~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/openvswitch/actions.c

Version: ~ [ linux-6.6-rc1 ] ~ [ linux-6.5.2 ] ~ [ linux-6.4.15 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.52 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.131 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.194 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.256 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.294 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.325 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2007-2017 Nicira, Inc.
  3  *
  4  * This program is free software; you can redistribute it and/or
  5  * modify it under the terms of version 2 of the GNU General Public
  6  * License as published by the Free Software Foundation.
  7  *
  8  * This program is distributed in the hope that it will be useful, but
  9  * WITHOUT ANY WARRANTY; without even the implied warranty of
 10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 11  * General Public License for more details.
 12  *
 13  * You should have received a copy of the GNU General Public License
 14  * along with this program; if not, write to the Free Software
 15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16  * 02110-1301, USA
 17  */
 18 
 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 20 
 21 #include <linux/skbuff.h>
 22 #include <linux/in.h>
 23 #include <linux/ip.h>
 24 #include <linux/openvswitch.h>
 25 #include <linux/netfilter_ipv6.h>
 26 #include <linux/sctp.h>
 27 #include <linux/tcp.h>
 28 #include <linux/udp.h>
 29 #include <linux/in6.h>
 30 #include <linux/if_arp.h>
 31 #include <linux/if_vlan.h>
 32 
 33 #include <net/dst.h>
 34 #include <net/ip.h>
 35 #include <net/ipv6.h>
 36 #include <net/ip6_fib.h>
 37 #include <net/checksum.h>
 38 #include <net/dsfield.h>
 39 #include <net/mpls.h>
 40 #include <net/sctp/checksum.h>
 41 
 42 #include "datapath.h"
 43 #include "flow.h"
 44 #include "conntrack.h"
 45 #include "vport.h"
 46 
 47 struct deferred_action {
 48         struct sk_buff *skb;
 49         const struct nlattr *actions;
 50         int actions_len;
 51 
 52         /* Store pkt_key clone when creating deferred action. */
 53         struct sw_flow_key pkt_key;
 54 };
 55 
 56 #define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
 57 struct ovs_frag_data {
 58         unsigned long dst;
 59         struct vport *vport;
 60         struct ovs_skb_cb cb;
 61         __be16 inner_protocol;
 62         u16 network_offset;     /* valid only for MPLS */
 63         u16 vlan_tci;
 64         __be16 vlan_proto;
 65         unsigned int l2_len;
 66         u8 mac_proto;
 67         u8 l2_data[MAX_L2_LEN];
 68 };
 69 
 70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
 71 
 72 #define DEFERRED_ACTION_FIFO_SIZE 10
 73 #define OVS_RECURSION_LIMIT 5
 74 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
 75 struct action_fifo {
 76         int head;
 77         int tail;
 78         /* Deferred action fifo queue storage. */
 79         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
 80 };
 81 
 82 struct action_flow_keys {
 83         struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
 84 };
 85 
 86 static struct action_fifo __percpu *action_fifos;
 87 static struct action_flow_keys __percpu *flow_keys;
 88 static DEFINE_PER_CPU(int, exec_actions_level);
 89 
 90 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
 91  * space. Return NULL if out of key spaces.
 92  */
 93 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
 94 {
 95         struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
 96         int level = this_cpu_read(exec_actions_level);
 97         struct sw_flow_key *key = NULL;
 98 
 99         if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
100                 key = &keys->key[level - 1];
101                 *key = *key_;
102         }
103 
104         return key;
105 }
106 
107 static void action_fifo_init(struct action_fifo *fifo)
108 {
109         fifo->head = 0;
110         fifo->tail = 0;
111 }
112 
113 static bool action_fifo_is_empty(const struct action_fifo *fifo)
114 {
115         return (fifo->head == fifo->tail);
116 }
117 
118 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
119 {
120         if (action_fifo_is_empty(fifo))
121                 return NULL;
122 
123         return &fifo->fifo[fifo->tail++];
124 }
125 
126 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
127 {
128         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
129                 return NULL;
130 
131         return &fifo->fifo[fifo->head++];
132 }
133 
134 /* Return true if fifo is not full */
135 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
136                                     const struct sw_flow_key *key,
137                                     const struct nlattr *actions,
138                                     const int actions_len)
139 {
140         struct action_fifo *fifo;
141         struct deferred_action *da;
142 
143         fifo = this_cpu_ptr(action_fifos);
144         da = action_fifo_put(fifo);
145         if (da) {
146                 da->skb = skb;
147                 da->actions = actions;
148                 da->actions_len = actions_len;
149                 da->pkt_key = *key;
150         }
151 
152         return da;
153 }
154 
155 static void invalidate_flow_key(struct sw_flow_key *key)
156 {
157         key->mac_proto |= SW_FLOW_KEY_INVALID;
158 }
159 
160 static bool is_flow_key_valid(const struct sw_flow_key *key)
161 {
162         return !(key->mac_proto & SW_FLOW_KEY_INVALID);
163 }
164 
165 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
166                          struct sw_flow_key *key,
167                          u32 recirc_id,
168                          const struct nlattr *actions, int len,
169                          bool last, bool clone_flow_key);
170 
171 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
172                              __be16 ethertype)
173 {
174         if (skb->ip_summed == CHECKSUM_COMPLETE) {
175                 __be16 diff[] = { ~(hdr->h_proto), ethertype };
176 
177                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
178                                         ~skb->csum);
179         }
180 
181         hdr->h_proto = ethertype;
182 }
183 
184 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
185                      const struct ovs_action_push_mpls *mpls)
186 {
187         struct mpls_shim_hdr *new_mpls_lse;
188 
189         /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
190         if (skb->encapsulation)
191                 return -ENOTSUPP;
192 
193         if (skb_cow_head(skb, MPLS_HLEN) < 0)
194                 return -ENOMEM;
195 
196         if (!skb->inner_protocol) {
197                 skb_set_inner_network_header(skb, skb->mac_len);
198                 skb_set_inner_protocol(skb, skb->protocol);
199         }
200 
201         skb_push(skb, MPLS_HLEN);
202         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
203                 skb->mac_len);
204         skb_reset_mac_header(skb);
205         skb_set_network_header(skb, skb->mac_len);
206 
207         new_mpls_lse = mpls_hdr(skb);
208         new_mpls_lse->label_stack_entry = mpls->mpls_lse;
209 
210         skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
211 
212         if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
213                 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
214         skb->protocol = mpls->mpls_ethertype;
215 
216         invalidate_flow_key(key);
217         return 0;
218 }
219 
220 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
221                     const __be16 ethertype)
222 {
223         int err;
224 
225         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
226         if (unlikely(err))
227                 return err;
228 
229         skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
230 
231         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
232                 skb->mac_len);
233 
234         __skb_pull(skb, MPLS_HLEN);
235         skb_reset_mac_header(skb);
236         skb_set_network_header(skb, skb->mac_len);
237 
238         if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
239                 struct ethhdr *hdr;
240 
241                 /* mpls_hdr() is used to locate the ethertype field correctly in the
242                  * presence of VLAN tags.
243                  */
244                 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
245                 update_ethertype(skb, hdr, ethertype);
246         }
247         if (eth_p_mpls(skb->protocol))
248                 skb->protocol = ethertype;
249 
250         invalidate_flow_key(key);
251         return 0;
252 }
253 
254 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
255                     const __be32 *mpls_lse, const __be32 *mask)
256 {
257         struct mpls_shim_hdr *stack;
258         __be32 lse;
259         int err;
260 
261         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
262         if (unlikely(err))
263                 return err;
264 
265         stack = mpls_hdr(skb);
266         lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
267         if (skb->ip_summed == CHECKSUM_COMPLETE) {
268                 __be32 diff[] = { ~(stack->label_stack_entry), lse };
269 
270                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
271                                           ~skb->csum);
272         }
273 
274         stack->label_stack_entry = lse;
275         flow_key->mpls.top_lse = lse;
276         return 0;
277 }
278 
279 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
280 {
281         int err;
282 
283         err = skb_vlan_pop(skb);
284         if (skb_vlan_tag_present(skb)) {
285                 invalidate_flow_key(key);
286         } else {
287                 key->eth.vlan.tci = 0;
288                 key->eth.vlan.tpid = 0;
289         }
290         return err;
291 }
292 
293 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
294                      const struct ovs_action_push_vlan *vlan)
295 {
296         if (skb_vlan_tag_present(skb)) {
297                 invalidate_flow_key(key);
298         } else {
299                 key->eth.vlan.tci = vlan->vlan_tci;
300                 key->eth.vlan.tpid = vlan->vlan_tpid;
301         }
302         return skb_vlan_push(skb, vlan->vlan_tpid,
303                              ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
304 }
305 
306 /* 'src' is already properly masked. */
307 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
308 {
309         u16 *dst = (u16 *)dst_;
310         const u16 *src = (const u16 *)src_;
311         const u16 *mask = (const u16 *)mask_;
312 
313         OVS_SET_MASKED(dst[0], src[0], mask[0]);
314         OVS_SET_MASKED(dst[1], src[1], mask[1]);
315         OVS_SET_MASKED(dst[2], src[2], mask[2]);
316 }
317 
318 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
319                         const struct ovs_key_ethernet *key,
320                         const struct ovs_key_ethernet *mask)
321 {
322         int err;
323 
324         err = skb_ensure_writable(skb, ETH_HLEN);
325         if (unlikely(err))
326                 return err;
327 
328         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
329 
330         ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
331                                mask->eth_src);
332         ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
333                                mask->eth_dst);
334 
335         skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
336 
337         ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
338         ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
339         return 0;
340 }
341 
342 /* pop_eth does not support VLAN packets as this action is never called
343  * for them.
344  */
345 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347         skb_pull_rcsum(skb, ETH_HLEN);
348         skb_reset_mac_header(skb);
349         skb_reset_mac_len(skb);
350 
351         /* safe right before invalidate_flow_key */
352         key->mac_proto = MAC_PROTO_NONE;
353         invalidate_flow_key(key);
354         return 0;
355 }
356 
357 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
358                     const struct ovs_action_push_eth *ethh)
359 {
360         struct ethhdr *hdr;
361 
362         /* Add the new Ethernet header */
363         if (skb_cow_head(skb, ETH_HLEN) < 0)
364                 return -ENOMEM;
365 
366         skb_push(skb, ETH_HLEN);
367         skb_reset_mac_header(skb);
368         skb_reset_mac_len(skb);
369 
370         hdr = eth_hdr(skb);
371         ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
372         ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
373         hdr->h_proto = skb->protocol;
374 
375         skb_postpush_rcsum(skb, hdr, ETH_HLEN);
376 
377         /* safe right before invalidate_flow_key */
378         key->mac_proto = MAC_PROTO_ETHERNET;
379         invalidate_flow_key(key);
380         return 0;
381 }
382 
383 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
384                                   __be32 addr, __be32 new_addr)
385 {
386         int transport_len = skb->len - skb_transport_offset(skb);
387 
388         if (nh->frag_off & htons(IP_OFFSET))
389                 return;
390 
391         if (nh->protocol == IPPROTO_TCP) {
392                 if (likely(transport_len >= sizeof(struct tcphdr)))
393                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
394                                                  addr, new_addr, true);
395         } else if (nh->protocol == IPPROTO_UDP) {
396                 if (likely(transport_len >= sizeof(struct udphdr))) {
397                         struct udphdr *uh = udp_hdr(skb);
398 
399                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
400                                 inet_proto_csum_replace4(&uh->check, skb,
401                                                          addr, new_addr, true);
402                                 if (!uh->check)
403                                         uh->check = CSUM_MANGLED_0;
404                         }
405                 }
406         }
407 }
408 
409 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
410                         __be32 *addr, __be32 new_addr)
411 {
412         update_ip_l4_checksum(skb, nh, *addr, new_addr);
413         csum_replace4(&nh->check, *addr, new_addr);
414         skb_clear_hash(skb);
415         *addr = new_addr;
416 }
417 
418 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
419                                  __be32 addr[4], const __be32 new_addr[4])
420 {
421         int transport_len = skb->len - skb_transport_offset(skb);
422 
423         if (l4_proto == NEXTHDR_TCP) {
424                 if (likely(transport_len >= sizeof(struct tcphdr)))
425                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
426                                                   addr, new_addr, true);
427         } else if (l4_proto == NEXTHDR_UDP) {
428                 if (likely(transport_len >= sizeof(struct udphdr))) {
429                         struct udphdr *uh = udp_hdr(skb);
430 
431                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
432                                 inet_proto_csum_replace16(&uh->check, skb,
433                                                           addr, new_addr, true);
434                                 if (!uh->check)
435                                         uh->check = CSUM_MANGLED_0;
436                         }
437                 }
438         } else if (l4_proto == NEXTHDR_ICMP) {
439                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
440                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
441                                                   skb, addr, new_addr, true);
442         }
443 }
444 
445 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
446                            const __be32 mask[4], __be32 masked[4])
447 {
448         masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
449         masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
450         masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
451         masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
452 }
453 
454 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
455                           __be32 addr[4], const __be32 new_addr[4],
456                           bool recalculate_csum)
457 {
458         if (recalculate_csum)
459                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
460 
461         skb_clear_hash(skb);
462         memcpy(addr, new_addr, sizeof(__be32[4]));
463 }
464 
465 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
466 {
467         /* Bits 21-24 are always unmasked, so this retains their values. */
468         OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
469         OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
470         OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
471 }
472 
473 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
474                        u8 mask)
475 {
476         new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
477 
478         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
479         nh->ttl = new_ttl;
480 }
481 
482 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
483                     const struct ovs_key_ipv4 *key,
484                     const struct ovs_key_ipv4 *mask)
485 {
486         struct iphdr *nh;
487         __be32 new_addr;
488         int err;
489 
490         err = skb_ensure_writable(skb, skb_network_offset(skb) +
491                                   sizeof(struct iphdr));
492         if (unlikely(err))
493                 return err;
494 
495         nh = ip_hdr(skb);
496 
497         /* Setting an IP addresses is typically only a side effect of
498          * matching on them in the current userspace implementation, so it
499          * makes sense to check if the value actually changed.
500          */
501         if (mask->ipv4_src) {
502                 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
503 
504                 if (unlikely(new_addr != nh->saddr)) {
505                         set_ip_addr(skb, nh, &nh->saddr, new_addr);
506                         flow_key->ipv4.addr.src = new_addr;
507                 }
508         }
509         if (mask->ipv4_dst) {
510                 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
511 
512                 if (unlikely(new_addr != nh->daddr)) {
513                         set_ip_addr(skb, nh, &nh->daddr, new_addr);
514                         flow_key->ipv4.addr.dst = new_addr;
515                 }
516         }
517         if (mask->ipv4_tos) {
518                 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
519                 flow_key->ip.tos = nh->tos;
520         }
521         if (mask->ipv4_ttl) {
522                 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
523                 flow_key->ip.ttl = nh->ttl;
524         }
525 
526         return 0;
527 }
528 
529 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
530 {
531         return !!(addr[0] | addr[1] | addr[2] | addr[3]);
532 }
533 
534 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
535                     const struct ovs_key_ipv6 *key,
536                     const struct ovs_key_ipv6 *mask)
537 {
538         struct ipv6hdr *nh;
539         int err;
540 
541         err = skb_ensure_writable(skb, skb_network_offset(skb) +
542                                   sizeof(struct ipv6hdr));
543         if (unlikely(err))
544                 return err;
545 
546         nh = ipv6_hdr(skb);
547 
548         /* Setting an IP addresses is typically only a side effect of
549          * matching on them in the current userspace implementation, so it
550          * makes sense to check if the value actually changed.
551          */
552         if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
553                 __be32 *saddr = (__be32 *)&nh->saddr;
554                 __be32 masked[4];
555 
556                 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
557 
558                 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
559                         set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
560                                       true);
561                         memcpy(&flow_key->ipv6.addr.src, masked,
562                                sizeof(flow_key->ipv6.addr.src));
563                 }
564         }
565         if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
566                 unsigned int offset = 0;
567                 int flags = IP6_FH_F_SKIP_RH;
568                 bool recalc_csum = true;
569                 __be32 *daddr = (__be32 *)&nh->daddr;
570                 __be32 masked[4];
571 
572                 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
573 
574                 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
575                         if (ipv6_ext_hdr(nh->nexthdr))
576                                 recalc_csum = (ipv6_find_hdr(skb, &offset,
577                                                              NEXTHDR_ROUTING,
578                                                              NULL, &flags)
579                                                != NEXTHDR_ROUTING);
580 
581                         set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
582                                       recalc_csum);
583                         memcpy(&flow_key->ipv6.addr.dst, masked,
584                                sizeof(flow_key->ipv6.addr.dst));
585                 }
586         }
587         if (mask->ipv6_tclass) {
588                 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
589                 flow_key->ip.tos = ipv6_get_dsfield(nh);
590         }
591         if (mask->ipv6_label) {
592                 set_ipv6_fl(nh, ntohl(key->ipv6_label),
593                             ntohl(mask->ipv6_label));
594                 flow_key->ipv6.label =
595                     *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
596         }
597         if (mask->ipv6_hlimit) {
598                 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
599                                mask->ipv6_hlimit);
600                 flow_key->ip.ttl = nh->hop_limit;
601         }
602         return 0;
603 }
604 
605 /* Must follow skb_ensure_writable() since that can move the skb data. */
606 static void set_tp_port(struct sk_buff *skb, __be16 *port,
607                         __be16 new_port, __sum16 *check)
608 {
609         inet_proto_csum_replace2(check, skb, *port, new_port, false);
610         *port = new_port;
611 }
612 
613 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
614                    const struct ovs_key_udp *key,
615                    const struct ovs_key_udp *mask)
616 {
617         struct udphdr *uh;
618         __be16 src, dst;
619         int err;
620 
621         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
622                                   sizeof(struct udphdr));
623         if (unlikely(err))
624                 return err;
625 
626         uh = udp_hdr(skb);
627         /* Either of the masks is non-zero, so do not bother checking them. */
628         src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
629         dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
630 
631         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
632                 if (likely(src != uh->source)) {
633                         set_tp_port(skb, &uh->source, src, &uh->check);
634                         flow_key->tp.src = src;
635                 }
636                 if (likely(dst != uh->dest)) {
637                         set_tp_port(skb, &uh->dest, dst, &uh->check);
638                         flow_key->tp.dst = dst;
639                 }
640 
641                 if (unlikely(!uh->check))
642                         uh->check = CSUM_MANGLED_0;
643         } else {
644                 uh->source = src;
645                 uh->dest = dst;
646                 flow_key->tp.src = src;
647                 flow_key->tp.dst = dst;
648         }
649 
650         skb_clear_hash(skb);
651 
652         return 0;
653 }
654 
655 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
656                    const struct ovs_key_tcp *key,
657                    const struct ovs_key_tcp *mask)
658 {
659         struct tcphdr *th;
660         __be16 src, dst;
661         int err;
662 
663         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
664                                   sizeof(struct tcphdr));
665         if (unlikely(err))
666                 return err;
667 
668         th = tcp_hdr(skb);
669         src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
670         if (likely(src != th->source)) {
671                 set_tp_port(skb, &th->source, src, &th->check);
672                 flow_key->tp.src = src;
673         }
674         dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
675         if (likely(dst != th->dest)) {
676                 set_tp_port(skb, &th->dest, dst, &th->check);
677                 flow_key->tp.dst = dst;
678         }
679         skb_clear_hash(skb);
680 
681         return 0;
682 }
683 
684 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
685                     const struct ovs_key_sctp *key,
686                     const struct ovs_key_sctp *mask)
687 {
688         unsigned int sctphoff = skb_transport_offset(skb);
689         struct sctphdr *sh;
690         __le32 old_correct_csum, new_csum, old_csum;
691         int err;
692 
693         err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
694         if (unlikely(err))
695                 return err;
696 
697         sh = sctp_hdr(skb);
698         old_csum = sh->checksum;
699         old_correct_csum = sctp_compute_cksum(skb, sctphoff);
700 
701         sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
702         sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
703 
704         new_csum = sctp_compute_cksum(skb, sctphoff);
705 
706         /* Carry any checksum errors through. */
707         sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
708 
709         skb_clear_hash(skb);
710         flow_key->tp.src = sh->source;
711         flow_key->tp.dst = sh->dest;
712 
713         return 0;
714 }
715 
716 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
717 {
718         struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
719         struct vport *vport = data->vport;
720 
721         if (skb_cow_head(skb, data->l2_len) < 0) {
722                 kfree_skb(skb);
723                 return -ENOMEM;
724         }
725 
726         __skb_dst_copy(skb, data->dst);
727         *OVS_CB(skb) = data->cb;
728         skb->inner_protocol = data->inner_protocol;
729         skb->vlan_tci = data->vlan_tci;
730         skb->vlan_proto = data->vlan_proto;
731 
732         /* Reconstruct the MAC header.  */
733         skb_push(skb, data->l2_len);
734         memcpy(skb->data, &data->l2_data, data->l2_len);
735         skb_postpush_rcsum(skb, skb->data, data->l2_len);
736         skb_reset_mac_header(skb);
737 
738         if (eth_p_mpls(skb->protocol)) {
739                 skb->inner_network_header = skb->network_header;
740                 skb_set_network_header(skb, data->network_offset);
741                 skb_reset_mac_len(skb);
742         }
743 
744         ovs_vport_send(vport, skb, data->mac_proto);
745         return 0;
746 }
747 
748 static unsigned int
749 ovs_dst_get_mtu(const struct dst_entry *dst)
750 {
751         return dst->dev->mtu;
752 }
753 
754 static struct dst_ops ovs_dst_ops = {
755         .family = AF_UNSPEC,
756         .mtu = ovs_dst_get_mtu,
757 };
758 
759 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
760  * ovs_vport_output(), which is called once per fragmented packet.
761  */
762 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
763                          u16 orig_network_offset, u8 mac_proto)
764 {
765         unsigned int hlen = skb_network_offset(skb);
766         struct ovs_frag_data *data;
767 
768         data = this_cpu_ptr(&ovs_frag_data_storage);
769         data->dst = skb->_skb_refdst;
770         data->vport = vport;
771         data->cb = *OVS_CB(skb);
772         data->inner_protocol = skb->inner_protocol;
773         data->network_offset = orig_network_offset;
774         data->vlan_tci = skb->vlan_tci;
775         data->vlan_proto = skb->vlan_proto;
776         data->mac_proto = mac_proto;
777         data->l2_len = hlen;
778         memcpy(&data->l2_data, skb->data, hlen);
779 
780         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
781         skb_pull(skb, hlen);
782 }
783 
784 static void ovs_fragment(struct net *net, struct vport *vport,
785                          struct sk_buff *skb, u16 mru,
786                          struct sw_flow_key *key)
787 {
788         u16 orig_network_offset = 0;
789 
790         if (eth_p_mpls(skb->protocol)) {
791                 orig_network_offset = skb_network_offset(skb);
792                 skb->network_header = skb->inner_network_header;
793         }
794 
795         if (skb_network_offset(skb) > MAX_L2_LEN) {
796                 OVS_NLERR(1, "L2 header too long to fragment");
797                 goto err;
798         }
799 
800         if (key->eth.type == htons(ETH_P_IP)) {
801                 struct dst_entry ovs_dst;
802                 unsigned long orig_dst;
803 
804                 prepare_frag(vport, skb, orig_network_offset,
805                              ovs_key_mac_proto(key));
806                 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
807                          DST_OBSOLETE_NONE, DST_NOCOUNT);
808                 ovs_dst.dev = vport->dev;
809 
810                 orig_dst = skb->_skb_refdst;
811                 skb_dst_set_noref(skb, &ovs_dst);
812                 IPCB(skb)->frag_max_size = mru;
813 
814                 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
815                 refdst_drop(orig_dst);
816         } else if (key->eth.type == htons(ETH_P_IPV6)) {
817                 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
818                 unsigned long orig_dst;
819                 struct rt6_info ovs_rt;
820 
821                 if (!v6ops)
822                         goto err;
823 
824                 prepare_frag(vport, skb, orig_network_offset,
825                              ovs_key_mac_proto(key));
826                 memset(&ovs_rt, 0, sizeof(ovs_rt));
827                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
828                          DST_OBSOLETE_NONE, DST_NOCOUNT);
829                 ovs_rt.dst.dev = vport->dev;
830 
831                 orig_dst = skb->_skb_refdst;
832                 skb_dst_set_noref(skb, &ovs_rt.dst);
833                 IP6CB(skb)->frag_max_size = mru;
834 
835                 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
836                 refdst_drop(orig_dst);
837         } else {
838                 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
839                           ovs_vport_name(vport), ntohs(key->eth.type), mru,
840                           vport->dev->mtu);
841                 goto err;
842         }
843 
844         return;
845 err:
846         kfree_skb(skb);
847 }
848 
849 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
850                       struct sw_flow_key *key)
851 {
852         struct vport *vport = ovs_vport_rcu(dp, out_port);
853 
854         if (likely(vport)) {
855                 u16 mru = OVS_CB(skb)->mru;
856                 u32 cutlen = OVS_CB(skb)->cutlen;
857 
858                 if (unlikely(cutlen > 0)) {
859                         if (skb->len - cutlen > ovs_mac_header_len(key))
860                                 pskb_trim(skb, skb->len - cutlen);
861                         else
862                                 pskb_trim(skb, ovs_mac_header_len(key));
863                 }
864 
865                 if (likely(!mru ||
866                            (skb->len <= mru + vport->dev->hard_header_len))) {
867                         ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
868                 } else if (mru <= vport->dev->mtu) {
869                         struct net *net = read_pnet(&dp->net);
870 
871                         ovs_fragment(net, vport, skb, mru, key);
872                 } else {
873                         kfree_skb(skb);
874                 }
875         } else {
876                 kfree_skb(skb);
877         }
878 }
879 
880 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
881                             struct sw_flow_key *key, const struct nlattr *attr,
882                             const struct nlattr *actions, int actions_len,
883                             uint32_t cutlen)
884 {
885         struct dp_upcall_info upcall;
886         const struct nlattr *a;
887         int rem;
888 
889         memset(&upcall, 0, sizeof(upcall));
890         upcall.cmd = OVS_PACKET_CMD_ACTION;
891         upcall.mru = OVS_CB(skb)->mru;
892 
893         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
894                  a = nla_next(a, &rem)) {
895                 switch (nla_type(a)) {
896                 case OVS_USERSPACE_ATTR_USERDATA:
897                         upcall.userdata = a;
898                         break;
899 
900                 case OVS_USERSPACE_ATTR_PID:
901                         upcall.portid = nla_get_u32(a);
902                         break;
903 
904                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
905                         /* Get out tunnel info. */
906                         struct vport *vport;
907 
908                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
909                         if (vport) {
910                                 int err;
911 
912                                 err = dev_fill_metadata_dst(vport->dev, skb);
913                                 if (!err)
914                                         upcall.egress_tun_info = skb_tunnel_info(skb);
915                         }
916 
917                         break;
918                 }
919 
920                 case OVS_USERSPACE_ATTR_ACTIONS: {
921                         /* Include actions. */
922                         upcall.actions = actions;
923                         upcall.actions_len = actions_len;
924                         break;
925                 }
926 
927                 } /* End of switch. */
928         }
929 
930         return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
931 }
932 
933 /* When 'last' is true, sample() should always consume the 'skb'.
934  * Otherwise, sample() should keep 'skb' intact regardless what
935  * actions are executed within sample().
936  */
937 static int sample(struct datapath *dp, struct sk_buff *skb,
938                   struct sw_flow_key *key, const struct nlattr *attr,
939                   bool last)
940 {
941         struct nlattr *actions;
942         struct nlattr *sample_arg;
943         int rem = nla_len(attr);
944         const struct sample_arg *arg;
945         bool clone_flow_key;
946 
947         /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
948         sample_arg = nla_data(attr);
949         arg = nla_data(sample_arg);
950         actions = nla_next(sample_arg, &rem);
951 
952         if ((arg->probability != U32_MAX) &&
953             (!arg->probability || prandom_u32() > arg->probability)) {
954                 if (last)
955                         consume_skb(skb);
956                 return 0;
957         }
958 
959         clone_flow_key = !arg->exec;
960         return clone_execute(dp, skb, key, 0, actions, rem, last,
961                              clone_flow_key);
962 }
963 
964 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
965                          const struct nlattr *attr)
966 {
967         struct ovs_action_hash *hash_act = nla_data(attr);
968         u32 hash = 0;
969 
970         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
971         hash = skb_get_hash(skb);
972         hash = jhash_1word(hash, hash_act->hash_basis);
973         if (!hash)
974                 hash = 0x1;
975 
976         key->ovs_flow_hash = hash;
977 }
978 
979 static int execute_set_action(struct sk_buff *skb,
980                               struct sw_flow_key *flow_key,
981                               const struct nlattr *a)
982 {
983         /* Only tunnel set execution is supported without a mask. */
984         if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
985                 struct ovs_tunnel_info *tun = nla_data(a);
986 
987                 skb_dst_drop(skb);
988                 dst_hold((struct dst_entry *)tun->tun_dst);
989                 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
990                 return 0;
991         }
992 
993         return -EINVAL;
994 }
995 
996 /* Mask is at the midpoint of the data. */
997 #define get_mask(a, type) ((const type)nla_data(a) + 1)
998 
999 static int execute_masked_set_action(struct sk_buff *skb,
1000                                      struct sw_flow_key *flow_key,
1001                                      const struct nlattr *a)
1002 {
1003         int err = 0;
1004 
1005         switch (nla_type(a)) {
1006         case OVS_KEY_ATTR_PRIORITY:
1007                 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1008                                *get_mask(a, u32 *));
1009                 flow_key->phy.priority = skb->priority;
1010                 break;
1011 
1012         case OVS_KEY_ATTR_SKB_MARK:
1013                 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1014                 flow_key->phy.skb_mark = skb->mark;
1015                 break;
1016 
1017         case OVS_KEY_ATTR_TUNNEL_INFO:
1018                 /* Masked data not supported for tunnel. */
1019                 err = -EINVAL;
1020                 break;
1021 
1022         case OVS_KEY_ATTR_ETHERNET:
1023                 err = set_eth_addr(skb, flow_key, nla_data(a),
1024                                    get_mask(a, struct ovs_key_ethernet *));
1025                 break;
1026 
1027         case OVS_KEY_ATTR_IPV4:
1028                 err = set_ipv4(skb, flow_key, nla_data(a),
1029                                get_mask(a, struct ovs_key_ipv4 *));
1030                 break;
1031 
1032         case OVS_KEY_ATTR_IPV6:
1033                 err = set_ipv6(skb, flow_key, nla_data(a),
1034                                get_mask(a, struct ovs_key_ipv6 *));
1035                 break;
1036 
1037         case OVS_KEY_ATTR_TCP:
1038                 err = set_tcp(skb, flow_key, nla_data(a),
1039                               get_mask(a, struct ovs_key_tcp *));
1040                 break;
1041 
1042         case OVS_KEY_ATTR_UDP:
1043                 err = set_udp(skb, flow_key, nla_data(a),
1044                               get_mask(a, struct ovs_key_udp *));
1045                 break;
1046 
1047         case OVS_KEY_ATTR_SCTP:
1048                 err = set_sctp(skb, flow_key, nla_data(a),
1049                                get_mask(a, struct ovs_key_sctp *));
1050                 break;
1051 
1052         case OVS_KEY_ATTR_MPLS:
1053                 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1054                                                                     __be32 *));
1055                 break;
1056 
1057         case OVS_KEY_ATTR_CT_STATE:
1058         case OVS_KEY_ATTR_CT_ZONE:
1059         case OVS_KEY_ATTR_CT_MARK:
1060         case OVS_KEY_ATTR_CT_LABELS:
1061         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1062         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1063                 err = -EINVAL;
1064                 break;
1065         }
1066 
1067         return err;
1068 }
1069 
1070 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1071                           struct sw_flow_key *key,
1072                           const struct nlattr *a, bool last)
1073 {
1074         u32 recirc_id;
1075 
1076         if (!is_flow_key_valid(key)) {
1077                 int err;
1078 
1079                 err = ovs_flow_key_update(skb, key);
1080                 if (err)
1081                         return err;
1082         }
1083         BUG_ON(!is_flow_key_valid(key));
1084 
1085         recirc_id = nla_get_u32(a);
1086         return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1087 }
1088 
1089 /* Execute a list of actions against 'skb'. */
1090 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1091                               struct sw_flow_key *key,
1092                               const struct nlattr *attr, int len)
1093 {
1094         const struct nlattr *a;
1095         int rem;
1096 
1097         for (a = attr, rem = len; rem > 0;
1098              a = nla_next(a, &rem)) {
1099                 int err = 0;
1100 
1101                 switch (nla_type(a)) {
1102                 case OVS_ACTION_ATTR_OUTPUT: {
1103                         int port = nla_get_u32(a);
1104                         struct sk_buff *clone;
1105 
1106                         /* Every output action needs a separate clone
1107                          * of 'skb', In case the output action is the
1108                          * last action, cloning can be avoided.
1109                          */
1110                         if (nla_is_last(a, rem)) {
1111                                 do_output(dp, skb, port, key);
1112                                 /* 'skb' has been used for output.
1113                                  */
1114                                 return 0;
1115                         }
1116 
1117                         clone = skb_clone(skb, GFP_ATOMIC);
1118                         if (clone)
1119                                 do_output(dp, clone, port, key);
1120                         OVS_CB(skb)->cutlen = 0;
1121                         break;
1122                 }
1123 
1124                 case OVS_ACTION_ATTR_TRUNC: {
1125                         struct ovs_action_trunc *trunc = nla_data(a);
1126 
1127                         if (skb->len > trunc->max_len)
1128                                 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1129                         break;
1130                 }
1131 
1132                 case OVS_ACTION_ATTR_USERSPACE:
1133                         output_userspace(dp, skb, key, a, attr,
1134                                                      len, OVS_CB(skb)->cutlen);
1135                         OVS_CB(skb)->cutlen = 0;
1136                         break;
1137 
1138                 case OVS_ACTION_ATTR_HASH:
1139                         execute_hash(skb, key, a);
1140                         break;
1141 
1142                 case OVS_ACTION_ATTR_PUSH_MPLS:
1143                         err = push_mpls(skb, key, nla_data(a));
1144                         break;
1145 
1146                 case OVS_ACTION_ATTR_POP_MPLS:
1147                         err = pop_mpls(skb, key, nla_get_be16(a));
1148                         break;
1149 
1150                 case OVS_ACTION_ATTR_PUSH_VLAN:
1151                         err = push_vlan(skb, key, nla_data(a));
1152                         break;
1153 
1154                 case OVS_ACTION_ATTR_POP_VLAN:
1155                         err = pop_vlan(skb, key);
1156                         break;
1157 
1158                 case OVS_ACTION_ATTR_RECIRC: {
1159                         bool last = nla_is_last(a, rem);
1160 
1161                         err = execute_recirc(dp, skb, key, a, last);
1162                         if (last) {
1163                                 /* If this is the last action, the skb has
1164                                  * been consumed or freed.
1165                                  * Return immediately.
1166                                  */
1167                                 return err;
1168                         }
1169                         break;
1170                 }
1171 
1172                 case OVS_ACTION_ATTR_SET:
1173                         err = execute_set_action(skb, key, nla_data(a));
1174                         break;
1175 
1176                 case OVS_ACTION_ATTR_SET_MASKED:
1177                 case OVS_ACTION_ATTR_SET_TO_MASKED:
1178                         err = execute_masked_set_action(skb, key, nla_data(a));
1179                         break;
1180 
1181                 case OVS_ACTION_ATTR_SAMPLE: {
1182                         bool last = nla_is_last(a, rem);
1183 
1184                         err = sample(dp, skb, key, a, last);
1185                         if (last)
1186                                 return err;
1187 
1188                         break;
1189                 }
1190 
1191                 case OVS_ACTION_ATTR_CT:
1192                         if (!is_flow_key_valid(key)) {
1193                                 err = ovs_flow_key_update(skb, key);
1194                                 if (err)
1195                                         return err;
1196                         }
1197 
1198                         err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1199                                              nla_data(a));
1200 
1201                         /* Hide stolen IP fragments from user space. */
1202                         if (err)
1203                                 return err == -EINPROGRESS ? 0 : err;
1204                         break;
1205 
1206                 case OVS_ACTION_ATTR_PUSH_ETH:
1207                         err = push_eth(skb, key, nla_data(a));
1208                         break;
1209 
1210                 case OVS_ACTION_ATTR_POP_ETH:
1211                         err = pop_eth(skb, key);
1212                         break;
1213                 }
1214 
1215                 if (unlikely(err)) {
1216                         kfree_skb(skb);
1217                         return err;
1218                 }
1219         }
1220 
1221         consume_skb(skb);
1222         return 0;
1223 }
1224 
1225 /* Execute the actions on the clone of the packet. The effect of the
1226  * execution does not affect the original 'skb' nor the original 'key'.
1227  *
1228  * The execution may be deferred in case the actions can not be executed
1229  * immediately.
1230  */
1231 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1232                          struct sw_flow_key *key, u32 recirc_id,
1233                          const struct nlattr *actions, int len,
1234                          bool last, bool clone_flow_key)
1235 {
1236         struct deferred_action *da;
1237         struct sw_flow_key *clone;
1238 
1239         skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1240         if (!skb) {
1241                 /* Out of memory, skip this action.
1242                  */
1243                 return 0;
1244         }
1245 
1246         /* When clone_flow_key is false, the 'key' will not be change
1247          * by the actions, then the 'key' can be used directly.
1248          * Otherwise, try to clone key from the next recursion level of
1249          * 'flow_keys'. If clone is successful, execute the actions
1250          * without deferring.
1251          */
1252         clone = clone_flow_key ? clone_key(key) : key;
1253         if (clone) {
1254                 int err = 0;
1255 
1256                 if (actions) { /* Sample action */
1257                         if (clone_flow_key)
1258                                 __this_cpu_inc(exec_actions_level);
1259 
1260                         err = do_execute_actions(dp, skb, clone,
1261                                                  actions, len);
1262 
1263                         if (clone_flow_key)
1264                                 __this_cpu_dec(exec_actions_level);
1265                 } else { /* Recirc action */
1266                         clone->recirc_id = recirc_id;
1267                         ovs_dp_process_packet(skb, clone);
1268                 }
1269                 return err;
1270         }
1271 
1272         /* Out of 'flow_keys' space. Defer actions */
1273         da = add_deferred_actions(skb, key, actions, len);
1274         if (da) {
1275                 if (!actions) { /* Recirc action */
1276                         key = &da->pkt_key;
1277                         key->recirc_id = recirc_id;
1278                 }
1279         } else {
1280                 /* Out of per CPU action FIFO space. Drop the 'skb' and
1281                  * log an error.
1282                  */
1283                 kfree_skb(skb);
1284 
1285                 if (net_ratelimit()) {
1286                         if (actions) { /* Sample action */
1287                                 pr_warn("%s: deferred action limit reached, drop sample action\n",
1288                                         ovs_dp_name(dp));
1289                         } else {  /* Recirc action */
1290                                 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1291                                         ovs_dp_name(dp));
1292                         }
1293                 }
1294         }
1295         return 0;
1296 }
1297 
1298 static void process_deferred_actions(struct datapath *dp)
1299 {
1300         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1301 
1302         /* Do not touch the FIFO in case there is no deferred actions. */
1303         if (action_fifo_is_empty(fifo))
1304                 return;
1305 
1306         /* Finishing executing all deferred actions. */
1307         do {
1308                 struct deferred_action *da = action_fifo_get(fifo);
1309                 struct sk_buff *skb = da->skb;
1310                 struct sw_flow_key *key = &da->pkt_key;
1311                 const struct nlattr *actions = da->actions;
1312                 int actions_len = da->actions_len;
1313 
1314                 if (actions)
1315                         do_execute_actions(dp, skb, key, actions, actions_len);
1316                 else
1317                         ovs_dp_process_packet(skb, key);
1318         } while (!action_fifo_is_empty(fifo));
1319 
1320         /* Reset FIFO for the next packet.  */
1321         action_fifo_init(fifo);
1322 }
1323 
1324 /* Execute a list of actions against 'skb'. */
1325 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1326                         const struct sw_flow_actions *acts,
1327                         struct sw_flow_key *key)
1328 {
1329         int err, level;
1330 
1331         level = __this_cpu_inc_return(exec_actions_level);
1332         if (unlikely(level > OVS_RECURSION_LIMIT)) {
1333                 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1334                                      ovs_dp_name(dp));
1335                 kfree_skb(skb);
1336                 err = -ENETDOWN;
1337                 goto out;
1338         }
1339 
1340         OVS_CB(skb)->acts_origlen = acts->orig_len;
1341         err = do_execute_actions(dp, skb, key,
1342                                  acts->actions, acts->actions_len);
1343 
1344         if (level == 1)
1345                 process_deferred_actions(dp);
1346 
1347 out:
1348         __this_cpu_dec(exec_actions_level);
1349         return err;
1350 }
1351 
1352 int action_fifos_init(void)
1353 {
1354         action_fifos = alloc_percpu(struct action_fifo);
1355         if (!action_fifos)
1356                 return -ENOMEM;
1357 
1358         flow_keys = alloc_percpu(struct action_flow_keys);
1359         if (!flow_keys) {
1360                 free_percpu(action_fifos);
1361                 return -ENOMEM;
1362         }
1363 
1364         return 0;
1365 }
1366 
1367 void action_fifos_exit(void)
1368 {
1369         free_percpu(action_fifos);
1370         free_percpu(flow_keys);
1371 }
1372 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp