~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rose/af_rose.c

Version: ~ [ linux-4.17-rc6 ] ~ [ linux-4.16.10 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.42 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.101 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.132 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.51 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.109 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.56 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.101 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.27.62 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This program is free software; you can redistribute it and/or modify
  3  * it under the terms of the GNU General Public License as published by
  4  * the Free Software Foundation; either version 2 of the License, or
  5  * (at your option) any later version.
  6  *
  7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
 10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
 11  */
 12 
 13 #include <linux/capability.h>
 14 #include <linux/module.h>
 15 #include <linux/moduleparam.h>
 16 #include <linux/init.h>
 17 #include <linux/errno.h>
 18 #include <linux/types.h>
 19 #include <linux/socket.h>
 20 #include <linux/in.h>
 21 #include <linux/slab.h>
 22 #include <linux/kernel.h>
 23 #include <linux/sched/signal.h>
 24 #include <linux/spinlock.h>
 25 #include <linux/timer.h>
 26 #include <linux/string.h>
 27 #include <linux/sockios.h>
 28 #include <linux/net.h>
 29 #include <linux/stat.h>
 30 #include <net/net_namespace.h>
 31 #include <net/ax25.h>
 32 #include <linux/inet.h>
 33 #include <linux/netdevice.h>
 34 #include <linux/if_arp.h>
 35 #include <linux/skbuff.h>
 36 #include <net/sock.h>
 37 #include <linux/uaccess.h>
 38 #include <linux/fcntl.h>
 39 #include <linux/termios.h>
 40 #include <linux/mm.h>
 41 #include <linux/interrupt.h>
 42 #include <linux/notifier.h>
 43 #include <net/rose.h>
 44 #include <linux/proc_fs.h>
 45 #include <linux/seq_file.h>
 46 #include <net/tcp_states.h>
 47 #include <net/ip.h>
 48 #include <net/arp.h>
 49 
 50 static int rose_ndevs = 10;
 51 
 52 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
 53 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
 54 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
 55 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
 56 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
 57 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
 58 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
 59 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
 60 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
 61 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
 62 
 63 static HLIST_HEAD(rose_list);
 64 static DEFINE_SPINLOCK(rose_list_lock);
 65 
 66 static const struct proto_ops rose_proto_ops;
 67 
 68 ax25_address rose_callsign;
 69 
 70 /*
 71  * ROSE network devices are virtual network devices encapsulating ROSE
 72  * frames into AX.25 which will be sent through an AX.25 device, so form a
 73  * special "super class" of normal net devices; split their locks off into a
 74  * separate class since they always nest.
 75  */
 76 static struct lock_class_key rose_netdev_xmit_lock_key;
 77 static struct lock_class_key rose_netdev_addr_lock_key;
 78 
 79 static void rose_set_lockdep_one(struct net_device *dev,
 80                                  struct netdev_queue *txq,
 81                                  void *_unused)
 82 {
 83         lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
 84 }
 85 
 86 static void rose_set_lockdep_key(struct net_device *dev)
 87 {
 88         lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
 89         netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
 90 }
 91 
 92 /*
 93  *      Convert a ROSE address into text.
 94  */
 95 char *rose2asc(char *buf, const rose_address *addr)
 96 {
 97         if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
 98             addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
 99             addr->rose_addr[4] == 0x00) {
100                 strcpy(buf, "*");
101         } else {
102                 sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
103                                                 addr->rose_addr[1] & 0xFF,
104                                                 addr->rose_addr[2] & 0xFF,
105                                                 addr->rose_addr[3] & 0xFF,
106                                                 addr->rose_addr[4] & 0xFF);
107         }
108 
109         return buf;
110 }
111 
112 /*
113  *      Compare two ROSE addresses, 0 == equal.
114  */
115 int rosecmp(rose_address *addr1, rose_address *addr2)
116 {
117         int i;
118 
119         for (i = 0; i < 5; i++)
120                 if (addr1->rose_addr[i] != addr2->rose_addr[i])
121                         return 1;
122 
123         return 0;
124 }
125 
126 /*
127  *      Compare two ROSE addresses for only mask digits, 0 == equal.
128  */
129 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
130 {
131         unsigned int i, j;
132 
133         if (mask > 10)
134                 return 1;
135 
136         for (i = 0; i < mask; i++) {
137                 j = i / 2;
138 
139                 if ((i % 2) != 0) {
140                         if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
141                                 return 1;
142                 } else {
143                         if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
144                                 return 1;
145                 }
146         }
147 
148         return 0;
149 }
150 
151 /*
152  *      Socket removal during an interrupt is now safe.
153  */
154 static void rose_remove_socket(struct sock *sk)
155 {
156         spin_lock_bh(&rose_list_lock);
157         sk_del_node_init(sk);
158         spin_unlock_bh(&rose_list_lock);
159 }
160 
161 /*
162  *      Kill all bound sockets on a broken link layer connection to a
163  *      particular neighbour.
164  */
165 void rose_kill_by_neigh(struct rose_neigh *neigh)
166 {
167         struct sock *s;
168 
169         spin_lock_bh(&rose_list_lock);
170         sk_for_each(s, &rose_list) {
171                 struct rose_sock *rose = rose_sk(s);
172 
173                 if (rose->neighbour == neigh) {
174                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
175                         rose->neighbour->use--;
176                         rose->neighbour = NULL;
177                 }
178         }
179         spin_unlock_bh(&rose_list_lock);
180 }
181 
182 /*
183  *      Kill all bound sockets on a dropped device.
184  */
185 static void rose_kill_by_device(struct net_device *dev)
186 {
187         struct sock *s;
188 
189         spin_lock_bh(&rose_list_lock);
190         sk_for_each(s, &rose_list) {
191                 struct rose_sock *rose = rose_sk(s);
192 
193                 if (rose->device == dev) {
194                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
195                         if (rose->neighbour)
196                                 rose->neighbour->use--;
197                         rose->device = NULL;
198                 }
199         }
200         spin_unlock_bh(&rose_list_lock);
201 }
202 
203 /*
204  *      Handle device status changes.
205  */
206 static int rose_device_event(struct notifier_block *this,
207                              unsigned long event, void *ptr)
208 {
209         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
210 
211         if (!net_eq(dev_net(dev), &init_net))
212                 return NOTIFY_DONE;
213 
214         if (event != NETDEV_DOWN)
215                 return NOTIFY_DONE;
216 
217         switch (dev->type) {
218         case ARPHRD_ROSE:
219                 rose_kill_by_device(dev);
220                 break;
221         case ARPHRD_AX25:
222                 rose_link_device_down(dev);
223                 rose_rt_device_down(dev);
224                 break;
225         }
226 
227         return NOTIFY_DONE;
228 }
229 
230 /*
231  *      Add a socket to the bound sockets list.
232  */
233 static void rose_insert_socket(struct sock *sk)
234 {
235 
236         spin_lock_bh(&rose_list_lock);
237         sk_add_node(sk, &rose_list);
238         spin_unlock_bh(&rose_list_lock);
239 }
240 
241 /*
242  *      Find a socket that wants to accept the Call Request we just
243  *      received.
244  */
245 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
246 {
247         struct sock *s;
248 
249         spin_lock_bh(&rose_list_lock);
250         sk_for_each(s, &rose_list) {
251                 struct rose_sock *rose = rose_sk(s);
252 
253                 if (!rosecmp(&rose->source_addr, addr) &&
254                     !ax25cmp(&rose->source_call, call) &&
255                     !rose->source_ndigis && s->sk_state == TCP_LISTEN)
256                         goto found;
257         }
258 
259         sk_for_each(s, &rose_list) {
260                 struct rose_sock *rose = rose_sk(s);
261 
262                 if (!rosecmp(&rose->source_addr, addr) &&
263                     !ax25cmp(&rose->source_call, &null_ax25_address) &&
264                     s->sk_state == TCP_LISTEN)
265                         goto found;
266         }
267         s = NULL;
268 found:
269         spin_unlock_bh(&rose_list_lock);
270         return s;
271 }
272 
273 /*
274  *      Find a connected ROSE socket given my LCI and device.
275  */
276 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
277 {
278         struct sock *s;
279 
280         spin_lock_bh(&rose_list_lock);
281         sk_for_each(s, &rose_list) {
282                 struct rose_sock *rose = rose_sk(s);
283 
284                 if (rose->lci == lci && rose->neighbour == neigh)
285                         goto found;
286         }
287         s = NULL;
288 found:
289         spin_unlock_bh(&rose_list_lock);
290         return s;
291 }
292 
293 /*
294  *      Find a unique LCI for a given device.
295  */
296 unsigned int rose_new_lci(struct rose_neigh *neigh)
297 {
298         int lci;
299 
300         if (neigh->dce_mode) {
301                 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
302                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
303                                 return lci;
304         } else {
305                 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
306                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
307                                 return lci;
308         }
309 
310         return 0;
311 }
312 
313 /*
314  *      Deferred destroy.
315  */
316 void rose_destroy_socket(struct sock *);
317 
318 /*
319  *      Handler for deferred kills.
320  */
321 static void rose_destroy_timer(struct timer_list *t)
322 {
323         struct sock *sk = from_timer(sk, t, sk_timer);
324 
325         rose_destroy_socket(sk);
326 }
327 
328 /*
329  *      This is called from user mode and the timers. Thus it protects itself
330  *      against interrupt users but doesn't worry about being called during
331  *      work.  Once it is removed from the queue no interrupt or bottom half
332  *      will touch it and we are (fairly 8-) ) safe.
333  */
334 void rose_destroy_socket(struct sock *sk)
335 {
336         struct sk_buff *skb;
337 
338         rose_remove_socket(sk);
339         rose_stop_heartbeat(sk);
340         rose_stop_idletimer(sk);
341         rose_stop_timer(sk);
342 
343         rose_clear_queues(sk);          /* Flush the queues */
344 
345         while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
346                 if (skb->sk != sk) {    /* A pending connection */
347                         /* Queue the unaccepted socket for death */
348                         sock_set_flag(skb->sk, SOCK_DEAD);
349                         rose_start_heartbeat(skb->sk);
350                         rose_sk(skb->sk)->state = ROSE_STATE_0;
351                 }
352 
353                 kfree_skb(skb);
354         }
355 
356         if (sk_has_allocations(sk)) {
357                 /* Defer: outstanding buffers */
358                 timer_setup(&sk->sk_timer, rose_destroy_timer, 0);
359                 sk->sk_timer.expires  = jiffies + 10 * HZ;
360                 add_timer(&sk->sk_timer);
361         } else
362                 sock_put(sk);
363 }
364 
365 /*
366  *      Handling for system calls applied via the various interfaces to a
367  *      ROSE socket object.
368  */
369 
370 static int rose_setsockopt(struct socket *sock, int level, int optname,
371         char __user *optval, unsigned int optlen)
372 {
373         struct sock *sk = sock->sk;
374         struct rose_sock *rose = rose_sk(sk);
375         int opt;
376 
377         if (level != SOL_ROSE)
378                 return -ENOPROTOOPT;
379 
380         if (optlen < sizeof(int))
381                 return -EINVAL;
382 
383         if (get_user(opt, (int __user *)optval))
384                 return -EFAULT;
385 
386         switch (optname) {
387         case ROSE_DEFER:
388                 rose->defer = opt ? 1 : 0;
389                 return 0;
390 
391         case ROSE_T1:
392                 if (opt < 1)
393                         return -EINVAL;
394                 rose->t1 = opt * HZ;
395                 return 0;
396 
397         case ROSE_T2:
398                 if (opt < 1)
399                         return -EINVAL;
400                 rose->t2 = opt * HZ;
401                 return 0;
402 
403         case ROSE_T3:
404                 if (opt < 1)
405                         return -EINVAL;
406                 rose->t3 = opt * HZ;
407                 return 0;
408 
409         case ROSE_HOLDBACK:
410                 if (opt < 1)
411                         return -EINVAL;
412                 rose->hb = opt * HZ;
413                 return 0;
414 
415         case ROSE_IDLE:
416                 if (opt < 0)
417                         return -EINVAL;
418                 rose->idle = opt * 60 * HZ;
419                 return 0;
420 
421         case ROSE_QBITINCL:
422                 rose->qbitincl = opt ? 1 : 0;
423                 return 0;
424 
425         default:
426                 return -ENOPROTOOPT;
427         }
428 }
429 
430 static int rose_getsockopt(struct socket *sock, int level, int optname,
431         char __user *optval, int __user *optlen)
432 {
433         struct sock *sk = sock->sk;
434         struct rose_sock *rose = rose_sk(sk);
435         int val = 0;
436         int len;
437 
438         if (level != SOL_ROSE)
439                 return -ENOPROTOOPT;
440 
441         if (get_user(len, optlen))
442                 return -EFAULT;
443 
444         if (len < 0)
445                 return -EINVAL;
446 
447         switch (optname) {
448         case ROSE_DEFER:
449                 val = rose->defer;
450                 break;
451 
452         case ROSE_T1:
453                 val = rose->t1 / HZ;
454                 break;
455 
456         case ROSE_T2:
457                 val = rose->t2 / HZ;
458                 break;
459 
460         case ROSE_T3:
461                 val = rose->t3 / HZ;
462                 break;
463 
464         case ROSE_HOLDBACK:
465                 val = rose->hb / HZ;
466                 break;
467 
468         case ROSE_IDLE:
469                 val = rose->idle / (60 * HZ);
470                 break;
471 
472         case ROSE_QBITINCL:
473                 val = rose->qbitincl;
474                 break;
475 
476         default:
477                 return -ENOPROTOOPT;
478         }
479 
480         len = min_t(unsigned int, len, sizeof(int));
481 
482         if (put_user(len, optlen))
483                 return -EFAULT;
484 
485         return copy_to_user(optval, &val, len) ? -EFAULT : 0;
486 }
487 
488 static int rose_listen(struct socket *sock, int backlog)
489 {
490         struct sock *sk = sock->sk;
491 
492         if (sk->sk_state != TCP_LISTEN) {
493                 struct rose_sock *rose = rose_sk(sk);
494 
495                 rose->dest_ndigis = 0;
496                 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
497                 memset(&rose->dest_call, 0, AX25_ADDR_LEN);
498                 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
499                 sk->sk_max_ack_backlog = backlog;
500                 sk->sk_state           = TCP_LISTEN;
501                 return 0;
502         }
503 
504         return -EOPNOTSUPP;
505 }
506 
507 static struct proto rose_proto = {
508         .name     = "ROSE",
509         .owner    = THIS_MODULE,
510         .obj_size = sizeof(struct rose_sock),
511 };
512 
513 static int rose_create(struct net *net, struct socket *sock, int protocol,
514                        int kern)
515 {
516         struct sock *sk;
517         struct rose_sock *rose;
518 
519         if (!net_eq(net, &init_net))
520                 return -EAFNOSUPPORT;
521 
522         if (sock->type != SOCK_SEQPACKET || protocol != 0)
523                 return -ESOCKTNOSUPPORT;
524 
525         sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto, kern);
526         if (sk == NULL)
527                 return -ENOMEM;
528 
529         rose = rose_sk(sk);
530 
531         sock_init_data(sock, sk);
532 
533         skb_queue_head_init(&rose->ack_queue);
534 #ifdef M_BIT
535         skb_queue_head_init(&rose->frag_queue);
536         rose->fraglen    = 0;
537 #endif
538 
539         sock->ops    = &rose_proto_ops;
540         sk->sk_protocol = protocol;
541 
542         timer_setup(&rose->timer, NULL, 0);
543         timer_setup(&rose->idletimer, NULL, 0);
544 
545         rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
546         rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
547         rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
548         rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
549         rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
550 
551         rose->state = ROSE_STATE_0;
552 
553         return 0;
554 }
555 
556 static struct sock *rose_make_new(struct sock *osk)
557 {
558         struct sock *sk;
559         struct rose_sock *rose, *orose;
560 
561         if (osk->sk_type != SOCK_SEQPACKET)
562                 return NULL;
563 
564         sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto, 0);
565         if (sk == NULL)
566                 return NULL;
567 
568         rose = rose_sk(sk);
569 
570         sock_init_data(NULL, sk);
571 
572         skb_queue_head_init(&rose->ack_queue);
573 #ifdef M_BIT
574         skb_queue_head_init(&rose->frag_queue);
575         rose->fraglen  = 0;
576 #endif
577 
578         sk->sk_type     = osk->sk_type;
579         sk->sk_priority = osk->sk_priority;
580         sk->sk_protocol = osk->sk_protocol;
581         sk->sk_rcvbuf   = osk->sk_rcvbuf;
582         sk->sk_sndbuf   = osk->sk_sndbuf;
583         sk->sk_state    = TCP_ESTABLISHED;
584         sock_copy_flags(sk, osk);
585 
586         timer_setup(&rose->timer, NULL, 0);
587         timer_setup(&rose->idletimer, NULL, 0);
588 
589         orose           = rose_sk(osk);
590         rose->t1        = orose->t1;
591         rose->t2        = orose->t2;
592         rose->t3        = orose->t3;
593         rose->hb        = orose->hb;
594         rose->idle      = orose->idle;
595         rose->defer     = orose->defer;
596         rose->device    = orose->device;
597         rose->qbitincl  = orose->qbitincl;
598 
599         return sk;
600 }
601 
602 static int rose_release(struct socket *sock)
603 {
604         struct sock *sk = sock->sk;
605         struct rose_sock *rose;
606 
607         if (sk == NULL) return 0;
608 
609         sock_hold(sk);
610         sock_orphan(sk);
611         lock_sock(sk);
612         rose = rose_sk(sk);
613 
614         switch (rose->state) {
615         case ROSE_STATE_0:
616                 release_sock(sk);
617                 rose_disconnect(sk, 0, -1, -1);
618                 lock_sock(sk);
619                 rose_destroy_socket(sk);
620                 break;
621 
622         case ROSE_STATE_2:
623                 rose->neighbour->use--;
624                 release_sock(sk);
625                 rose_disconnect(sk, 0, -1, -1);
626                 lock_sock(sk);
627                 rose_destroy_socket(sk);
628                 break;
629 
630         case ROSE_STATE_1:
631         case ROSE_STATE_3:
632         case ROSE_STATE_4:
633         case ROSE_STATE_5:
634                 rose_clear_queues(sk);
635                 rose_stop_idletimer(sk);
636                 rose_write_internal(sk, ROSE_CLEAR_REQUEST);
637                 rose_start_t3timer(sk);
638                 rose->state  = ROSE_STATE_2;
639                 sk->sk_state    = TCP_CLOSE;
640                 sk->sk_shutdown |= SEND_SHUTDOWN;
641                 sk->sk_state_change(sk);
642                 sock_set_flag(sk, SOCK_DEAD);
643                 sock_set_flag(sk, SOCK_DESTROY);
644                 break;
645 
646         default:
647                 break;
648         }
649 
650         sock->sk = NULL;
651         release_sock(sk);
652         sock_put(sk);
653 
654         return 0;
655 }
656 
657 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
658 {
659         struct sock *sk = sock->sk;
660         struct rose_sock *rose = rose_sk(sk);
661         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
662         struct net_device *dev;
663         ax25_address *source;
664         ax25_uid_assoc *user;
665         int n;
666 
667         if (!sock_flag(sk, SOCK_ZAPPED))
668                 return -EINVAL;
669 
670         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
671                 return -EINVAL;
672 
673         if (addr->srose_family != AF_ROSE)
674                 return -EINVAL;
675 
676         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
677                 return -EINVAL;
678 
679         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
680                 return -EINVAL;
681 
682         if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
683                 return -EADDRNOTAVAIL;
684 
685         source = &addr->srose_call;
686 
687         user = ax25_findbyuid(current_euid());
688         if (user) {
689                 rose->source_call = user->call;
690                 ax25_uid_put(user);
691         } else {
692                 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
693                         return -EACCES;
694                 rose->source_call   = *source;
695         }
696 
697         rose->source_addr   = addr->srose_addr;
698         rose->device        = dev;
699         rose->source_ndigis = addr->srose_ndigis;
700 
701         if (addr_len == sizeof(struct full_sockaddr_rose)) {
702                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
703                 for (n = 0 ; n < addr->srose_ndigis ; n++)
704                         rose->source_digis[n] = full_addr->srose_digis[n];
705         } else {
706                 if (rose->source_ndigis == 1) {
707                         rose->source_digis[0] = addr->srose_digi;
708                 }
709         }
710 
711         rose_insert_socket(sk);
712 
713         sock_reset_flag(sk, SOCK_ZAPPED);
714 
715         return 0;
716 }
717 
718 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
719 {
720         struct sock *sk = sock->sk;
721         struct rose_sock *rose = rose_sk(sk);
722         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
723         unsigned char cause, diagnostic;
724         struct net_device *dev;
725         ax25_uid_assoc *user;
726         int n, err = 0;
727 
728         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
729                 return -EINVAL;
730 
731         if (addr->srose_family != AF_ROSE)
732                 return -EINVAL;
733 
734         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
735                 return -EINVAL;
736 
737         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
738                 return -EINVAL;
739 
740         /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
741         if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
742                 return -EINVAL;
743 
744         lock_sock(sk);
745 
746         if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
747                 /* Connect completed during a ERESTARTSYS event */
748                 sock->state = SS_CONNECTED;
749                 goto out_release;
750         }
751 
752         if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
753                 sock->state = SS_UNCONNECTED;
754                 err = -ECONNREFUSED;
755                 goto out_release;
756         }
757 
758         if (sk->sk_state == TCP_ESTABLISHED) {
759                 /* No reconnect on a seqpacket socket */
760                 err = -EISCONN;
761                 goto out_release;
762         }
763 
764         sk->sk_state   = TCP_CLOSE;
765         sock->state = SS_UNCONNECTED;
766 
767         rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
768                                          &diagnostic, 0);
769         if (!rose->neighbour) {
770                 err = -ENETUNREACH;
771                 goto out_release;
772         }
773 
774         rose->lci = rose_new_lci(rose->neighbour);
775         if (!rose->lci) {
776                 err = -ENETUNREACH;
777                 goto out_release;
778         }
779 
780         if (sock_flag(sk, SOCK_ZAPPED)) {       /* Must bind first - autobinding in this may or may not work */
781                 sock_reset_flag(sk, SOCK_ZAPPED);
782 
783                 if ((dev = rose_dev_first()) == NULL) {
784                         err = -ENETUNREACH;
785                         goto out_release;
786                 }
787 
788                 user = ax25_findbyuid(current_euid());
789                 if (!user) {
790                         err = -EINVAL;
791                         goto out_release;
792                 }
793 
794                 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
795                 rose->source_call = user->call;
796                 rose->device      = dev;
797                 ax25_uid_put(user);
798 
799                 rose_insert_socket(sk);         /* Finish the bind */
800         }
801         rose->dest_addr   = addr->srose_addr;
802         rose->dest_call   = addr->srose_call;
803         rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
804         rose->dest_ndigis = addr->srose_ndigis;
805 
806         if (addr_len == sizeof(struct full_sockaddr_rose)) {
807                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
808                 for (n = 0 ; n < addr->srose_ndigis ; n++)
809                         rose->dest_digis[n] = full_addr->srose_digis[n];
810         } else {
811                 if (rose->dest_ndigis == 1) {
812                         rose->dest_digis[0] = addr->srose_digi;
813                 }
814         }
815 
816         /* Move to connecting socket, start sending Connect Requests */
817         sock->state   = SS_CONNECTING;
818         sk->sk_state     = TCP_SYN_SENT;
819 
820         rose->state = ROSE_STATE_1;
821 
822         rose->neighbour->use++;
823 
824         rose_write_internal(sk, ROSE_CALL_REQUEST);
825         rose_start_heartbeat(sk);
826         rose_start_t1timer(sk);
827 
828         /* Now the loop */
829         if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
830                 err = -EINPROGRESS;
831                 goto out_release;
832         }
833 
834         /*
835          * A Connect Ack with Choke or timeout or failed routing will go to
836          * closed.
837          */
838         if (sk->sk_state == TCP_SYN_SENT) {
839                 DEFINE_WAIT(wait);
840 
841                 for (;;) {
842                         prepare_to_wait(sk_sleep(sk), &wait,
843                                         TASK_INTERRUPTIBLE);
844                         if (sk->sk_state != TCP_SYN_SENT)
845                                 break;
846                         if (!signal_pending(current)) {
847                                 release_sock(sk);
848                                 schedule();
849                                 lock_sock(sk);
850                                 continue;
851                         }
852                         err = -ERESTARTSYS;
853                         break;
854                 }
855                 finish_wait(sk_sleep(sk), &wait);
856 
857                 if (err)
858                         goto out_release;
859         }
860 
861         if (sk->sk_state != TCP_ESTABLISHED) {
862                 sock->state = SS_UNCONNECTED;
863                 err = sock_error(sk);   /* Always set at this point */
864                 goto out_release;
865         }
866 
867         sock->state = SS_CONNECTED;
868 
869 out_release:
870         release_sock(sk);
871 
872         return err;
873 }
874 
875 static int rose_accept(struct socket *sock, struct socket *newsock, int flags,
876                        bool kern)
877 {
878         struct sk_buff *skb;
879         struct sock *newsk;
880         DEFINE_WAIT(wait);
881         struct sock *sk;
882         int err = 0;
883 
884         if ((sk = sock->sk) == NULL)
885                 return -EINVAL;
886 
887         lock_sock(sk);
888         if (sk->sk_type != SOCK_SEQPACKET) {
889                 err = -EOPNOTSUPP;
890                 goto out_release;
891         }
892 
893         if (sk->sk_state != TCP_LISTEN) {
894                 err = -EINVAL;
895                 goto out_release;
896         }
897 
898         /*
899          *      The write queue this time is holding sockets ready to use
900          *      hooked into the SABM we saved
901          */
902         for (;;) {
903                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
904 
905                 skb = skb_dequeue(&sk->sk_receive_queue);
906                 if (skb)
907                         break;
908 
909                 if (flags & O_NONBLOCK) {
910                         err = -EWOULDBLOCK;
911                         break;
912                 }
913                 if (!signal_pending(current)) {
914                         release_sock(sk);
915                         schedule();
916                         lock_sock(sk);
917                         continue;
918                 }
919                 err = -ERESTARTSYS;
920                 break;
921         }
922         finish_wait(sk_sleep(sk), &wait);
923         if (err)
924                 goto out_release;
925 
926         newsk = skb->sk;
927         sock_graft(newsk, newsock);
928 
929         /* Now attach up the new socket */
930         skb->sk = NULL;
931         kfree_skb(skb);
932         sk->sk_ack_backlog--;
933 
934 out_release:
935         release_sock(sk);
936 
937         return err;
938 }
939 
940 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
941         int peer)
942 {
943         struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
944         struct sock *sk = sock->sk;
945         struct rose_sock *rose = rose_sk(sk);
946         int n;
947 
948         memset(srose, 0, sizeof(*srose));
949         if (peer != 0) {
950                 if (sk->sk_state != TCP_ESTABLISHED)
951                         return -ENOTCONN;
952                 srose->srose_family = AF_ROSE;
953                 srose->srose_addr   = rose->dest_addr;
954                 srose->srose_call   = rose->dest_call;
955                 srose->srose_ndigis = rose->dest_ndigis;
956                 for (n = 0; n < rose->dest_ndigis; n++)
957                         srose->srose_digis[n] = rose->dest_digis[n];
958         } else {
959                 srose->srose_family = AF_ROSE;
960                 srose->srose_addr   = rose->source_addr;
961                 srose->srose_call   = rose->source_call;
962                 srose->srose_ndigis = rose->source_ndigis;
963                 for (n = 0; n < rose->source_ndigis; n++)
964                         srose->srose_digis[n] = rose->source_digis[n];
965         }
966 
967         return sizeof(struct full_sockaddr_rose);
968 }
969 
970 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
971 {
972         struct sock *sk;
973         struct sock *make;
974         struct rose_sock *make_rose;
975         struct rose_facilities_struct facilities;
976         int n;
977 
978         skb->sk = NULL;         /* Initially we don't know who it's for */
979 
980         /*
981          *      skb->data points to the rose frame start
982          */
983         memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
984 
985         if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
986                                    skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
987                                    &facilities)) {
988                 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
989                 return 0;
990         }
991 
992         sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
993 
994         /*
995          * We can't accept the Call Request.
996          */
997         if (sk == NULL || sk_acceptq_is_full(sk) ||
998             (make = rose_make_new(sk)) == NULL) {
999                 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
1000                 return 0;
1001         }
1002 
1003         skb->sk     = make;
1004         make->sk_state = TCP_ESTABLISHED;
1005         make_rose = rose_sk(make);
1006 
1007         make_rose->lci           = lci;
1008         make_rose->dest_addr     = facilities.dest_addr;
1009         make_rose->dest_call     = facilities.dest_call;
1010         make_rose->dest_ndigis   = facilities.dest_ndigis;
1011         for (n = 0 ; n < facilities.dest_ndigis ; n++)
1012                 make_rose->dest_digis[n] = facilities.dest_digis[n];
1013         make_rose->source_addr   = facilities.source_addr;
1014         make_rose->source_call   = facilities.source_call;
1015         make_rose->source_ndigis = facilities.source_ndigis;
1016         for (n = 0 ; n < facilities.source_ndigis ; n++)
1017                 make_rose->source_digis[n] = facilities.source_digis[n];
1018         make_rose->neighbour     = neigh;
1019         make_rose->device        = dev;
1020         make_rose->facilities    = facilities;
1021 
1022         make_rose->neighbour->use++;
1023 
1024         if (rose_sk(sk)->defer) {
1025                 make_rose->state = ROSE_STATE_5;
1026         } else {
1027                 rose_write_internal(make, ROSE_CALL_ACCEPTED);
1028                 make_rose->state = ROSE_STATE_3;
1029                 rose_start_idletimer(make);
1030         }
1031 
1032         make_rose->condition = 0x00;
1033         make_rose->vs        = 0;
1034         make_rose->va        = 0;
1035         make_rose->vr        = 0;
1036         make_rose->vl        = 0;
1037         sk->sk_ack_backlog++;
1038 
1039         rose_insert_socket(make);
1040 
1041         skb_queue_head(&sk->sk_receive_queue, skb);
1042 
1043         rose_start_heartbeat(make);
1044 
1045         if (!sock_flag(sk, SOCK_DEAD))
1046                 sk->sk_data_ready(sk);
1047 
1048         return 1;
1049 }
1050 
1051 static int rose_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1052 {
1053         struct sock *sk = sock->sk;
1054         struct rose_sock *rose = rose_sk(sk);
1055         DECLARE_SOCKADDR(struct sockaddr_rose *, usrose, msg->msg_name);
1056         int err;
1057         struct full_sockaddr_rose srose;
1058         struct sk_buff *skb;
1059         unsigned char *asmptr;
1060         int n, size, qbit = 0;
1061 
1062         if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1063                 return -EINVAL;
1064 
1065         if (sock_flag(sk, SOCK_ZAPPED))
1066                 return -EADDRNOTAVAIL;
1067 
1068         if (sk->sk_shutdown & SEND_SHUTDOWN) {
1069                 send_sig(SIGPIPE, current, 0);
1070                 return -EPIPE;
1071         }
1072 
1073         if (rose->neighbour == NULL || rose->device == NULL)
1074                 return -ENETUNREACH;
1075 
1076         if (usrose != NULL) {
1077                 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1078                         return -EINVAL;
1079                 memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1080                 memcpy(&srose, usrose, msg->msg_namelen);
1081                 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1082                     ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1083                         return -EISCONN;
1084                 if (srose.srose_ndigis != rose->dest_ndigis)
1085                         return -EISCONN;
1086                 if (srose.srose_ndigis == rose->dest_ndigis) {
1087                         for (n = 0 ; n < srose.srose_ndigis ; n++)
1088                                 if (ax25cmp(&rose->dest_digis[n],
1089                                             &srose.srose_digis[n]))
1090                                         return -EISCONN;
1091                 }
1092                 if (srose.srose_family != AF_ROSE)
1093                         return -EINVAL;
1094         } else {
1095                 if (sk->sk_state != TCP_ESTABLISHED)
1096                         return -ENOTCONN;
1097 
1098                 srose.srose_family = AF_ROSE;
1099                 srose.srose_addr   = rose->dest_addr;
1100                 srose.srose_call   = rose->dest_call;
1101                 srose.srose_ndigis = rose->dest_ndigis;
1102                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1103                         srose.srose_digis[n] = rose->dest_digis[n];
1104         }
1105 
1106         /* Build a packet */
1107         /* Sanity check the packet size */
1108         if (len > 65535)
1109                 return -EMSGSIZE;
1110 
1111         size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1112 
1113         if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1114                 return err;
1115 
1116         skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1117 
1118         /*
1119          *      Put the data on the end
1120          */
1121 
1122         skb_reset_transport_header(skb);
1123         skb_put(skb, len);
1124 
1125         err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1126         if (err) {
1127                 kfree_skb(skb);
1128                 return err;
1129         }
1130 
1131         /*
1132          *      If the Q BIT Include socket option is in force, the first
1133          *      byte of the user data is the logical value of the Q Bit.
1134          */
1135         if (rose->qbitincl) {
1136                 qbit = skb->data[0];
1137                 skb_pull(skb, 1);
1138         }
1139 
1140         /*
1141          *      Push down the ROSE header
1142          */
1143         asmptr = skb_push(skb, ROSE_MIN_LEN);
1144 
1145         /* Build a ROSE Network header */
1146         asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1147         asmptr[1] = (rose->lci >> 0) & 0xFF;
1148         asmptr[2] = ROSE_DATA;
1149 
1150         if (qbit)
1151                 asmptr[0] |= ROSE_Q_BIT;
1152 
1153         if (sk->sk_state != TCP_ESTABLISHED) {
1154                 kfree_skb(skb);
1155                 return -ENOTCONN;
1156         }
1157 
1158 #ifdef M_BIT
1159 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1160         if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1161                 unsigned char header[ROSE_MIN_LEN];
1162                 struct sk_buff *skbn;
1163                 int frontlen;
1164                 int lg;
1165 
1166                 /* Save a copy of the Header */
1167                 skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
1168                 skb_pull(skb, ROSE_MIN_LEN);
1169 
1170                 frontlen = skb_headroom(skb);
1171 
1172                 while (skb->len > 0) {
1173                         if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1174                                 kfree_skb(skb);
1175                                 return err;
1176                         }
1177 
1178                         skbn->sk   = sk;
1179                         skbn->free = 1;
1180                         skbn->arp  = 1;
1181 
1182                         skb_reserve(skbn, frontlen);
1183 
1184                         lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1185 
1186                         /* Copy the user data */
1187                         skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
1188                         skb_pull(skb, lg);
1189 
1190                         /* Duplicate the Header */
1191                         skb_push(skbn, ROSE_MIN_LEN);
1192                         skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
1193 
1194                         if (skb->len > 0)
1195                                 skbn->data[2] |= M_BIT;
1196 
1197                         skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1198                 }
1199 
1200                 skb->free = 1;
1201                 kfree_skb(skb);
1202         } else {
1203                 skb_queue_tail(&sk->sk_write_queue, skb);               /* Throw it on the queue */
1204         }
1205 #else
1206         skb_queue_tail(&sk->sk_write_queue, skb);       /* Shove it onto the queue */
1207 #endif
1208 
1209         rose_kick(sk);
1210 
1211         return len;
1212 }
1213 
1214 
1215 static int rose_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1216                         int flags)
1217 {
1218         struct sock *sk = sock->sk;
1219         struct rose_sock *rose = rose_sk(sk);
1220         size_t copied;
1221         unsigned char *asmptr;
1222         struct sk_buff *skb;
1223         int n, er, qbit;
1224 
1225         /*
1226          * This works for seqpacket too. The receiver has ordered the queue for
1227          * us! We do one quick check first though
1228          */
1229         if (sk->sk_state != TCP_ESTABLISHED)
1230                 return -ENOTCONN;
1231 
1232         /* Now we can treat all alike */
1233         if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1234                 return er;
1235 
1236         qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1237 
1238         skb_pull(skb, ROSE_MIN_LEN);
1239 
1240         if (rose->qbitincl) {
1241                 asmptr  = skb_push(skb, 1);
1242                 *asmptr = qbit;
1243         }
1244 
1245         skb_reset_transport_header(skb);
1246         copied     = skb->len;
1247 
1248         if (copied > size) {
1249                 copied = size;
1250                 msg->msg_flags |= MSG_TRUNC;
1251         }
1252 
1253         skb_copy_datagram_msg(skb, 0, msg, copied);
1254 
1255         if (msg->msg_name) {
1256                 struct sockaddr_rose *srose;
1257                 DECLARE_SOCKADDR(struct full_sockaddr_rose *, full_srose,
1258                                  msg->msg_name);
1259 
1260                 memset(msg->msg_name, 0, sizeof(struct full_sockaddr_rose));
1261                 srose = msg->msg_name;
1262                 srose->srose_family = AF_ROSE;
1263                 srose->srose_addr   = rose->dest_addr;
1264                 srose->srose_call   = rose->dest_call;
1265                 srose->srose_ndigis = rose->dest_ndigis;
1266                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1267                         full_srose->srose_digis[n] = rose->dest_digis[n];
1268                 msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1269         }
1270 
1271         skb_free_datagram(sk, skb);
1272 
1273         return copied;
1274 }
1275 
1276 
1277 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1278 {
1279         struct sock *sk = sock->sk;
1280         struct rose_sock *rose = rose_sk(sk);
1281         void __user *argp = (void __user *)arg;
1282 
1283         switch (cmd) {
1284         case TIOCOUTQ: {
1285                 long amount;
1286 
1287                 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1288                 if (amount < 0)
1289                         amount = 0;
1290                 return put_user(amount, (unsigned int __user *) argp);
1291         }
1292 
1293         case TIOCINQ: {
1294                 struct sk_buff *skb;
1295                 long amount = 0L;
1296                 /* These two are safe on a single CPU system as only user tasks fiddle here */
1297                 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1298                         amount = skb->len;
1299                 return put_user(amount, (unsigned int __user *) argp);
1300         }
1301 
1302         case SIOCGSTAMP:
1303                 return sock_get_timestamp(sk, (struct timeval __user *) argp);
1304 
1305         case SIOCGSTAMPNS:
1306                 return sock_get_timestampns(sk, (struct timespec __user *) argp);
1307 
1308         case SIOCGIFADDR:
1309         case SIOCSIFADDR:
1310         case SIOCGIFDSTADDR:
1311         case SIOCSIFDSTADDR:
1312         case SIOCGIFBRDADDR:
1313         case SIOCSIFBRDADDR:
1314         case SIOCGIFNETMASK:
1315         case SIOCSIFNETMASK:
1316         case SIOCGIFMETRIC:
1317         case SIOCSIFMETRIC:
1318                 return -EINVAL;
1319 
1320         case SIOCADDRT:
1321         case SIOCDELRT:
1322         case SIOCRSCLRRT:
1323                 if (!capable(CAP_NET_ADMIN))
1324                         return -EPERM;
1325                 return rose_rt_ioctl(cmd, argp);
1326 
1327         case SIOCRSGCAUSE: {
1328                 struct rose_cause_struct rose_cause;
1329                 rose_cause.cause      = rose->cause;
1330                 rose_cause.diagnostic = rose->diagnostic;
1331                 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1332         }
1333 
1334         case SIOCRSSCAUSE: {
1335                 struct rose_cause_struct rose_cause;
1336                 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1337                         return -EFAULT;
1338                 rose->cause      = rose_cause.cause;
1339                 rose->diagnostic = rose_cause.diagnostic;
1340                 return 0;
1341         }
1342 
1343         case SIOCRSSL2CALL:
1344                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
1345                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1346                         ax25_listen_release(&rose_callsign, NULL);
1347                 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1348                         return -EFAULT;
1349                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1350                         return ax25_listen_register(&rose_callsign, NULL);
1351 
1352                 return 0;
1353 
1354         case SIOCRSGL2CALL:
1355                 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1356 
1357         case SIOCRSACCEPT:
1358                 if (rose->state == ROSE_STATE_5) {
1359                         rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1360                         rose_start_idletimer(sk);
1361                         rose->condition = 0x00;
1362                         rose->vs        = 0;
1363                         rose->va        = 0;
1364                         rose->vr        = 0;
1365                         rose->vl        = 0;
1366                         rose->state     = ROSE_STATE_3;
1367                 }
1368                 return 0;
1369 
1370         default:
1371                 return -ENOIOCTLCMD;
1372         }
1373 
1374         return 0;
1375 }
1376 
1377 #ifdef CONFIG_PROC_FS
1378 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1379         __acquires(rose_list_lock)
1380 {
1381         spin_lock_bh(&rose_list_lock);
1382         return seq_hlist_start_head(&rose_list, *pos);
1383 }
1384 
1385 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1386 {
1387         return seq_hlist_next(v, &rose_list, pos);
1388 }
1389 
1390 static void rose_info_stop(struct seq_file *seq, void *v)
1391         __releases(rose_list_lock)
1392 {
1393         spin_unlock_bh(&rose_list_lock);
1394 }
1395 
1396 static int rose_info_show(struct seq_file *seq, void *v)
1397 {
1398         char buf[11], rsbuf[11];
1399 
1400         if (v == SEQ_START_TOKEN)
1401                 seq_puts(seq,
1402                          "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1403 
1404         else {
1405                 struct sock *s = sk_entry(v);
1406                 struct rose_sock *rose = rose_sk(s);
1407                 const char *devname, *callsign;
1408                 const struct net_device *dev = rose->device;
1409 
1410                 if (!dev)
1411                         devname = "???";
1412                 else
1413                         devname = dev->name;
1414 
1415                 seq_printf(seq, "%-10s %-9s ",
1416                            rose2asc(rsbuf, &rose->dest_addr),
1417                            ax2asc(buf, &rose->dest_call));
1418 
1419                 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1420                         callsign = "??????-?";
1421                 else
1422                         callsign = ax2asc(buf, &rose->source_call);
1423 
1424                 seq_printf(seq,
1425                            "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1426                         rose2asc(rsbuf, &rose->source_addr),
1427                         callsign,
1428                         devname,
1429                         rose->lci & 0x0FFF,
1430                         (rose->neighbour) ? rose->neighbour->number : 0,
1431                         rose->state,
1432                         rose->vs,
1433                         rose->vr,
1434                         rose->va,
1435                         ax25_display_timer(&rose->timer) / HZ,
1436                         rose->t1 / HZ,
1437                         rose->t2 / HZ,
1438                         rose->t3 / HZ,
1439                         rose->hb / HZ,
1440                         ax25_display_timer(&rose->idletimer) / (60 * HZ),
1441                         rose->idle / (60 * HZ),
1442                         sk_wmem_alloc_get(s),
1443                         sk_rmem_alloc_get(s),
1444                         s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1445         }
1446 
1447         return 0;
1448 }
1449 
1450 static const struct seq_operations rose_info_seqops = {
1451         .start = rose_info_start,
1452         .next = rose_info_next,
1453         .stop = rose_info_stop,
1454         .show = rose_info_show,
1455 };
1456 
1457 static int rose_info_open(struct inode *inode, struct file *file)
1458 {
1459         return seq_open(file, &rose_info_seqops);
1460 }
1461 
1462 static const struct file_operations rose_info_fops = {
1463         .open = rose_info_open,
1464         .read = seq_read,
1465         .llseek = seq_lseek,
1466         .release = seq_release,
1467 };
1468 #endif  /* CONFIG_PROC_FS */
1469 
1470 static const struct net_proto_family rose_family_ops = {
1471         .family         =       PF_ROSE,
1472         .create         =       rose_create,
1473         .owner          =       THIS_MODULE,
1474 };
1475 
1476 static const struct proto_ops rose_proto_ops = {
1477         .family         =       PF_ROSE,
1478         .owner          =       THIS_MODULE,
1479         .release        =       rose_release,
1480         .bind           =       rose_bind,
1481         .connect        =       rose_connect,
1482         .socketpair     =       sock_no_socketpair,
1483         .accept         =       rose_accept,
1484         .getname        =       rose_getname,
1485         .poll           =       datagram_poll,
1486         .ioctl          =       rose_ioctl,
1487         .listen         =       rose_listen,
1488         .shutdown       =       sock_no_shutdown,
1489         .setsockopt     =       rose_setsockopt,
1490         .getsockopt     =       rose_getsockopt,
1491         .sendmsg        =       rose_sendmsg,
1492         .recvmsg        =       rose_recvmsg,
1493         .mmap           =       sock_no_mmap,
1494         .sendpage       =       sock_no_sendpage,
1495 };
1496 
1497 static struct notifier_block rose_dev_notifier = {
1498         .notifier_call  =       rose_device_event,
1499 };
1500 
1501 static struct net_device **dev_rose;
1502 
1503 static struct ax25_protocol rose_pid = {
1504         .pid    = AX25_P_ROSE,
1505         .func   = rose_route_frame
1506 };
1507 
1508 static struct ax25_linkfail rose_linkfail_notifier = {
1509         .func   = rose_link_failed
1510 };
1511 
1512 static int __init rose_proto_init(void)
1513 {
1514         int i;
1515         int rc;
1516 
1517         if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1518                 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1519                 rc = -EINVAL;
1520                 goto out;
1521         }
1522 
1523         rc = proto_register(&rose_proto, 0);
1524         if (rc != 0)
1525                 goto out;
1526 
1527         rose_callsign = null_ax25_address;
1528 
1529         dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1530         if (dev_rose == NULL) {
1531                 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1532                 rc = -ENOMEM;
1533                 goto out_proto_unregister;
1534         }
1535 
1536         for (i = 0; i < rose_ndevs; i++) {
1537                 struct net_device *dev;
1538                 char name[IFNAMSIZ];
1539 
1540                 sprintf(name, "rose%d", i);
1541                 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, rose_setup);
1542                 if (!dev) {
1543                         printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1544                         rc = -ENOMEM;
1545                         goto fail;
1546                 }
1547                 rc = register_netdev(dev);
1548                 if (rc) {
1549                         printk(KERN_ERR "ROSE: netdevice registration failed\n");
1550                         free_netdev(dev);
1551                         goto fail;
1552                 }
1553                 rose_set_lockdep_key(dev);
1554                 dev_rose[i] = dev;
1555         }
1556 
1557         sock_register(&rose_family_ops);
1558         register_netdevice_notifier(&rose_dev_notifier);
1559 
1560         ax25_register_pid(&rose_pid);
1561         ax25_linkfail_register(&rose_linkfail_notifier);
1562 
1563 #ifdef CONFIG_SYSCTL
1564         rose_register_sysctl();
1565 #endif
1566         rose_loopback_init();
1567 
1568         rose_add_loopback_neigh();
1569 
1570         proc_create("rose", 0444, init_net.proc_net, &rose_info_fops);
1571         proc_create("rose_neigh", 0444, init_net.proc_net,
1572                     &rose_neigh_fops);
1573         proc_create("rose_nodes", 0444, init_net.proc_net,
1574                     &rose_nodes_fops);
1575         proc_create("rose_routes", 0444, init_net.proc_net,
1576                     &rose_routes_fops);
1577 out:
1578         return rc;
1579 fail:
1580         while (--i >= 0) {
1581                 unregister_netdev(dev_rose[i]);
1582                 free_netdev(dev_rose[i]);
1583         }
1584         kfree(dev_rose);
1585 out_proto_unregister:
1586         proto_unregister(&rose_proto);
1587         goto out;
1588 }
1589 module_init(rose_proto_init);
1590 
1591 module_param(rose_ndevs, int, 0);
1592 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1593 
1594 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1595 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1596 MODULE_LICENSE("GPL");
1597 MODULE_ALIAS_NETPROTO(PF_ROSE);
1598 
1599 static void __exit rose_exit(void)
1600 {
1601         int i;
1602 
1603         remove_proc_entry("rose", init_net.proc_net);
1604         remove_proc_entry("rose_neigh", init_net.proc_net);
1605         remove_proc_entry("rose_nodes", init_net.proc_net);
1606         remove_proc_entry("rose_routes", init_net.proc_net);
1607         rose_loopback_clear();
1608 
1609         rose_rt_free();
1610 
1611         ax25_protocol_release(AX25_P_ROSE);
1612         ax25_linkfail_release(&rose_linkfail_notifier);
1613 
1614         if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1615                 ax25_listen_release(&rose_callsign, NULL);
1616 
1617 #ifdef CONFIG_SYSCTL
1618         rose_unregister_sysctl();
1619 #endif
1620         unregister_netdevice_notifier(&rose_dev_notifier);
1621 
1622         sock_unregister(PF_ROSE);
1623 
1624         for (i = 0; i < rose_ndevs; i++) {
1625                 struct net_device *dev = dev_rose[i];
1626 
1627                 if (dev) {
1628                         unregister_netdev(dev);
1629                         free_netdev(dev);
1630                 }
1631         }
1632 
1633         kfree(dev_rose);
1634         proto_unregister(&rose_proto);
1635 }
1636 
1637 module_exit(rose_exit);
1638 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp