~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/openvswitch/actions.c

Version: ~ [ linux-5.1-rc5 ] ~ [ linux-5.0.7 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.34 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.111 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.168 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.178 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.138 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.65 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2007-2017 Nicira, Inc.
  3  *
  4  * This program is free software; you can redistribute it and/or
  5  * modify it under the terms of version 2 of the GNU General Public
  6  * License as published by the Free Software Foundation.
  7  *
  8  * This program is distributed in the hope that it will be useful, but
  9  * WITHOUT ANY WARRANTY; without even the implied warranty of
 10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11  * General Public License for more details.
 12  *
 13  * You should have received a copy of the GNU General Public License
 14  * along with this program; if not, write to the Free Software
 15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16  * 02110-1301, USA
 17  */
 18 
 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 20 
 21 #include <linux/skbuff.h>
 22 #include <linux/in.h>
 23 #include <linux/ip.h>
 24 #include <linux/openvswitch.h>
 25 #include <linux/netfilter_ipv6.h>
 26 #include <linux/sctp.h>
 27 #include <linux/tcp.h>
 28 #include <linux/udp.h>
 29 #include <linux/in6.h>
 30 #include <linux/if_arp.h>
 31 #include <linux/if_vlan.h>
 32 
 33 #include <net/dst.h>
 34 #include <net/ip.h>
 35 #include <net/ipv6.h>
 36 #include <net/ip6_fib.h>
 37 #include <net/checksum.h>
 38 #include <net/dsfield.h>
 39 #include <net/mpls.h>
 40 #include <net/sctp/checksum.h>
 41 
 42 #include "datapath.h"
 43 #include "flow.h"
 44 #include "conntrack.h"
 45 #include "vport.h"
 46 #include "flow_netlink.h"
 47 
 48 struct deferred_action {
 49         struct sk_buff *skb;
 50         const struct nlattr *actions;
 51         int actions_len;
 52 
 53         /* Store pkt_key clone when creating deferred action. */
 54         struct sw_flow_key pkt_key;
 55 };
 56 
 57 #define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
 58 struct ovs_frag_data {
 59         unsigned long dst;
 60         struct vport *vport;
 61         struct ovs_skb_cb cb;
 62         __be16 inner_protocol;
 63         u16 network_offset;     /* valid only for MPLS */
 64         u16 vlan_tci;
 65         __be16 vlan_proto;
 66         unsigned int l2_len;
 67         u8 mac_proto;
 68         u8 l2_data[MAX_L2_LEN];
 69 };
 70 
 71 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
 72 
 73 #define DEFERRED_ACTION_FIFO_SIZE 10
 74 #define OVS_RECURSION_LIMIT 5
 75 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
 76 struct action_fifo {
 77         int head;
 78         int tail;
 79         /* Deferred action fifo queue storage. */
 80         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
 81 };
 82 
 83 struct action_flow_keys {
 84         struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
 85 };
 86 
 87 static struct action_fifo __percpu *action_fifos;
 88 static struct action_flow_keys __percpu *flow_keys;
 89 static DEFINE_PER_CPU(int, exec_actions_level);
 90 
 91 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
 92  * space. Return NULL if out of key spaces.
 93  */
 94 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
 95 {
 96         struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
 97         int level = this_cpu_read(exec_actions_level);
 98         struct sw_flow_key *key = NULL;
 99 
100         if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
101                 key = &keys->key[level - 1];
102                 *key = *key_;
103         }
104 
105         return key;
106 }
107 
108 static void action_fifo_init(struct action_fifo *fifo)
109 {
110         fifo->head = 0;
111         fifo->tail = 0;
112 }
113 
114 static bool action_fifo_is_empty(const struct action_fifo *fifo)
115 {
116         return (fifo->head == fifo->tail);
117 }
118 
119 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
120 {
121         if (action_fifo_is_empty(fifo))
122                 return NULL;
123 
124         return &fifo->fifo[fifo->tail++];
125 }
126 
127 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
128 {
129         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
130                 return NULL;
131 
132         return &fifo->fifo[fifo->head++];
133 }
134 
135 /* Return true if fifo is not full */
136 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
137                                     const struct sw_flow_key *key,
138                                     const struct nlattr *actions,
139                                     const int actions_len)
140 {
141         struct action_fifo *fifo;
142         struct deferred_action *da;
143 
144         fifo = this_cpu_ptr(action_fifos);
145         da = action_fifo_put(fifo);
146         if (da) {
147                 da->skb = skb;
148                 da->actions = actions;
149                 da->actions_len = actions_len;
150                 da->pkt_key = *key;
151         }
152 
153         return da;
154 }
155 
156 static void invalidate_flow_key(struct sw_flow_key *key)
157 {
158         key->mac_proto |= SW_FLOW_KEY_INVALID;
159 }
160 
161 static bool is_flow_key_valid(const struct sw_flow_key *key)
162 {
163         return !(key->mac_proto & SW_FLOW_KEY_INVALID);
164 }
165 
166 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
167                          struct sw_flow_key *key,
168                          u32 recirc_id,
169                          const struct nlattr *actions, int len,
170                          bool last, bool clone_flow_key);
171 
172 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
173                              __be16 ethertype)
174 {
175         if (skb->ip_summed == CHECKSUM_COMPLETE) {
176                 __be16 diff[] = { ~(hdr->h_proto), ethertype };
177 
178                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
179                                         ~skb->csum);
180         }
181 
182         hdr->h_proto = ethertype;
183 }
184 
185 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
186                      const struct ovs_action_push_mpls *mpls)
187 {
188         struct mpls_shim_hdr *new_mpls_lse;
189 
190         /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
191         if (skb->encapsulation)
192                 return -ENOTSUPP;
193 
194         if (skb_cow_head(skb, MPLS_HLEN) < 0)
195                 return -ENOMEM;
196 
197         if (!skb->inner_protocol) {
198                 skb_set_inner_network_header(skb, skb->mac_len);
199                 skb_set_inner_protocol(skb, skb->protocol);
200         }
201 
202         skb_push(skb, MPLS_HLEN);
203         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
204                 skb->mac_len);
205         skb_reset_mac_header(skb);
206         skb_set_network_header(skb, skb->mac_len);
207 
208         new_mpls_lse = mpls_hdr(skb);
209         new_mpls_lse->label_stack_entry = mpls->mpls_lse;
210 
211         skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
212 
213         if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
214                 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
215         skb->protocol = mpls->mpls_ethertype;
216 
217         invalidate_flow_key(key);
218         return 0;
219 }
220 
221 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
222                     const __be16 ethertype)
223 {
224         int err;
225 
226         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
227         if (unlikely(err))
228                 return err;
229 
230         skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
231 
232         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
233                 skb->mac_len);
234 
235         __skb_pull(skb, MPLS_HLEN);
236         skb_reset_mac_header(skb);
237         skb_set_network_header(skb, skb->mac_len);
238 
239         if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
240                 struct ethhdr *hdr;
241 
242                 /* mpls_hdr() is used to locate the ethertype field correctly in the
243                  * presence of VLAN tags.
244                  */
245                 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
246                 update_ethertype(skb, hdr, ethertype);
247         }
248         if (eth_p_mpls(skb->protocol))
249                 skb->protocol = ethertype;
250 
251         invalidate_flow_key(key);
252         return 0;
253 }
254 
255 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
256                     const __be32 *mpls_lse, const __be32 *mask)
257 {
258         struct mpls_shim_hdr *stack;
259         __be32 lse;
260         int err;
261 
262         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
263         if (unlikely(err))
264                 return err;
265 
266         stack = mpls_hdr(skb);
267         lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
268         if (skb->ip_summed == CHECKSUM_COMPLETE) {
269                 __be32 diff[] = { ~(stack->label_stack_entry), lse };
270 
271                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
272                                           ~skb->csum);
273         }
274 
275         stack->label_stack_entry = lse;
276         flow_key->mpls.top_lse = lse;
277         return 0;
278 }
279 
280 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
281 {
282         int err;
283 
284         err = skb_vlan_pop(skb);
285         if (skb_vlan_tag_present(skb)) {
286                 invalidate_flow_key(key);
287         } else {
288                 key->eth.vlan.tci = 0;
289                 key->eth.vlan.tpid = 0;
290         }
291         return err;
292 }
293 
294 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
295                      const struct ovs_action_push_vlan *vlan)
296 {
297         if (skb_vlan_tag_present(skb)) {
298                 invalidate_flow_key(key);
299         } else {
300                 key->eth.vlan.tci = vlan->vlan_tci;
301                 key->eth.vlan.tpid = vlan->vlan_tpid;
302         }
303         return skb_vlan_push(skb, vlan->vlan_tpid,
304                              ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
305 }
306 
307 /* 'src' is already properly masked. */
308 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
309 {
310         u16 *dst = (u16 *)dst_;
311         const u16 *src = (const u16 *)src_;
312         const u16 *mask = (const u16 *)mask_;
313 
314         OVS_SET_MASKED(dst[0], src[0], mask[0]);
315         OVS_SET_MASKED(dst[1], src[1], mask[1]);
316         OVS_SET_MASKED(dst[2], src[2], mask[2]);
317 }
318 
319 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
320                         const struct ovs_key_ethernet *key,
321                         const struct ovs_key_ethernet *mask)
322 {
323         int err;
324 
325         err = skb_ensure_writable(skb, ETH_HLEN);
326         if (unlikely(err))
327                 return err;
328 
329         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
330 
331         ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
332                                mask->eth_src);
333         ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
334                                mask->eth_dst);
335 
336         skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
337 
338         ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
339         ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
340         return 0;
341 }
342 
343 /* pop_eth does not support VLAN packets as this action is never called
344  * for them.
345  */
346 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
347 {
348         skb_pull_rcsum(skb, ETH_HLEN);
349         skb_reset_mac_header(skb);
350         skb_reset_mac_len(skb);
351 
352         /* safe right before invalidate_flow_key */
353         key->mac_proto = MAC_PROTO_NONE;
354         invalidate_flow_key(key);
355         return 0;
356 }
357 
358 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
359                     const struct ovs_action_push_eth *ethh)
360 {
361         struct ethhdr *hdr;
362 
363         /* Add the new Ethernet header */
364         if (skb_cow_head(skb, ETH_HLEN) < 0)
365                 return -ENOMEM;
366 
367         skb_push(skb, ETH_HLEN);
368         skb_reset_mac_header(skb);
369         skb_reset_mac_len(skb);
370 
371         hdr = eth_hdr(skb);
372         ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
373         ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
374         hdr->h_proto = skb->protocol;
375 
376         skb_postpush_rcsum(skb, hdr, ETH_HLEN);
377 
378         /* safe right before invalidate_flow_key */
379         key->mac_proto = MAC_PROTO_ETHERNET;
380         invalidate_flow_key(key);
381         return 0;
382 }
383 
384 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
385                     const struct nshhdr *nh)
386 {
387         int err;
388 
389         err = nsh_push(skb, nh);
390         if (err)
391                 return err;
392 
393         /* safe right before invalidate_flow_key */
394         key->mac_proto = MAC_PROTO_NONE;
395         invalidate_flow_key(key);
396         return 0;
397 }
398 
399 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
400 {
401         int err;
402 
403         err = nsh_pop(skb);
404         if (err)
405                 return err;
406 
407         /* safe right before invalidate_flow_key */
408         if (skb->protocol == htons(ETH_P_TEB))
409                 key->mac_proto = MAC_PROTO_ETHERNET;
410         else
411                 key->mac_proto = MAC_PROTO_NONE;
412         invalidate_flow_key(key);
413         return 0;
414 }
415 
416 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
417                                   __be32 addr, __be32 new_addr)
418 {
419         int transport_len = skb->len - skb_transport_offset(skb);
420 
421         if (nh->frag_off & htons(IP_OFFSET))
422                 return;
423 
424         if (nh->protocol == IPPROTO_TCP) {
425                 if (likely(transport_len >= sizeof(struct tcphdr)))
426                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
427                                                  addr, new_addr, true);
428         } else if (nh->protocol == IPPROTO_UDP) {
429                 if (likely(transport_len >= sizeof(struct udphdr))) {
430                         struct udphdr *uh = udp_hdr(skb);
431 
432                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
433                                 inet_proto_csum_replace4(&uh->check, skb,
434                                                          addr, new_addr, true);
435                                 if (!uh->check)
436                                         uh->check = CSUM_MANGLED_0;
437                         }
438                 }
439         }
440 }
441 
442 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
443                         __be32 *addr, __be32 new_addr)
444 {
445         update_ip_l4_checksum(skb, nh, *addr, new_addr);
446         csum_replace4(&nh->check, *addr, new_addr);
447         skb_clear_hash(skb);
448         *addr = new_addr;
449 }
450 
451 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
452                                  __be32 addr[4], const __be32 new_addr[4])
453 {
454         int transport_len = skb->len - skb_transport_offset(skb);
455 
456         if (l4_proto == NEXTHDR_TCP) {
457                 if (likely(transport_len >= sizeof(struct tcphdr)))
458                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
459                                                   addr, new_addr, true);
460         } else if (l4_proto == NEXTHDR_UDP) {
461                 if (likely(transport_len >= sizeof(struct udphdr))) {
462                         struct udphdr *uh = udp_hdr(skb);
463 
464                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
465                                 inet_proto_csum_replace16(&uh->check, skb,
466                                                           addr, new_addr, true);
467                                 if (!uh->check)
468                                         uh->check = CSUM_MANGLED_0;
469                         }
470                 }
471         } else if (l4_proto == NEXTHDR_ICMP) {
472                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
473                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
474                                                   skb, addr, new_addr, true);
475         }
476 }
477 
478 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
479                            const __be32 mask[4], __be32 masked[4])
480 {
481         masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
482         masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
483         masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
484         masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
485 }
486 
487 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
488                           __be32 addr[4], const __be32 new_addr[4],
489                           bool recalculate_csum)
490 {
491         if (recalculate_csum)
492                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
493 
494         skb_clear_hash(skb);
495         memcpy(addr, new_addr, sizeof(__be32[4]));
496 }
497 
498 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
499 {
500         /* Bits 21-24 are always unmasked, so this retains their values. */
501         OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
502         OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
503         OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
504 }
505 
506 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
507                        u8 mask)
508 {
509         new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
510 
511         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
512         nh->ttl = new_ttl;
513 }
514 
515 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
516                     const struct ovs_key_ipv4 *key,
517                     const struct ovs_key_ipv4 *mask)
518 {
519         struct iphdr *nh;
520         __be32 new_addr;
521         int err;
522 
523         err = skb_ensure_writable(skb, skb_network_offset(skb) +
524                                   sizeof(struct iphdr));
525         if (unlikely(err))
526                 return err;
527 
528         nh = ip_hdr(skb);
529 
530         /* Setting an IP addresses is typically only a side effect of
531          * matching on them in the current userspace implementation, so it
532          * makes sense to check if the value actually changed.
533          */
534         if (mask->ipv4_src) {
535                 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
536 
537                 if (unlikely(new_addr != nh->saddr)) {
538                         set_ip_addr(skb, nh, &nh->saddr, new_addr);
539                         flow_key->ipv4.addr.src = new_addr;
540                 }
541         }
542         if (mask->ipv4_dst) {
543                 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
544 
545                 if (unlikely(new_addr != nh->daddr)) {
546                         set_ip_addr(skb, nh, &nh->daddr, new_addr);
547                         flow_key->ipv4.addr.dst = new_addr;
548                 }
549         }
550         if (mask->ipv4_tos) {
551                 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
552                 flow_key->ip.tos = nh->tos;
553         }
554         if (mask->ipv4_ttl) {
555                 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
556                 flow_key->ip.ttl = nh->ttl;
557         }
558 
559         return 0;
560 }
561 
562 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
563 {
564         return !!(addr[0] | addr[1] | addr[2] | addr[3]);
565 }
566 
567 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
568                     const struct ovs_key_ipv6 *key,
569                     const struct ovs_key_ipv6 *mask)
570 {
571         struct ipv6hdr *nh;
572         int err;
573 
574         err = skb_ensure_writable(skb, skb_network_offset(skb) +
575                                   sizeof(struct ipv6hdr));
576         if (unlikely(err))
577                 return err;
578 
579         nh = ipv6_hdr(skb);
580 
581         /* Setting an IP addresses is typically only a side effect of
582          * matching on them in the current userspace implementation, so it
583          * makes sense to check if the value actually changed.
584          */
585         if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
586                 __be32 *saddr = (__be32 *)&nh->saddr;
587                 __be32 masked[4];
588 
589                 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
590 
591                 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
592                         set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
593                                       true);
594                         memcpy(&flow_key->ipv6.addr.src, masked,
595                                sizeof(flow_key->ipv6.addr.src));
596                 }
597         }
598         if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
599                 unsigned int offset = 0;
600                 int flags = IP6_FH_F_SKIP_RH;
601                 bool recalc_csum = true;
602                 __be32 *daddr = (__be32 *)&nh->daddr;
603                 __be32 masked[4];
604 
605                 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
606 
607                 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
608                         if (ipv6_ext_hdr(nh->nexthdr))
609                                 recalc_csum = (ipv6_find_hdr(skb, &offset,
610                                                              NEXTHDR_ROUTING,
611                                                              NULL, &flags)
612                                                != NEXTHDR_ROUTING);
613 
614                         set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
615                                       recalc_csum);
616                         memcpy(&flow_key->ipv6.addr.dst, masked,
617                                sizeof(flow_key->ipv6.addr.dst));
618                 }
619         }
620         if (mask->ipv6_tclass) {
621                 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
622                 flow_key->ip.tos = ipv6_get_dsfield(nh);
623         }
624         if (mask->ipv6_label) {
625                 set_ipv6_fl(nh, ntohl(key->ipv6_label),
626                             ntohl(mask->ipv6_label));
627                 flow_key->ipv6.label =
628                     *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
629         }
630         if (mask->ipv6_hlimit) {
631                 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
632                                mask->ipv6_hlimit);
633                 flow_key->ip.ttl = nh->hop_limit;
634         }
635         return 0;
636 }
637 
638 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
639                    const struct nlattr *a)
640 {
641         struct nshhdr *nh;
642         size_t length;
643         int err;
644         u8 flags;
645         u8 ttl;
646         int i;
647 
648         struct ovs_key_nsh key;
649         struct ovs_key_nsh mask;
650 
651         err = nsh_key_from_nlattr(a, &key, &mask);
652         if (err)
653                 return err;
654 
655         /* Make sure the NSH base header is there */
656         if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
657                 return -ENOMEM;
658 
659         nh = nsh_hdr(skb);
660         length = nsh_hdr_len(nh);
661 
662         /* Make sure the whole NSH header is there */
663         err = skb_ensure_writable(skb, skb_network_offset(skb) +
664                                        length);
665         if (unlikely(err))
666                 return err;
667 
668         nh = nsh_hdr(skb);
669         skb_postpull_rcsum(skb, nh, length);
670         flags = nsh_get_flags(nh);
671         flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
672         flow_key->nsh.base.flags = flags;
673         ttl = nsh_get_ttl(nh);
674         ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
675         flow_key->nsh.base.ttl = ttl;
676         nsh_set_flags_and_ttl(nh, flags, ttl);
677         nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
678                                   mask.base.path_hdr);
679         flow_key->nsh.base.path_hdr = nh->path_hdr;
680         switch (nh->mdtype) {
681         case NSH_M_TYPE1:
682                 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
683                         nh->md1.context[i] =
684                             OVS_MASKED(nh->md1.context[i], key.context[i],
685                                        mask.context[i]);
686                 }
687                 memcpy(flow_key->nsh.context, nh->md1.context,
688                        sizeof(nh->md1.context));
689                 break;
690         case NSH_M_TYPE2:
691                 memset(flow_key->nsh.context, 0,
692                        sizeof(flow_key->nsh.context));
693                 break;
694         default:
695                 return -EINVAL;
696         }
697         skb_postpush_rcsum(skb, nh, length);
698         return 0;
699 }
700 
701 /* Must follow skb_ensure_writable() since that can move the skb data. */
702 static void set_tp_port(struct sk_buff *skb, __be16 *port,
703                         __be16 new_port, __sum16 *check)
704 {
705         inet_proto_csum_replace2(check, skb, *port, new_port, false);
706         *port = new_port;
707 }
708 
709 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
710                    const struct ovs_key_udp *key,
711                    const struct ovs_key_udp *mask)
712 {
713         struct udphdr *uh;
714         __be16 src, dst;
715         int err;
716 
717         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
718                                   sizeof(struct udphdr));
719         if (unlikely(err))
720                 return err;
721 
722         uh = udp_hdr(skb);
723         /* Either of the masks is non-zero, so do not bother checking them. */
724         src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
725         dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
726 
727         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
728                 if (likely(src != uh->source)) {
729                         set_tp_port(skb, &uh->source, src, &uh->check);
730                         flow_key->tp.src = src;
731                 }
732                 if (likely(dst != uh->dest)) {
733                         set_tp_port(skb, &uh->dest, dst, &uh->check);
734                         flow_key->tp.dst = dst;
735                 }
736 
737                 if (unlikely(!uh->check))
738                         uh->check = CSUM_MANGLED_0;
739         } else {
740                 uh->source = src;
741                 uh->dest = dst;
742                 flow_key->tp.src = src;
743                 flow_key->tp.dst = dst;
744         }
745 
746         skb_clear_hash(skb);
747 
748         return 0;
749 }
750 
751 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
752                    const struct ovs_key_tcp *key,
753                    const struct ovs_key_tcp *mask)
754 {
755         struct tcphdr *th;
756         __be16 src, dst;
757         int err;
758 
759         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
760                                   sizeof(struct tcphdr));
761         if (unlikely(err))
762                 return err;
763 
764         th = tcp_hdr(skb);
765         src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
766         if (likely(src != th->source)) {
767                 set_tp_port(skb, &th->source, src, &th->check);
768                 flow_key->tp.src = src;
769         }
770         dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
771         if (likely(dst != th->dest)) {
772                 set_tp_port(skb, &th->dest, dst, &th->check);
773                 flow_key->tp.dst = dst;
774         }
775         skb_clear_hash(skb);
776 
777         return 0;
778 }
779 
780 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
781                     const struct ovs_key_sctp *key,
782                     const struct ovs_key_sctp *mask)
783 {
784         unsigned int sctphoff = skb_transport_offset(skb);
785         struct sctphdr *sh;
786         __le32 old_correct_csum, new_csum, old_csum;
787         int err;
788 
789         err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
790         if (unlikely(err))
791                 return err;
792 
793         sh = sctp_hdr(skb);
794         old_csum = sh->checksum;
795         old_correct_csum = sctp_compute_cksum(skb, sctphoff);
796 
797         sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
798         sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
799 
800         new_csum = sctp_compute_cksum(skb, sctphoff);
801 
802         /* Carry any checksum errors through. */
803         sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
804 
805         skb_clear_hash(skb);
806         flow_key->tp.src = sh->source;
807         flow_key->tp.dst = sh->dest;
808 
809         return 0;
810 }
811 
812 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
813 {
814         struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
815         struct vport *vport = data->vport;
816 
817         if (skb_cow_head(skb, data->l2_len) < 0) {
818                 kfree_skb(skb);
819                 return -ENOMEM;
820         }
821 
822         __skb_dst_copy(skb, data->dst);
823         *OVS_CB(skb) = data->cb;
824         skb->inner_protocol = data->inner_protocol;
825         if (data->vlan_tci & VLAN_CFI_MASK)
826                 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
827         else
828                 __vlan_hwaccel_clear_tag(skb);
829 
830         /* Reconstruct the MAC header.  */
831         skb_push(skb, data->l2_len);
832         memcpy(skb->data, &data->l2_data, data->l2_len);
833         skb_postpush_rcsum(skb, skb->data, data->l2_len);
834         skb_reset_mac_header(skb);
835 
836         if (eth_p_mpls(skb->protocol)) {
837                 skb->inner_network_header = skb->network_header;
838                 skb_set_network_header(skb, data->network_offset);
839                 skb_reset_mac_len(skb);
840         }
841 
842         ovs_vport_send(vport, skb, data->mac_proto);
843         return 0;
844 }
845 
846 static unsigned int
847 ovs_dst_get_mtu(const struct dst_entry *dst)
848 {
849         return dst->dev->mtu;
850 }
851 
852 static struct dst_ops ovs_dst_ops = {
853         .family = AF_UNSPEC,
854         .mtu = ovs_dst_get_mtu,
855 };
856 
857 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
858  * ovs_vport_output(), which is called once per fragmented packet.
859  */
860 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
861                          u16 orig_network_offset, u8 mac_proto)
862 {
863         unsigned int hlen = skb_network_offset(skb);
864         struct ovs_frag_data *data;
865 
866         data = this_cpu_ptr(&ovs_frag_data_storage);
867         data->dst = skb->_skb_refdst;
868         data->vport = vport;
869         data->cb = *OVS_CB(skb);
870         data->inner_protocol = skb->inner_protocol;
871         data->network_offset = orig_network_offset;
872         if (skb_vlan_tag_present(skb))
873                 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
874         else
875                 data->vlan_tci = 0;
876         data->vlan_proto = skb->vlan_proto;
877         data->mac_proto = mac_proto;
878         data->l2_len = hlen;
879         memcpy(&data->l2_data, skb->data, hlen);
880 
881         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
882         skb_pull(skb, hlen);
883 }
884 
885 static void ovs_fragment(struct net *net, struct vport *vport,
886                          struct sk_buff *skb, u16 mru,
887                          struct sw_flow_key *key)
888 {
889         u16 orig_network_offset = 0;
890 
891         if (eth_p_mpls(skb->protocol)) {
892                 orig_network_offset = skb_network_offset(skb);
893                 skb->network_header = skb->inner_network_header;
894         }
895 
896         if (skb_network_offset(skb) > MAX_L2_LEN) {
897                 OVS_NLERR(1, "L2 header too long to fragment");
898                 goto err;
899         }
900 
901         if (key->eth.type == htons(ETH_P_IP)) {
902                 struct dst_entry ovs_dst;
903                 unsigned long orig_dst;
904 
905                 prepare_frag(vport, skb, orig_network_offset,
906                              ovs_key_mac_proto(key));
907                 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
908                          DST_OBSOLETE_NONE, DST_NOCOUNT);
909                 ovs_dst.dev = vport->dev;
910 
911                 orig_dst = skb->_skb_refdst;
912                 skb_dst_set_noref(skb, &ovs_dst);
913                 IPCB(skb)->frag_max_size = mru;
914 
915                 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
916                 refdst_drop(orig_dst);
917         } else if (key->eth.type == htons(ETH_P_IPV6)) {
918                 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
919                 unsigned long orig_dst;
920                 struct rt6_info ovs_rt;
921 
922                 if (!v6ops)
923                         goto err;
924 
925                 prepare_frag(vport, skb, orig_network_offset,
926                              ovs_key_mac_proto(key));
927                 memset(&ovs_rt, 0, sizeof(ovs_rt));
928                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
929                          DST_OBSOLETE_NONE, DST_NOCOUNT);
930                 ovs_rt.dst.dev = vport->dev;
931 
932                 orig_dst = skb->_skb_refdst;
933                 skb_dst_set_noref(skb, &ovs_rt.dst);
934                 IP6CB(skb)->frag_max_size = mru;
935 
936                 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
937                 refdst_drop(orig_dst);
938         } else {
939                 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
940                           ovs_vport_name(vport), ntohs(key->eth.type), mru,
941                           vport->dev->mtu);
942                 goto err;
943         }
944 
945         return;
946 err:
947         kfree_skb(skb);
948 }
949 
950 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
951                       struct sw_flow_key *key)
952 {
953         struct vport *vport = ovs_vport_rcu(dp, out_port);
954 
955         if (likely(vport)) {
956                 u16 mru = OVS_CB(skb)->mru;
957                 u32 cutlen = OVS_CB(skb)->cutlen;
958 
959                 if (unlikely(cutlen > 0)) {
960                         if (skb->len - cutlen > ovs_mac_header_len(key))
961                                 pskb_trim(skb, skb->len - cutlen);
962                         else
963                                 pskb_trim(skb, ovs_mac_header_len(key));
964                 }
965 
966                 if (likely(!mru ||
967                            (skb->len <= mru + vport->dev->hard_header_len))) {
968                         ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
969                 } else if (mru <= vport->dev->mtu) {
970                         struct net *net = read_pnet(&dp->net);
971 
972                         ovs_fragment(net, vport, skb, mru, key);
973                 } else {
974                         kfree_skb(skb);
975                 }
976         } else {
977                 kfree_skb(skb);
978         }
979 }
980 
981 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
982                             struct sw_flow_key *key, const struct nlattr *attr,
983                             const struct nlattr *actions, int actions_len,
984                             uint32_t cutlen)
985 {
986         struct dp_upcall_info upcall;
987         const struct nlattr *a;
988         int rem;
989 
990         memset(&upcall, 0, sizeof(upcall));
991         upcall.cmd = OVS_PACKET_CMD_ACTION;
992         upcall.mru = OVS_CB(skb)->mru;
993 
994         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
995                  a = nla_next(a, &rem)) {
996                 switch (nla_type(a)) {
997                 case OVS_USERSPACE_ATTR_USERDATA:
998                         upcall.userdata = a;
999                         break;
1000 
1001                 case OVS_USERSPACE_ATTR_PID:
1002                         upcall.portid = nla_get_u32(a);
1003                         break;
1004 
1005                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1006                         /* Get out tunnel info. */
1007                         struct vport *vport;
1008 
1009                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
1010                         if (vport) {
1011                                 int err;
1012 
1013                                 err = dev_fill_metadata_dst(vport->dev, skb);
1014                                 if (!err)
1015                                         upcall.egress_tun_info = skb_tunnel_info(skb);
1016                         }
1017 
1018                         break;
1019                 }
1020 
1021                 case OVS_USERSPACE_ATTR_ACTIONS: {
1022                         /* Include actions. */
1023                         upcall.actions = actions;
1024                         upcall.actions_len = actions_len;
1025                         break;
1026                 }
1027 
1028                 } /* End of switch. */
1029         }
1030 
1031         return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1032 }
1033 
1034 /* When 'last' is true, sample() should always consume the 'skb'.
1035  * Otherwise, sample() should keep 'skb' intact regardless what
1036  * actions are executed within sample().
1037  */
1038 static int sample(struct datapath *dp, struct sk_buff *skb,
1039                   struct sw_flow_key *key, const struct nlattr *attr,
1040                   bool last)
1041 {
1042         struct nlattr *actions;
1043         struct nlattr *sample_arg;
1044         int rem = nla_len(attr);
1045         const struct sample_arg *arg;
1046         bool clone_flow_key;
1047 
1048         /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1049         sample_arg = nla_data(attr);
1050         arg = nla_data(sample_arg);
1051         actions = nla_next(sample_arg, &rem);
1052 
1053         if ((arg->probability != U32_MAX) &&
1054             (!arg->probability || prandom_u32() > arg->probability)) {
1055                 if (last)
1056                         consume_skb(skb);
1057                 return 0;
1058         }
1059 
1060         clone_flow_key = !arg->exec;
1061         return clone_execute(dp, skb, key, 0, actions, rem, last,
1062                              clone_flow_key);
1063 }
1064 
1065 /* When 'last' is true, clone() should always consume the 'skb'.
1066  * Otherwise, clone() should keep 'skb' intact regardless what
1067  * actions are executed within clone().
1068  */
1069 static int clone(struct datapath *dp, struct sk_buff *skb,
1070                  struct sw_flow_key *key, const struct nlattr *attr,
1071                  bool last)
1072 {
1073         struct nlattr *actions;
1074         struct nlattr *clone_arg;
1075         int rem = nla_len(attr);
1076         bool dont_clone_flow_key;
1077 
1078         /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1079         clone_arg = nla_data(attr);
1080         dont_clone_flow_key = nla_get_u32(clone_arg);
1081         actions = nla_next(clone_arg, &rem);
1082 
1083         return clone_execute(dp, skb, key, 0, actions, rem, last,
1084                              !dont_clone_flow_key);
1085 }
1086 
1087 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1088                          const struct nlattr *attr)
1089 {
1090         struct ovs_action_hash *hash_act = nla_data(attr);
1091         u32 hash = 0;
1092 
1093         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1094         hash = skb_get_hash(skb);
1095         hash = jhash_1word(hash, hash_act->hash_basis);
1096         if (!hash)
1097                 hash = 0x1;
1098 
1099         key->ovs_flow_hash = hash;
1100 }
1101 
1102 static int execute_set_action(struct sk_buff *skb,
1103                               struct sw_flow_key *flow_key,
1104                               const struct nlattr *a)
1105 {
1106         /* Only tunnel set execution is supported without a mask. */
1107         if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1108                 struct ovs_tunnel_info *tun = nla_data(a);
1109 
1110                 skb_dst_drop(skb);
1111                 dst_hold((struct dst_entry *)tun->tun_dst);
1112                 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1113                 return 0;
1114         }
1115 
1116         return -EINVAL;
1117 }
1118 
1119 /* Mask is at the midpoint of the data. */
1120 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1121 
1122 static int execute_masked_set_action(struct sk_buff *skb,
1123                                      struct sw_flow_key *flow_key,
1124                                      const struct nlattr *a)
1125 {
1126         int err = 0;
1127 
1128         switch (nla_type(a)) {
1129         case OVS_KEY_ATTR_PRIORITY:
1130                 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1131                                *get_mask(a, u32 *));
1132                 flow_key->phy.priority = skb->priority;
1133                 break;
1134 
1135         case OVS_KEY_ATTR_SKB_MARK:
1136                 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1137                 flow_key->phy.skb_mark = skb->mark;
1138                 break;
1139 
1140         case OVS_KEY_ATTR_TUNNEL_INFO:
1141                 /* Masked data not supported for tunnel. */
1142                 err = -EINVAL;
1143                 break;
1144 
1145         case OVS_KEY_ATTR_ETHERNET:
1146                 err = set_eth_addr(skb, flow_key, nla_data(a),
1147                                    get_mask(a, struct ovs_key_ethernet *));
1148                 break;
1149 
1150         case OVS_KEY_ATTR_NSH:
1151                 err = set_nsh(skb, flow_key, a);
1152                 break;
1153 
1154         case OVS_KEY_ATTR_IPV4:
1155                 err = set_ipv4(skb, flow_key, nla_data(a),
1156                                get_mask(a, struct ovs_key_ipv4 *));
1157                 break;
1158 
1159         case OVS_KEY_ATTR_IPV6:
1160                 err = set_ipv6(skb, flow_key, nla_data(a),
1161                                get_mask(a, struct ovs_key_ipv6 *));
1162                 break;
1163 
1164         case OVS_KEY_ATTR_TCP:
1165                 err = set_tcp(skb, flow_key, nla_data(a),
1166                               get_mask(a, struct ovs_key_tcp *));
1167                 break;
1168 
1169         case OVS_KEY_ATTR_UDP:
1170                 err = set_udp(skb, flow_key, nla_data(a),
1171                               get_mask(a, struct ovs_key_udp *));
1172                 break;
1173 
1174         case OVS_KEY_ATTR_SCTP:
1175                 err = set_sctp(skb, flow_key, nla_data(a),
1176                                get_mask(a, struct ovs_key_sctp *));
1177                 break;
1178 
1179         case OVS_KEY_ATTR_MPLS:
1180                 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1181                                                                     __be32 *));
1182                 break;
1183 
1184         case OVS_KEY_ATTR_CT_STATE:
1185         case OVS_KEY_ATTR_CT_ZONE:
1186         case OVS_KEY_ATTR_CT_MARK:
1187         case OVS_KEY_ATTR_CT_LABELS:
1188         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1189         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1190                 err = -EINVAL;
1191                 break;
1192         }
1193 
1194         return err;
1195 }
1196 
1197 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1198                           struct sw_flow_key *key,
1199                           const struct nlattr *a, bool last)
1200 {
1201         u32 recirc_id;
1202 
1203         if (!is_flow_key_valid(key)) {
1204                 int err;
1205 
1206                 err = ovs_flow_key_update(skb, key);
1207                 if (err)
1208                         return err;
1209         }
1210         BUG_ON(!is_flow_key_valid(key));
1211 
1212         recirc_id = nla_get_u32(a);
1213         return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1214 }
1215 
1216 /* Execute a list of actions against 'skb'. */
1217 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1218                               struct sw_flow_key *key,
1219                               const struct nlattr *attr, int len)
1220 {
1221         const struct nlattr *a;
1222         int rem;
1223 
1224         for (a = attr, rem = len; rem > 0;
1225              a = nla_next(a, &rem)) {
1226                 int err = 0;
1227 
1228                 switch (nla_type(a)) {
1229                 case OVS_ACTION_ATTR_OUTPUT: {
1230                         int port = nla_get_u32(a);
1231                         struct sk_buff *clone;
1232 
1233                         /* Every output action needs a separate clone
1234                          * of 'skb', In case the output action is the
1235                          * last action, cloning can be avoided.
1236                          */
1237                         if (nla_is_last(a, rem)) {
1238                                 do_output(dp, skb, port, key);
1239                                 /* 'skb' has been used for output.
1240                                  */
1241                                 return 0;
1242                         }
1243 
1244                         clone = skb_clone(skb, GFP_ATOMIC);
1245                         if (clone)
1246                                 do_output(dp, clone, port, key);
1247                         OVS_CB(skb)->cutlen = 0;
1248                         break;
1249                 }
1250 
1251                 case OVS_ACTION_ATTR_TRUNC: {
1252                         struct ovs_action_trunc *trunc = nla_data(a);
1253 
1254                         if (skb->len > trunc->max_len)
1255                                 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1256                         break;
1257                 }
1258 
1259                 case OVS_ACTION_ATTR_USERSPACE:
1260                         output_userspace(dp, skb, key, a, attr,
1261                                                      len, OVS_CB(skb)->cutlen);
1262                         OVS_CB(skb)->cutlen = 0;
1263                         break;
1264 
1265                 case OVS_ACTION_ATTR_HASH:
1266                         execute_hash(skb, key, a);
1267                         break;
1268 
1269                 case OVS_ACTION_ATTR_PUSH_MPLS:
1270                         err = push_mpls(skb, key, nla_data(a));
1271                         break;
1272 
1273                 case OVS_ACTION_ATTR_POP_MPLS:
1274                         err = pop_mpls(skb, key, nla_get_be16(a));
1275                         break;
1276 
1277                 case OVS_ACTION_ATTR_PUSH_VLAN:
1278                         err = push_vlan(skb, key, nla_data(a));
1279                         break;
1280 
1281                 case OVS_ACTION_ATTR_POP_VLAN:
1282                         err = pop_vlan(skb, key);
1283                         break;
1284 
1285                 case OVS_ACTION_ATTR_RECIRC: {
1286                         bool last = nla_is_last(a, rem);
1287 
1288                         err = execute_recirc(dp, skb, key, a, last);
1289                         if (last) {
1290                                 /* If this is the last action, the skb has
1291                                  * been consumed or freed.
1292                                  * Return immediately.
1293                                  */
1294                                 return err;
1295                         }
1296                         break;
1297                 }
1298 
1299                 case OVS_ACTION_ATTR_SET:
1300                         err = execute_set_action(skb, key, nla_data(a));
1301                         break;
1302 
1303                 case OVS_ACTION_ATTR_SET_MASKED:
1304                 case OVS_ACTION_ATTR_SET_TO_MASKED:
1305                         err = execute_masked_set_action(skb, key, nla_data(a));
1306                         break;
1307 
1308                 case OVS_ACTION_ATTR_SAMPLE: {
1309                         bool last = nla_is_last(a, rem);
1310 
1311                         err = sample(dp, skb, key, a, last);
1312                         if (last)
1313                                 return err;
1314 
1315                         break;
1316                 }
1317 
1318                 case OVS_ACTION_ATTR_CT:
1319                         if (!is_flow_key_valid(key)) {
1320                                 err = ovs_flow_key_update(skb, key);
1321                                 if (err)
1322                                         return err;
1323                         }
1324 
1325                         err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1326                                              nla_data(a));
1327 
1328                         /* Hide stolen IP fragments from user space. */
1329                         if (err)
1330                                 return err == -EINPROGRESS ? 0 : err;
1331                         break;
1332 
1333                 case OVS_ACTION_ATTR_CT_CLEAR:
1334                         err = ovs_ct_clear(skb, key);
1335                         break;
1336 
1337                 case OVS_ACTION_ATTR_PUSH_ETH:
1338                         err = push_eth(skb, key, nla_data(a));
1339                         break;
1340 
1341                 case OVS_ACTION_ATTR_POP_ETH:
1342                         err = pop_eth(skb, key);
1343                         break;
1344 
1345                 case OVS_ACTION_ATTR_PUSH_NSH: {
1346                         u8 buffer[NSH_HDR_MAX_LEN];
1347                         struct nshhdr *nh = (struct nshhdr *)buffer;
1348 
1349                         err = nsh_hdr_from_nlattr(nla_data(a), nh,
1350                                                   NSH_HDR_MAX_LEN);
1351                         if (unlikely(err))
1352                                 break;
1353                         err = push_nsh(skb, key, nh);
1354                         break;
1355                 }
1356 
1357                 case OVS_ACTION_ATTR_POP_NSH:
1358                         err = pop_nsh(skb, key);
1359                         break;
1360 
1361                 case OVS_ACTION_ATTR_METER:
1362                         if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1363                                 consume_skb(skb);
1364                                 return 0;
1365                         }
1366                         break;
1367 
1368                 case OVS_ACTION_ATTR_CLONE: {
1369                         bool last = nla_is_last(a, rem);
1370 
1371                         err = clone(dp, skb, key, a, last);
1372                         if (last)
1373                                 return err;
1374 
1375                         break;
1376                 }
1377                 }
1378 
1379                 if (unlikely(err)) {
1380                         kfree_skb(skb);
1381                         return err;
1382                 }
1383         }
1384 
1385         consume_skb(skb);
1386         return 0;
1387 }
1388 
1389 /* Execute the actions on the clone of the packet. The effect of the
1390  * execution does not affect the original 'skb' nor the original 'key'.
1391  *
1392  * The execution may be deferred in case the actions can not be executed
1393  * immediately.
1394  */
1395 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1396                          struct sw_flow_key *key, u32 recirc_id,
1397                          const struct nlattr *actions, int len,
1398                          bool last, bool clone_flow_key)
1399 {
1400         struct deferred_action *da;
1401         struct sw_flow_key *clone;
1402 
1403         skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1404         if (!skb) {
1405                 /* Out of memory, skip this action.
1406                  */
1407                 return 0;
1408         }
1409 
1410         /* When clone_flow_key is false, the 'key' will not be change
1411          * by the actions, then the 'key' can be used directly.
1412          * Otherwise, try to clone key from the next recursion level of
1413          * 'flow_keys'. If clone is successful, execute the actions
1414          * without deferring.
1415          */
1416         clone = clone_flow_key ? clone_key(key) : key;
1417         if (clone) {
1418                 int err = 0;
1419 
1420                 if (actions) { /* Sample action */
1421                         if (clone_flow_key)
1422                                 __this_cpu_inc(exec_actions_level);
1423 
1424                         err = do_execute_actions(dp, skb, clone,
1425                                                  actions, len);
1426 
1427                         if (clone_flow_key)
1428                                 __this_cpu_dec(exec_actions_level);
1429                 } else { /* Recirc action */
1430                         clone->recirc_id = recirc_id;
1431                         ovs_dp_process_packet(skb, clone);
1432                 }
1433                 return err;
1434         }
1435 
1436         /* Out of 'flow_keys' space. Defer actions */
1437         da = add_deferred_actions(skb, key, actions, len);
1438         if (da) {
1439                 if (!actions) { /* Recirc action */
1440                         key = &da->pkt_key;
1441                         key->recirc_id = recirc_id;
1442                 }
1443         } else {
1444                 /* Out of per CPU action FIFO space. Drop the 'skb' and
1445                  * log an error.
1446                  */
1447                 kfree_skb(skb);
1448 
1449                 if (net_ratelimit()) {
1450                         if (actions) { /* Sample action */
1451                                 pr_warn("%s: deferred action limit reached, drop sample action\n",
1452                                         ovs_dp_name(dp));
1453                         } else {  /* Recirc action */
1454                                 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1455                                         ovs_dp_name(dp));
1456                         }
1457                 }
1458         }
1459         return 0;
1460 }
1461 
1462 static void process_deferred_actions(struct datapath *dp)
1463 {
1464         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1465 
1466         /* Do not touch the FIFO in case there is no deferred actions. */
1467         if (action_fifo_is_empty(fifo))
1468                 return;
1469 
1470         /* Finishing executing all deferred actions. */
1471         do {
1472                 struct deferred_action *da = action_fifo_get(fifo);
1473                 struct sk_buff *skb = da->skb;
1474                 struct sw_flow_key *key = &da->pkt_key;
1475                 const struct nlattr *actions = da->actions;
1476                 int actions_len = da->actions_len;
1477 
1478                 if (actions)
1479                         do_execute_actions(dp, skb, key, actions, actions_len);
1480                 else
1481                         ovs_dp_process_packet(skb, key);
1482         } while (!action_fifo_is_empty(fifo));
1483 
1484         /* Reset FIFO for the next packet.  */
1485         action_fifo_init(fifo);
1486 }
1487 
1488 /* Execute a list of actions against 'skb'. */
1489 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1490                         const struct sw_flow_actions *acts,
1491                         struct sw_flow_key *key)
1492 {
1493         int err, level;
1494 
1495         level = __this_cpu_inc_return(exec_actions_level);
1496         if (unlikely(level > OVS_RECURSION_LIMIT)) {
1497                 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1498                                      ovs_dp_name(dp));
1499                 kfree_skb(skb);
1500                 err = -ENETDOWN;
1501                 goto out;
1502         }
1503 
1504         OVS_CB(skb)->acts_origlen = acts->orig_len;
1505         err = do_execute_actions(dp, skb, key,
1506                                  acts->actions, acts->actions_len);
1507 
1508         if (level == 1)
1509                 process_deferred_actions(dp);
1510 
1511 out:
1512         __this_cpu_dec(exec_actions_level);
1513         return err;
1514 }
1515 
1516 int action_fifos_init(void)
1517 {
1518         action_fifos = alloc_percpu(struct action_fifo);
1519         if (!action_fifos)
1520                 return -ENOMEM;
1521 
1522         flow_keys = alloc_percpu(struct action_flow_keys);
1523         if (!flow_keys) {
1524                 free_percpu(action_fifos);
1525                 return -ENOMEM;
1526         }
1527 
1528         return 0;
1529 }
1530 
1531 void action_fifos_exit(void)
1532 {
1533         free_percpu(action_fifos);
1534         free_percpu(flow_keys);
1535 }
1536 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp