~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rose/af_rose.c

Version: ~ [ linux-6.2-rc3 ] ~ [ linux-6.1.5 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.87 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.162 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.228 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.269 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.302 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This program is free software; you can redistribute it and/or modify
  3  * it under the terms of the GNU General Public License as published by
  4  * the Free Software Foundation; either version 2 of the License, or
  5  * (at your option) any later version.
  6  *
  7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
 10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
 11  */
 12 
 13 #include <linux/capability.h>
 14 #include <linux/module.h>
 15 #include <linux/moduleparam.h>
 16 #include <linux/init.h>
 17 #include <linux/errno.h>
 18 #include <linux/types.h>
 19 #include <linux/socket.h>
 20 #include <linux/in.h>
 21 #include <linux/slab.h>
 22 #include <linux/kernel.h>
 23 #include <linux/sched/signal.h>
 24 #include <linux/spinlock.h>
 25 #include <linux/timer.h>
 26 #include <linux/string.h>
 27 #include <linux/sockios.h>
 28 #include <linux/net.h>
 29 #include <linux/stat.h>
 30 #include <net/net_namespace.h>
 31 #include <net/ax25.h>
 32 #include <linux/inet.h>
 33 #include <linux/netdevice.h>
 34 #include <linux/if_arp.h>
 35 #include <linux/skbuff.h>
 36 #include <net/sock.h>
 37 #include <linux/uaccess.h>
 38 #include <linux/fcntl.h>
 39 #include <linux/termios.h>
 40 #include <linux/mm.h>
 41 #include <linux/interrupt.h>
 42 #include <linux/notifier.h>
 43 #include <net/rose.h>
 44 #include <linux/proc_fs.h>
 45 #include <linux/seq_file.h>
 46 #include <net/tcp_states.h>
 47 #include <net/ip.h>
 48 #include <net/arp.h>
 49 
 50 static int rose_ndevs = 10;
 51 
 52 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
 53 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
 54 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
 55 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
 56 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
 57 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
 58 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
 59 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
 60 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
 61 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
 62 
 63 static HLIST_HEAD(rose_list);
 64 static DEFINE_SPINLOCK(rose_list_lock);
 65 
 66 static const struct proto_ops rose_proto_ops;
 67 
 68 ax25_address rose_callsign;
 69 
 70 /*
 71  * ROSE network devices are virtual network devices encapsulating ROSE
 72  * frames into AX.25 which will be sent through an AX.25 device, so form a
 73  * special "super class" of normal net devices; split their locks off into a
 74  * separate class since they always nest.
 75  */
 76 static struct lock_class_key rose_netdev_xmit_lock_key;
 77 static struct lock_class_key rose_netdev_addr_lock_key;
 78 
 79 static void rose_set_lockdep_one(struct net_device *dev,
 80                                  struct netdev_queue *txq,
 81                                  void *_unused)
 82 {
 83         lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
 84 }
 85 
 86 static void rose_set_lockdep_key(struct net_device *dev)
 87 {
 88         lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
 89         netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
 90 }
 91 
 92 /*
 93  *      Convert a ROSE address into text.
 94  */
 95 char *rose2asc(char *buf, const rose_address *addr)
 96 {
 97         if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
 98             addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
 99             addr->rose_addr[4] == 0x00) {
100                 strcpy(buf, "*");
101         } else {
102                 sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
103                                                 addr->rose_addr[1] & 0xFF,
104                                                 addr->rose_addr[2] & 0xFF,
105                                                 addr->rose_addr[3] & 0xFF,
106                                                 addr->rose_addr[4] & 0xFF);
107         }
108 
109         return buf;
110 }
111 
112 /*
113  *      Compare two ROSE addresses, 0 == equal.
114  */
115 int rosecmp(rose_address *addr1, rose_address *addr2)
116 {
117         int i;
118 
119         for (i = 0; i < 5; i++)
120                 if (addr1->rose_addr[i] != addr2->rose_addr[i])
121                         return 1;
122 
123         return 0;
124 }
125 
126 /*
127  *      Compare two ROSE addresses for only mask digits, 0 == equal.
128  */
129 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
130 {
131         unsigned int i, j;
132 
133         if (mask > 10)
134                 return 1;
135 
136         for (i = 0; i < mask; i++) {
137                 j = i / 2;
138 
139                 if ((i % 2) != 0) {
140                         if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
141                                 return 1;
142                 } else {
143                         if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
144                                 return 1;
145                 }
146         }
147 
148         return 0;
149 }
150 
151 /*
152  *      Socket removal during an interrupt is now safe.
153  */
154 static void rose_remove_socket(struct sock *sk)
155 {
156         spin_lock_bh(&rose_list_lock);
157         sk_del_node_init(sk);
158         spin_unlock_bh(&rose_list_lock);
159 }
160 
161 /*
162  *      Kill all bound sockets on a broken link layer connection to a
163  *      particular neighbour.
164  */
165 void rose_kill_by_neigh(struct rose_neigh *neigh)
166 {
167         struct sock *s;
168 
169         spin_lock_bh(&rose_list_lock);
170         sk_for_each(s, &rose_list) {
171                 struct rose_sock *rose = rose_sk(s);
172 
173                 if (rose->neighbour == neigh) {
174                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
175                         rose->neighbour->use--;
176                         rose->neighbour = NULL;
177                 }
178         }
179         spin_unlock_bh(&rose_list_lock);
180 }
181 
182 /*
183  *      Kill all bound sockets on a dropped device.
184  */
185 static void rose_kill_by_device(struct net_device *dev)
186 {
187         struct sock *s;
188 
189         spin_lock_bh(&rose_list_lock);
190         sk_for_each(s, &rose_list) {
191                 struct rose_sock *rose = rose_sk(s);
192 
193                 if (rose->device == dev) {
194                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
195                         if (rose->neighbour)
196                                 rose->neighbour->use--;
197                         rose->device = NULL;
198                 }
199         }
200         spin_unlock_bh(&rose_list_lock);
201 }
202 
203 /*
204  *      Handle device status changes.
205  */
206 static int rose_device_event(struct notifier_block *this,
207                              unsigned long event, void *ptr)
208 {
209         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
210 
211         if (!net_eq(dev_net(dev), &init_net))
212                 return NOTIFY_DONE;
213 
214         if (event != NETDEV_DOWN)
215                 return NOTIFY_DONE;
216 
217         switch (dev->type) {
218         case ARPHRD_ROSE:
219                 rose_kill_by_device(dev);
220                 break;
221         case ARPHRD_AX25:
222                 rose_link_device_down(dev);
223                 rose_rt_device_down(dev);
224                 break;
225         }
226 
227         return NOTIFY_DONE;
228 }
229 
230 /*
231  *      Add a socket to the bound sockets list.
232  */
233 static void rose_insert_socket(struct sock *sk)
234 {
235 
236         spin_lock_bh(&rose_list_lock);
237         sk_add_node(sk, &rose_list);
238         spin_unlock_bh(&rose_list_lock);
239 }
240 
241 /*
242  *      Find a socket that wants to accept the Call Request we just
243  *      received.
244  */
245 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
246 {
247         struct sock *s;
248 
249         spin_lock_bh(&rose_list_lock);
250         sk_for_each(s, &rose_list) {
251                 struct rose_sock *rose = rose_sk(s);
252 
253                 if (!rosecmp(&rose->source_addr, addr) &&
254                     !ax25cmp(&rose->source_call, call) &&
255                     !rose->source_ndigis && s->sk_state == TCP_LISTEN)
256                         goto found;
257         }
258 
259         sk_for_each(s, &rose_list) {
260                 struct rose_sock *rose = rose_sk(s);
261 
262                 if (!rosecmp(&rose->source_addr, addr) &&
263                     !ax25cmp(&rose->source_call, &null_ax25_address) &&
264                     s->sk_state == TCP_LISTEN)
265                         goto found;
266         }
267         s = NULL;
268 found:
269         spin_unlock_bh(&rose_list_lock);
270         return s;
271 }
272 
273 /*
274  *      Find a connected ROSE socket given my LCI and device.
275  */
276 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
277 {
278         struct sock *s;
279 
280         spin_lock_bh(&rose_list_lock);
281         sk_for_each(s, &rose_list) {
282                 struct rose_sock *rose = rose_sk(s);
283 
284                 if (rose->lci == lci && rose->neighbour == neigh)
285                         goto found;
286         }
287         s = NULL;
288 found:
289         spin_unlock_bh(&rose_list_lock);
290         return s;
291 }
292 
293 /*
294  *      Find a unique LCI for a given device.
295  */
296 unsigned int rose_new_lci(struct rose_neigh *neigh)
297 {
298         int lci;
299 
300         if (neigh->dce_mode) {
301                 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
302                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
303                                 return lci;
304         } else {
305                 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
306                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
307                                 return lci;
308         }
309 
310         return 0;
311 }
312 
313 /*
314  *      Deferred destroy.
315  */
316 void rose_destroy_socket(struct sock *);
317 
318 /*
319  *      Handler for deferred kills.
320  */
321 static void rose_destroy_timer(unsigned long data)
322 {
323         rose_destroy_socket((struct sock *)data);
324 }
325 
326 /*
327  *      This is called from user mode and the timers. Thus it protects itself
328  *      against interrupt users but doesn't worry about being called during
329  *      work.  Once it is removed from the queue no interrupt or bottom half
330  *      will touch it and we are (fairly 8-) ) safe.
331  */
332 void rose_destroy_socket(struct sock *sk)
333 {
334         struct sk_buff *skb;
335 
336         rose_remove_socket(sk);
337         rose_stop_heartbeat(sk);
338         rose_stop_idletimer(sk);
339         rose_stop_timer(sk);
340 
341         rose_clear_queues(sk);          /* Flush the queues */
342 
343         while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
344                 if (skb->sk != sk) {    /* A pending connection */
345                         /* Queue the unaccepted socket for death */
346                         sock_set_flag(skb->sk, SOCK_DEAD);
347                         rose_start_heartbeat(skb->sk);
348                         rose_sk(skb->sk)->state = ROSE_STATE_0;
349                 }
350 
351                 kfree_skb(skb);
352         }
353 
354         if (sk_has_allocations(sk)) {
355                 /* Defer: outstanding buffers */
356                 setup_timer(&sk->sk_timer, rose_destroy_timer,
357                                 (unsigned long)sk);
358                 sk->sk_timer.expires  = jiffies + 10 * HZ;
359                 add_timer(&sk->sk_timer);
360         } else
361                 sock_put(sk);
362 }
363 
364 /*
365  *      Handling for system calls applied via the various interfaces to a
366  *      ROSE socket object.
367  */
368 
369 static int rose_setsockopt(struct socket *sock, int level, int optname,
370         char __user *optval, unsigned int optlen)
371 {
372         struct sock *sk = sock->sk;
373         struct rose_sock *rose = rose_sk(sk);
374         int opt;
375 
376         if (level != SOL_ROSE)
377                 return -ENOPROTOOPT;
378 
379         if (optlen < sizeof(int))
380                 return -EINVAL;
381 
382         if (get_user(opt, (int __user *)optval))
383                 return -EFAULT;
384 
385         switch (optname) {
386         case ROSE_DEFER:
387                 rose->defer = opt ? 1 : 0;
388                 return 0;
389 
390         case ROSE_T1:
391                 if (opt < 1)
392                         return -EINVAL;
393                 rose->t1 = opt * HZ;
394                 return 0;
395 
396         case ROSE_T2:
397                 if (opt < 1)
398                         return -EINVAL;
399                 rose->t2 = opt * HZ;
400                 return 0;
401 
402         case ROSE_T3:
403                 if (opt < 1)
404                         return -EINVAL;
405                 rose->t3 = opt * HZ;
406                 return 0;
407 
408         case ROSE_HOLDBACK:
409                 if (opt < 1)
410                         return -EINVAL;
411                 rose->hb = opt * HZ;
412                 return 0;
413 
414         case ROSE_IDLE:
415                 if (opt < 0)
416                         return -EINVAL;
417                 rose->idle = opt * 60 * HZ;
418                 return 0;
419 
420         case ROSE_QBITINCL:
421                 rose->qbitincl = opt ? 1 : 0;
422                 return 0;
423 
424         default:
425                 return -ENOPROTOOPT;
426         }
427 }
428 
429 static int rose_getsockopt(struct socket *sock, int level, int optname,
430         char __user *optval, int __user *optlen)
431 {
432         struct sock *sk = sock->sk;
433         struct rose_sock *rose = rose_sk(sk);
434         int val = 0;
435         int len;
436 
437         if (level != SOL_ROSE)
438                 return -ENOPROTOOPT;
439 
440         if (get_user(len, optlen))
441                 return -EFAULT;
442 
443         if (len < 0)
444                 return -EINVAL;
445 
446         switch (optname) {
447         case ROSE_DEFER:
448                 val = rose->defer;
449                 break;
450 
451         case ROSE_T1:
452                 val = rose->t1 / HZ;
453                 break;
454 
455         case ROSE_T2:
456                 val = rose->t2 / HZ;
457                 break;
458 
459         case ROSE_T3:
460                 val = rose->t3 / HZ;
461                 break;
462 
463         case ROSE_HOLDBACK:
464                 val = rose->hb / HZ;
465                 break;
466 
467         case ROSE_IDLE:
468                 val = rose->idle / (60 * HZ);
469                 break;
470 
471         case ROSE_QBITINCL:
472                 val = rose->qbitincl;
473                 break;
474 
475         default:
476                 return -ENOPROTOOPT;
477         }
478 
479         len = min_t(unsigned int, len, sizeof(int));
480 
481         if (put_user(len, optlen))
482                 return -EFAULT;
483 
484         return copy_to_user(optval, &val, len) ? -EFAULT : 0;
485 }
486 
487 static int rose_listen(struct socket *sock, int backlog)
488 {
489         struct sock *sk = sock->sk;
490 
491         if (sk->sk_state != TCP_LISTEN) {
492                 struct rose_sock *rose = rose_sk(sk);
493 
494                 rose->dest_ndigis = 0;
495                 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
496                 memset(&rose->dest_call, 0, AX25_ADDR_LEN);
497                 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
498                 sk->sk_max_ack_backlog = backlog;
499                 sk->sk_state           = TCP_LISTEN;
500                 return 0;
501         }
502 
503         return -EOPNOTSUPP;
504 }
505 
506 static struct proto rose_proto = {
507         .name     = "ROSE",
508         .owner    = THIS_MODULE,
509         .obj_size = sizeof(struct rose_sock),
510 };
511 
512 static int rose_create(struct net *net, struct socket *sock, int protocol,
513                        int kern)
514 {
515         struct sock *sk;
516         struct rose_sock *rose;
517 
518         if (!net_eq(net, &init_net))
519                 return -EAFNOSUPPORT;
520 
521         if (sock->type != SOCK_SEQPACKET || protocol != 0)
522                 return -ESOCKTNOSUPPORT;
523 
524         sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto, kern);
525         if (sk == NULL)
526                 return -ENOMEM;
527 
528         rose = rose_sk(sk);
529 
530         sock_init_data(sock, sk);
531 
532         skb_queue_head_init(&rose->ack_queue);
533 #ifdef M_BIT
534         skb_queue_head_init(&rose->frag_queue);
535         rose->fraglen    = 0;
536 #endif
537 
538         sock->ops    = &rose_proto_ops;
539         sk->sk_protocol = protocol;
540 
541         init_timer(&rose->timer);
542         init_timer(&rose->idletimer);
543 
544         rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
545         rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
546         rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
547         rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
548         rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
549 
550         rose->state = ROSE_STATE_0;
551 
552         return 0;
553 }
554 
555 static struct sock *rose_make_new(struct sock *osk)
556 {
557         struct sock *sk;
558         struct rose_sock *rose, *orose;
559 
560         if (osk->sk_type != SOCK_SEQPACKET)
561                 return NULL;
562 
563         sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto, 0);
564         if (sk == NULL)
565                 return NULL;
566 
567         rose = rose_sk(sk);
568 
569         sock_init_data(NULL, sk);
570 
571         skb_queue_head_init(&rose->ack_queue);
572 #ifdef M_BIT
573         skb_queue_head_init(&rose->frag_queue);
574         rose->fraglen  = 0;
575 #endif
576 
577         sk->sk_type     = osk->sk_type;
578         sk->sk_priority = osk->sk_priority;
579         sk->sk_protocol = osk->sk_protocol;
580         sk->sk_rcvbuf   = osk->sk_rcvbuf;
581         sk->sk_sndbuf   = osk->sk_sndbuf;
582         sk->sk_state    = TCP_ESTABLISHED;
583         sock_copy_flags(sk, osk);
584 
585         init_timer(&rose->timer);
586         init_timer(&rose->idletimer);
587 
588         orose           = rose_sk(osk);
589         rose->t1        = orose->t1;
590         rose->t2        = orose->t2;
591         rose->t3        = orose->t3;
592         rose->hb        = orose->hb;
593         rose->idle      = orose->idle;
594         rose->defer     = orose->defer;
595         rose->device    = orose->device;
596         rose->qbitincl  = orose->qbitincl;
597 
598         return sk;
599 }
600 
601 static int rose_release(struct socket *sock)
602 {
603         struct sock *sk = sock->sk;
604         struct rose_sock *rose;
605 
606         if (sk == NULL) return 0;
607 
608         sock_hold(sk);
609         sock_orphan(sk);
610         lock_sock(sk);
611         rose = rose_sk(sk);
612 
613         switch (rose->state) {
614         case ROSE_STATE_0:
615                 release_sock(sk);
616                 rose_disconnect(sk, 0, -1, -1);
617                 lock_sock(sk);
618                 rose_destroy_socket(sk);
619                 break;
620 
621         case ROSE_STATE_2:
622                 rose->neighbour->use--;
623                 release_sock(sk);
624                 rose_disconnect(sk, 0, -1, -1);
625                 lock_sock(sk);
626                 rose_destroy_socket(sk);
627                 break;
628 
629         case ROSE_STATE_1:
630         case ROSE_STATE_3:
631         case ROSE_STATE_4:
632         case ROSE_STATE_5:
633                 rose_clear_queues(sk);
634                 rose_stop_idletimer(sk);
635                 rose_write_internal(sk, ROSE_CLEAR_REQUEST);
636                 rose_start_t3timer(sk);
637                 rose->state  = ROSE_STATE_2;
638                 sk->sk_state    = TCP_CLOSE;
639                 sk->sk_shutdown |= SEND_SHUTDOWN;
640                 sk->sk_state_change(sk);
641                 sock_set_flag(sk, SOCK_DEAD);
642                 sock_set_flag(sk, SOCK_DESTROY);
643                 break;
644 
645         default:
646                 break;
647         }
648 
649         sock->sk = NULL;
650         release_sock(sk);
651         sock_put(sk);
652 
653         return 0;
654 }
655 
656 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
657 {
658         struct sock *sk = sock->sk;
659         struct rose_sock *rose = rose_sk(sk);
660         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
661         struct net_device *dev;
662         ax25_address *source;
663         ax25_uid_assoc *user;
664         int n;
665 
666         if (!sock_flag(sk, SOCK_ZAPPED))
667                 return -EINVAL;
668 
669         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
670                 return -EINVAL;
671 
672         if (addr->srose_family != AF_ROSE)
673                 return -EINVAL;
674 
675         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
676                 return -EINVAL;
677 
678         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
679                 return -EINVAL;
680 
681         if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
682                 return -EADDRNOTAVAIL;
683 
684         source = &addr->srose_call;
685 
686         user = ax25_findbyuid(current_euid());
687         if (user) {
688                 rose->source_call = user->call;
689                 ax25_uid_put(user);
690         } else {
691                 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
692                         return -EACCES;
693                 rose->source_call   = *source;
694         }
695 
696         rose->source_addr   = addr->srose_addr;
697         rose->device        = dev;
698         rose->source_ndigis = addr->srose_ndigis;
699 
700         if (addr_len == sizeof(struct full_sockaddr_rose)) {
701                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
702                 for (n = 0 ; n < addr->srose_ndigis ; n++)
703                         rose->source_digis[n] = full_addr->srose_digis[n];
704         } else {
705                 if (rose->source_ndigis == 1) {
706                         rose->source_digis[0] = addr->srose_digi;
707                 }
708         }
709 
710         rose_insert_socket(sk);
711 
712         sock_reset_flag(sk, SOCK_ZAPPED);
713 
714         return 0;
715 }
716 
717 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
718 {
719         struct sock *sk = sock->sk;
720         struct rose_sock *rose = rose_sk(sk);
721         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
722         unsigned char cause, diagnostic;
723         struct net_device *dev;
724         ax25_uid_assoc *user;
725         int n, err = 0;
726 
727         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
728                 return -EINVAL;
729 
730         if (addr->srose_family != AF_ROSE)
731                 return -EINVAL;
732 
733         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
734                 return -EINVAL;
735 
736         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
737                 return -EINVAL;
738 
739         /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
740         if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
741                 return -EINVAL;
742 
743         lock_sock(sk);
744 
745         if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
746                 /* Connect completed during a ERESTARTSYS event */
747                 sock->state = SS_CONNECTED;
748                 goto out_release;
749         }
750 
751         if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
752                 sock->state = SS_UNCONNECTED;
753                 err = -ECONNREFUSED;
754                 goto out_release;
755         }
756 
757         if (sk->sk_state == TCP_ESTABLISHED) {
758                 /* No reconnect on a seqpacket socket */
759                 err = -EISCONN;
760                 goto out_release;
761         }
762 
763         sk->sk_state   = TCP_CLOSE;
764         sock->state = SS_UNCONNECTED;
765 
766         rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
767                                          &diagnostic, 0);
768         if (!rose->neighbour) {
769                 err = -ENETUNREACH;
770                 goto out_release;
771         }
772 
773         rose->lci = rose_new_lci(rose->neighbour);
774         if (!rose->lci) {
775                 err = -ENETUNREACH;
776                 goto out_release;
777         }
778 
779         if (sock_flag(sk, SOCK_ZAPPED)) {       /* Must bind first - autobinding in this may or may not work */
780                 sock_reset_flag(sk, SOCK_ZAPPED);
781 
782                 if ((dev = rose_dev_first()) == NULL) {
783                         err = -ENETUNREACH;
784                         goto out_release;
785                 }
786 
787                 user = ax25_findbyuid(current_euid());
788                 if (!user) {
789                         err = -EINVAL;
790                         goto out_release;
791                 }
792 
793                 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
794                 rose->source_call = user->call;
795                 rose->device      = dev;
796                 ax25_uid_put(user);
797 
798                 rose_insert_socket(sk);         /* Finish the bind */
799         }
800         rose->dest_addr   = addr->srose_addr;
801         rose->dest_call   = addr->srose_call;
802         rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
803         rose->dest_ndigis = addr->srose_ndigis;
804 
805         if (addr_len == sizeof(struct full_sockaddr_rose)) {
806                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
807                 for (n = 0 ; n < addr->srose_ndigis ; n++)
808                         rose->dest_digis[n] = full_addr->srose_digis[n];
809         } else {
810                 if (rose->dest_ndigis == 1) {
811                         rose->dest_digis[0] = addr->srose_digi;
812                 }
813         }
814 
815         /* Move to connecting socket, start sending Connect Requests */
816         sock->state   = SS_CONNECTING;
817         sk->sk_state     = TCP_SYN_SENT;
818 
819         rose->state = ROSE_STATE_1;
820 
821         rose->neighbour->use++;
822 
823         rose_write_internal(sk, ROSE_CALL_REQUEST);
824         rose_start_heartbeat(sk);
825         rose_start_t1timer(sk);
826 
827         /* Now the loop */
828         if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
829                 err = -EINPROGRESS;
830                 goto out_release;
831         }
832 
833         /*
834          * A Connect Ack with Choke or timeout or failed routing will go to
835          * closed.
836          */
837         if (sk->sk_state == TCP_SYN_SENT) {
838                 DEFINE_WAIT(wait);
839 
840                 for (;;) {
841                         prepare_to_wait(sk_sleep(sk), &wait,
842                                         TASK_INTERRUPTIBLE);
843                         if (sk->sk_state != TCP_SYN_SENT)
844                                 break;
845                         if (!signal_pending(current)) {
846                                 release_sock(sk);
847                                 schedule();
848                                 lock_sock(sk);
849                                 continue;
850                         }
851                         err = -ERESTARTSYS;
852                         break;
853                 }
854                 finish_wait(sk_sleep(sk), &wait);
855 
856                 if (err)
857                         goto out_release;
858         }
859 
860         if (sk->sk_state != TCP_ESTABLISHED) {
861                 sock->state = SS_UNCONNECTED;
862                 err = sock_error(sk);   /* Always set at this point */
863                 goto out_release;
864         }
865 
866         sock->state = SS_CONNECTED;
867 
868 out_release:
869         release_sock(sk);
870 
871         return err;
872 }
873 
874 static int rose_accept(struct socket *sock, struct socket *newsock, int flags,
875                        bool kern)
876 {
877         struct sk_buff *skb;
878         struct sock *newsk;
879         DEFINE_WAIT(wait);
880         struct sock *sk;
881         int err = 0;
882 
883         if ((sk = sock->sk) == NULL)
884                 return -EINVAL;
885 
886         lock_sock(sk);
887         if (sk->sk_type != SOCK_SEQPACKET) {
888                 err = -EOPNOTSUPP;
889                 goto out_release;
890         }
891 
892         if (sk->sk_state != TCP_LISTEN) {
893                 err = -EINVAL;
894                 goto out_release;
895         }
896 
897         /*
898          *      The write queue this time is holding sockets ready to use
899          *      hooked into the SABM we saved
900          */
901         for (;;) {
902                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
903 
904                 skb = skb_dequeue(&sk->sk_receive_queue);
905                 if (skb)
906                         break;
907 
908                 if (flags & O_NONBLOCK) {
909                         err = -EWOULDBLOCK;
910                         break;
911                 }
912                 if (!signal_pending(current)) {
913                         release_sock(sk);
914                         schedule();
915                         lock_sock(sk);
916                         continue;
917                 }
918                 err = -ERESTARTSYS;
919                 break;
920         }
921         finish_wait(sk_sleep(sk), &wait);
922         if (err)
923                 goto out_release;
924 
925         newsk = skb->sk;
926         sock_graft(newsk, newsock);
927 
928         /* Now attach up the new socket */
929         skb->sk = NULL;
930         kfree_skb(skb);
931         sk->sk_ack_backlog--;
932 
933 out_release:
934         release_sock(sk);
935 
936         return err;
937 }
938 
939 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
940         int *uaddr_len, int peer)
941 {
942         struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
943         struct sock *sk = sock->sk;
944         struct rose_sock *rose = rose_sk(sk);
945         int n;
946 
947         memset(srose, 0, sizeof(*srose));
948         if (peer != 0) {
949                 if (sk->sk_state != TCP_ESTABLISHED)
950                         return -ENOTCONN;
951                 srose->srose_family = AF_ROSE;
952                 srose->srose_addr   = rose->dest_addr;
953                 srose->srose_call   = rose->dest_call;
954                 srose->srose_ndigis = rose->dest_ndigis;
955                 for (n = 0; n < rose->dest_ndigis; n++)
956                         srose->srose_digis[n] = rose->dest_digis[n];
957         } else {
958                 srose->srose_family = AF_ROSE;
959                 srose->srose_addr   = rose->source_addr;
960                 srose->srose_call   = rose->source_call;
961                 srose->srose_ndigis = rose->source_ndigis;
962                 for (n = 0; n < rose->source_ndigis; n++)
963                         srose->srose_digis[n] = rose->source_digis[n];
964         }
965 
966         *uaddr_len = sizeof(struct full_sockaddr_rose);
967         return 0;
968 }
969 
970 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
971 {
972         struct sock *sk;
973         struct sock *make;
974         struct rose_sock *make_rose;
975         struct rose_facilities_struct facilities;
976         int n;
977 
978         skb->sk = NULL;         /* Initially we don't know who it's for */
979 
980         /*
981          *      skb->data points to the rose frame start
982          */
983         memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
984 
985         if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
986                                    skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
987                                    &facilities)) {
988                 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
989                 return 0;
990         }
991 
992         sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
993 
994         /*
995          * We can't accept the Call Request.
996          */
997         if (sk == NULL || sk_acceptq_is_full(sk) ||
998             (make = rose_make_new(sk)) == NULL) {
999                 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
1000                 return 0;
1001         }
1002 
1003         skb->sk     = make;
1004         make->sk_state = TCP_ESTABLISHED;
1005         make_rose = rose_sk(make);
1006 
1007         make_rose->lci           = lci;
1008         make_rose->dest_addr     = facilities.dest_addr;
1009         make_rose->dest_call     = facilities.dest_call;
1010         make_rose->dest_ndigis   = facilities.dest_ndigis;
1011         for (n = 0 ; n < facilities.dest_ndigis ; n++)
1012                 make_rose->dest_digis[n] = facilities.dest_digis[n];
1013         make_rose->source_addr   = facilities.source_addr;
1014         make_rose->source_call   = facilities.source_call;
1015         make_rose->source_ndigis = facilities.source_ndigis;
1016         for (n = 0 ; n < facilities.source_ndigis ; n++)
1017                 make_rose->source_digis[n] = facilities.source_digis[n];
1018         make_rose->neighbour     = neigh;
1019         make_rose->device        = dev;
1020         make_rose->facilities    = facilities;
1021 
1022         make_rose->neighbour->use++;
1023 
1024         if (rose_sk(sk)->defer) {
1025                 make_rose->state = ROSE_STATE_5;
1026         } else {
1027                 rose_write_internal(make, ROSE_CALL_ACCEPTED);
1028                 make_rose->state = ROSE_STATE_3;
1029                 rose_start_idletimer(make);
1030         }
1031 
1032         make_rose->condition = 0x00;
1033         make_rose->vs        = 0;
1034         make_rose->va        = 0;
1035         make_rose->vr        = 0;
1036         make_rose->vl        = 0;
1037         sk->sk_ack_backlog++;
1038 
1039         rose_insert_socket(make);
1040 
1041         skb_queue_head(&sk->sk_receive_queue, skb);
1042 
1043         rose_start_heartbeat(make);
1044 
1045         if (!sock_flag(sk, SOCK_DEAD))
1046                 sk->sk_data_ready(sk);
1047 
1048         return 1;
1049 }
1050 
1051 static int rose_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1052 {
1053         struct sock *sk = sock->sk;
1054         struct rose_sock *rose = rose_sk(sk);
1055         DECLARE_SOCKADDR(struct sockaddr_rose *, usrose, msg->msg_name);
1056         int err;
1057         struct full_sockaddr_rose srose;
1058         struct sk_buff *skb;
1059         unsigned char *asmptr;
1060         int n, size, qbit = 0;
1061 
1062         if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1063                 return -EINVAL;
1064 
1065         if (sock_flag(sk, SOCK_ZAPPED))
1066                 return -EADDRNOTAVAIL;
1067 
1068         if (sk->sk_shutdown & SEND_SHUTDOWN) {
1069                 send_sig(SIGPIPE, current, 0);
1070                 return -EPIPE;
1071         }
1072 
1073         if (rose->neighbour == NULL || rose->device == NULL)
1074                 return -ENETUNREACH;
1075 
1076         if (usrose != NULL) {
1077                 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1078                         return -EINVAL;
1079                 memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1080                 memcpy(&srose, usrose, msg->msg_namelen);
1081                 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1082                     ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1083                         return -EISCONN;
1084                 if (srose.srose_ndigis != rose->dest_ndigis)
1085                         return -EISCONN;
1086                 if (srose.srose_ndigis == rose->dest_ndigis) {
1087                         for (n = 0 ; n < srose.srose_ndigis ; n++)
1088                                 if (ax25cmp(&rose->dest_digis[n],
1089                                             &srose.srose_digis[n]))
1090                                         return -EISCONN;
1091                 }
1092                 if (srose.srose_family != AF_ROSE)
1093                         return -EINVAL;
1094         } else {
1095                 if (sk->sk_state != TCP_ESTABLISHED)
1096                         return -ENOTCONN;
1097 
1098                 srose.srose_family = AF_ROSE;
1099                 srose.srose_addr   = rose->dest_addr;
1100                 srose.srose_call   = rose->dest_call;
1101                 srose.srose_ndigis = rose->dest_ndigis;
1102                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1103                         srose.srose_digis[n] = rose->dest_digis[n];
1104         }
1105 
1106         /* Build a packet */
1107         /* Sanity check the packet size */
1108         if (len > 65535)
1109                 return -EMSGSIZE;
1110 
1111         size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1112 
1113         if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1114                 return err;
1115 
1116         skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1117 
1118         /*
1119          *      Put the data on the end
1120          */
1121 
1122         skb_reset_transport_header(skb);
1123         skb_put(skb, len);
1124 
1125         err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1126         if (err) {
1127                 kfree_skb(skb);
1128                 return err;
1129         }
1130 
1131         /*
1132          *      If the Q BIT Include socket option is in force, the first
1133          *      byte of the user data is the logical value of the Q Bit.
1134          */
1135         if (rose->qbitincl) {
1136                 qbit = skb->data[0];
1137                 skb_pull(skb, 1);
1138         }
1139 
1140         /*
1141          *      Push down the ROSE header
1142          */
1143         asmptr = skb_push(skb, ROSE_MIN_LEN);
1144 
1145         /* Build a ROSE Network header */
1146         asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1147         asmptr[1] = (rose->lci >> 0) & 0xFF;
1148         asmptr[2] = ROSE_DATA;
1149 
1150         if (qbit)
1151                 asmptr[0] |= ROSE_Q_BIT;
1152 
1153         if (sk->sk_state != TCP_ESTABLISHED) {
1154                 kfree_skb(skb);
1155                 return -ENOTCONN;
1156         }
1157 
1158 #ifdef M_BIT
1159 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1160         if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1161                 unsigned char header[ROSE_MIN_LEN];
1162                 struct sk_buff *skbn;
1163                 int frontlen;
1164                 int lg;
1165 
1166                 /* Save a copy of the Header */
1167                 skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
1168                 skb_pull(skb, ROSE_MIN_LEN);
1169 
1170                 frontlen = skb_headroom(skb);
1171 
1172                 while (skb->len > 0) {
1173                         if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1174                                 kfree_skb(skb);
1175                                 return err;
1176                         }
1177 
1178                         skbn->sk   = sk;
1179                         skbn->free = 1;
1180                         skbn->arp  = 1;
1181 
1182                         skb_reserve(skbn, frontlen);
1183 
1184                         lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1185 
1186                         /* Copy the user data */
1187                         skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
1188                         skb_pull(skb, lg);
1189 
1190                         /* Duplicate the Header */
1191                         skb_push(skbn, ROSE_MIN_LEN);
1192                         skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
1193 
1194                         if (skb->len > 0)
1195                                 skbn->data[2] |= M_BIT;
1196 
1197                         skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1198                 }
1199 
1200                 skb->free = 1;
1201                 kfree_skb(skb);
1202         } else {
1203                 skb_queue_tail(&sk->sk_write_queue, skb);               /* Throw it on the queue */
1204         }
1205 #else
1206         skb_queue_tail(&sk->sk_write_queue, skb);       /* Shove it onto the queue */
1207 #endif
1208 
1209         rose_kick(sk);
1210 
1211         return len;
1212 }
1213 
1214 
1215 static int rose_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1216                         int flags)
1217 {
1218         struct sock *sk = sock->sk;
1219         struct rose_sock *rose = rose_sk(sk);
1220         size_t copied;
1221         unsigned char *asmptr;
1222         struct sk_buff *skb;
1223         int n, er, qbit;
1224 
1225         /*
1226          * This works for seqpacket too. The receiver has ordered the queue for
1227          * us! We do one quick check first though
1228          */
1229         if (sk->sk_state != TCP_ESTABLISHED)
1230                 return -ENOTCONN;
1231 
1232         /* Now we can treat all alike */
1233         if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1234                 return er;
1235 
1236         qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1237 
1238         skb_pull(skb, ROSE_MIN_LEN);
1239 
1240         if (rose->qbitincl) {
1241                 asmptr  = skb_push(skb, 1);
1242                 *asmptr = qbit;
1243         }
1244 
1245         skb_reset_transport_header(skb);
1246         copied     = skb->len;
1247 
1248         if (copied > size) {
1249                 copied = size;
1250                 msg->msg_flags |= MSG_TRUNC;
1251         }
1252 
1253         skb_copy_datagram_msg(skb, 0, msg, copied);
1254 
1255         if (msg->msg_name) {
1256                 struct sockaddr_rose *srose;
1257                 DECLARE_SOCKADDR(struct full_sockaddr_rose *, full_srose,
1258                                  msg->msg_name);
1259 
1260                 memset(msg->msg_name, 0, sizeof(struct full_sockaddr_rose));
1261                 srose = msg->msg_name;
1262                 srose->srose_family = AF_ROSE;
1263                 srose->srose_addr   = rose->dest_addr;
1264                 srose->srose_call   = rose->dest_call;
1265                 srose->srose_ndigis = rose->dest_ndigis;
1266                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1267                         full_srose->srose_digis[n] = rose->dest_digis[n];
1268                 msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1269         }
1270 
1271         skb_free_datagram(sk, skb);
1272 
1273         return copied;
1274 }
1275 
1276 
1277 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1278 {
1279         struct sock *sk = sock->sk;
1280         struct rose_sock *rose = rose_sk(sk);
1281         void __user *argp = (void __user *)arg;
1282 
1283         switch (cmd) {
1284         case TIOCOUTQ: {
1285                 long amount;
1286 
1287                 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1288                 if (amount < 0)
1289                         amount = 0;
1290                 return put_user(amount, (unsigned int __user *) argp);
1291         }
1292 
1293         case TIOCINQ: {
1294                 struct sk_buff *skb;
1295                 long amount = 0L;
1296                 /* These two are safe on a single CPU system as only user tasks fiddle here */
1297                 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1298                         amount = skb->len;
1299                 return put_user(amount, (unsigned int __user *) argp);
1300         }
1301 
1302         case SIOCGSTAMP:
1303                 return sock_get_timestamp(sk, (struct timeval __user *) argp);
1304 
1305         case SIOCGSTAMPNS:
1306                 return sock_get_timestampns(sk, (struct timespec __user *) argp);
1307 
1308         case SIOCGIFADDR:
1309         case SIOCSIFADDR:
1310         case SIOCGIFDSTADDR:
1311         case SIOCSIFDSTADDR:
1312         case SIOCGIFBRDADDR:
1313         case SIOCSIFBRDADDR:
1314         case SIOCGIFNETMASK:
1315         case SIOCSIFNETMASK:
1316         case SIOCGIFMETRIC:
1317         case SIOCSIFMETRIC:
1318                 return -EINVAL;
1319 
1320         case SIOCADDRT:
1321         case SIOCDELRT:
1322         case SIOCRSCLRRT:
1323                 if (!capable(CAP_NET_ADMIN))
1324                         return -EPERM;
1325                 return rose_rt_ioctl(cmd, argp);
1326 
1327         case SIOCRSGCAUSE: {
1328                 struct rose_cause_struct rose_cause;
1329                 rose_cause.cause      = rose->cause;
1330                 rose_cause.diagnostic = rose->diagnostic;
1331                 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1332         }
1333 
1334         case SIOCRSSCAUSE: {
1335                 struct rose_cause_struct rose_cause;
1336                 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1337                         return -EFAULT;
1338                 rose->cause      = rose_cause.cause;
1339                 rose->diagnostic = rose_cause.diagnostic;
1340                 return 0;
1341         }
1342 
1343         case SIOCRSSL2CALL:
1344                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
1345                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1346                         ax25_listen_release(&rose_callsign, NULL);
1347                 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1348                         return -EFAULT;
1349                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1350                         return ax25_listen_register(&rose_callsign, NULL);
1351 
1352                 return 0;
1353 
1354         case SIOCRSGL2CALL:
1355                 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1356 
1357         case SIOCRSACCEPT:
1358                 if (rose->state == ROSE_STATE_5) {
1359                         rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1360                         rose_start_idletimer(sk);
1361                         rose->condition = 0x00;
1362                         rose->vs        = 0;
1363                         rose->va        = 0;
1364                         rose->vr        = 0;
1365                         rose->vl        = 0;
1366                         rose->state     = ROSE_STATE_3;
1367                 }
1368                 return 0;
1369 
1370         default:
1371                 return -ENOIOCTLCMD;
1372         }
1373 
1374         return 0;
1375 }
1376 
1377 #ifdef CONFIG_PROC_FS
1378 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1379         __acquires(rose_list_lock)
1380 {
1381         spin_lock_bh(&rose_list_lock);
1382         return seq_hlist_start_head(&rose_list, *pos);
1383 }
1384 
1385 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1386 {
1387         return seq_hlist_next(v, &rose_list, pos);
1388 }
1389 
1390 static void rose_info_stop(struct seq_file *seq, void *v)
1391         __releases(rose_list_lock)
1392 {
1393         spin_unlock_bh(&rose_list_lock);
1394 }
1395 
1396 static int rose_info_show(struct seq_file *seq, void *v)
1397 {
1398         char buf[11], rsbuf[11];
1399 
1400         if (v == SEQ_START_TOKEN)
1401                 seq_puts(seq,
1402                          "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1403 
1404         else {
1405                 struct sock *s = sk_entry(v);
1406                 struct rose_sock *rose = rose_sk(s);
1407                 const char *devname, *callsign;
1408                 const struct net_device *dev = rose->device;
1409 
1410                 if (!dev)
1411                         devname = "???";
1412                 else
1413                         devname = dev->name;
1414 
1415                 seq_printf(seq, "%-10s %-9s ",
1416                            rose2asc(rsbuf, &rose->dest_addr),
1417                            ax2asc(buf, &rose->dest_call));
1418 
1419                 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1420                         callsign = "??????-?";
1421                 else
1422                         callsign = ax2asc(buf, &rose->source_call);
1423 
1424                 seq_printf(seq,
1425                            "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1426                         rose2asc(rsbuf, &rose->source_addr),
1427                         callsign,
1428                         devname,
1429                         rose->lci & 0x0FFF,
1430                         (rose->neighbour) ? rose->neighbour->number : 0,
1431                         rose->state,
1432                         rose->vs,
1433                         rose->vr,
1434                         rose->va,
1435                         ax25_display_timer(&rose->timer) / HZ,
1436                         rose->t1 / HZ,
1437                         rose->t2 / HZ,
1438                         rose->t3 / HZ,
1439                         rose->hb / HZ,
1440                         ax25_display_timer(&rose->idletimer) / (60 * HZ),
1441                         rose->idle / (60 * HZ),
1442                         sk_wmem_alloc_get(s),
1443                         sk_rmem_alloc_get(s),
1444                         s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1445         }
1446 
1447         return 0;
1448 }
1449 
1450 static const struct seq_operations rose_info_seqops = {
1451         .start = rose_info_start,
1452         .next = rose_info_next,
1453         .stop = rose_info_stop,
1454         .show = rose_info_show,
1455 };
1456 
1457 static int rose_info_open(struct inode *inode, struct file *file)
1458 {
1459         return seq_open(file, &rose_info_seqops);
1460 }
1461 
1462 static const struct file_operations rose_info_fops = {
1463         .owner = THIS_MODULE,
1464         .open = rose_info_open,
1465         .read = seq_read,
1466         .llseek = seq_lseek,
1467         .release = seq_release,
1468 };
1469 #endif  /* CONFIG_PROC_FS */
1470 
1471 static const struct net_proto_family rose_family_ops = {
1472         .family         =       PF_ROSE,
1473         .create         =       rose_create,
1474         .owner          =       THIS_MODULE,
1475 };
1476 
1477 static const struct proto_ops rose_proto_ops = {
1478         .family         =       PF_ROSE,
1479         .owner          =       THIS_MODULE,
1480         .release        =       rose_release,
1481         .bind           =       rose_bind,
1482         .connect        =       rose_connect,
1483         .socketpair     =       sock_no_socketpair,
1484         .accept         =       rose_accept,
1485         .getname        =       rose_getname,
1486         .poll           =       datagram_poll,
1487         .ioctl          =       rose_ioctl,
1488         .listen         =       rose_listen,
1489         .shutdown       =       sock_no_shutdown,
1490         .setsockopt     =       rose_setsockopt,
1491         .getsockopt     =       rose_getsockopt,
1492         .sendmsg        =       rose_sendmsg,
1493         .recvmsg        =       rose_recvmsg,
1494         .mmap           =       sock_no_mmap,
1495         .sendpage       =       sock_no_sendpage,
1496 };
1497 
1498 static struct notifier_block rose_dev_notifier = {
1499         .notifier_call  =       rose_device_event,
1500 };
1501 
1502 static struct net_device **dev_rose;
1503 
1504 static struct ax25_protocol rose_pid = {
1505         .pid    = AX25_P_ROSE,
1506         .func   = rose_route_frame
1507 };
1508 
1509 static struct ax25_linkfail rose_linkfail_notifier = {
1510         .func   = rose_link_failed
1511 };
1512 
1513 static int __init rose_proto_init(void)
1514 {
1515         int i;
1516         int rc;
1517 
1518         if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1519                 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1520                 rc = -EINVAL;
1521                 goto out;
1522         }
1523 
1524         rc = proto_register(&rose_proto, 0);
1525         if (rc != 0)
1526                 goto out;
1527 
1528         rose_callsign = null_ax25_address;
1529 
1530         dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1531         if (dev_rose == NULL) {
1532                 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1533                 rc = -ENOMEM;
1534                 goto out_proto_unregister;
1535         }
1536 
1537         for (i = 0; i < rose_ndevs; i++) {
1538                 struct net_device *dev;
1539                 char name[IFNAMSIZ];
1540 
1541                 sprintf(name, "rose%d", i);
1542                 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, rose_setup);
1543                 if (!dev) {
1544                         printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1545                         rc = -ENOMEM;
1546                         goto fail;
1547                 }
1548                 rc = register_netdev(dev);
1549                 if (rc) {
1550                         printk(KERN_ERR "ROSE: netdevice registration failed\n");
1551                         free_netdev(dev);
1552                         goto fail;
1553                 }
1554                 rose_set_lockdep_key(dev);
1555                 dev_rose[i] = dev;
1556         }
1557 
1558         sock_register(&rose_family_ops);
1559         register_netdevice_notifier(&rose_dev_notifier);
1560 
1561         ax25_register_pid(&rose_pid);
1562         ax25_linkfail_register(&rose_linkfail_notifier);
1563 
1564 #ifdef CONFIG_SYSCTL
1565         rose_register_sysctl();
1566 #endif
1567         rose_loopback_init();
1568 
1569         rose_add_loopback_neigh();
1570 
1571         proc_create("rose", S_IRUGO, init_net.proc_net, &rose_info_fops);
1572         proc_create("rose_neigh", S_IRUGO, init_net.proc_net,
1573                     &rose_neigh_fops);
1574         proc_create("rose_nodes", S_IRUGO, init_net.proc_net,
1575                     &rose_nodes_fops);
1576         proc_create("rose_routes", S_IRUGO, init_net.proc_net,
1577                     &rose_routes_fops);
1578 out:
1579         return rc;
1580 fail:
1581         while (--i >= 0) {
1582                 unregister_netdev(dev_rose[i]);
1583                 free_netdev(dev_rose[i]);
1584         }
1585         kfree(dev_rose);
1586 out_proto_unregister:
1587         proto_unregister(&rose_proto);
1588         goto out;
1589 }
1590 module_init(rose_proto_init);
1591 
1592 module_param(rose_ndevs, int, 0);
1593 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1594 
1595 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1596 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1597 MODULE_LICENSE("GPL");
1598 MODULE_ALIAS_NETPROTO(PF_ROSE);
1599 
1600 static void __exit rose_exit(void)
1601 {
1602         int i;
1603 
1604         remove_proc_entry("rose", init_net.proc_net);
1605         remove_proc_entry("rose_neigh", init_net.proc_net);
1606         remove_proc_entry("rose_nodes", init_net.proc_net);
1607         remove_proc_entry("rose_routes", init_net.proc_net);
1608         rose_loopback_clear();
1609 
1610         rose_rt_free();
1611 
1612         ax25_protocol_release(AX25_P_ROSE);
1613         ax25_linkfail_release(&rose_linkfail_notifier);
1614 
1615         if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1616                 ax25_listen_release(&rose_callsign, NULL);
1617 
1618 #ifdef CONFIG_SYSCTL
1619         rose_unregister_sysctl();
1620 #endif
1621         unregister_netdevice_notifier(&rose_dev_notifier);
1622 
1623         sock_unregister(PF_ROSE);
1624 
1625         for (i = 0; i < rose_ndevs; i++) {
1626                 struct net_device *dev = dev_rose[i];
1627 
1628                 if (dev) {
1629                         unregister_netdev(dev);
1630                         free_netdev(dev);
1631                 }
1632         }
1633 
1634         kfree(dev_rose);
1635         proto_unregister(&rose_proto);
1636 }
1637 
1638 module_exit(rose_exit);
1639 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp