* 1180 * Function irda_destroy_socket (self) 1181 * 1182 * Destroy socket 1183 * 1184 */ 1185 static void irda_destroy_socket(struct irda_sock *self) 1186 { 1187 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 1188 1189 /* Unregister with IrLMP */ 1190 irlmp_unregister_client(self->ckey); 1191 irlmp_unregister_service(self->skey); 1192 1193 /* Unregister with LM-IAS */ 1194 if (self->ias_obj) { 1195 irias_delete_object(self->ias_obj); 1196 self->ias_obj = NULL; 1197 } 1198 1199 if (self->iriap) { 1200 iriap_close(self->iriap); 1201 self->iriap = NULL; 1202 } 1203 1204 if (self->tsap) { 1205 irttp_disconnect_request(self->tsap, NULL, P_NORMAL); 1206 irttp_close_tsap(self->tsap); 1207 self->tsap = NULL; 1208 } 1209 #ifdef CONFIG_IRDA_ULTRA 1210 if (self->lsap) { 1211 irlmp_close_lsap(self->lsap); 1212 self->lsap = NULL; 1213 } 1214 #endif /* CONFIG_IRDA_ULTRA */ 1215 } 1216 1217 /* 1218 * Function irda_release (sock) 1219 */ 1220 static int irda_release(struct socket *sock) 1221 { 1222 struct sock *sk = sock->sk; 1223 1224 IRDA_DEBUG(2, "%s()\n", __func__); 1225 1226 if (sk == NULL) 1227 return 0; 1228 1229 lock_sock(sk); 1230 sk->sk_state = TCP_CLOSE; 1231 sk->sk_shutdown |= SEND_SHUTDOWN; 1232 sk->sk_state_change(sk); 1233 1234 /* Destroy IrDA socket */ 1235 irda_destroy_socket(irda_sk(sk)); 1236 1237 sock_orphan(sk); 1238 sock->sk = NULL; 1239 release_sock(sk); 1240 1241 /* Purge queues (see sock_init_data()) */ 1242 skb_queue_purge(&sk->sk_receive_queue); 1243 1244 /* Destroy networking socket if we are the last reference on it, 1245 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */ 1246 sock_put(sk); 1247 1248 /* Notes on socket locking and deallocation... - Jean II 1249 * In theory we should put pairs of sock_hold() / sock_put() to 1250 * prevent the socket to be destroyed whenever there is an 1251 * outstanding request or outstanding incoming packet or event. 1252 * 1253 * 1) This may include IAS request, both in connect and getsockopt. 1254 * Unfortunately, the situation is a bit more messy than it looks, 1255 * because we close iriap and kfree(self) above. 1256 * 1257 * 2) This may include selective discovery in getsockopt. 1258 * Same stuff as above, irlmp registration and self are gone. 1259 * 1260 * Probably 1 and 2 may not matter, because it's all triggered 1261 * by a process and the socket layer already prevent the 1262 * socket to go away while a process is holding it, through 1263 * sockfd_put() and fput()... 1264 * 1265 * 3) This may include deferred TSAP closure. In particular, 1266 * we may receive a late irda_disconnect_indication() 1267 * Fortunately, (tsap_cb *)->close_pend should protect us 1268 * from that. 1269 * 1270 * I did some testing on SMP, and it looks solid. And the socket 1271 * memory leak is now gone... - Jean II 1272 */ 1273 1274 return 0; 1275 } 1276 1277 /* 1278 * Function irda_sendmsg (iocb, sock, msg, len) 1279 * 1280 * Send message down to TinyTP. This function is used for both STREAM and 1281 * SEQPACK services. This is possible since it forces the client to 1282 * fragment the message if necessary 1283 */ 1284 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock, 1285 struct msghdr *msg, size_t len) 1286 { 1287 struct sock *sk = sock->sk; 1288 struct irda_sock *self; 1289 struct sk_buff *skb; 1290 int err = -EPIPE; 1291 1292 IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len); 1293 1294 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */ 1295 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT | 1296 MSG_NOSIGNAL)) { 1297 return -EINVAL; 1298 } 1299 1300 lock_sock(sk); 1301 1302 if (sk->sk_shutdown & SEND_SHUTDOWN) 1303 goto out_err; 1304 1305 if (sk->sk_state != TCP_ESTABLISHED) { 1306 err = -ENOTCONN; 1307 goto out; 1308 } 1309 1310 self = irda_sk(sk); 1311 1312 /* Check if IrTTP is wants us to slow down */ 1313 1314 if (wait_event_interruptible(*(sk_sleep(sk)), 1315 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) { 1316 err = -ERESTARTSYS; 1317 goto out; 1318 } 1319 1320 /* Check if we are still connected */ 1321 if (sk->sk_state != TCP_ESTABLISHED) { 1322 err = -ENOTCONN; 1323 goto out; 1324 } 1325 1326 /* Check that we don't send out too big frames */ 1327 if (len > self->max_data_size) { 1328 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n", 1329 __func__, len, self->max_data_size); 1330 len = self->max_data_size; 1331 } 1332 1333 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16, 1334 msg->msg_flags & MSG_DONTWAIT, &err); 1335 if (!skb) 1336 goto out_err; 1337 1338 skb_reserve(skb, self->max_header_size + 16); 1339 skb_reset_transport_header(skb); 1340 skb_put(skb, len); 1341 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len); 1342 if (err) { 1343 kfree_skb(skb); 1344 goto out_err; 1345 } 1346 1347 /* 1348 * Just send the message to TinyTP, and let it deal with possible 1349 * errors. No need to duplicate all that here 1350 */ 1351 err = irttp_data_request(self->tsap, skb); 1352 if (err) { 1353 IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err); 1354 goto out_err; 1355 } 1356 1357 release_sock(sk); 1358 /* Tell client how much data we actually sent */ 1359 return len; 1360 1361 out_err: 1362 err = sk_stream_error(sk, msg->msg_flags, err); 1363 out: 1364 release_sock(sk); 1365 return err; 1366 1367 } 1368 1369 /* 1370 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags) 1371 * 1372 * Try to receive message and copy it to user. The frame is discarded 1373 * after being read, regardless of how much the user actually read 1374 */ 1375 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock, 1376 struct msghdr *msg, size_t size, int flags) 1377 { 1378 struct sock *sk = sock->sk; 1379 struct irda_sock *self = irda_sk(sk); 1380 struct sk_buff *skb; 1381 size_t copied; 1382 int err; 1383 1384 IRDA_DEBUG(4, "%s()\n", __func__); 1385 1386 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, 1387 flags & MSG_DONTWAIT, &err); 1388 if (!skb) 1389 return err; 1390 1391 skb_reset_transport_header(skb); 1392 copied = skb->len; 1393 1394 if (copied > size) { 1395 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n", 1396 __func__, copied, size); 1397 copied = size; 1398 msg->msg_flags |= MSG_TRUNC; 1399 } 1400 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1401 1402 skb_free_datagram(sk, skb); 1403 1404 /* 1405 * Check if we have previously stopped IrTTP and we know 1406 * have more free space in our rx_queue. If so tell IrTTP 1407 * to start delivering frames again before our rx_queue gets 1408 * empty 1409 */ 1410 if (self->rx_flow == FLOW_STOP) { 1411 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { 1412 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__); 1413 self->rx_flow = FLOW_START; 1414 irttp_flow_request(self->tsap, FLOW_START); 1415 } 1416 } 1417 1418 return copied; 1419 } 1420 1421 /* 1422 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags) 1423 */ 1424 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock, 1425 struct msghdr *msg, size_t size, int flags) 1426 { 1427 struct sock *sk = sock->sk; 1428 struct irda_sock *self = irda_sk(sk); 1429 int noblock = flags & MSG_DONTWAIT; 1430 size_t copied = 0; 1431 int target, err; 1432 long timeo; 1433 1434 IRDA_DEBUG(3, "%s()\n", __func__); 1435 1436 if ((err = sock_error(sk)) < 0) 1437 return err; 1438 1439 if (sock->flags & __SO_ACCEPTCON) 1440 return -EINVAL; 1441 1442 err =-EOPNOTSUPP; 1443 if (flags & MSG_OOB) 1444 return -EOPNOTSUPP; 1445 1446 err = 0; 1447 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 1448 timeo = sock_rcvtimeo(sk, noblock); 1449 1450 do { 1451 int chunk; 1452 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue); 1453 1454 if (skb == NULL) { 1455 DEFINE_WAIT(wait); 1456 err = 0; 1457 1458 if (copied >= target) 1459 break; 1460 1461 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1462 1463 /* 1464 * POSIX 1003.1g mandates this order. 1465 */ 1466 err = sock_error(sk); 1467 if (err) 1468 ; 1469 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1470 ; 1471 else if (noblock) 1472 err = -EAGAIN; 1473 else if (signal_pending(current)) 1474 err = sock_intr_errno(timeo); 1475 else if (sk->sk_state != TCP_ESTABLISHED) 1476 err = -ENOTCONN; 1477 else if (skb_peek(&sk->sk_receive_queue) == NULL) 1478 /* Wait process until data arrives */ 1479 schedule(); 1480 1481 finish_wait(sk_sleep(sk), &wait); 1482 1483 if (err) 1484 return err; 1485 if (sk->sk_shutdown & RCV_SHUTDOWN) 1486 break; 1487 1488 continue; 1489 } 1490 1491 chunk = min_t(unsigned int, skb->len, size); 1492 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { 1493 skb_queue_head(&sk->sk_receive_queue, skb); 1494 if (copied == 0) 1495 copied = -EFAULT; 1496 break; 1497 } 1498 copied += chunk; 1499 size -= chunk; 1500 1501 /* Mark read part of skb as used */ 1502 if (!(flags & MSG_PEEK)) { 1503 skb_pull(skb, chunk); 1504 1505 /* put the skb back if we didn't use it up.. */ 1506 if (skb->len) { 1507 IRDA_DEBUG(1, "%s(), back on q!\n", 1508 __func__); 1509 skb_queue_head(&sk->sk_receive_queue, skb); 1510 break; 1511 } 1512 1513 kfree_skb(skb); 1514 } else { 1515 IRDA_DEBUG(0, "%s() questionable!?\n", __func__); 1516 1517 /* put message back and return */ 1518 skb_queue_head(&sk->sk_receive_queue, skb); 1519 break; 1520 } 1521 } while (size); 1522 1523 /* 1524 * Check if we have previously stopped IrTTP and we know 1525 * have more free space in our rx_queue. If so tell IrTTP 1526 * to start delivering frames again before our rx_queue gets 1527 * empty 1528 */ 1529 if (self->rx_flow == FLOW_STOP) { 1530 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { 1531 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __func__); 1532 self->rx_flow = FLOW_START; 1533 irttp_flow_request(self->tsap, FLOW_START); 1534 } 1535 } 1536 1537 return copied; 1538 } 1539 1540 /* 1541 * Function irda_sendmsg_dgram (iocb, sock, msg, len) 1542 * 1543 * Send message down to TinyTP for the unreliable sequenced 1544 * packet service... 1545 * 1546 */ 1547 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock, 1548 struct msghdr *msg, size_t len) 1549 { 1550 struct sock *sk = sock->sk; 1551 struct irda_sock *self; 1552 struct sk_buff *skb; 1553 int err; 1554 1555 IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len); 1556 1557 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) 1558 return -EINVAL; 1559 1560 lock_sock(sk); 1561 1562 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1563 send_sig(SIGPIPE, current, 0); 1564 err = -EPIPE; 1565 goto out; 1566 } 1567 1568 err = -ENOTCONN; 1569 if (sk->sk_state != TCP_ESTABLISHED) 1570 goto out; 1571 1572 self = irda_sk(sk); 1573 1574 /* 1575 * Check that we don't send out too big frames. This is an unreliable 1576 * service, so we have no fragmentation and no coalescence 1577 */ 1578 if (len > self->max_data_size) { 1579 IRDA_DEBUG(0, "%s(), Warning to much data! " 1580 "Chopping frame from %zd to %d bytes!\n", 1581 __func__, len, self->max_data_size); 1582 len = self->max_data_size; 1583 } 1584 1585 skb = sock_alloc_send_skb(sk, len + self->max_header_size, 1586 msg->msg_flags & MSG_DONTWAIT, &err); 1587 err = -ENOBUFS; 1588 if (!skb) 1589 goto out; 1590 1591 skb_reserve(skb, self->max_header_size); 1592 skb_reset_transport_header(skb); 1593 1594 IRDA_DEBUG(4, "%s(), appending user data\n", __func__); 1595 skb_put(skb, len); 1596 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len); 1597 if (err) { 1598 kfree_skb(skb); 1599 goto out; 1600 } 1601 1602 /* 1603 * Just send the message to TinyTP, and let it deal with possible 1604 * errors. No need to duplicate all that here 1605 */ 1606 err = irttp_udata_request(self->tsap, skb); 1607 if (err) { 1608 IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err); 1609 goto out; 1610 } 1611 1612 release_sock(sk); 1613 return len; 1614 1615 out: 1616 release_sock(sk); 1617 return err; 1618 } 1619 1620 /* 1621 * Function irda_sendmsg_ultra (iocb, sock, msg, len) 1622 * 1623 * Send message down to IrLMP for the unreliable Ultra 1624 * packet service... 1625 */ 1626 #ifdef CONFIG_IRDA_ULTRA 1627 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock, 1628 struct msghdr *msg, size_t len) 1629 { 1630 struct sock *sk = sock->sk; 1631 struct irda_sock *self; 1632 __u8 pid = 0; 1633 int bound = 0; 1634 struct sk_buff *skb; 1635 int err; 1636 1637 IRDA_DEBUG(4, "%s(), len=%zd\n", __func__, len); 1638 1639 err = -EINVAL; 1640 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) 1641 return -EINVAL; 1642 1643 lock_sock(sk); 1644 1645 err = -EPIPE; 1646 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1647 send_sig(SIGPIPE, current, 0); 1648 goto out; 1649 } 1650 1651 self = irda_sk(sk); 1652 1653 /* Check if an address was specified with sendto. Jean II */ 1654 if (msg->msg_name) { 1655 DECLARE_SOCKADDR(struct sockaddr_irda *, addr, msg->msg_name); 1656 err = -EINVAL; 1657 /* Check address, extract pid. Jean II */ 1658 if (msg->msg_namelen < sizeof(*addr)) 1659 goto out; 1660 if (addr->sir_family != AF_IRDA) 1661 goto out; 1662 1663 pid = addr->sir_lsap_sel; 1664 if (pid & 0x80) { 1665 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __func__); 1666 err = -EOPNOTSUPP; 1667 goto out; 1668 } 1669 } else { 1670 /* Check that the socket is properly bound to an Ultra 1671 * port. Jean II */ 1672 if ((self->lsap == NULL) || 1673 (sk->sk_state != TCP_ESTABLISHED)) { 1674 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n", 1675 __func__); 1676 err = -ENOTCONN; 1677 goto out; 1678 } 1679 /* Use PID from socket */ 1680 bound = 1; 1681 } 1682 1683 /* 1684 * Check that we don't send out too big frames. This is an unreliable 1685 * service, so we have no fragmentation and no coalescence 1686 */ 1687 if (len > self->max_data_size) { 1688 IRDA_DEBUG(0, "%s(), Warning to much data! " 1689 "Chopping frame from %zd to %d bytes!\n", 1690 __func__, len, self->max_data_size); 1691 len = self->max_data_size; 1692 } 1693 1694 skb = sock_alloc_send_skb(sk, len + self->max_header_size, 1695 msg->msg_flags & MSG_DONTWAIT, &err); 1696 err = -ENOBUFS; 1697 if (!skb) 1698 goto out; 1699 1700 skb_reserve(skb, self->max_header_size); 1701 skb_reset_transport_header(skb); 1702 1703 IRDA_DEBUG(4, "%s(), appending user data\n", __func__); 1704 skb_put(skb, len); 1705 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len); 1706 if (err) { 1707 kfree_skb(skb); 1708 goto out; 1709 } 1710 1711 err = irlmp_connless_data_request((bound ? self->lsap : NULL), 1712 skb, pid); 1713 if (err) 1714 IRDA_DEBUG(0, "%s(), err=%d\n", __func__, err); 1715 out: 1716 release_sock(sk); 1717 return err ? : len; 1718 } 1719 #endif /* CONFIG_IRDA_ULTRA */ 1720 1721 /* 1722 * Function irda_shutdown (sk, how) 1723 */ 1724 static int irda_shutdown(struct socket *sock, int how) 1725 { 1726 struct sock *sk = sock->sk; 1727 struct irda_sock *self = irda_sk(sk); 1728 1729 IRDA_DEBUG(1, "%s(%p)\n", __func__, self); 1730 1731 lock_sock(sk); 1732 1733 sk->sk_state = TCP_CLOSE; 1734 sk->sk_shutdown |= SEND_SHUTDOWN; 1735 sk->sk_state_change(sk); 1736 1737 if (self->iriap) { 1738 iriap_close(self->iriap); 1739 self->iriap = NULL; 1740 } 1741 1742 if (self->tsap) { 1743 irttp_disconnect_request(self->tsap, NULL, P_NORMAL); 1744 irttp_close_tsap(self->tsap); 1745 self->tsap = NULL; 1746 } 1747 1748 /* A few cleanup so the socket look as good as new... */ 1749 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */ 1750 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */ 1751 self->saddr = 0x0; /* so IrLMP assign us any link */ 1752 1753 release_sock(sk); 1754 1755 return 0; 1756 } 1757 1758 /* 1759 * Function irda_poll (file, sock, wait) 1760 */ 1761 static unsigned int irda_poll(struct file * file, struct socket *sock, 1762 poll_table *wait) 1763 { 1764 struct sock *sk = sock->sk; 1765 struct irda_sock *self = irda_sk(sk); 1766 unsigned int mask; 1767 1768 IRDA_DEBUG(4, "%s()\n", __func__); 1769 1770 poll_wait(file, sk_sleep(sk), wait); 1771 mask = 0; 1772 1773 /* Exceptional events? */ 1774 if (sk->sk_err) 1775 mask |= POLLERR; 1776 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1777 IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__); 1778 mask |= POLLHUP; 1779 } 1780 1781 /* Readable? */ 1782 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1783 IRDA_DEBUG(4, "Socket is readable\n"); 1784 mask |= POLLIN | POLLRDNORM; 1785 } 1786 1787 /* Connection-based need to check for termination and startup */ 1788 switch (sk->sk_type) { 1789 case SOCK_STREAM: 1790 if (sk->sk_state == TCP_CLOSE) { 1791 IRDA_DEBUG(0, "%s(), POLLHUP\n", __func__); 1792 mask |= POLLHUP; 1793 } 1794 1795 if (sk->sk_state == TCP_ESTABLISHED) { 1796 if ((self->tx_flow == FLOW_START) && 1797 sock_writeable(sk)) 1798 { 1799 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 1800 } 1801 } 1802 break; 1803 case SOCK_SEQPACKET: 1804 if ((self->tx_flow == FLOW_START) && 1805 sock_writeable(sk)) 1806 { 1807 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 1808 } 1809 break; 1810 case SOCK_DGRAM: 1811 if (sock_writeable(sk)) 1812 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 1813 break; 1814 default: 1815 break; 1816 } 1817 1818 return mask; 1819 } 1820 1821 /* 1822 * Function irda_ioctl (sock, cmd, arg) 1823 */ 1824 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1825 { 1826 struct sock *sk = sock->sk; 1827 int err; 1828 1829 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __func__, cmd); 1830 1831 err = -EINVAL; 1832 switch (cmd) { 1833 case TIOCOUTQ: { 1834 long amount; 1835 1836 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1837 if (amount < 0) 1838 amount = 0; 1839 err = put_user(amount, (unsigned int __user *)arg); 1840 break; 1841 } 1842 1843 case TIOCINQ: { 1844 struct sk_buff *skb; 1845 long amount = 0L; 1846 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1847 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1848 amount = skb->len; 1849 err = put_user(amount, (unsigned int __user *)arg); 1850 break; 1851 } 1852 1853 case SIOCGSTAMP: 1854 if (sk != NULL) 1855 err = sock_get_timestamp(sk, (struct timeval __user *)arg); 1856 break; 1857 1858 case SIOCGIFADDR: 1859 case SIOCSIFADDR: 1860 case SIOCGIFDSTADDR: 1861 case SIOCSIFDSTADDR: 1862 case SIOCGIFBRDADDR: 1863 case SIOCSIFBRDADDR: 1864 case SIOCGIFNETMASK: 1865 case SIOCSIFNETMASK: 1866 case SIOCGIFMETRIC: 1867 case SIOCSIFMETRIC: 1868 break; 1869 default: 1870 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __func__); 1871 err = -ENOIOCTLCMD; 1872 } 1873 1874 return err; 1875 } 1876 1877 #ifdef CONFIG_COMPAT 1878 /* 1879 * Function irda_ioctl (sock, cmd, arg) 1880 */ 1881 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1882 { 1883 /* 1884 * All IRDA's ioctl are standard ones. 1885 */ 1886 return -ENOIOCTLCMD; 1887 } 1888 #endif 1889 1890 /* 1891 * Function irda_setsockopt (sock, level, optname, optval, optlen) 1892 * 1893 * Set some options for the socket 1894 * 1895 */ 1896 static int irda_setsockopt(struct socket *sock, int level, int optname, 1897 char __user *optval, unsigned int optlen) 1898 { 1899 struct sock *sk = sock->sk; 1900 struct irda_sock *self = irda_sk(sk); 1901 struct irda_ias_set *ias_opt; 1902 struct ias_object *ias_obj; 1903 struct ias_attrib * ias_attr; /* Attribute in IAS object */ 1904 int opt, free_ias = 0, err = 0; 1905 1906 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 1907 1908 if (level != SOL_IRLMP) 1909 return -ENOPROTOOPT; 1910 1911 lock_sock(sk); 1912 1913 switch (optname) { 1914 case IRLMP_IAS_SET: 1915 /* The user want to add an attribute to an existing IAS object 1916 * (in the IAS database) or to create a new object with this 1917 * attribute. 1918 * We first query IAS to know if the object exist, and then 1919 * create the right attribute... 1920 */ 1921 1922 if (optlen != sizeof(struct irda_ias_set)) { 1923 err = -EINVAL; 1924 goto out; 1925 } 1926 1927 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); 1928 if (ias_opt == NULL) { 1929 err = -ENOMEM; 1930 goto out; 1931 } 1932 1933 /* Copy query to the driver. */ 1934 if (copy_from_user(ias_opt, optval, optlen)) { 1935 kfree(ias_opt); 1936 err = -EFAULT; 1937 goto out; 1938 } 1939 1940 /* Find the object we target. 1941 * If the user gives us an empty string, we use the object 1942 * associated with this socket. This will workaround 1943 * duplicated class name - Jean II */ 1944 if(ias_opt->irda_class_name[0] == '\0') { 1945 if(self->ias_obj == NULL) { 1946 kfree(ias_opt); 1947 err = -EINVAL; 1948 goto out; 1949 } 1950 ias_obj = self->ias_obj; 1951 } else 1952 ias_obj = irias_find_object(ias_opt->irda_class_name); 1953 1954 /* Only ROOT can mess with the global IAS database. 1955 * Users can only add attributes to the object associated 1956 * with the socket they own - Jean II */ 1957 if((!capable(CAP_NET_ADMIN)) && 1958 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { 1959 kfree(ias_opt); 1960 err = -EPERM; 1961 goto out; 1962 } 1963 1964 /* If the object doesn't exist, create it */ 1965 if(ias_obj == (struct ias_object *) NULL) { 1966 /* Create a new object */ 1967 ias_obj = irias_new_object(ias_opt->irda_class_name, 1968 jiffies); 1969 if (ias_obj == NULL) { 1970 kfree(ias_opt); 1971 err = -ENOMEM; 1972 goto out; 1973 } 1974 free_ias = 1; 1975 } 1976 1977 /* Do we have the attribute already ? */ 1978 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) { 1979 kfree(ias_opt); 1980 if (free_ias) { 1981 kfree(ias_obj->name); 1982 kfree(ias_obj); 1983 } 1984 err = -EINVAL; 1985 goto out; 1986 } 1987 1988 /* Look at the type */ 1989 switch(ias_opt->irda_attrib_type) { 1990 case IAS_INTEGER: 1991 /* Add an integer attribute */ 1992 irias_add_integer_attrib( 1993 ias_obj, 1994 ias_opt->irda_attrib_name, 1995 ias_opt->attribute.irda_attrib_int, 1996 IAS_USER_ATTR); 1997 break; 1998 case IAS_OCT_SEQ: 1999 /* Check length */ 2000 if(ias_opt->attribute.irda_attrib_octet_seq.len > 2001 IAS_MAX_OCTET_STRING) { 2002 kfree(ias_opt); 2003 if (free_ias) { 2004 kfree(ias_obj->name); 2005 kfree(ias_obj); 2006 } 2007 2008 err = -EINVAL; 2009 goto out; 2010 } 2011 /* Add an octet sequence attribute */ 2012 irias_add_octseq_attrib( 2013 ias_obj, 2014 ias_opt->irda_attrib_name, 2015 ias_opt->attribute.irda_attrib_octet_seq.octet_seq, 2016 ias_opt->attribute.irda_attrib_octet_seq.len, 2017 IAS_USER_ATTR); 2018 break; 2019 case IAS_STRING: 2020 /* Should check charset & co */ 2021 /* Check length */ 2022 /* The length is encoded in a __u8, and 2023 * IAS_MAX_STRING == 256, so there is no way 2024 * userspace can pass us a string too large. 2025 * Jean II */ 2026 /* NULL terminate the string (avoid troubles) */ 2027 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0'; 2028 /* Add a string attribute */ 2029 irias_add_string_attrib( 2030 ias_obj, 2031 ias_opt->irda_attrib_name, 2032 ias_opt->attribute.irda_attrib_string.string, 2033 IAS_USER_ATTR); 2034 break; 2035 default : 2036 kfree(ias_opt); 2037 if (free_ias) { 2038 kfree(ias_obj->name); 2039 kfree(ias_obj); 2040 } 2041 err = -EINVAL; 2042 goto out; 2043 } 2044 irias_insert_object(ias_obj); 2045 kfree(ias_opt); 2046 break; 2047 case IRLMP_IAS_DEL: 2048 /* The user want to delete an object from our local IAS 2049 * database. We just need to query the IAS, check is the 2050 * object is not owned by the kernel and delete it. 2051 */ 2052 2053 if (optlen != sizeof(struct irda_ias_set)) { 2054 err = -EINVAL; 2055 goto out; 2056 } 2057 2058 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); 2059 if (ias_opt == NULL) { 2060 err = -ENOMEM; 2061 goto out; 2062 } 2063 2064 /* Copy query to the driver. */ 2065 if (copy_from_user(ias_opt, optval, optlen)) { 2066 kfree(ias_opt); 2067 err = -EFAULT; 2068 goto out; 2069 } 2070 2071 /* Find the object we target. 2072 * If the user gives us an empty string, we use the object 2073 * associated with this socket. This will workaround 2074 * duplicated class name - Jean II */ 2075 if(ias_opt->irda_class_name[0] == '\0') 2076 ias_obj = self->ias_obj; 2077 else 2078 ias_obj = irias_find_object(ias_opt->irda_class_name); 2079 if(ias_obj == (struct ias_object *) NULL) { 2080 kfree(ias_opt); 2081 err = -EINVAL; 2082 goto out; 2083 } 2084 2085 /* Only ROOT can mess with the global IAS database. 2086 * Users can only del attributes from the object associated 2087 * with the socket they own - Jean II */ 2088 if((!capable(CAP_NET_ADMIN)) && 2089 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { 2090 kfree(ias_opt); 2091 err = -EPERM; 2092 goto out; 2093 } 2094 2095 /* Find the attribute (in the object) we target */ 2096 ias_attr = irias_find_attrib(ias_obj, 2097 ias_opt->irda_attrib_name); 2098 if(ias_attr == (struct ias_attrib *) NULL) { 2099 kfree(ias_opt); 2100 err = -EINVAL; 2101 goto out; 2102 } 2103 2104 /* Check is the user space own the object */ 2105 if(ias_attr->value->owner != IAS_USER_ATTR) { 2106 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __func__); 2107 kfree(ias_opt); 2108 err = -EPERM; 2109 goto out; 2110 } 2111 2112 /* Remove the attribute (and maybe the object) */ 2113 irias_delete_attrib(ias_obj, ias_attr, 1); 2114 kfree(ias_opt); 2115 break; 2116 case IRLMP_MAX_SDU_SIZE: 2117 if (optlen < sizeof(int)) { 2118 err = -EINVAL; 2119 goto out; 2120 } 2121 2122 if (get_user(opt, (int __user *)optval)) { 2123 err = -EFAULT; 2124 goto out; 2125 } 2126 2127 /* Only possible for a seqpacket service (TTP with SAR) */ 2128 if (sk->sk_type != SOCK_SEQPACKET) { 2129 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n", 2130 __func__, opt); 2131 self->max_sdu_size_rx = opt; 2132 } else { 2133 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n", 2134 __func__); 2135 err = -ENOPROTOOPT; 2136 goto out; 2137 } 2138 break; 2139 case IRLMP_HINTS_SET: 2140 if (optlen < sizeof(int)) { 2141 err = -EINVAL; 2142 goto out; 2143 } 2144 2145 /* The input is really a (__u8 hints[2]), easier as an int */ 2146 if (get_user(opt, (int __user *)optval)) { 2147 err = -EFAULT; 2148 goto out; 2149 } 2150 2151 /* Unregister any old registration */ 2152 if (self->skey) 2153 irlmp_unregister_service(self->skey); 2154 2155 self->skey = irlmp_register_service((__u16) opt); 2156 break; 2157 case IRLMP_HINT_MASK_SET: 2158 /* As opposed to the previous case which set the hint bits 2159 * that we advertise, this one set the filter we use when 2160 * making a discovery (nodes which don't match any hint 2161 * bit in the mask are not reported). 2162 */ 2163 if (optlen < sizeof(int)) { 2164 err = -EINVAL; 2165 goto out; 2166 } 2167 2168 /* The input is really a (__u8 hints[2]), easier as an int */ 2169 if (get_user(opt, (int __user *)optval)) { 2170 err = -EFAULT; 2171 goto out; 2172 } 2173 2174 /* Set the new hint mask */ 2175 self->mask.word = (__u16) opt; 2176 /* Mask out extension bits */ 2177 self->mask.word &= 0x7f7f; 2178 /* Check if no bits */ 2179 if(!self->mask.word) 2180 self->mask.word = 0xFFFF; 2181 2182 break; 2183 default: 2184 err = -ENOPROTOOPT; 2185 break; 2186 } 2187 2188 out: 2189 release_sock(sk); 2190 2191 return err; 2192 } 2193 2194 /* 2195 * Function irda_extract_ias_value(ias_opt, ias_value) 2196 * 2197 * Translate internal IAS value structure to the user space representation 2198 * 2199 * The external representation of IAS values, as we exchange them with 2200 * user space program is quite different from the internal representation, 2201 * as stored in the IAS database (because we need a flat structure for 2202 * crossing kernel boundary). 2203 * This function transform the former in the latter. We also check 2204 * that the value type is valid. 2205 */ 2206 static int irda_extract_ias_value(struct irda_ias_set *ias_opt, 2207 struct ias_value *ias_value) 2208 { 2209 /* Look at the type */ 2210 switch (ias_value->type) { 2211 case IAS_INTEGER: 2212 /* Copy the integer */ 2213 ias_opt->attribute.irda_attrib_int = ias_value->t.integer; 2214 break; 2215 case IAS_OCT_SEQ: 2216 /* Set length */ 2217 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len; 2218 /* Copy over */ 2219 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq, 2220 ias_value->t.oct_seq, ias_value->len); 2221 break; 2222 case IAS_STRING: 2223 /* Set length */ 2224 ias_opt->attribute.irda_attrib_string.len = ias_value->len; 2225 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset; 2226 /* Copy over */ 2227 memcpy(ias_opt->attribute.irda_attrib_string.string, 2228 ias_value->t.string, ias_value->len); 2229 /* NULL terminate the string (avoid troubles) */ 2230 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0'; 2231 break; 2232 case IAS_MISSING: 2233 default : 2234 return -EINVAL; 2235 } 2236 2237 /* Copy type over */ 2238 ias_opt->irda_attrib_type = ias_value->type; 2239 2240 return 0; 2241 } 2242 2243 /* 2244 * Function irda_getsockopt (sock, level, optname, optval, optlen) 2245 */ 2246 static int irda_getsockopt(struct socket *sock, int level, int optname, 2247 char __user *optval, int __user *optlen) 2248 { 2249 struct sock *sk = sock->sk; 2250 struct irda_sock *self = irda_sk(sk); 2251 struct irda_device_list list; 2252 struct irda_device_info *discoveries; 2253 struct irda_ias_set * ias_opt; /* IAS get/query params */ 2254 struct ias_object * ias_obj; /* Object in IAS */ 2255 struct ias_attrib * ias_attr; /* Attribute in IAS object */ 2256 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */ 2257 int val = 0; 2258 int len = 0; 2259 int err = 0; 2260 int offset, total; 2261 2262 IRDA_DEBUG(2, "%s(%p)\n", __func__, self); 2263 2264 if (level != SOL_IRLMP) 2265 return -ENOPROTOOPT; 2266 2267 if (get_user(len, optlen)) 2268 return -EFAULT; 2269 2270 if(len < 0) 2271 return -EINVAL; 2272 2273 lock_sock(sk); 2274 2275 switch (optname) { 2276 case IRLMP_ENUMDEVICES: 2277 2278 /* Offset to first device entry */ 2279 offset = sizeof(struct irda_device_list) - 2280 sizeof(struct irda_device_info); 2281 2282 if (len < offset) { 2283 err = -EINVAL; 2284 goto out; 2285 } 2286 2287 /* Ask lmp for the current discovery log */ 2288 discoveries = irlmp_get_discoveries(&list.len, self->mask.word, 2289 self->nslots); 2290 /* Check if the we got some results */ 2291 if (discoveries == NULL) { 2292 err = -EAGAIN; 2293 goto out; /* Didn't find any devices */ 2294 } 2295 2296 /* Write total list length back to client */ 2297 if (copy_to_user(optval, &list, offset)) 2298 err = -EFAULT; 2299 2300 /* Copy the list itself - watch for overflow */ 2301 if (list.len > 2048) { 2302 err = -EINVAL; 2303 goto bed; 2304 } 2305 total = offset + (list.len * sizeof(struct irda_device_info)); 2306 if (total > len) 2307 total = len; 2308 if (copy_to_user(optval+offset, discoveries, total - offset)) 2309 err = -EFAULT; 2310 2311 /* Write total number of bytes used back to client */ 2312 if (put_user(total, optlen)) 2313 err = -EFAULT; 2314 bed: 2315 /* Free up our buffer */ 2316 kfree(discoveries); 2317 break; 2318 case IRLMP_MAX_SDU_SIZE: 2319 val = self->max_data_size; 2320 len = sizeof(int); 2321 if (put_user(len, optlen)) { 2322 err = -EFAULT; 2323 goto out; 2324 } 2325 2326 if (copy_to_user(optval, &val, len)) { 2327 err = -EFAULT; 2328 goto out; 2329 } 2330 2331 break; 2332 case IRLMP_IAS_GET: 2333 /* The user want an object from our local IAS database. 2334 * We just need to query the IAS and return the value 2335 * that we found */ 2336 2337 /* Check that the user has allocated the right space for us */ 2338 if (len != sizeof(struct irda_ias_set)) { 2339 err = -EINVAL; 2340 goto out; 2341 } 2342 2343 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); 2344 if (ias_opt == NULL) { 2345 err = -ENOMEM; 2346 goto out; 2347 } 2348 2349 /* Copy query to the driver. */ 2350 if (copy_from_user(ias_opt, optval, len)) { 2351 kfree(ias_opt); 2352 err = -EFAULT; 2353 goto out; 2354 } 2355 2356 /* Find the object we target. 2357 * If the user gives us an empty string, we use the object 2358 * associated with this socket. This will workaround 2359 * duplicated class name - Jean II */ 2360 if(ias_opt->irda_class_name[0] == '\0') 2361 ias_obj = self->ias_obj; 2362 else 2363 ias_obj = irias_find_object(ias_opt->irda_class_name); 2364 if(ias_obj == (struct ias_object *) NULL) { 2365 kfree(ias_opt); 2366 err = -EINVAL; 2367 goto out; 2368 } 2369 2370 /* Find the attribute (in the object) we target */ 2371 ias_attr = irias_find_attrib(ias_obj, 2372 ias_opt->irda_attrib_name); 2373 if(ias_attr == (struct ias_attrib *) NULL) { 2374 kfree(ias_opt); 2375 err = -EINVAL; 2376 goto out; 2377 } 2378 2379 /* Translate from internal to user structure */ 2380 err = irda_extract_ias_value(ias_opt, ias_attr->value); 2381 if(err) { 2382 kfree(ias_opt); 2383 goto out; 2384 } 2385 2386 /* Copy reply to the user */ 2387 if (copy_to_user(optval, ias_opt, 2388 sizeof(struct irda_ias_set))) { 2389 kfree(ias_opt); 2390 err = -EFAULT; 2391 goto out; 2392 } 2393 /* Note : don't need to put optlen, we checked it */ 2394 kfree(ias_opt); 2395 break; 2396 case IRLMP_IAS_QUERY: 2397 /* The user want an object from a remote IAS database. 2398 * We need to use IAP to query the remote database and 2399 * then wait for the answer to come back. */ 2400 2401 /* Check that the user has allocated the right space for us */ 2402 if (len != sizeof(struct irda_ias_set)) { 2403 err = -EINVAL; 2404 goto out; 2405 } 2406 2407 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); 2408 if (ias_opt == NULL) { 2409 err = -ENOMEM; 2410 goto out; 2411 } 2412 2413 /* Copy query to the driver. */ 2414 if (copy_from_user(ias_opt, optval, len)) { 2415 kfree(ias_opt); 2416 err = -EFAULT; 2417 goto out; 2418 } 2419 2420 /* At this point, there are two cases... 2421 * 1) the socket is connected - that's the easy case, we 2422 * just query the device we are connected to... 2423 * 2) the socket is not connected - the user doesn't want 2424 * to connect and/or may not have a valid service name 2425 * (so can't create a fake connection). In this case, 2426 * we assume that the user pass us a valid destination 2427 * address in the requesting structure... 2428 */ 2429 if(self->daddr != DEV_ADDR_ANY) { 2430 /* We are connected - reuse known daddr */ 2431 daddr = self->daddr; 2432 } else { 2433 /* We are not connected, we must specify a valid 2434 * destination address */ 2435 daddr = ias_opt->daddr; 2436 if((!daddr) || (daddr == DEV_ADDR_ANY)) { 2437 kfree(ias_opt); 2438 err = -EINVAL; 2439 goto out; 2440 } 2441 } 2442 2443 /* Check that we can proceed with IAP */ 2444 if (self->iriap) { 2445 IRDA_WARNING("%s: busy with a previous query\n", 2446 __func__); 2447 kfree(ias_opt); 2448 err = -EBUSY; 2449 goto out; 2450 } 2451 2452 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, 2453 irda_getvalue_confirm); 2454 2455 if (self->iriap == NULL) { 2456 kfree(ias_opt); 2457 err = -ENOMEM; 2458 goto out; 2459 } 2460 2461 /* Treat unexpected wakeup as disconnect */ 2462 self->errno = -EHOSTUNREACH; 2463 2464 /* Query remote LM-IAS */ 2465 iriap_getvaluebyclass_request(self->iriap, 2466 self->saddr, daddr, 2467 ias_opt->irda_class_name, 2468 ias_opt->irda_attrib_name); 2469 2470 /* Wait for answer, if not yet finished (or failed) */ 2471 if (wait_event_interruptible(self->query_wait, 2472 (self->iriap == NULL))) { 2473 /* pending request uses copy of ias_opt-content 2474 * we can free it regardless! */ 2475 kfree(ias_opt); 2476 /* Treat signals as disconnect */ 2477 err = -EHOSTUNREACH; 2478 goto out; 2479 } 2480 2481 /* Check what happened */ 2482 if (self->errno) 2483 { 2484 kfree(ias_opt); 2485 /* Requested object/attribute doesn't exist */ 2486 if((self->errno == IAS_CLASS_UNKNOWN) || 2487 (self->errno == IAS_ATTRIB_UNKNOWN)) 2488 err = -EADDRNOTAVAIL; 2489 else 2490 err = -EHOSTUNREACH; 2491 2492 goto out; 2493 } 2494 2495 /* Translate from internal to user structure */ 2496 err = irda_extract_ias_value(ias_opt, self->ias_result); 2497 if (self->ias_result) 2498 irias_delete_value(self->ias_result); 2499 if (err) { 2500 kfree(ias_opt); 2501 goto out; 2502 } 2503 2504 /* Copy reply to the user */ 2505 if (copy_to_user(optval, ias_opt, 2506 sizeof(struct irda_ias_set))) { 2507 kfree(ias_opt); 2508 err = -EFAULT; 2509 goto out; 2510 } 2511 /* Note : don't need to put optlen, we checked it */ 2512 kfree(ias_opt); 2513 break; 2514 case IRLMP_WAITDEVICE: 2515 /* This function is just another way of seeing life ;-) 2516 * IRLMP_ENUMDEVICES assumes that you have a static network, 2517 * and that you just want to pick one of the devices present. 2518 * On the other hand, in here we assume that no device is 2519 * present and that at some point in the future a device will 2520 * come into range. When this device arrive, we just wake 2521 * up the caller, so that he has time to connect to it before 2522 * the device goes away... 2523 * Note : once the node has been discovered for more than a 2524 * few second, it won't trigger this function, unless it 2525 * goes away and come back changes its hint bits (so we 2526 * might call it IRLMP_WAITNEWDEVICE). 2527 */ 2528 2529 /* Check that the user is passing us an int */ 2530 if (len != sizeof(int)) { 2531 err = -EINVAL; 2532 goto out; 2533 } 2534 /* Get timeout in ms (max time we block the caller) */ 2535 if (get_user(val, (int __user *)optval)) { 2536 err = -EFAULT; 2537 goto out; 2538 } 2539 2540 /* Tell IrLMP we want to be notified */ 2541 irlmp_update_client(self->ckey, self->mask.word, 2542 irda_selective_discovery_indication, 2543 NULL, (void *) self); 2544 2545 /* Do some discovery (and also return cached results) */ 2546 irlmp_discovery_request(self->nslots); 2547 2548 /* Wait until a node is discovered */ 2549 if (!self->cachedaddr) { 2550 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __func__); 2551 2552 /* Set watchdog timer to expire in <val> ms. */ 2553 self->errno = 0; 2554 setup_timer(&self->watchdog, irda_discovery_timeout, 2555 (unsigned long)self); 2556 mod_timer(&self->watchdog, 2557 jiffies + msecs_to_jiffies(val)); 2558 2559 /* Wait for IR-LMP to call us back */ 2560 err = __wait_event_interruptible(self->query_wait, 2561 (self->cachedaddr != 0 || self->errno == -ETIME)); 2562 2563 /* If watchdog is still activated, kill it! */ 2564 del_timer(&(self->watchdog)); 2565 2566 IRDA_DEBUG(1, "%s(), ...waking up !\n", __func__); 2567 2568 if (err != 0) 2569 goto out; 2570 } 2571 else 2572 IRDA_DEBUG(1, "%s(), found immediately !\n", 2573 __func__); 2574 2575 /* Tell IrLMP that we have been notified */ 2576 irlmp_update_client(self->ckey, self->mask.word, 2577 NULL, NULL, NULL); 2578 2579 /* Check if the we got some results */ 2580 if (!self->cachedaddr) { 2581 err = -EAGAIN; /* Didn't find any devices */ 2582 goto out; 2583 } 2584 daddr = self->cachedaddr; 2585 /* Cleanup */ 2586 self->cachedaddr = 0; 2587 2588 /* We return the daddr of the device that trigger the 2589 * wakeup. As irlmp pass us only the new devices, we 2590 * are sure that it's not an old device. 2591 * If the user want more details, he should query 2592 * the whole discovery log and pick one device... 2593 */ 2594 if (put_user(daddr, (int __user *)optval)) { 2595 err = -EFAULT; 2596 goto out; 2597 } 2598 2599 break; 2600 default: 2601 err = -ENOPROTOOPT; 2602 } 2603 2604 out: 2605 2606 release_sock(sk); 2607 2608 return err; 2609 } 2610 2611 static const struct net_proto_family irda_family_ops = { 2612 .family = PF_IRDA, 2613 .create = irda_create, 2614 .owner = THIS_MODULE, 2615 }; 2616 2617 static const struct proto_ops irda_stream_ops = { 2618 .family = PF_IRDA, 2619 .owner = THIS_MODULE, 2620 .release = irda_release, 2621 .bind = irda_bind, 2622 .connect = irda_connect, 2623 .socketpair = sock_no_socketpair, 2624 .accept = irda_accept, 2625 .getname = irda_getname, 2626 .poll = irda_poll, 2627 .ioctl = irda_ioctl, 2628 #ifdef CONFIG_COMPAT 2629 .compat_ioctl = irda_compat_ioctl, 2630 #endif 2631 .listen = irda_listen, 2632 .shutdown = irda_shutdown, 2633 .setsockopt = irda_setsockopt, 2634 .getsockopt = irda_getsockopt, 2635 .sendmsg = irda_sendmsg, 2636 .recvmsg = irda_recvmsg_stream, 2637 .mmap = sock_no_mmap, 2638 .sendpage = sock_no_sendpage, 2639 }; 2640 2641 static const struct proto_ops irda_seqpacket_ops = { 2642 .family = PF_IRDA, 2643 .owner = THIS_MODULE, 2644 .release = irda_release, 2645 .bind = irda_bind, 2646 .connect = irda_connect, 2647 .socketpair = sock_no_socketpair, 2648 .accept = irda_accept, 2649 .getname = irda_getname, 2650 .poll = datagram_poll, 2651 .ioctl = irda_ioctl, 2652 #ifdef CONFIG_COMPAT 2653 .compat_ioctl = irda_compat_ioctl, 2654 #endif 2655 .listen = irda_listen, 2656 .shutdown = irda_shutdown, 2657 .setsockopt = irda_setsockopt, 2658 .getsockopt = irda_getsockopt, 2659 .sendmsg = irda_sendmsg, 2660 .recvmsg = irda_recvmsg_dgram, 2661 .mmap = sock_no_mmap, 2662 .sendpage = sock_no_sendpage, 2663 }; 2664 2665 static const struct proto_ops irda_dgram_ops = { 2666 .family = PF_IRDA, 2667 .owner = THIS_MODULE, 2668 .release = irda_release, 2669 .bind = irda_bind, 2670 .connect = irda_connect, 2671 .socketpair = sock_no_socketpair, 2672 .accept = irda_accept, 2673 .getname = irda_getname, 2674 .poll = datagram_poll, 2675 .ioctl = irda_ioctl, 2676 #ifdef CONFIG_COMPAT 2677 .compat_ioctl = irda_compat_ioctl, 2678 #endif 2679 .listen = irda_listen, 2680 .shutdown = irda_shutdown, 2681 .setsockopt = irda_setsockopt, 2682 .getsockopt = irda_getsockopt, 2683 .sendmsg = irda_sendmsg_dgram, 2684 .recvmsg = irda_recvmsg_dgram, 2685 .mmap = sock_no_mmap, 2686 .sendpage = sock_no_sendpage, 2687 }; 2688 2689 #ifdef CONFIG_IRDA_ULTRA 2690 static const struct proto_ops irda_ultra_ops = { 2691 .family = PF_IRDA, 2692 .owner = THIS_MODULE, 2693 .release = irda_release, 2694 .bind = irda_bind, 2695 .connect = sock_no_connect, 2696 .socketpair = sock_no_socketpair, 2697 .accept = sock_no_accept, 2698 .getname = irda_getname, 2699 .poll = datagram_poll, 2700 .ioctl = irda_ioctl, 2701 #ifdef CONFIG_COMPAT 2702 .compat_ioctl = irda_compat_ioctl, 2703 #endif 2704 .listen = sock_no_listen, 2705 .shutdown = irda_shutdown, 2706 .setsockopt = irda_setsockopt, 2707 .getsockopt = irda_getsockopt, 2708 .sendmsg = irda_sendmsg_ultra, 2709 .recvmsg = irda_recvmsg_dgram, 2710 .mmap = sock_no_mmap, 2711 .sendpage = sock_no_sendpage, 2712 }; 2713 #endif /* CONFIG_IRDA_ULTRA */ 2714 2715 /* 2716 * Function irsock_init (pro) 2717 * 2718 * Initialize IrDA protocol 2719 * 2720 */ 2721 int __init irsock_init(void) 2722 { 2723 int rc = proto_register(&irda_proto, 0); 2724 2725 if (rc == 0) 2726 rc = sock_register(&irda_family_ops); 2727 2728 return rc; 2729 } 2730 2731 /* 2732 * Function irsock_cleanup (void) 2733 * 2734 * Remove IrDA protocol 2735 * 2736 */ 2737 void irsock_cleanup(void) 2738 { 2739 sock_unregister(PF_IRDA); 2740 proto_unregister(&irda_proto); 2741 } 2742
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.