~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rds/ib.c

Version: ~ [ linux-5.10-rc5 ] ~ [ linux-5.9.10 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.79 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.159 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.208 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.245 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.245 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3  *
  4  * This software is available to you under a choice of one of two
  5  * licenses.  You may choose to be licensed under the terms of the GNU
  6  * General Public License (GPL) Version 2, available from the file
  7  * COPYING in the main directory of this source tree, or the
  8  * OpenIB.org BSD license below:
  9  *
 10  *     Redistribution and use in source and binary forms, with or
 11  *     without modification, are permitted provided that the following
 12  *     conditions are met:
 13  *
 14  *      - Redistributions of source code must retain the above
 15  *        copyright notice, this list of conditions and the following
 16  *        disclaimer.
 17  *
 18  *      - Redistributions in binary form must reproduce the above
 19  *        copyright notice, this list of conditions and the following
 20  *        disclaimer in the documentation and/or other materials
 21  *        provided with the distribution.
 22  *
 23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30  * SOFTWARE.
 31  *
 32  */
 33 #include <linux/dmapool.h>
 34 #include <linux/kernel.h>
 35 #include <linux/in.h>
 36 #include <linux/if.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/inetdevice.h>
 39 #include <linux/if_arp.h>
 40 #include <linux/delay.h>
 41 #include <linux/slab.h>
 42 #include <linux/module.h>
 43 #include <net/addrconf.h>
 44 
 45 #include "rds_single_path.h"
 46 #include "rds.h"
 47 #include "ib.h"
 48 #include "ib_mr.h"
 49 
 50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
 51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
 52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
 53 static atomic_t rds_ib_unloading;
 54 
 55 module_param(rds_ib_mr_1m_pool_size, int, 0444);
 56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
 57 module_param(rds_ib_mr_8k_pool_size, int, 0444);
 58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
 59 module_param(rds_ib_retry_count, int, 0444);
 60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
 61 
 62 /*
 63  * we have a clumsy combination of RCU and a rwsem protecting this list
 64  * because it is used both in the get_mr fast path and while blocking in
 65  * the FMR flushing path.
 66  */
 67 DECLARE_RWSEM(rds_ib_devices_lock);
 68 struct list_head rds_ib_devices;
 69 
 70 /* NOTE: if also grabbing ibdev lock, grab this first */
 71 DEFINE_SPINLOCK(ib_nodev_conns_lock);
 72 LIST_HEAD(ib_nodev_conns);
 73 
 74 static void rds_ib_nodev_connect(void)
 75 {
 76         struct rds_ib_connection *ic;
 77 
 78         spin_lock(&ib_nodev_conns_lock);
 79         list_for_each_entry(ic, &ib_nodev_conns, ib_node)
 80                 rds_conn_connect_if_down(ic->conn);
 81         spin_unlock(&ib_nodev_conns_lock);
 82 }
 83 
 84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
 85 {
 86         struct rds_ib_connection *ic;
 87         unsigned long flags;
 88 
 89         spin_lock_irqsave(&rds_ibdev->spinlock, flags);
 90         list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
 91                 rds_conn_path_drop(&ic->conn->c_path[0], true);
 92         spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
 93 }
 94 
 95 /*
 96  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
 97  * from interrupt context so we push freing off into a work struct in krdsd.
 98  */
 99 static void rds_ib_dev_free(struct work_struct *work)
100 {
101         struct rds_ib_ipaddr *i_ipaddr, *i_next;
102         struct rds_ib_device *rds_ibdev = container_of(work,
103                                         struct rds_ib_device, free_work);
104 
105         if (rds_ibdev->mr_8k_pool)
106                 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
107         if (rds_ibdev->mr_1m_pool)
108                 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
109         if (rds_ibdev->pd)
110                 ib_dealloc_pd(rds_ibdev->pd);
111         dma_pool_destroy(rds_ibdev->rid_hdrs_pool);
112 
113         list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
114                 list_del(&i_ipaddr->list);
115                 kfree(i_ipaddr);
116         }
117 
118         kfree(rds_ibdev->vector_load);
119 
120         kfree(rds_ibdev);
121 }
122 
123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
124 {
125         BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
126         if (refcount_dec_and_test(&rds_ibdev->refcount))
127                 queue_work(rds_wq, &rds_ibdev->free_work);
128 }
129 
130 static int rds_ib_add_one(struct ib_device *device)
131 {
132         struct rds_ib_device *rds_ibdev;
133         int ret;
134 
135         /* Only handle IB (no iWARP) devices */
136         if (device->node_type != RDMA_NODE_IB_CA)
137                 return -EOPNOTSUPP;
138 
139         /* Device must support FRWR */
140         if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
141                 return -EOPNOTSUPP;
142 
143         rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
144                                  ibdev_to_node(device));
145         if (!rds_ibdev)
146                 return -ENOMEM;
147 
148         spin_lock_init(&rds_ibdev->spinlock);
149         refcount_set(&rds_ibdev->refcount, 1);
150         INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
151 
152         INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
153         INIT_LIST_HEAD(&rds_ibdev->conn_list);
154 
155         rds_ibdev->max_wrs = device->attrs.max_qp_wr;
156         rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
157 
158         rds_ibdev->odp_capable =
159                 !!(device->attrs.device_cap_flags &
160                    IB_DEVICE_ON_DEMAND_PAGING) &&
161                 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
162                    IB_ODP_SUPPORT_WRITE) &&
163                 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
164                    IB_ODP_SUPPORT_READ);
165 
166         rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
167                 min_t(unsigned int, (device->attrs.max_mr / 2),
168                       rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
169 
170         rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
171                 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
172                       rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
173 
174         rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
175         rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
176 
177         rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
178                                          sizeof(int),
179                                          GFP_KERNEL);
180         if (!rds_ibdev->vector_load) {
181                 pr_err("RDS/IB: %s failed to allocate vector memory\n",
182                         __func__);
183                 ret = -ENOMEM;
184                 goto put_dev;
185         }
186 
187         rds_ibdev->dev = device;
188         rds_ibdev->pd = ib_alloc_pd(device, 0);
189         if (IS_ERR(rds_ibdev->pd)) {
190                 ret = PTR_ERR(rds_ibdev->pd);
191                 rds_ibdev->pd = NULL;
192                 goto put_dev;
193         }
194         rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name,
195                                                    device->dma_device,
196                                                    sizeof(struct rds_header),
197                                                    L1_CACHE_BYTES, 0);
198         if (!rds_ibdev->rid_hdrs_pool) {
199                 ret = -ENOMEM;
200                 goto put_dev;
201         }
202 
203         rds_ibdev->mr_1m_pool =
204                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
205         if (IS_ERR(rds_ibdev->mr_1m_pool)) {
206                 ret = PTR_ERR(rds_ibdev->mr_1m_pool);
207                 rds_ibdev->mr_1m_pool = NULL;
208                 goto put_dev;
209         }
210 
211         rds_ibdev->mr_8k_pool =
212                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
213         if (IS_ERR(rds_ibdev->mr_8k_pool)) {
214                 ret = PTR_ERR(rds_ibdev->mr_8k_pool);
215                 rds_ibdev->mr_8k_pool = NULL;
216                 goto put_dev;
217         }
218 
219         rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
220                  device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
221                  rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs);
222 
223         pr_info("RDS/IB: %s: added\n", device->name);
224 
225         down_write(&rds_ib_devices_lock);
226         list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
227         up_write(&rds_ib_devices_lock);
228         refcount_inc(&rds_ibdev->refcount);
229 
230         ib_set_client_data(device, &rds_ib_client, rds_ibdev);
231 
232         rds_ib_nodev_connect();
233         return 0;
234 
235 put_dev:
236         rds_ib_dev_put(rds_ibdev);
237         return ret;
238 }
239 
240 /*
241  * New connections use this to find the device to associate with the
242  * connection.  It's not in the fast path so we're not concerned about the
243  * performance of the IB call.  (As of this writing, it uses an interrupt
244  * blocking spinlock to serialize walking a per-device list of all registered
245  * clients.)
246  *
247  * RCU is used to handle incoming connections racing with device teardown.
248  * Rather than use a lock to serialize removal from the client_data and
249  * getting a new reference, we use an RCU grace period.  The destruction
250  * path removes the device from client_data and then waits for all RCU
251  * readers to finish.
252  *
253  * A new connection can get NULL from this if its arriving on a
254  * device that is in the process of being removed.
255  */
256 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
257 {
258         struct rds_ib_device *rds_ibdev;
259 
260         rcu_read_lock();
261         rds_ibdev = ib_get_client_data(device, &rds_ib_client);
262         if (rds_ibdev)
263                 refcount_inc(&rds_ibdev->refcount);
264         rcu_read_unlock();
265         return rds_ibdev;
266 }
267 
268 /*
269  * The IB stack is letting us know that a device is going away.  This can
270  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
271  * the pci function, for example.
272  *
273  * This can be called at any time and can be racing with any other RDS path.
274  */
275 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
276 {
277         struct rds_ib_device *rds_ibdev = client_data;
278 
279         rds_ib_dev_shutdown(rds_ibdev);
280 
281         /* stop connection attempts from getting a reference to this device. */
282         ib_set_client_data(device, &rds_ib_client, NULL);
283 
284         down_write(&rds_ib_devices_lock);
285         list_del_rcu(&rds_ibdev->list);
286         up_write(&rds_ib_devices_lock);
287 
288         /*
289          * This synchronize rcu is waiting for readers of both the ib
290          * client data and the devices list to finish before we drop
291          * both of those references.
292          */
293         synchronize_rcu();
294         rds_ib_dev_put(rds_ibdev);
295         rds_ib_dev_put(rds_ibdev);
296 }
297 
298 struct ib_client rds_ib_client = {
299         .name   = "rds_ib",
300         .add    = rds_ib_add_one,
301         .remove = rds_ib_remove_one
302 };
303 
304 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
305                                     void *buffer)
306 {
307         struct rds_info_rdma_connection *iinfo = buffer;
308         struct rds_ib_connection *ic = conn->c_transport_data;
309 
310         /* We will only ever look at IB transports */
311         if (conn->c_trans != &rds_ib_transport)
312                 return 0;
313         if (conn->c_isv6)
314                 return 0;
315 
316         iinfo->src_addr = conn->c_laddr.s6_addr32[3];
317         iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
318         if (ic) {
319                 iinfo->tos = conn->c_tos;
320                 iinfo->sl = ic->i_sl;
321         }
322 
323         memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
324         memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
325         if (rds_conn_state(conn) == RDS_CONN_UP) {
326                 struct rds_ib_device *rds_ibdev;
327 
328                 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
329                                (union ib_gid *)&iinfo->dst_gid);
330 
331                 rds_ibdev = ic->rds_ibdev;
332                 iinfo->max_send_wr = ic->i_send_ring.w_nr;
333                 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
334                 iinfo->max_send_sge = rds_ibdev->max_sge;
335                 rds_ib_get_mr_info(rds_ibdev, iinfo);
336                 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
337         }
338         return 1;
339 }
340 
341 #if IS_ENABLED(CONFIG_IPV6)
342 /* IPv6 version of rds_ib_conn_info_visitor(). */
343 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
344                                      void *buffer)
345 {
346         struct rds6_info_rdma_connection *iinfo6 = buffer;
347         struct rds_ib_connection *ic = conn->c_transport_data;
348 
349         /* We will only ever look at IB transports */
350         if (conn->c_trans != &rds_ib_transport)
351                 return 0;
352 
353         iinfo6->src_addr = conn->c_laddr;
354         iinfo6->dst_addr = conn->c_faddr;
355         if (ic) {
356                 iinfo6->tos = conn->c_tos;
357                 iinfo6->sl = ic->i_sl;
358         }
359 
360         memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
361         memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
362 
363         if (rds_conn_state(conn) == RDS_CONN_UP) {
364                 struct rds_ib_device *rds_ibdev;
365 
366                 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
367                                (union ib_gid *)&iinfo6->dst_gid);
368                 rds_ibdev = ic->rds_ibdev;
369                 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
370                 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
371                 iinfo6->max_send_sge = rds_ibdev->max_sge;
372                 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
373                 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
374         }
375         return 1;
376 }
377 #endif
378 
379 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
380                            struct rds_info_iterator *iter,
381                            struct rds_info_lengths *lens)
382 {
383         u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
384 
385         rds_for_each_conn_info(sock, len, iter, lens,
386                                 rds_ib_conn_info_visitor,
387                                 buffer,
388                                 sizeof(struct rds_info_rdma_connection));
389 }
390 
391 #if IS_ENABLED(CONFIG_IPV6)
392 /* IPv6 version of rds_ib_ic_info(). */
393 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
394                             struct rds_info_iterator *iter,
395                             struct rds_info_lengths *lens)
396 {
397         u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
398 
399         rds_for_each_conn_info(sock, len, iter, lens,
400                                rds6_ib_conn_info_visitor,
401                                buffer,
402                                sizeof(struct rds6_info_rdma_connection));
403 }
404 #endif
405 
406 /*
407  * Early RDS/IB was built to only bind to an address if there is an IPoIB
408  * device with that address set.
409  *
410  * If it were me, I'd advocate for something more flexible.  Sending and
411  * receiving should be device-agnostic.  Transports would try and maintain
412  * connections between peers who have messages queued.  Userspace would be
413  * allowed to influence which paths have priority.  We could call userspace
414  * asserting this policy "routing".
415  */
416 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
417                               __u32 scope_id)
418 {
419         int ret;
420         struct rdma_cm_id *cm_id;
421 #if IS_ENABLED(CONFIG_IPV6)
422         struct sockaddr_in6 sin6;
423 #endif
424         struct sockaddr_in sin;
425         struct sockaddr *sa;
426         bool isv4;
427 
428         isv4 = ipv6_addr_v4mapped(addr);
429         /* Create a CMA ID and try to bind it. This catches both
430          * IB and iWARP capable NICs.
431          */
432         cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
433                                NULL, RDMA_PS_TCP, IB_QPT_RC);
434         if (IS_ERR(cm_id))
435                 return PTR_ERR(cm_id);
436 
437         if (isv4) {
438                 memset(&sin, 0, sizeof(sin));
439                 sin.sin_family = AF_INET;
440                 sin.sin_addr.s_addr = addr->s6_addr32[3];
441                 sa = (struct sockaddr *)&sin;
442         } else {
443 #if IS_ENABLED(CONFIG_IPV6)
444                 memset(&sin6, 0, sizeof(sin6));
445                 sin6.sin6_family = AF_INET6;
446                 sin6.sin6_addr = *addr;
447                 sin6.sin6_scope_id = scope_id;
448                 sa = (struct sockaddr *)&sin6;
449 
450                 /* XXX Do a special IPv6 link local address check here.  The
451                  * reason is that rdma_bind_addr() always succeeds with IPv6
452                  * link local address regardless it is indeed configured in a
453                  * system.
454                  */
455                 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
456                         struct net_device *dev;
457 
458                         if (scope_id == 0) {
459                                 ret = -EADDRNOTAVAIL;
460                                 goto out;
461                         }
462 
463                         /* Use init_net for now as RDS is not network
464                          * name space aware.
465                          */
466                         dev = dev_get_by_index(&init_net, scope_id);
467                         if (!dev) {
468                                 ret = -EADDRNOTAVAIL;
469                                 goto out;
470                         }
471                         if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
472                                 dev_put(dev);
473                                 ret = -EADDRNOTAVAIL;
474                                 goto out;
475                         }
476                         dev_put(dev);
477                 }
478 #else
479                 ret = -EADDRNOTAVAIL;
480                 goto out;
481 #endif
482         }
483 
484         /* rdma_bind_addr will only succeed for IB & iWARP devices */
485         ret = rdma_bind_addr(cm_id, sa);
486         /* due to this, we will claim to support iWARP devices unless we
487            check node_type. */
488         if (ret || !cm_id->device ||
489             cm_id->device->node_type != RDMA_NODE_IB_CA)
490                 ret = -EADDRNOTAVAIL;
491 
492         rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
493                  addr, scope_id, ret,
494                  cm_id->device ? cm_id->device->node_type : -1);
495 
496 out:
497         rdma_destroy_id(cm_id);
498 
499         return ret;
500 }
501 
502 static void rds_ib_unregister_client(void)
503 {
504         ib_unregister_client(&rds_ib_client);
505         /* wait for rds_ib_dev_free() to complete */
506         flush_workqueue(rds_wq);
507 }
508 
509 static void rds_ib_set_unloading(void)
510 {
511         atomic_set(&rds_ib_unloading, 1);
512 }
513 
514 static bool rds_ib_is_unloading(struct rds_connection *conn)
515 {
516         struct rds_conn_path *cp = &conn->c_path[0];
517 
518         return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
519                 atomic_read(&rds_ib_unloading) != 0);
520 }
521 
522 void rds_ib_exit(void)
523 {
524         rds_ib_set_unloading();
525         synchronize_rcu();
526         rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
527 #if IS_ENABLED(CONFIG_IPV6)
528         rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
529 #endif
530         rds_ib_unregister_client();
531         rds_ib_destroy_nodev_conns();
532         rds_ib_sysctl_exit();
533         rds_ib_recv_exit();
534         rds_trans_unregister(&rds_ib_transport);
535         rds_ib_mr_exit();
536 }
537 
538 static u8 rds_ib_get_tos_map(u8 tos)
539 {
540         /* 1:1 user to transport map for RDMA transport.
541          * In future, if custom map is desired, hook can export
542          * user configurable map.
543          */
544         return tos;
545 }
546 
547 struct rds_transport rds_ib_transport = {
548         .laddr_check            = rds_ib_laddr_check,
549         .xmit_path_complete     = rds_ib_xmit_path_complete,
550         .xmit                   = rds_ib_xmit,
551         .xmit_rdma              = rds_ib_xmit_rdma,
552         .xmit_atomic            = rds_ib_xmit_atomic,
553         .recv_path              = rds_ib_recv_path,
554         .conn_alloc             = rds_ib_conn_alloc,
555         .conn_free              = rds_ib_conn_free,
556         .conn_path_connect      = rds_ib_conn_path_connect,
557         .conn_path_shutdown     = rds_ib_conn_path_shutdown,
558         .inc_copy_to_user       = rds_ib_inc_copy_to_user,
559         .inc_free               = rds_ib_inc_free,
560         .cm_initiate_connect    = rds_ib_cm_initiate_connect,
561         .cm_handle_connect      = rds_ib_cm_handle_connect,
562         .cm_connect_complete    = rds_ib_cm_connect_complete,
563         .stats_info_copy        = rds_ib_stats_info_copy,
564         .exit                   = rds_ib_exit,
565         .get_mr                 = rds_ib_get_mr,
566         .sync_mr                = rds_ib_sync_mr,
567         .free_mr                = rds_ib_free_mr,
568         .flush_mrs              = rds_ib_flush_mrs,
569         .get_tos_map            = rds_ib_get_tos_map,
570         .t_owner                = THIS_MODULE,
571         .t_name                 = "infiniband",
572         .t_unloading            = rds_ib_is_unloading,
573         .t_type                 = RDS_TRANS_IB
574 };
575 
576 int rds_ib_init(void)
577 {
578         int ret;
579 
580         INIT_LIST_HEAD(&rds_ib_devices);
581 
582         ret = rds_ib_mr_init();
583         if (ret)
584                 goto out;
585 
586         ret = ib_register_client(&rds_ib_client);
587         if (ret)
588                 goto out_mr_exit;
589 
590         ret = rds_ib_sysctl_init();
591         if (ret)
592                 goto out_ibreg;
593 
594         ret = rds_ib_recv_init();
595         if (ret)
596                 goto out_sysctl;
597 
598         rds_trans_register(&rds_ib_transport);
599 
600         rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
601 #if IS_ENABLED(CONFIG_IPV6)
602         rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
603 #endif
604 
605         goto out;
606 
607 out_sysctl:
608         rds_ib_sysctl_exit();
609 out_ibreg:
610         rds_ib_unregister_client();
611 out_mr_exit:
612         rds_ib_mr_exit();
613 out:
614         return ret;
615 }
616 
617 MODULE_LICENSE("GPL");
618 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp