~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rose/af_rose.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This program is free software; you can redistribute it and/or modify
  3  * it under the terms of the GNU General Public License as published by
  4  * the Free Software Foundation; either version 2 of the License, or
  5  * (at your option) any later version.
  6  *
  7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
 10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
 11  */
 12 
 13 #include <linux/capability.h>
 14 #include <linux/module.h>
 15 #include <linux/moduleparam.h>
 16 #include <linux/init.h>
 17 #include <linux/errno.h>
 18 #include <linux/types.h>
 19 #include <linux/socket.h>
 20 #include <linux/in.h>
 21 #include <linux/slab.h>
 22 #include <linux/kernel.h>
 23 #include <linux/sched.h>
 24 #include <linux/spinlock.h>
 25 #include <linux/timer.h>
 26 #include <linux/string.h>
 27 #include <linux/sockios.h>
 28 #include <linux/net.h>
 29 #include <linux/stat.h>
 30 #include <net/net_namespace.h>
 31 #include <net/ax25.h>
 32 #include <linux/inet.h>
 33 #include <linux/netdevice.h>
 34 #include <linux/if_arp.h>
 35 #include <linux/skbuff.h>
 36 #include <net/sock.h>
 37 #include <asm/uaccess.h>
 38 #include <linux/fcntl.h>
 39 #include <linux/termios.h>
 40 #include <linux/mm.h>
 41 #include <linux/interrupt.h>
 42 #include <linux/notifier.h>
 43 #include <net/rose.h>
 44 #include <linux/proc_fs.h>
 45 #include <linux/seq_file.h>
 46 #include <net/tcp_states.h>
 47 #include <net/ip.h>
 48 #include <net/arp.h>
 49 
 50 static int rose_ndevs = 10;
 51 
 52 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
 53 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
 54 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
 55 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
 56 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
 57 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
 58 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
 59 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
 60 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
 61 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
 62 
 63 static HLIST_HEAD(rose_list);
 64 static DEFINE_SPINLOCK(rose_list_lock);
 65 
 66 static const struct proto_ops rose_proto_ops;
 67 
 68 ax25_address rose_callsign;
 69 
 70 /*
 71  * ROSE network devices are virtual network devices encapsulating ROSE
 72  * frames into AX.25 which will be sent through an AX.25 device, so form a
 73  * special "super class" of normal net devices; split their locks off into a
 74  * separate class since they always nest.
 75  */
 76 static struct lock_class_key rose_netdev_xmit_lock_key;
 77 static struct lock_class_key rose_netdev_addr_lock_key;
 78 
 79 static void rose_set_lockdep_one(struct net_device *dev,
 80                                  struct netdev_queue *txq,
 81                                  void *_unused)
 82 {
 83         lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
 84 }
 85 
 86 static void rose_set_lockdep_key(struct net_device *dev)
 87 {
 88         lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
 89         netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
 90 }
 91 
 92 /*
 93  *      Convert a ROSE address into text.
 94  */
 95 char *rose2asc(char *buf, const rose_address *addr)
 96 {
 97         if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
 98             addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
 99             addr->rose_addr[4] == 0x00) {
100                 strcpy(buf, "*");
101         } else {
102                 sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
103                                                 addr->rose_addr[1] & 0xFF,
104                                                 addr->rose_addr[2] & 0xFF,
105                                                 addr->rose_addr[3] & 0xFF,
106                                                 addr->rose_addr[4] & 0xFF);
107         }
108 
109         return buf;
110 }
111 
112 /*
113  *      Compare two ROSE addresses, 0 == equal.
114  */
115 int rosecmp(rose_address *addr1, rose_address *addr2)
116 {
117         int i;
118 
119         for (i = 0; i < 5; i++)
120                 if (addr1->rose_addr[i] != addr2->rose_addr[i])
121                         return 1;
122 
123         return 0;
124 }
125 
126 /*
127  *      Compare two ROSE addresses for only mask digits, 0 == equal.
128  */
129 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
130 {
131         unsigned int i, j;
132 
133         if (mask > 10)
134                 return 1;
135 
136         for (i = 0; i < mask; i++) {
137                 j = i / 2;
138 
139                 if ((i % 2) != 0) {
140                         if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
141                                 return 1;
142                 } else {
143                         if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
144                                 return 1;
145                 }
146         }
147 
148         return 0;
149 }
150 
151 /*
152  *      Socket removal during an interrupt is now safe.
153  */
154 static void rose_remove_socket(struct sock *sk)
155 {
156         spin_lock_bh(&rose_list_lock);
157         sk_del_node_init(sk);
158         spin_unlock_bh(&rose_list_lock);
159 }
160 
161 /*
162  *      Kill all bound sockets on a broken link layer connection to a
163  *      particular neighbour.
164  */
165 void rose_kill_by_neigh(struct rose_neigh *neigh)
166 {
167         struct sock *s;
168         struct hlist_node *node;
169 
170         spin_lock_bh(&rose_list_lock);
171         sk_for_each(s, node, &rose_list) {
172                 struct rose_sock *rose = rose_sk(s);
173 
174                 if (rose->neighbour == neigh) {
175                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
176                         rose->neighbour->use--;
177                         rose->neighbour = NULL;
178                 }
179         }
180         spin_unlock_bh(&rose_list_lock);
181 }
182 
183 /*
184  *      Kill all bound sockets on a dropped device.
185  */
186 static void rose_kill_by_device(struct net_device *dev)
187 {
188         struct sock *s;
189         struct hlist_node *node;
190 
191         spin_lock_bh(&rose_list_lock);
192         sk_for_each(s, node, &rose_list) {
193                 struct rose_sock *rose = rose_sk(s);
194 
195                 if (rose->device == dev) {
196                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
197                         rose->neighbour->use--;
198                         rose->device = NULL;
199                 }
200         }
201         spin_unlock_bh(&rose_list_lock);
202 }
203 
204 /*
205  *      Handle device status changes.
206  */
207 static int rose_device_event(struct notifier_block *this, unsigned long event,
208         void *ptr)
209 {
210         struct net_device *dev = (struct net_device *)ptr;
211 
212         if (!net_eq(dev_net(dev), &init_net))
213                 return NOTIFY_DONE;
214 
215         if (event != NETDEV_DOWN)
216                 return NOTIFY_DONE;
217 
218         switch (dev->type) {
219         case ARPHRD_ROSE:
220                 rose_kill_by_device(dev);
221                 break;
222         case ARPHRD_AX25:
223                 rose_link_device_down(dev);
224                 rose_rt_device_down(dev);
225                 break;
226         }
227 
228         return NOTIFY_DONE;
229 }
230 
231 /*
232  *      Add a socket to the bound sockets list.
233  */
234 static void rose_insert_socket(struct sock *sk)
235 {
236 
237         spin_lock_bh(&rose_list_lock);
238         sk_add_node(sk, &rose_list);
239         spin_unlock_bh(&rose_list_lock);
240 }
241 
242 /*
243  *      Find a socket that wants to accept the Call Request we just
244  *      received.
245  */
246 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
247 {
248         struct sock *s;
249         struct hlist_node *node;
250 
251         spin_lock_bh(&rose_list_lock);
252         sk_for_each(s, node, &rose_list) {
253                 struct rose_sock *rose = rose_sk(s);
254 
255                 if (!rosecmp(&rose->source_addr, addr) &&
256                     !ax25cmp(&rose->source_call, call) &&
257                     !rose->source_ndigis && s->sk_state == TCP_LISTEN)
258                         goto found;
259         }
260 
261         sk_for_each(s, node, &rose_list) {
262                 struct rose_sock *rose = rose_sk(s);
263 
264                 if (!rosecmp(&rose->source_addr, addr) &&
265                     !ax25cmp(&rose->source_call, &null_ax25_address) &&
266                     s->sk_state == TCP_LISTEN)
267                         goto found;
268         }
269         s = NULL;
270 found:
271         spin_unlock_bh(&rose_list_lock);
272         return s;
273 }
274 
275 /*
276  *      Find a connected ROSE socket given my LCI and device.
277  */
278 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
279 {
280         struct sock *s;
281         struct hlist_node *node;
282 
283         spin_lock_bh(&rose_list_lock);
284         sk_for_each(s, node, &rose_list) {
285                 struct rose_sock *rose = rose_sk(s);
286 
287                 if (rose->lci == lci && rose->neighbour == neigh)
288                         goto found;
289         }
290         s = NULL;
291 found:
292         spin_unlock_bh(&rose_list_lock);
293         return s;
294 }
295 
296 /*
297  *      Find a unique LCI for a given device.
298  */
299 unsigned int rose_new_lci(struct rose_neigh *neigh)
300 {
301         int lci;
302 
303         if (neigh->dce_mode) {
304                 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
305                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
306                                 return lci;
307         } else {
308                 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
309                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
310                                 return lci;
311         }
312 
313         return 0;
314 }
315 
316 /*
317  *      Deferred destroy.
318  */
319 void rose_destroy_socket(struct sock *);
320 
321 /*
322  *      Handler for deferred kills.
323  */
324 static void rose_destroy_timer(unsigned long data)
325 {
326         rose_destroy_socket((struct sock *)data);
327 }
328 
329 /*
330  *      This is called from user mode and the timers. Thus it protects itself
331  *      against interrupt users but doesn't worry about being called during
332  *      work.  Once it is removed from the queue no interrupt or bottom half
333  *      will touch it and we are (fairly 8-) ) safe.
334  */
335 void rose_destroy_socket(struct sock *sk)
336 {
337         struct sk_buff *skb;
338 
339         rose_remove_socket(sk);
340         rose_stop_heartbeat(sk);
341         rose_stop_idletimer(sk);
342         rose_stop_timer(sk);
343 
344         rose_clear_queues(sk);          /* Flush the queues */
345 
346         while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
347                 if (skb->sk != sk) {    /* A pending connection */
348                         /* Queue the unaccepted socket for death */
349                         sock_set_flag(skb->sk, SOCK_DEAD);
350                         rose_start_heartbeat(skb->sk);
351                         rose_sk(skb->sk)->state = ROSE_STATE_0;
352                 }
353 
354                 kfree_skb(skb);
355         }
356 
357         if (sk_has_allocations(sk)) {
358                 /* Defer: outstanding buffers */
359                 setup_timer(&sk->sk_timer, rose_destroy_timer,
360                                 (unsigned long)sk);
361                 sk->sk_timer.expires  = jiffies + 10 * HZ;
362                 add_timer(&sk->sk_timer);
363         } else
364                 sock_put(sk);
365 }
366 
367 /*
368  *      Handling for system calls applied via the various interfaces to a
369  *      ROSE socket object.
370  */
371 
372 static int rose_setsockopt(struct socket *sock, int level, int optname,
373         char __user *optval, unsigned int optlen)
374 {
375         struct sock *sk = sock->sk;
376         struct rose_sock *rose = rose_sk(sk);
377         int opt;
378 
379         if (level != SOL_ROSE)
380                 return -ENOPROTOOPT;
381 
382         if (optlen < sizeof(int))
383                 return -EINVAL;
384 
385         if (get_user(opt, (int __user *)optval))
386                 return -EFAULT;
387 
388         switch (optname) {
389         case ROSE_DEFER:
390                 rose->defer = opt ? 1 : 0;
391                 return 0;
392 
393         case ROSE_T1:
394                 if (opt < 1)
395                         return -EINVAL;
396                 rose->t1 = opt * HZ;
397                 return 0;
398 
399         case ROSE_T2:
400                 if (opt < 1)
401                         return -EINVAL;
402                 rose->t2 = opt * HZ;
403                 return 0;
404 
405         case ROSE_T3:
406                 if (opt < 1)
407                         return -EINVAL;
408                 rose->t3 = opt * HZ;
409                 return 0;
410 
411         case ROSE_HOLDBACK:
412                 if (opt < 1)
413                         return -EINVAL;
414                 rose->hb = opt * HZ;
415                 return 0;
416 
417         case ROSE_IDLE:
418                 if (opt < 0)
419                         return -EINVAL;
420                 rose->idle = opt * 60 * HZ;
421                 return 0;
422 
423         case ROSE_QBITINCL:
424                 rose->qbitincl = opt ? 1 : 0;
425                 return 0;
426 
427         default:
428                 return -ENOPROTOOPT;
429         }
430 }
431 
432 static int rose_getsockopt(struct socket *sock, int level, int optname,
433         char __user *optval, int __user *optlen)
434 {
435         struct sock *sk = sock->sk;
436         struct rose_sock *rose = rose_sk(sk);
437         int val = 0;
438         int len;
439 
440         if (level != SOL_ROSE)
441                 return -ENOPROTOOPT;
442 
443         if (get_user(len, optlen))
444                 return -EFAULT;
445 
446         if (len < 0)
447                 return -EINVAL;
448 
449         switch (optname) {
450         case ROSE_DEFER:
451                 val = rose->defer;
452                 break;
453 
454         case ROSE_T1:
455                 val = rose->t1 / HZ;
456                 break;
457 
458         case ROSE_T2:
459                 val = rose->t2 / HZ;
460                 break;
461 
462         case ROSE_T3:
463                 val = rose->t3 / HZ;
464                 break;
465 
466         case ROSE_HOLDBACK:
467                 val = rose->hb / HZ;
468                 break;
469 
470         case ROSE_IDLE:
471                 val = rose->idle / (60 * HZ);
472                 break;
473 
474         case ROSE_QBITINCL:
475                 val = rose->qbitincl;
476                 break;
477 
478         default:
479                 return -ENOPROTOOPT;
480         }
481 
482         len = min_t(unsigned int, len, sizeof(int));
483 
484         if (put_user(len, optlen))
485                 return -EFAULT;
486 
487         return copy_to_user(optval, &val, len) ? -EFAULT : 0;
488 }
489 
490 static int rose_listen(struct socket *sock, int backlog)
491 {
492         struct sock *sk = sock->sk;
493 
494         if (sk->sk_state != TCP_LISTEN) {
495                 struct rose_sock *rose = rose_sk(sk);
496 
497                 rose->dest_ndigis = 0;
498                 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
499                 memset(&rose->dest_call, 0, AX25_ADDR_LEN);
500                 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
501                 sk->sk_max_ack_backlog = backlog;
502                 sk->sk_state           = TCP_LISTEN;
503                 return 0;
504         }
505 
506         return -EOPNOTSUPP;
507 }
508 
509 static struct proto rose_proto = {
510         .name     = "ROSE",
511         .owner    = THIS_MODULE,
512         .obj_size = sizeof(struct rose_sock),
513 };
514 
515 static int rose_create(struct net *net, struct socket *sock, int protocol,
516                        int kern)
517 {
518         struct sock *sk;
519         struct rose_sock *rose;
520 
521         if (!net_eq(net, &init_net))
522                 return -EAFNOSUPPORT;
523 
524         if (sock->type != SOCK_SEQPACKET || protocol != 0)
525                 return -ESOCKTNOSUPPORT;
526 
527         sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto);
528         if (sk == NULL)
529                 return -ENOMEM;
530 
531         rose = rose_sk(sk);
532 
533         sock_init_data(sock, sk);
534 
535         skb_queue_head_init(&rose->ack_queue);
536 #ifdef M_BIT
537         skb_queue_head_init(&rose->frag_queue);
538         rose->fraglen    = 0;
539 #endif
540 
541         sock->ops    = &rose_proto_ops;
542         sk->sk_protocol = protocol;
543 
544         init_timer(&rose->timer);
545         init_timer(&rose->idletimer);
546 
547         rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
548         rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
549         rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
550         rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
551         rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
552 
553         rose->state = ROSE_STATE_0;
554 
555         return 0;
556 }
557 
558 static struct sock *rose_make_new(struct sock *osk)
559 {
560         struct sock *sk;
561         struct rose_sock *rose, *orose;
562 
563         if (osk->sk_type != SOCK_SEQPACKET)
564                 return NULL;
565 
566         sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto);
567         if (sk == NULL)
568                 return NULL;
569 
570         rose = rose_sk(sk);
571 
572         sock_init_data(NULL, sk);
573 
574         skb_queue_head_init(&rose->ack_queue);
575 #ifdef M_BIT
576         skb_queue_head_init(&rose->frag_queue);
577         rose->fraglen  = 0;
578 #endif
579 
580         sk->sk_type     = osk->sk_type;
581         sk->sk_priority = osk->sk_priority;
582         sk->sk_protocol = osk->sk_protocol;
583         sk->sk_rcvbuf   = osk->sk_rcvbuf;
584         sk->sk_sndbuf   = osk->sk_sndbuf;
585         sk->sk_state    = TCP_ESTABLISHED;
586         sock_copy_flags(sk, osk);
587 
588         init_timer(&rose->timer);
589         init_timer(&rose->idletimer);
590 
591         orose           = rose_sk(osk);
592         rose->t1        = orose->t1;
593         rose->t2        = orose->t2;
594         rose->t3        = orose->t3;
595         rose->hb        = orose->hb;
596         rose->idle      = orose->idle;
597         rose->defer     = orose->defer;
598         rose->device    = orose->device;
599         rose->qbitincl  = orose->qbitincl;
600 
601         return sk;
602 }
603 
604 static int rose_release(struct socket *sock)
605 {
606         struct sock *sk = sock->sk;
607         struct rose_sock *rose;
608 
609         if (sk == NULL) return 0;
610 
611         sock_hold(sk);
612         sock_orphan(sk);
613         lock_sock(sk);
614         rose = rose_sk(sk);
615 
616         switch (rose->state) {
617         case ROSE_STATE_0:
618                 release_sock(sk);
619                 rose_disconnect(sk, 0, -1, -1);
620                 lock_sock(sk);
621                 rose_destroy_socket(sk);
622                 break;
623 
624         case ROSE_STATE_2:
625                 rose->neighbour->use--;
626                 release_sock(sk);
627                 rose_disconnect(sk, 0, -1, -1);
628                 lock_sock(sk);
629                 rose_destroy_socket(sk);
630                 break;
631 
632         case ROSE_STATE_1:
633         case ROSE_STATE_3:
634         case ROSE_STATE_4:
635         case ROSE_STATE_5:
636                 rose_clear_queues(sk);
637                 rose_stop_idletimer(sk);
638                 rose_write_internal(sk, ROSE_CLEAR_REQUEST);
639                 rose_start_t3timer(sk);
640                 rose->state  = ROSE_STATE_2;
641                 sk->sk_state    = TCP_CLOSE;
642                 sk->sk_shutdown |= SEND_SHUTDOWN;
643                 sk->sk_state_change(sk);
644                 sock_set_flag(sk, SOCK_DEAD);
645                 sock_set_flag(sk, SOCK_DESTROY);
646                 break;
647 
648         default:
649                 break;
650         }
651 
652         sock->sk = NULL;
653         release_sock(sk);
654         sock_put(sk);
655 
656         return 0;
657 }
658 
659 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
660 {
661         struct sock *sk = sock->sk;
662         struct rose_sock *rose = rose_sk(sk);
663         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
664         struct net_device *dev;
665         ax25_address *source;
666         ax25_uid_assoc *user;
667         int n;
668 
669         if (!sock_flag(sk, SOCK_ZAPPED))
670                 return -EINVAL;
671 
672         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
673                 return -EINVAL;
674 
675         if (addr->srose_family != AF_ROSE)
676                 return -EINVAL;
677 
678         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
679                 return -EINVAL;
680 
681         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
682                 return -EINVAL;
683 
684         if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
685                 return -EADDRNOTAVAIL;
686 
687         source = &addr->srose_call;
688 
689         user = ax25_findbyuid(current_euid());
690         if (user) {
691                 rose->source_call = user->call;
692                 ax25_uid_put(user);
693         } else {
694                 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
695                         return -EACCES;
696                 rose->source_call   = *source;
697         }
698 
699         rose->source_addr   = addr->srose_addr;
700         rose->device        = dev;
701         rose->source_ndigis = addr->srose_ndigis;
702 
703         if (addr_len == sizeof(struct full_sockaddr_rose)) {
704                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
705                 for (n = 0 ; n < addr->srose_ndigis ; n++)
706                         rose->source_digis[n] = full_addr->srose_digis[n];
707         } else {
708                 if (rose->source_ndigis == 1) {
709                         rose->source_digis[0] = addr->srose_digi;
710                 }
711         }
712 
713         rose_insert_socket(sk);
714 
715         sock_reset_flag(sk, SOCK_ZAPPED);
716 
717         return 0;
718 }
719 
720 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
721 {
722         struct sock *sk = sock->sk;
723         struct rose_sock *rose = rose_sk(sk);
724         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
725         unsigned char cause, diagnostic;
726         struct net_device *dev;
727         ax25_uid_assoc *user;
728         int n, err = 0;
729 
730         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
731                 return -EINVAL;
732 
733         if (addr->srose_family != AF_ROSE)
734                 return -EINVAL;
735 
736         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
737                 return -EINVAL;
738 
739         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
740                 return -EINVAL;
741 
742         /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
743         if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
744                 return -EINVAL;
745 
746         lock_sock(sk);
747 
748         if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
749                 /* Connect completed during a ERESTARTSYS event */
750                 sock->state = SS_CONNECTED;
751                 goto out_release;
752         }
753 
754         if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
755                 sock->state = SS_UNCONNECTED;
756                 err = -ECONNREFUSED;
757                 goto out_release;
758         }
759 
760         if (sk->sk_state == TCP_ESTABLISHED) {
761                 /* No reconnect on a seqpacket socket */
762                 err = -EISCONN;
763                 goto out_release;
764         }
765 
766         sk->sk_state   = TCP_CLOSE;
767         sock->state = SS_UNCONNECTED;
768 
769         rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
770                                          &diagnostic, 0);
771         if (!rose->neighbour) {
772                 err = -ENETUNREACH;
773                 goto out_release;
774         }
775 
776         rose->lci = rose_new_lci(rose->neighbour);
777         if (!rose->lci) {
778                 err = -ENETUNREACH;
779                 goto out_release;
780         }
781 
782         if (sock_flag(sk, SOCK_ZAPPED)) {       /* Must bind first - autobinding in this may or may not work */
783                 sock_reset_flag(sk, SOCK_ZAPPED);
784 
785                 if ((dev = rose_dev_first()) == NULL) {
786                         err = -ENETUNREACH;
787                         goto out_release;
788                 }
789 
790                 user = ax25_findbyuid(current_euid());
791                 if (!user) {
792                         err = -EINVAL;
793                         goto out_release;
794                 }
795 
796                 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
797                 rose->source_call = user->call;
798                 rose->device      = dev;
799                 ax25_uid_put(user);
800 
801                 rose_insert_socket(sk);         /* Finish the bind */
802         }
803         rose->dest_addr   = addr->srose_addr;
804         rose->dest_call   = addr->srose_call;
805         rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
806         rose->dest_ndigis = addr->srose_ndigis;
807 
808         if (addr_len == sizeof(struct full_sockaddr_rose)) {
809                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
810                 for (n = 0 ; n < addr->srose_ndigis ; n++)
811                         rose->dest_digis[n] = full_addr->srose_digis[n];
812         } else {
813                 if (rose->dest_ndigis == 1) {
814                         rose->dest_digis[0] = addr->srose_digi;
815                 }
816         }
817 
818         /* Move to connecting socket, start sending Connect Requests */
819         sock->state   = SS_CONNECTING;
820         sk->sk_state     = TCP_SYN_SENT;
821 
822         rose->state = ROSE_STATE_1;
823 
824         rose->neighbour->use++;
825 
826         rose_write_internal(sk, ROSE_CALL_REQUEST);
827         rose_start_heartbeat(sk);
828         rose_start_t1timer(sk);
829 
830         /* Now the loop */
831         if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
832                 err = -EINPROGRESS;
833                 goto out_release;
834         }
835 
836         /*
837          * A Connect Ack with Choke or timeout or failed routing will go to
838          * closed.
839          */
840         if (sk->sk_state == TCP_SYN_SENT) {
841                 DEFINE_WAIT(wait);
842 
843                 for (;;) {
844                         prepare_to_wait(sk_sleep(sk), &wait,
845                                         TASK_INTERRUPTIBLE);
846                         if (sk->sk_state != TCP_SYN_SENT)
847                                 break;
848                         if (!signal_pending(current)) {
849                                 release_sock(sk);
850                                 schedule();
851                                 lock_sock(sk);
852                                 continue;
853                         }
854                         err = -ERESTARTSYS;
855                         break;
856                 }
857                 finish_wait(sk_sleep(sk), &wait);
858 
859                 if (err)
860                         goto out_release;
861         }
862 
863         if (sk->sk_state != TCP_ESTABLISHED) {
864                 sock->state = SS_UNCONNECTED;
865                 err = sock_error(sk);   /* Always set at this point */
866                 goto out_release;
867         }
868 
869         sock->state = SS_CONNECTED;
870 
871 out_release:
872         release_sock(sk);
873 
874         return err;
875 }
876 
877 static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
878 {
879         struct sk_buff *skb;
880         struct sock *newsk;
881         DEFINE_WAIT(wait);
882         struct sock *sk;
883         int err = 0;
884 
885         if ((sk = sock->sk) == NULL)
886                 return -EINVAL;
887 
888         lock_sock(sk);
889         if (sk->sk_type != SOCK_SEQPACKET) {
890                 err = -EOPNOTSUPP;
891                 goto out_release;
892         }
893 
894         if (sk->sk_state != TCP_LISTEN) {
895                 err = -EINVAL;
896                 goto out_release;
897         }
898 
899         /*
900          *      The write queue this time is holding sockets ready to use
901          *      hooked into the SABM we saved
902          */
903         for (;;) {
904                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
905 
906                 skb = skb_dequeue(&sk->sk_receive_queue);
907                 if (skb)
908                         break;
909 
910                 if (flags & O_NONBLOCK) {
911                         err = -EWOULDBLOCK;
912                         break;
913                 }
914                 if (!signal_pending(current)) {
915                         release_sock(sk);
916                         schedule();
917                         lock_sock(sk);
918                         continue;
919                 }
920                 err = -ERESTARTSYS;
921                 break;
922         }
923         finish_wait(sk_sleep(sk), &wait);
924         if (err)
925                 goto out_release;
926 
927         newsk = skb->sk;
928         sock_graft(newsk, newsock);
929 
930         /* Now attach up the new socket */
931         skb->sk = NULL;
932         kfree_skb(skb);
933         sk->sk_ack_backlog--;
934 
935 out_release:
936         release_sock(sk);
937 
938         return err;
939 }
940 
941 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
942         int *uaddr_len, int peer)
943 {
944         struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
945         struct sock *sk = sock->sk;
946         struct rose_sock *rose = rose_sk(sk);
947         int n;
948 
949         memset(srose, 0, sizeof(*srose));
950         if (peer != 0) {
951                 if (sk->sk_state != TCP_ESTABLISHED)
952                         return -ENOTCONN;
953                 srose->srose_family = AF_ROSE;
954                 srose->srose_addr   = rose->dest_addr;
955                 srose->srose_call   = rose->dest_call;
956                 srose->srose_ndigis = rose->dest_ndigis;
957                 for (n = 0; n < rose->dest_ndigis; n++)
958                         srose->srose_digis[n] = rose->dest_digis[n];
959         } else {
960                 srose->srose_family = AF_ROSE;
961                 srose->srose_addr   = rose->source_addr;
962                 srose->srose_call   = rose->source_call;
963                 srose->srose_ndigis = rose->source_ndigis;
964                 for (n = 0; n < rose->source_ndigis; n++)
965                         srose->srose_digis[n] = rose->source_digis[n];
966         }
967 
968         *uaddr_len = sizeof(struct full_sockaddr_rose);
969         return 0;
970 }
971 
972 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
973 {
974         struct sock *sk;
975         struct sock *make;
976         struct rose_sock *make_rose;
977         struct rose_facilities_struct facilities;
978         int n;
979 
980         skb->sk = NULL;         /* Initially we don't know who it's for */
981 
982         /*
983          *      skb->data points to the rose frame start
984          */
985         memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
986 
987         if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
988                                    skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
989                                    &facilities)) {
990                 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
991                 return 0;
992         }
993 
994         sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
995 
996         /*
997          * We can't accept the Call Request.
998          */
999         if (sk == NULL || sk_acceptq_is_full(sk) ||
1000             (make = rose_make_new(sk)) == NULL) {
1001                 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
1002                 return 0;
1003         }
1004 
1005         skb->sk     = make;
1006         make->sk_state = TCP_ESTABLISHED;
1007         make_rose = rose_sk(make);
1008 
1009         make_rose->lci           = lci;
1010         make_rose->dest_addr     = facilities.dest_addr;
1011         make_rose->dest_call     = facilities.dest_call;
1012         make_rose->dest_ndigis   = facilities.dest_ndigis;
1013         for (n = 0 ; n < facilities.dest_ndigis ; n++)
1014                 make_rose->dest_digis[n] = facilities.dest_digis[n];
1015         make_rose->source_addr   = facilities.source_addr;
1016         make_rose->source_call   = facilities.source_call;
1017         make_rose->source_ndigis = facilities.source_ndigis;
1018         for (n = 0 ; n < facilities.source_ndigis ; n++)
1019                 make_rose->source_digis[n]= facilities.source_digis[n];
1020         make_rose->neighbour     = neigh;
1021         make_rose->device        = dev;
1022         make_rose->facilities    = facilities;
1023 
1024         make_rose->neighbour->use++;
1025 
1026         if (rose_sk(sk)->defer) {
1027                 make_rose->state = ROSE_STATE_5;
1028         } else {
1029                 rose_write_internal(make, ROSE_CALL_ACCEPTED);
1030                 make_rose->state = ROSE_STATE_3;
1031                 rose_start_idletimer(make);
1032         }
1033 
1034         make_rose->condition = 0x00;
1035         make_rose->vs        = 0;
1036         make_rose->va        = 0;
1037         make_rose->vr        = 0;
1038         make_rose->vl        = 0;
1039         sk->sk_ack_backlog++;
1040 
1041         rose_insert_socket(make);
1042 
1043         skb_queue_head(&sk->sk_receive_queue, skb);
1044 
1045         rose_start_heartbeat(make);
1046 
1047         if (!sock_flag(sk, SOCK_DEAD))
1048                 sk->sk_data_ready(sk, skb->len);
1049 
1050         return 1;
1051 }
1052 
1053 static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
1054                         struct msghdr *msg, size_t len)
1055 {
1056         struct sock *sk = sock->sk;
1057         struct rose_sock *rose = rose_sk(sk);
1058         struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
1059         int err;
1060         struct full_sockaddr_rose srose;
1061         struct sk_buff *skb;
1062         unsigned char *asmptr;
1063         int n, size, qbit = 0;
1064 
1065         if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1066                 return -EINVAL;
1067 
1068         if (sock_flag(sk, SOCK_ZAPPED))
1069                 return -EADDRNOTAVAIL;
1070 
1071         if (sk->sk_shutdown & SEND_SHUTDOWN) {
1072                 send_sig(SIGPIPE, current, 0);
1073                 return -EPIPE;
1074         }
1075 
1076         if (rose->neighbour == NULL || rose->device == NULL)
1077                 return -ENETUNREACH;
1078 
1079         if (usrose != NULL) {
1080                 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1081                         return -EINVAL;
1082                 memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1083                 memcpy(&srose, usrose, msg->msg_namelen);
1084                 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1085                     ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1086                         return -EISCONN;
1087                 if (srose.srose_ndigis != rose->dest_ndigis)
1088                         return -EISCONN;
1089                 if (srose.srose_ndigis == rose->dest_ndigis) {
1090                         for (n = 0 ; n < srose.srose_ndigis ; n++)
1091                                 if (ax25cmp(&rose->dest_digis[n],
1092                                             &srose.srose_digis[n]))
1093                                         return -EISCONN;
1094                 }
1095                 if (srose.srose_family != AF_ROSE)
1096                         return -EINVAL;
1097         } else {
1098                 if (sk->sk_state != TCP_ESTABLISHED)
1099                         return -ENOTCONN;
1100 
1101                 srose.srose_family = AF_ROSE;
1102                 srose.srose_addr   = rose->dest_addr;
1103                 srose.srose_call   = rose->dest_call;
1104                 srose.srose_ndigis = rose->dest_ndigis;
1105                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1106                         srose.srose_digis[n] = rose->dest_digis[n];
1107         }
1108 
1109         /* Build a packet */
1110         /* Sanity check the packet size */
1111         if (len > 65535)
1112                 return -EMSGSIZE;
1113 
1114         size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1115 
1116         if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1117                 return err;
1118 
1119         skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1120 
1121         /*
1122          *      Put the data on the end
1123          */
1124 
1125         skb_reset_transport_header(skb);
1126         skb_put(skb, len);
1127 
1128         err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1129         if (err) {
1130                 kfree_skb(skb);
1131                 return err;
1132         }
1133 
1134         /*
1135          *      If the Q BIT Include socket option is in force, the first
1136          *      byte of the user data is the logical value of the Q Bit.
1137          */
1138         if (rose->qbitincl) {
1139                 qbit = skb->data[0];
1140                 skb_pull(skb, 1);
1141         }
1142 
1143         /*
1144          *      Push down the ROSE header
1145          */
1146         asmptr = skb_push(skb, ROSE_MIN_LEN);
1147 
1148         /* Build a ROSE Network header */
1149         asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1150         asmptr[1] = (rose->lci >> 0) & 0xFF;
1151         asmptr[2] = ROSE_DATA;
1152 
1153         if (qbit)
1154                 asmptr[0] |= ROSE_Q_BIT;
1155 
1156         if (sk->sk_state != TCP_ESTABLISHED) {
1157                 kfree_skb(skb);
1158                 return -ENOTCONN;
1159         }
1160 
1161 #ifdef M_BIT
1162 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1163         if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1164                 unsigned char header[ROSE_MIN_LEN];
1165                 struct sk_buff *skbn;
1166                 int frontlen;
1167                 int lg;
1168 
1169                 /* Save a copy of the Header */
1170                 skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
1171                 skb_pull(skb, ROSE_MIN_LEN);
1172 
1173                 frontlen = skb_headroom(skb);
1174 
1175                 while (skb->len > 0) {
1176                         if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1177                                 kfree_skb(skb);
1178                                 return err;
1179                         }
1180 
1181                         skbn->sk   = sk;
1182                         skbn->free = 1;
1183                         skbn->arp  = 1;
1184 
1185                         skb_reserve(skbn, frontlen);
1186 
1187                         lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1188 
1189                         /* Copy the user data */
1190                         skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
1191                         skb_pull(skb, lg);
1192 
1193                         /* Duplicate the Header */
1194                         skb_push(skbn, ROSE_MIN_LEN);
1195                         skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
1196 
1197                         if (skb->len > 0)
1198                                 skbn->data[2] |= M_BIT;
1199 
1200                         skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1201                 }
1202 
1203                 skb->free = 1;
1204                 kfree_skb(skb);
1205         } else {
1206                 skb_queue_tail(&sk->sk_write_queue, skb);               /* Throw it on the queue */
1207         }
1208 #else
1209         skb_queue_tail(&sk->sk_write_queue, skb);       /* Shove it onto the queue */
1210 #endif
1211 
1212         rose_kick(sk);
1213 
1214         return len;
1215 }
1216 
1217 
1218 static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
1219                         struct msghdr *msg, size_t size, int flags)
1220 {
1221         struct sock *sk = sock->sk;
1222         struct rose_sock *rose = rose_sk(sk);
1223         struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
1224         size_t copied;
1225         unsigned char *asmptr;
1226         struct sk_buff *skb;
1227         int n, er, qbit;
1228 
1229         /*
1230          * This works for seqpacket too. The receiver has ordered the queue for
1231          * us! We do one quick check first though
1232          */
1233         if (sk->sk_state != TCP_ESTABLISHED)
1234                 return -ENOTCONN;
1235 
1236         /* Now we can treat all alike */
1237         if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1238                 return er;
1239 
1240         qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1241 
1242         skb_pull(skb, ROSE_MIN_LEN);
1243 
1244         if (rose->qbitincl) {
1245                 asmptr  = skb_push(skb, 1);
1246                 *asmptr = qbit;
1247         }
1248 
1249         skb_reset_transport_header(skb);
1250         copied     = skb->len;
1251 
1252         if (copied > size) {
1253                 copied = size;
1254                 msg->msg_flags |= MSG_TRUNC;
1255         }
1256 
1257         skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1258 
1259         if (srose != NULL) {
1260                 srose->srose_family = AF_ROSE;
1261                 srose->srose_addr   = rose->dest_addr;
1262                 srose->srose_call   = rose->dest_call;
1263                 srose->srose_ndigis = rose->dest_ndigis;
1264                 if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
1265                         struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
1266                         for (n = 0 ; n < rose->dest_ndigis ; n++)
1267                                 full_srose->srose_digis[n] = rose->dest_digis[n];
1268                         msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1269                 } else {
1270                         if (rose->dest_ndigis >= 1) {
1271                                 srose->srose_ndigis = 1;
1272                                 srose->srose_digi = rose->dest_digis[0];
1273                         }
1274                         msg->msg_namelen = sizeof(struct sockaddr_rose);
1275                 }
1276         }
1277 
1278         skb_free_datagram(sk, skb);
1279 
1280         return copied;
1281 }
1282 
1283 
1284 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1285 {
1286         struct sock *sk = sock->sk;
1287         struct rose_sock *rose = rose_sk(sk);
1288         void __user *argp = (void __user *)arg;
1289 
1290         switch (cmd) {
1291         case TIOCOUTQ: {
1292                 long amount;
1293 
1294                 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1295                 if (amount < 0)
1296                         amount = 0;
1297                 return put_user(amount, (unsigned int __user *) argp);
1298         }
1299 
1300         case TIOCINQ: {
1301                 struct sk_buff *skb;
1302                 long amount = 0L;
1303                 /* These two are safe on a single CPU system as only user tasks fiddle here */
1304                 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1305                         amount = skb->len;
1306                 return put_user(amount, (unsigned int __user *) argp);
1307         }
1308 
1309         case SIOCGSTAMP:
1310                 return sock_get_timestamp(sk, (struct timeval __user *) argp);
1311 
1312         case SIOCGSTAMPNS:
1313                 return sock_get_timestampns(sk, (struct timespec __user *) argp);
1314 
1315         case SIOCGIFADDR:
1316         case SIOCSIFADDR:
1317         case SIOCGIFDSTADDR:
1318         case SIOCSIFDSTADDR:
1319         case SIOCGIFBRDADDR:
1320         case SIOCSIFBRDADDR:
1321         case SIOCGIFNETMASK:
1322         case SIOCSIFNETMASK:
1323         case SIOCGIFMETRIC:
1324         case SIOCSIFMETRIC:
1325                 return -EINVAL;
1326 
1327         case SIOCADDRT:
1328         case SIOCDELRT:
1329         case SIOCRSCLRRT:
1330                 if (!capable(CAP_NET_ADMIN))
1331                         return -EPERM;
1332                 return rose_rt_ioctl(cmd, argp);
1333 
1334         case SIOCRSGCAUSE: {
1335                 struct rose_cause_struct rose_cause;
1336                 rose_cause.cause      = rose->cause;
1337                 rose_cause.diagnostic = rose->diagnostic;
1338                 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1339         }
1340 
1341         case SIOCRSSCAUSE: {
1342                 struct rose_cause_struct rose_cause;
1343                 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1344                         return -EFAULT;
1345                 rose->cause      = rose_cause.cause;
1346                 rose->diagnostic = rose_cause.diagnostic;
1347                 return 0;
1348         }
1349 
1350         case SIOCRSSL2CALL:
1351                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
1352                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1353                         ax25_listen_release(&rose_callsign, NULL);
1354                 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1355                         return -EFAULT;
1356                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1357                         return ax25_listen_register(&rose_callsign, NULL);
1358 
1359                 return 0;
1360 
1361         case SIOCRSGL2CALL:
1362                 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1363 
1364         case SIOCRSACCEPT:
1365                 if (rose->state == ROSE_STATE_5) {
1366                         rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1367                         rose_start_idletimer(sk);
1368                         rose->condition = 0x00;
1369                         rose->vs        = 0;
1370                         rose->va        = 0;
1371                         rose->vr        = 0;
1372                         rose->vl        = 0;
1373                         rose->state     = ROSE_STATE_3;
1374                 }
1375                 return 0;
1376 
1377         default:
1378                 return -ENOIOCTLCMD;
1379         }
1380 
1381         return 0;
1382 }
1383 
1384 #ifdef CONFIG_PROC_FS
1385 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1386         __acquires(rose_list_lock)
1387 {
1388         spin_lock_bh(&rose_list_lock);
1389         return seq_hlist_start_head(&rose_list, *pos);
1390 }
1391 
1392 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1393 {
1394         return seq_hlist_next(v, &rose_list, pos);
1395 }
1396 
1397 static void rose_info_stop(struct seq_file *seq, void *v)
1398         __releases(rose_list_lock)
1399 {
1400         spin_unlock_bh(&rose_list_lock);
1401 }
1402 
1403 static int rose_info_show(struct seq_file *seq, void *v)
1404 {
1405         char buf[11], rsbuf[11];
1406 
1407         if (v == SEQ_START_TOKEN)
1408                 seq_puts(seq,
1409                          "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1410 
1411         else {
1412                 struct sock *s = sk_entry(v);
1413                 struct rose_sock *rose = rose_sk(s);
1414                 const char *devname, *callsign;
1415                 const struct net_device *dev = rose->device;
1416 
1417                 if (!dev)
1418                         devname = "???";
1419                 else
1420                         devname = dev->name;
1421 
1422                 seq_printf(seq, "%-10s %-9s ",
1423                            rose2asc(rsbuf, &rose->dest_addr),
1424                            ax2asc(buf, &rose->dest_call));
1425 
1426                 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1427                         callsign = "??????-?";
1428                 else
1429                         callsign = ax2asc(buf, &rose->source_call);
1430 
1431                 seq_printf(seq,
1432                            "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1433                         rose2asc(rsbuf, &rose->source_addr),
1434                         callsign,
1435                         devname,
1436                         rose->lci & 0x0FFF,
1437                         (rose->neighbour) ? rose->neighbour->number : 0,
1438                         rose->state,
1439                         rose->vs,
1440                         rose->vr,
1441                         rose->va,
1442                         ax25_display_timer(&rose->timer) / HZ,
1443                         rose->t1 / HZ,
1444                         rose->t2 / HZ,
1445                         rose->t3 / HZ,
1446                         rose->hb / HZ,
1447                         ax25_display_timer(&rose->idletimer) / (60 * HZ),
1448                         rose->idle / (60 * HZ),
1449                         sk_wmem_alloc_get(s),
1450                         sk_rmem_alloc_get(s),
1451                         s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1452         }
1453 
1454         return 0;
1455 }
1456 
1457 static const struct seq_operations rose_info_seqops = {
1458         .start = rose_info_start,
1459         .next = rose_info_next,
1460         .stop = rose_info_stop,
1461         .show = rose_info_show,
1462 };
1463 
1464 static int rose_info_open(struct inode *inode, struct file *file)
1465 {
1466         return seq_open(file, &rose_info_seqops);
1467 }
1468 
1469 static const struct file_operations rose_info_fops = {
1470         .owner = THIS_MODULE,
1471         .open = rose_info_open,
1472         .read = seq_read,
1473         .llseek = seq_lseek,
1474         .release = seq_release,
1475 };
1476 #endif  /* CONFIG_PROC_FS */
1477 
1478 static const struct net_proto_family rose_family_ops = {
1479         .family         =       PF_ROSE,
1480         .create         =       rose_create,
1481         .owner          =       THIS_MODULE,
1482 };
1483 
1484 static const struct proto_ops rose_proto_ops = {
1485         .family         =       PF_ROSE,
1486         .owner          =       THIS_MODULE,
1487         .release        =       rose_release,
1488         .bind           =       rose_bind,
1489         .connect        =       rose_connect,
1490         .socketpair     =       sock_no_socketpair,
1491         .accept         =       rose_accept,
1492         .getname        =       rose_getname,
1493         .poll           =       datagram_poll,
1494         .ioctl          =       rose_ioctl,
1495         .listen         =       rose_listen,
1496         .shutdown       =       sock_no_shutdown,
1497         .setsockopt     =       rose_setsockopt,
1498         .getsockopt     =       rose_getsockopt,
1499         .sendmsg        =       rose_sendmsg,
1500         .recvmsg        =       rose_recvmsg,
1501         .mmap           =       sock_no_mmap,
1502         .sendpage       =       sock_no_sendpage,
1503 };
1504 
1505 static struct notifier_block rose_dev_notifier = {
1506         .notifier_call  =       rose_device_event,
1507 };
1508 
1509 static struct net_device **dev_rose;
1510 
1511 static struct ax25_protocol rose_pid = {
1512         .pid    = AX25_P_ROSE,
1513         .func   = rose_route_frame
1514 };
1515 
1516 static struct ax25_linkfail rose_linkfail_notifier = {
1517         .func   = rose_link_failed
1518 };
1519 
1520 static int __init rose_proto_init(void)
1521 {
1522         int i;
1523         int rc;
1524 
1525         if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1526                 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1527                 rc = -EINVAL;
1528                 goto out;
1529         }
1530 
1531         rc = proto_register(&rose_proto, 0);
1532         if (rc != 0)
1533                 goto out;
1534 
1535         rose_callsign = null_ax25_address;
1536 
1537         dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1538         if (dev_rose == NULL) {
1539                 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1540                 rc = -ENOMEM;
1541                 goto out_proto_unregister;
1542         }
1543 
1544         for (i = 0; i < rose_ndevs; i++) {
1545                 struct net_device *dev;
1546                 char name[IFNAMSIZ];
1547 
1548                 sprintf(name, "rose%d", i);
1549                 dev = alloc_netdev(0, name, rose_setup);
1550                 if (!dev) {
1551                         printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1552                         rc = -ENOMEM;
1553                         goto fail;
1554                 }
1555                 rc = register_netdev(dev);
1556                 if (rc) {
1557                         printk(KERN_ERR "ROSE: netdevice registration failed\n");
1558                         free_netdev(dev);
1559                         goto fail;
1560                 }
1561                 rose_set_lockdep_key(dev);
1562                 dev_rose[i] = dev;
1563         }
1564 
1565         sock_register(&rose_family_ops);
1566         register_netdevice_notifier(&rose_dev_notifier);
1567 
1568         ax25_register_pid(&rose_pid);
1569         ax25_linkfail_register(&rose_linkfail_notifier);
1570 
1571 #ifdef CONFIG_SYSCTL
1572         rose_register_sysctl();
1573 #endif
1574         rose_loopback_init();
1575 
1576         rose_add_loopback_neigh();
1577 
1578         proc_net_fops_create(&init_net, "rose", S_IRUGO, &rose_info_fops);
1579         proc_net_fops_create(&init_net, "rose_neigh", S_IRUGO, &rose_neigh_fops);
1580         proc_net_fops_create(&init_net, "rose_nodes", S_IRUGO, &rose_nodes_fops);
1581         proc_net_fops_create(&init_net, "rose_routes", S_IRUGO, &rose_routes_fops);
1582 out:
1583         return rc;
1584 fail:
1585         while (--i >= 0) {
1586                 unregister_netdev(dev_rose[i]);
1587                 free_netdev(dev_rose[i]);
1588         }
1589         kfree(dev_rose);
1590 out_proto_unregister:
1591         proto_unregister(&rose_proto);
1592         goto out;
1593 }
1594 module_init(rose_proto_init);
1595 
1596 module_param(rose_ndevs, int, 0);
1597 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1598 
1599 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1600 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1601 MODULE_LICENSE("GPL");
1602 MODULE_ALIAS_NETPROTO(PF_ROSE);
1603 
1604 static void __exit rose_exit(void)
1605 {
1606         int i;
1607 
1608         proc_net_remove(&init_net, "rose");
1609         proc_net_remove(&init_net, "rose_neigh");
1610         proc_net_remove(&init_net, "rose_nodes");
1611         proc_net_remove(&init_net, "rose_routes");
1612         rose_loopback_clear();
1613 
1614         rose_rt_free();
1615 
1616         ax25_protocol_release(AX25_P_ROSE);
1617         ax25_linkfail_release(&rose_linkfail_notifier);
1618 
1619         if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1620                 ax25_listen_release(&rose_callsign, NULL);
1621 
1622 #ifdef CONFIG_SYSCTL
1623         rose_unregister_sysctl();
1624 #endif
1625         unregister_netdevice_notifier(&rose_dev_notifier);
1626 
1627         sock_unregister(PF_ROSE);
1628 
1629         for (i = 0; i < rose_ndevs; i++) {
1630                 struct net_device *dev = dev_rose[i];
1631 
1632                 if (dev) {
1633                         unregister_netdev(dev);
1634                         free_netdev(dev);
1635                 }
1636         }
1637 
1638         kfree(dev_rose);
1639         proto_unregister(&rose_proto);
1640 }
1641 
1642 module_exit(rose_exit);
1643 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp