~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rfkill/core.c

Version: ~ [ linux-5.12-rc1 ] ~ [ linux-5.11.2 ] ~ [ linux-5.10.19 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.101 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.177 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.222 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.258 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.258 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright (C) 2006 - 2007 Ivo van Doorn
  4  * Copyright (C) 2007 Dmitry Torokhov
  5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
  6  */
  7 
  8 #include <linux/kernel.h>
  9 #include <linux/module.h>
 10 #include <linux/init.h>
 11 #include <linux/workqueue.h>
 12 #include <linux/capability.h>
 13 #include <linux/list.h>
 14 #include <linux/mutex.h>
 15 #include <linux/rfkill.h>
 16 #include <linux/sched.h>
 17 #include <linux/spinlock.h>
 18 #include <linux/device.h>
 19 #include <linux/miscdevice.h>
 20 #include <linux/wait.h>
 21 #include <linux/poll.h>
 22 #include <linux/fs.h>
 23 #include <linux/slab.h>
 24 
 25 #include "rfkill.h"
 26 
 27 #define POLL_INTERVAL           (5 * HZ)
 28 
 29 #define RFKILL_BLOCK_HW         BIT(0)
 30 #define RFKILL_BLOCK_SW         BIT(1)
 31 #define RFKILL_BLOCK_SW_PREV    BIT(2)
 32 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
 33                                  RFKILL_BLOCK_SW |\
 34                                  RFKILL_BLOCK_SW_PREV)
 35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
 36 
 37 struct rfkill {
 38         spinlock_t              lock;
 39 
 40         enum rfkill_type        type;
 41 
 42         unsigned long           state;
 43 
 44         u32                     idx;
 45 
 46         bool                    registered;
 47         bool                    persistent;
 48         bool                    polling_paused;
 49         bool                    suspended;
 50 
 51         const struct rfkill_ops *ops;
 52         void                    *data;
 53 
 54 #ifdef CONFIG_RFKILL_LEDS
 55         struct led_trigger      led_trigger;
 56         const char              *ledtrigname;
 57 #endif
 58 
 59         struct device           dev;
 60         struct list_head        node;
 61 
 62         struct delayed_work     poll_work;
 63         struct work_struct      uevent_work;
 64         struct work_struct      sync_work;
 65         char                    name[];
 66 };
 67 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
 68 
 69 struct rfkill_int_event {
 70         struct list_head        list;
 71         struct rfkill_event     ev;
 72 };
 73 
 74 struct rfkill_data {
 75         struct list_head        list;
 76         struct list_head        events;
 77         struct mutex            mtx;
 78         wait_queue_head_t       read_wait;
 79         bool                    input_handler;
 80 };
 81 
 82 
 83 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
 84 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
 85 MODULE_DESCRIPTION("RF switch support");
 86 MODULE_LICENSE("GPL");
 87 
 88 
 89 /*
 90  * The locking here should be made much smarter, we currently have
 91  * a bit of a stupid situation because drivers might want to register
 92  * the rfkill struct under their own lock, and take this lock during
 93  * rfkill method calls -- which will cause an AB-BA deadlock situation.
 94  *
 95  * To fix that, we need to rework this code here to be mostly lock-free
 96  * and only use the mutex for list manipulations, not to protect the
 97  * various other global variables. Then we can avoid holding the mutex
 98  * around driver operations, and all is happy.
 99  */
100 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
101 static DEFINE_MUTEX(rfkill_global_mutex);
102 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
103 
104 static unsigned int rfkill_default_state = 1;
105 module_param_named(default_state, rfkill_default_state, uint, 0444);
106 MODULE_PARM_DESC(default_state,
107                  "Default initial state for all radio types, 0 = radio off");
108 
109 static struct {
110         bool cur, sav;
111 } rfkill_global_states[NUM_RFKILL_TYPES];
112 
113 static bool rfkill_epo_lock_active;
114 
115 
116 #ifdef CONFIG_RFKILL_LEDS
117 static void rfkill_led_trigger_event(struct rfkill *rfkill)
118 {
119         struct led_trigger *trigger;
120 
121         if (!rfkill->registered)
122                 return;
123 
124         trigger = &rfkill->led_trigger;
125 
126         if (rfkill->state & RFKILL_BLOCK_ANY)
127                 led_trigger_event(trigger, LED_OFF);
128         else
129                 led_trigger_event(trigger, LED_FULL);
130 }
131 
132 static int rfkill_led_trigger_activate(struct led_classdev *led)
133 {
134         struct rfkill *rfkill;
135 
136         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
137 
138         rfkill_led_trigger_event(rfkill);
139 
140         return 0;
141 }
142 
143 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
144 {
145         return rfkill->led_trigger.name;
146 }
147 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
148 
149 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
150 {
151         BUG_ON(!rfkill);
152 
153         rfkill->ledtrigname = name;
154 }
155 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
156 
157 static int rfkill_led_trigger_register(struct rfkill *rfkill)
158 {
159         rfkill->led_trigger.name = rfkill->ledtrigname
160                                         ? : dev_name(&rfkill->dev);
161         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
162         return led_trigger_register(&rfkill->led_trigger);
163 }
164 
165 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
166 {
167         led_trigger_unregister(&rfkill->led_trigger);
168 }
169 
170 static struct led_trigger rfkill_any_led_trigger;
171 static struct led_trigger rfkill_none_led_trigger;
172 static struct work_struct rfkill_global_led_trigger_work;
173 
174 static void rfkill_global_led_trigger_worker(struct work_struct *work)
175 {
176         enum led_brightness brightness = LED_OFF;
177         struct rfkill *rfkill;
178 
179         mutex_lock(&rfkill_global_mutex);
180         list_for_each_entry(rfkill, &rfkill_list, node) {
181                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
182                         brightness = LED_FULL;
183                         break;
184                 }
185         }
186         mutex_unlock(&rfkill_global_mutex);
187 
188         led_trigger_event(&rfkill_any_led_trigger, brightness);
189         led_trigger_event(&rfkill_none_led_trigger,
190                           brightness == LED_OFF ? LED_FULL : LED_OFF);
191 }
192 
193 static void rfkill_global_led_trigger_event(void)
194 {
195         schedule_work(&rfkill_global_led_trigger_work);
196 }
197 
198 static int rfkill_global_led_trigger_register(void)
199 {
200         int ret;
201 
202         INIT_WORK(&rfkill_global_led_trigger_work,
203                         rfkill_global_led_trigger_worker);
204 
205         rfkill_any_led_trigger.name = "rfkill-any";
206         ret = led_trigger_register(&rfkill_any_led_trigger);
207         if (ret)
208                 return ret;
209 
210         rfkill_none_led_trigger.name = "rfkill-none";
211         ret = led_trigger_register(&rfkill_none_led_trigger);
212         if (ret)
213                 led_trigger_unregister(&rfkill_any_led_trigger);
214         else
215                 /* Delay activation until all global triggers are registered */
216                 rfkill_global_led_trigger_event();
217 
218         return ret;
219 }
220 
221 static void rfkill_global_led_trigger_unregister(void)
222 {
223         led_trigger_unregister(&rfkill_none_led_trigger);
224         led_trigger_unregister(&rfkill_any_led_trigger);
225         cancel_work_sync(&rfkill_global_led_trigger_work);
226 }
227 #else
228 static void rfkill_led_trigger_event(struct rfkill *rfkill)
229 {
230 }
231 
232 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
233 {
234         return 0;
235 }
236 
237 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
238 {
239 }
240 
241 static void rfkill_global_led_trigger_event(void)
242 {
243 }
244 
245 static int rfkill_global_led_trigger_register(void)
246 {
247         return 0;
248 }
249 
250 static void rfkill_global_led_trigger_unregister(void)
251 {
252 }
253 #endif /* CONFIG_RFKILL_LEDS */
254 
255 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
256                               enum rfkill_operation op)
257 {
258         unsigned long flags;
259 
260         ev->idx = rfkill->idx;
261         ev->type = rfkill->type;
262         ev->op = op;
263 
264         spin_lock_irqsave(&rfkill->lock, flags);
265         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
266         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
267                                         RFKILL_BLOCK_SW_PREV));
268         spin_unlock_irqrestore(&rfkill->lock, flags);
269 }
270 
271 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
272 {
273         struct rfkill_data *data;
274         struct rfkill_int_event *ev;
275 
276         list_for_each_entry(data, &rfkill_fds, list) {
277                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
278                 if (!ev)
279                         continue;
280                 rfkill_fill_event(&ev->ev, rfkill, op);
281                 mutex_lock(&data->mtx);
282                 list_add_tail(&ev->list, &data->events);
283                 mutex_unlock(&data->mtx);
284                 wake_up_interruptible(&data->read_wait);
285         }
286 }
287 
288 static void rfkill_event(struct rfkill *rfkill)
289 {
290         if (!rfkill->registered)
291                 return;
292 
293         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
294 
295         /* also send event to /dev/rfkill */
296         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
297 }
298 
299 /**
300  * rfkill_set_block - wrapper for set_block method
301  *
302  * @rfkill: the rfkill struct to use
303  * @blocked: the new software state
304  *
305  * Calls the set_block method (when applicable) and handles notifications
306  * etc. as well.
307  */
308 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
309 {
310         unsigned long flags;
311         bool prev, curr;
312         int err;
313 
314         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
315                 return;
316 
317         /*
318          * Some platforms (...!) generate input events which affect the
319          * _hard_ kill state -- whenever something tries to change the
320          * current software state query the hardware state too.
321          */
322         if (rfkill->ops->query)
323                 rfkill->ops->query(rfkill, rfkill->data);
324 
325         spin_lock_irqsave(&rfkill->lock, flags);
326         prev = rfkill->state & RFKILL_BLOCK_SW;
327 
328         if (prev)
329                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
330         else
331                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
332 
333         if (blocked)
334                 rfkill->state |= RFKILL_BLOCK_SW;
335         else
336                 rfkill->state &= ~RFKILL_BLOCK_SW;
337 
338         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
339         spin_unlock_irqrestore(&rfkill->lock, flags);
340 
341         err = rfkill->ops->set_block(rfkill->data, blocked);
342 
343         spin_lock_irqsave(&rfkill->lock, flags);
344         if (err) {
345                 /*
346                  * Failed -- reset status to _PREV, which may be different
347                  * from what we have set _PREV to earlier in this function
348                  * if rfkill_set_sw_state was invoked.
349                  */
350                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
351                         rfkill->state |= RFKILL_BLOCK_SW;
352                 else
353                         rfkill->state &= ~RFKILL_BLOCK_SW;
354         }
355         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
356         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
357         curr = rfkill->state & RFKILL_BLOCK_SW;
358         spin_unlock_irqrestore(&rfkill->lock, flags);
359 
360         rfkill_led_trigger_event(rfkill);
361         rfkill_global_led_trigger_event();
362 
363         if (prev != curr)
364                 rfkill_event(rfkill);
365 }
366 
367 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
368 {
369         int i;
370 
371         if (type != RFKILL_TYPE_ALL) {
372                 rfkill_global_states[type].cur = blocked;
373                 return;
374         }
375 
376         for (i = 0; i < NUM_RFKILL_TYPES; i++)
377                 rfkill_global_states[i].cur = blocked;
378 }
379 
380 #ifdef CONFIG_RFKILL_INPUT
381 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
382 
383 /**
384  * __rfkill_switch_all - Toggle state of all switches of given type
385  * @type: type of interfaces to be affected
386  * @blocked: the new state
387  *
388  * This function sets the state of all switches of given type,
389  * unless a specific switch is suspended.
390  *
391  * Caller must have acquired rfkill_global_mutex.
392  */
393 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
394 {
395         struct rfkill *rfkill;
396 
397         rfkill_update_global_state(type, blocked);
398         list_for_each_entry(rfkill, &rfkill_list, node) {
399                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
400                         continue;
401 
402                 rfkill_set_block(rfkill, blocked);
403         }
404 }
405 
406 /**
407  * rfkill_switch_all - Toggle state of all switches of given type
408  * @type: type of interfaces to be affected
409  * @blocked: the new state
410  *
411  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
412  * Please refer to __rfkill_switch_all() for details.
413  *
414  * Does nothing if the EPO lock is active.
415  */
416 void rfkill_switch_all(enum rfkill_type type, bool blocked)
417 {
418         if (atomic_read(&rfkill_input_disabled))
419                 return;
420 
421         mutex_lock(&rfkill_global_mutex);
422 
423         if (!rfkill_epo_lock_active)
424                 __rfkill_switch_all(type, blocked);
425 
426         mutex_unlock(&rfkill_global_mutex);
427 }
428 
429 /**
430  * rfkill_epo - emergency power off all transmitters
431  *
432  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
433  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
434  *
435  * The global state before the EPO is saved and can be restored later
436  * using rfkill_restore_states().
437  */
438 void rfkill_epo(void)
439 {
440         struct rfkill *rfkill;
441         int i;
442 
443         if (atomic_read(&rfkill_input_disabled))
444                 return;
445 
446         mutex_lock(&rfkill_global_mutex);
447 
448         rfkill_epo_lock_active = true;
449         list_for_each_entry(rfkill, &rfkill_list, node)
450                 rfkill_set_block(rfkill, true);
451 
452         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
453                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
454                 rfkill_global_states[i].cur = true;
455         }
456 
457         mutex_unlock(&rfkill_global_mutex);
458 }
459 
460 /**
461  * rfkill_restore_states - restore global states
462  *
463  * Restore (and sync switches to) the global state from the
464  * states in rfkill_default_states.  This can undo the effects of
465  * a call to rfkill_epo().
466  */
467 void rfkill_restore_states(void)
468 {
469         int i;
470 
471         if (atomic_read(&rfkill_input_disabled))
472                 return;
473 
474         mutex_lock(&rfkill_global_mutex);
475 
476         rfkill_epo_lock_active = false;
477         for (i = 0; i < NUM_RFKILL_TYPES; i++)
478                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
479         mutex_unlock(&rfkill_global_mutex);
480 }
481 
482 /**
483  * rfkill_remove_epo_lock - unlock state changes
484  *
485  * Used by rfkill-input manually unlock state changes, when
486  * the EPO switch is deactivated.
487  */
488 void rfkill_remove_epo_lock(void)
489 {
490         if (atomic_read(&rfkill_input_disabled))
491                 return;
492 
493         mutex_lock(&rfkill_global_mutex);
494         rfkill_epo_lock_active = false;
495         mutex_unlock(&rfkill_global_mutex);
496 }
497 
498 /**
499  * rfkill_is_epo_lock_active - returns true EPO is active
500  *
501  * Returns 0 (false) if there is NOT an active EPO condition,
502  * and 1 (true) if there is an active EPO condition, which
503  * locks all radios in one of the BLOCKED states.
504  *
505  * Can be called in atomic context.
506  */
507 bool rfkill_is_epo_lock_active(void)
508 {
509         return rfkill_epo_lock_active;
510 }
511 
512 /**
513  * rfkill_get_global_sw_state - returns global state for a type
514  * @type: the type to get the global state of
515  *
516  * Returns the current global state for a given wireless
517  * device type.
518  */
519 bool rfkill_get_global_sw_state(const enum rfkill_type type)
520 {
521         return rfkill_global_states[type].cur;
522 }
523 #endif
524 
525 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
526 {
527         unsigned long flags;
528         bool ret, prev;
529 
530         BUG_ON(!rfkill);
531 
532         spin_lock_irqsave(&rfkill->lock, flags);
533         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
534         if (blocked)
535                 rfkill->state |= RFKILL_BLOCK_HW;
536         else
537                 rfkill->state &= ~RFKILL_BLOCK_HW;
538         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
539         spin_unlock_irqrestore(&rfkill->lock, flags);
540 
541         rfkill_led_trigger_event(rfkill);
542         rfkill_global_led_trigger_event();
543 
544         if (rfkill->registered && prev != blocked)
545                 schedule_work(&rfkill->uevent_work);
546 
547         return ret;
548 }
549 EXPORT_SYMBOL(rfkill_set_hw_state);
550 
551 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
552 {
553         u32 bit = RFKILL_BLOCK_SW;
554 
555         /* if in a ops->set_block right now, use other bit */
556         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
557                 bit = RFKILL_BLOCK_SW_PREV;
558 
559         if (blocked)
560                 rfkill->state |= bit;
561         else
562                 rfkill->state &= ~bit;
563 }
564 
565 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567         unsigned long flags;
568         bool prev, hwblock;
569 
570         BUG_ON(!rfkill);
571 
572         spin_lock_irqsave(&rfkill->lock, flags);
573         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
574         __rfkill_set_sw_state(rfkill, blocked);
575         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
576         blocked = blocked || hwblock;
577         spin_unlock_irqrestore(&rfkill->lock, flags);
578 
579         if (!rfkill->registered)
580                 return blocked;
581 
582         if (prev != blocked && !hwblock)
583                 schedule_work(&rfkill->uevent_work);
584 
585         rfkill_led_trigger_event(rfkill);
586         rfkill_global_led_trigger_event();
587 
588         return blocked;
589 }
590 EXPORT_SYMBOL(rfkill_set_sw_state);
591 
592 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
593 {
594         unsigned long flags;
595 
596         BUG_ON(!rfkill);
597         BUG_ON(rfkill->registered);
598 
599         spin_lock_irqsave(&rfkill->lock, flags);
600         __rfkill_set_sw_state(rfkill, blocked);
601         rfkill->persistent = true;
602         spin_unlock_irqrestore(&rfkill->lock, flags);
603 }
604 EXPORT_SYMBOL(rfkill_init_sw_state);
605 
606 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
607 {
608         unsigned long flags;
609         bool swprev, hwprev;
610 
611         BUG_ON(!rfkill);
612 
613         spin_lock_irqsave(&rfkill->lock, flags);
614 
615         /*
616          * No need to care about prev/setblock ... this is for uevent only
617          * and that will get triggered by rfkill_set_block anyway.
618          */
619         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
620         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
621         __rfkill_set_sw_state(rfkill, sw);
622         if (hw)
623                 rfkill->state |= RFKILL_BLOCK_HW;
624         else
625                 rfkill->state &= ~RFKILL_BLOCK_HW;
626 
627         spin_unlock_irqrestore(&rfkill->lock, flags);
628 
629         if (!rfkill->registered) {
630                 rfkill->persistent = true;
631         } else {
632                 if (swprev != sw || hwprev != hw)
633                         schedule_work(&rfkill->uevent_work);
634 
635                 rfkill_led_trigger_event(rfkill);
636                 rfkill_global_led_trigger_event();
637         }
638 }
639 EXPORT_SYMBOL(rfkill_set_states);
640 
641 static const char * const rfkill_types[] = {
642         NULL, /* RFKILL_TYPE_ALL */
643         "wlan",
644         "bluetooth",
645         "ultrawideband",
646         "wimax",
647         "wwan",
648         "gps",
649         "fm",
650         "nfc",
651 };
652 
653 enum rfkill_type rfkill_find_type(const char *name)
654 {
655         int i;
656 
657         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
658 
659         if (!name)
660                 return RFKILL_TYPE_ALL;
661 
662         for (i = 1; i < NUM_RFKILL_TYPES; i++)
663                 if (!strcmp(name, rfkill_types[i]))
664                         return i;
665         return RFKILL_TYPE_ALL;
666 }
667 EXPORT_SYMBOL(rfkill_find_type);
668 
669 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
670                          char *buf)
671 {
672         struct rfkill *rfkill = to_rfkill(dev);
673 
674         return sprintf(buf, "%s\n", rfkill->name);
675 }
676 static DEVICE_ATTR_RO(name);
677 
678 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
679                          char *buf)
680 {
681         struct rfkill *rfkill = to_rfkill(dev);
682 
683         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
684 }
685 static DEVICE_ATTR_RO(type);
686 
687 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
688                           char *buf)
689 {
690         struct rfkill *rfkill = to_rfkill(dev);
691 
692         return sprintf(buf, "%d\n", rfkill->idx);
693 }
694 static DEVICE_ATTR_RO(index);
695 
696 static ssize_t persistent_show(struct device *dev,
697                                struct device_attribute *attr, char *buf)
698 {
699         struct rfkill *rfkill = to_rfkill(dev);
700 
701         return sprintf(buf, "%d\n", rfkill->persistent);
702 }
703 static DEVICE_ATTR_RO(persistent);
704 
705 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
706                          char *buf)
707 {
708         struct rfkill *rfkill = to_rfkill(dev);
709 
710         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
711 }
712 static DEVICE_ATTR_RO(hard);
713 
714 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
715                          char *buf)
716 {
717         struct rfkill *rfkill = to_rfkill(dev);
718 
719         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
720 }
721 
722 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
723                           const char *buf, size_t count)
724 {
725         struct rfkill *rfkill = to_rfkill(dev);
726         unsigned long state;
727         int err;
728 
729         if (!capable(CAP_NET_ADMIN))
730                 return -EPERM;
731 
732         err = kstrtoul(buf, 0, &state);
733         if (err)
734                 return err;
735 
736         if (state > 1 )
737                 return -EINVAL;
738 
739         mutex_lock(&rfkill_global_mutex);
740         rfkill_set_block(rfkill, state);
741         mutex_unlock(&rfkill_global_mutex);
742 
743         return count;
744 }
745 static DEVICE_ATTR_RW(soft);
746 
747 static u8 user_state_from_blocked(unsigned long state)
748 {
749         if (state & RFKILL_BLOCK_HW)
750                 return RFKILL_USER_STATE_HARD_BLOCKED;
751         if (state & RFKILL_BLOCK_SW)
752                 return RFKILL_USER_STATE_SOFT_BLOCKED;
753 
754         return RFKILL_USER_STATE_UNBLOCKED;
755 }
756 
757 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
758                           char *buf)
759 {
760         struct rfkill *rfkill = to_rfkill(dev);
761 
762         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
763 }
764 
765 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
766                            const char *buf, size_t count)
767 {
768         struct rfkill *rfkill = to_rfkill(dev);
769         unsigned long state;
770         int err;
771 
772         if (!capable(CAP_NET_ADMIN))
773                 return -EPERM;
774 
775         err = kstrtoul(buf, 0, &state);
776         if (err)
777                 return err;
778 
779         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
780             state != RFKILL_USER_STATE_UNBLOCKED)
781                 return -EINVAL;
782 
783         mutex_lock(&rfkill_global_mutex);
784         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
785         mutex_unlock(&rfkill_global_mutex);
786 
787         return count;
788 }
789 static DEVICE_ATTR_RW(state);
790 
791 static struct attribute *rfkill_dev_attrs[] = {
792         &dev_attr_name.attr,
793         &dev_attr_type.attr,
794         &dev_attr_index.attr,
795         &dev_attr_persistent.attr,
796         &dev_attr_state.attr,
797         &dev_attr_soft.attr,
798         &dev_attr_hard.attr,
799         NULL,
800 };
801 ATTRIBUTE_GROUPS(rfkill_dev);
802 
803 static void rfkill_release(struct device *dev)
804 {
805         struct rfkill *rfkill = to_rfkill(dev);
806 
807         kfree(rfkill);
808 }
809 
810 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
811 {
812         struct rfkill *rfkill = to_rfkill(dev);
813         unsigned long flags;
814         u32 state;
815         int error;
816 
817         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
818         if (error)
819                 return error;
820         error = add_uevent_var(env, "RFKILL_TYPE=%s",
821                                rfkill_types[rfkill->type]);
822         if (error)
823                 return error;
824         spin_lock_irqsave(&rfkill->lock, flags);
825         state = rfkill->state;
826         spin_unlock_irqrestore(&rfkill->lock, flags);
827         error = add_uevent_var(env, "RFKILL_STATE=%d",
828                                user_state_from_blocked(state));
829         return error;
830 }
831 
832 void rfkill_pause_polling(struct rfkill *rfkill)
833 {
834         BUG_ON(!rfkill);
835 
836         if (!rfkill->ops->poll)
837                 return;
838 
839         rfkill->polling_paused = true;
840         cancel_delayed_work_sync(&rfkill->poll_work);
841 }
842 EXPORT_SYMBOL(rfkill_pause_polling);
843 
844 void rfkill_resume_polling(struct rfkill *rfkill)
845 {
846         BUG_ON(!rfkill);
847 
848         if (!rfkill->ops->poll)
849                 return;
850 
851         rfkill->polling_paused = false;
852 
853         if (rfkill->suspended)
854                 return;
855 
856         queue_delayed_work(system_power_efficient_wq,
857                            &rfkill->poll_work, 0);
858 }
859 EXPORT_SYMBOL(rfkill_resume_polling);
860 
861 #ifdef CONFIG_PM_SLEEP
862 static int rfkill_suspend(struct device *dev)
863 {
864         struct rfkill *rfkill = to_rfkill(dev);
865 
866         rfkill->suspended = true;
867         cancel_delayed_work_sync(&rfkill->poll_work);
868 
869         return 0;
870 }
871 
872 static int rfkill_resume(struct device *dev)
873 {
874         struct rfkill *rfkill = to_rfkill(dev);
875         bool cur;
876 
877         rfkill->suspended = false;
878 
879         if (!rfkill->persistent) {
880                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
881                 rfkill_set_block(rfkill, cur);
882         }
883 
884         if (rfkill->ops->poll && !rfkill->polling_paused)
885                 queue_delayed_work(system_power_efficient_wq,
886                                    &rfkill->poll_work, 0);
887 
888         return 0;
889 }
890 
891 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
892 #define RFKILL_PM_OPS (&rfkill_pm_ops)
893 #else
894 #define RFKILL_PM_OPS NULL
895 #endif
896 
897 static struct class rfkill_class = {
898         .name           = "rfkill",
899         .dev_release    = rfkill_release,
900         .dev_groups     = rfkill_dev_groups,
901         .dev_uevent     = rfkill_dev_uevent,
902         .pm             = RFKILL_PM_OPS,
903 };
904 
905 bool rfkill_blocked(struct rfkill *rfkill)
906 {
907         unsigned long flags;
908         u32 state;
909 
910         spin_lock_irqsave(&rfkill->lock, flags);
911         state = rfkill->state;
912         spin_unlock_irqrestore(&rfkill->lock, flags);
913 
914         return !!(state & RFKILL_BLOCK_ANY);
915 }
916 EXPORT_SYMBOL(rfkill_blocked);
917 
918 
919 struct rfkill * __must_check rfkill_alloc(const char *name,
920                                           struct device *parent,
921                                           const enum rfkill_type type,
922                                           const struct rfkill_ops *ops,
923                                           void *ops_data)
924 {
925         struct rfkill *rfkill;
926         struct device *dev;
927 
928         if (WARN_ON(!ops))
929                 return NULL;
930 
931         if (WARN_ON(!ops->set_block))
932                 return NULL;
933 
934         if (WARN_ON(!name))
935                 return NULL;
936 
937         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
938                 return NULL;
939 
940         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
941         if (!rfkill)
942                 return NULL;
943 
944         spin_lock_init(&rfkill->lock);
945         INIT_LIST_HEAD(&rfkill->node);
946         rfkill->type = type;
947         strcpy(rfkill->name, name);
948         rfkill->ops = ops;
949         rfkill->data = ops_data;
950 
951         dev = &rfkill->dev;
952         dev->class = &rfkill_class;
953         dev->parent = parent;
954         device_initialize(dev);
955 
956         return rfkill;
957 }
958 EXPORT_SYMBOL(rfkill_alloc);
959 
960 static void rfkill_poll(struct work_struct *work)
961 {
962         struct rfkill *rfkill;
963 
964         rfkill = container_of(work, struct rfkill, poll_work.work);
965 
966         /*
967          * Poll hardware state -- driver will use one of the
968          * rfkill_set{,_hw,_sw}_state functions and use its
969          * return value to update the current status.
970          */
971         rfkill->ops->poll(rfkill, rfkill->data);
972 
973         queue_delayed_work(system_power_efficient_wq,
974                 &rfkill->poll_work,
975                 round_jiffies_relative(POLL_INTERVAL));
976 }
977 
978 static void rfkill_uevent_work(struct work_struct *work)
979 {
980         struct rfkill *rfkill;
981 
982         rfkill = container_of(work, struct rfkill, uevent_work);
983 
984         mutex_lock(&rfkill_global_mutex);
985         rfkill_event(rfkill);
986         mutex_unlock(&rfkill_global_mutex);
987 }
988 
989 static void rfkill_sync_work(struct work_struct *work)
990 {
991         struct rfkill *rfkill;
992         bool cur;
993 
994         rfkill = container_of(work, struct rfkill, sync_work);
995 
996         mutex_lock(&rfkill_global_mutex);
997         cur = rfkill_global_states[rfkill->type].cur;
998         rfkill_set_block(rfkill, cur);
999         mutex_unlock(&rfkill_global_mutex);
1000 }
1001 
1002 int __must_check rfkill_register(struct rfkill *rfkill)
1003 {
1004         static unsigned long rfkill_no;
1005         struct device *dev;
1006         int error;
1007 
1008         if (!rfkill)
1009                 return -EINVAL;
1010 
1011         dev = &rfkill->dev;
1012 
1013         mutex_lock(&rfkill_global_mutex);
1014 
1015         if (rfkill->registered) {
1016                 error = -EALREADY;
1017                 goto unlock;
1018         }
1019 
1020         rfkill->idx = rfkill_no;
1021         dev_set_name(dev, "rfkill%lu", rfkill_no);
1022         rfkill_no++;
1023 
1024         list_add_tail(&rfkill->node, &rfkill_list);
1025 
1026         error = device_add(dev);
1027         if (error)
1028                 goto remove;
1029 
1030         error = rfkill_led_trigger_register(rfkill);
1031         if (error)
1032                 goto devdel;
1033 
1034         rfkill->registered = true;
1035 
1036         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1037         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1038         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1039 
1040         if (rfkill->ops->poll)
1041                 queue_delayed_work(system_power_efficient_wq,
1042                         &rfkill->poll_work,
1043                         round_jiffies_relative(POLL_INTERVAL));
1044 
1045         if (!rfkill->persistent || rfkill_epo_lock_active) {
1046                 schedule_work(&rfkill->sync_work);
1047         } else {
1048 #ifdef CONFIG_RFKILL_INPUT
1049                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1050 
1051                 if (!atomic_read(&rfkill_input_disabled))
1052                         __rfkill_switch_all(rfkill->type, soft_blocked);
1053 #endif
1054         }
1055 
1056         rfkill_global_led_trigger_event();
1057         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1058 
1059         mutex_unlock(&rfkill_global_mutex);
1060         return 0;
1061 
1062  devdel:
1063         device_del(&rfkill->dev);
1064  remove:
1065         list_del_init(&rfkill->node);
1066  unlock:
1067         mutex_unlock(&rfkill_global_mutex);
1068         return error;
1069 }
1070 EXPORT_SYMBOL(rfkill_register);
1071 
1072 void rfkill_unregister(struct rfkill *rfkill)
1073 {
1074         BUG_ON(!rfkill);
1075 
1076         if (rfkill->ops->poll)
1077                 cancel_delayed_work_sync(&rfkill->poll_work);
1078 
1079         cancel_work_sync(&rfkill->uevent_work);
1080         cancel_work_sync(&rfkill->sync_work);
1081 
1082         rfkill->registered = false;
1083 
1084         device_del(&rfkill->dev);
1085 
1086         mutex_lock(&rfkill_global_mutex);
1087         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1088         list_del_init(&rfkill->node);
1089         rfkill_global_led_trigger_event();
1090         mutex_unlock(&rfkill_global_mutex);
1091 
1092         rfkill_led_trigger_unregister(rfkill);
1093 }
1094 EXPORT_SYMBOL(rfkill_unregister);
1095 
1096 void rfkill_destroy(struct rfkill *rfkill)
1097 {
1098         if (rfkill)
1099                 put_device(&rfkill->dev);
1100 }
1101 EXPORT_SYMBOL(rfkill_destroy);
1102 
1103 static int rfkill_fop_open(struct inode *inode, struct file *file)
1104 {
1105         struct rfkill_data *data;
1106         struct rfkill *rfkill;
1107         struct rfkill_int_event *ev, *tmp;
1108 
1109         data = kzalloc(sizeof(*data), GFP_KERNEL);
1110         if (!data)
1111                 return -ENOMEM;
1112 
1113         INIT_LIST_HEAD(&data->events);
1114         mutex_init(&data->mtx);
1115         init_waitqueue_head(&data->read_wait);
1116 
1117         mutex_lock(&rfkill_global_mutex);
1118         mutex_lock(&data->mtx);
1119         /*
1120          * start getting events from elsewhere but hold mtx to get
1121          * startup events added first
1122          */
1123 
1124         list_for_each_entry(rfkill, &rfkill_list, node) {
1125                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1126                 if (!ev)
1127                         goto free;
1128                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1129                 list_add_tail(&ev->list, &data->events);
1130         }
1131         list_add(&data->list, &rfkill_fds);
1132         mutex_unlock(&data->mtx);
1133         mutex_unlock(&rfkill_global_mutex);
1134 
1135         file->private_data = data;
1136 
1137         return stream_open(inode, file);
1138 
1139  free:
1140         mutex_unlock(&data->mtx);
1141         mutex_unlock(&rfkill_global_mutex);
1142         mutex_destroy(&data->mtx);
1143         list_for_each_entry_safe(ev, tmp, &data->events, list)
1144                 kfree(ev);
1145         kfree(data);
1146         return -ENOMEM;
1147 }
1148 
1149 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1150 {
1151         struct rfkill_data *data = file->private_data;
1152         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1153 
1154         poll_wait(file, &data->read_wait, wait);
1155 
1156         mutex_lock(&data->mtx);
1157         if (!list_empty(&data->events))
1158                 res = EPOLLIN | EPOLLRDNORM;
1159         mutex_unlock(&data->mtx);
1160 
1161         return res;
1162 }
1163 
1164 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1165                                size_t count, loff_t *pos)
1166 {
1167         struct rfkill_data *data = file->private_data;
1168         struct rfkill_int_event *ev;
1169         unsigned long sz;
1170         int ret;
1171 
1172         mutex_lock(&data->mtx);
1173 
1174         while (list_empty(&data->events)) {
1175                 if (file->f_flags & O_NONBLOCK) {
1176                         ret = -EAGAIN;
1177                         goto out;
1178                 }
1179                 mutex_unlock(&data->mtx);
1180                 /* since we re-check and it just compares pointers,
1181                  * using !list_empty() without locking isn't a problem
1182                  */
1183                 ret = wait_event_interruptible(data->read_wait,
1184                                                !list_empty(&data->events));
1185                 mutex_lock(&data->mtx);
1186 
1187                 if (ret)
1188                         goto out;
1189         }
1190 
1191         ev = list_first_entry(&data->events, struct rfkill_int_event,
1192                                 list);
1193 
1194         sz = min_t(unsigned long, sizeof(ev->ev), count);
1195         ret = sz;
1196         if (copy_to_user(buf, &ev->ev, sz))
1197                 ret = -EFAULT;
1198 
1199         list_del(&ev->list);
1200         kfree(ev);
1201  out:
1202         mutex_unlock(&data->mtx);
1203         return ret;
1204 }
1205 
1206 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1207                                 size_t count, loff_t *pos)
1208 {
1209         struct rfkill *rfkill;
1210         struct rfkill_event ev;
1211         int ret;
1212 
1213         /* we don't need the 'hard' variable but accept it */
1214         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1215                 return -EINVAL;
1216 
1217         /*
1218          * Copy as much data as we can accept into our 'ev' buffer,
1219          * but tell userspace how much we've copied so it can determine
1220          * our API version even in a write() call, if it cares.
1221          */
1222         count = min(count, sizeof(ev));
1223         if (copy_from_user(&ev, buf, count))
1224                 return -EFAULT;
1225 
1226         if (ev.type >= NUM_RFKILL_TYPES)
1227                 return -EINVAL;
1228 
1229         mutex_lock(&rfkill_global_mutex);
1230 
1231         switch (ev.op) {
1232         case RFKILL_OP_CHANGE_ALL:
1233                 rfkill_update_global_state(ev.type, ev.soft);
1234                 list_for_each_entry(rfkill, &rfkill_list, node)
1235                         if (rfkill->type == ev.type ||
1236                             ev.type == RFKILL_TYPE_ALL)
1237                                 rfkill_set_block(rfkill, ev.soft);
1238                 ret = 0;
1239                 break;
1240         case RFKILL_OP_CHANGE:
1241                 list_for_each_entry(rfkill, &rfkill_list, node)
1242                         if (rfkill->idx == ev.idx &&
1243                             (rfkill->type == ev.type ||
1244                              ev.type == RFKILL_TYPE_ALL))
1245                                 rfkill_set_block(rfkill, ev.soft);
1246                 ret = 0;
1247                 break;
1248         default:
1249                 ret = -EINVAL;
1250                 break;
1251         }
1252 
1253         mutex_unlock(&rfkill_global_mutex);
1254 
1255         return ret ?: count;
1256 }
1257 
1258 static int rfkill_fop_release(struct inode *inode, struct file *file)
1259 {
1260         struct rfkill_data *data = file->private_data;
1261         struct rfkill_int_event *ev, *tmp;
1262 
1263         mutex_lock(&rfkill_global_mutex);
1264         list_del(&data->list);
1265         mutex_unlock(&rfkill_global_mutex);
1266 
1267         mutex_destroy(&data->mtx);
1268         list_for_each_entry_safe(ev, tmp, &data->events, list)
1269                 kfree(ev);
1270 
1271 #ifdef CONFIG_RFKILL_INPUT
1272         if (data->input_handler)
1273                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1274                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1275 #endif
1276 
1277         kfree(data);
1278 
1279         return 0;
1280 }
1281 
1282 #ifdef CONFIG_RFKILL_INPUT
1283 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1284                              unsigned long arg)
1285 {
1286         struct rfkill_data *data = file->private_data;
1287 
1288         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1289                 return -ENOSYS;
1290 
1291         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1292                 return -ENOSYS;
1293 
1294         mutex_lock(&data->mtx);
1295 
1296         if (!data->input_handler) {
1297                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1298                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1299                 data->input_handler = true;
1300         }
1301 
1302         mutex_unlock(&data->mtx);
1303 
1304         return 0;
1305 }
1306 #endif
1307 
1308 static const struct file_operations rfkill_fops = {
1309         .owner          = THIS_MODULE,
1310         .open           = rfkill_fop_open,
1311         .read           = rfkill_fop_read,
1312         .write          = rfkill_fop_write,
1313         .poll           = rfkill_fop_poll,
1314         .release        = rfkill_fop_release,
1315 #ifdef CONFIG_RFKILL_INPUT
1316         .unlocked_ioctl = rfkill_fop_ioctl,
1317         .compat_ioctl   = compat_ptr_ioctl,
1318 #endif
1319         .llseek         = no_llseek,
1320 };
1321 
1322 #define RFKILL_NAME "rfkill"
1323 
1324 static struct miscdevice rfkill_miscdev = {
1325         .fops   = &rfkill_fops,
1326         .name   = RFKILL_NAME,
1327         .minor  = RFKILL_MINOR,
1328 };
1329 
1330 static int __init rfkill_init(void)
1331 {
1332         int error;
1333 
1334         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1335 
1336         error = class_register(&rfkill_class);
1337         if (error)
1338                 goto error_class;
1339 
1340         error = misc_register(&rfkill_miscdev);
1341         if (error)
1342                 goto error_misc;
1343 
1344         error = rfkill_global_led_trigger_register();
1345         if (error)
1346                 goto error_led_trigger;
1347 
1348 #ifdef CONFIG_RFKILL_INPUT
1349         error = rfkill_handler_init();
1350         if (error)
1351                 goto error_input;
1352 #endif
1353 
1354         return 0;
1355 
1356 #ifdef CONFIG_RFKILL_INPUT
1357 error_input:
1358         rfkill_global_led_trigger_unregister();
1359 #endif
1360 error_led_trigger:
1361         misc_deregister(&rfkill_miscdev);
1362 error_misc:
1363         class_unregister(&rfkill_class);
1364 error_class:
1365         return error;
1366 }
1367 subsys_initcall(rfkill_init);
1368 
1369 static void __exit rfkill_exit(void)
1370 {
1371 #ifdef CONFIG_RFKILL_INPUT
1372         rfkill_handler_exit();
1373 #endif
1374         rfkill_global_led_trigger_unregister();
1375         misc_deregister(&rfkill_miscdev);
1376         class_unregister(&rfkill_class);
1377 }
1378 module_exit(rfkill_exit);
1379 
1380 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1381 MODULE_ALIAS("devname:" RFKILL_NAME);
1382 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp