~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sched/cls_flow.c

Version: ~ [ linux-5.12-rc7 ] ~ [ linux-5.11.13 ] ~ [ linux-5.10.29 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.111 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.186 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.230 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.266 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.266 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * net/sched/cls_flow.c         Generic flow classifier
  3  *
  4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
  5  *
  6  * This program is free software; you can redistribute it and/or
  7  * modify it under the terms of the GNU General Public License
  8  * as published by the Free Software Foundation; either version 2
  9  * of the License, or (at your option) any later version.
 10  */
 11 
 12 #include <linux/kernel.h>
 13 #include <linux/init.h>
 14 #include <linux/list.h>
 15 #include <linux/jhash.h>
 16 #include <linux/random.h>
 17 #include <linux/pkt_cls.h>
 18 #include <linux/skbuff.h>
 19 #include <linux/in.h>
 20 #include <linux/ip.h>
 21 #include <linux/ipv6.h>
 22 #include <linux/if_vlan.h>
 23 #include <linux/slab.h>
 24 #include <linux/module.h>
 25 
 26 #include <net/pkt_cls.h>
 27 #include <net/ip.h>
 28 #include <net/route.h>
 29 #include <net/flow_keys.h>
 30 
 31 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 32 #include <net/netfilter/nf_conntrack.h>
 33 #endif
 34 
 35 struct flow_head {
 36         struct list_head        filters;
 37 };
 38 
 39 struct flow_filter {
 40         struct list_head        list;
 41         struct tcf_exts         exts;
 42         struct tcf_ematch_tree  ematches;
 43         struct timer_list       perturb_timer;
 44         u32                     perturb_period;
 45         u32                     handle;
 46 
 47         u32                     nkeys;
 48         u32                     keymask;
 49         u32                     mode;
 50         u32                     mask;
 51         u32                     xor;
 52         u32                     rshift;
 53         u32                     addend;
 54         u32                     divisor;
 55         u32                     baseclass;
 56         u32                     hashrnd;
 57 };
 58 
 59 static inline u32 addr_fold(void *addr)
 60 {
 61         unsigned long a = (unsigned long)addr;
 62 
 63         return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
 64 }
 65 
 66 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
 67 {
 68         if (flow->src)
 69                 return ntohl(flow->src);
 70         return addr_fold(skb->sk);
 71 }
 72 
 73 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
 74 {
 75         if (flow->dst)
 76                 return ntohl(flow->dst);
 77         return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
 78 }
 79 
 80 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
 81 {
 82         return flow->ip_proto;
 83 }
 84 
 85 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
 86 {
 87         if (flow->ports)
 88                 return ntohs(flow->port16[0]);
 89 
 90         return addr_fold(skb->sk);
 91 }
 92 
 93 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
 94 {
 95         if (flow->ports)
 96                 return ntohs(flow->port16[1]);
 97 
 98         return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
 99 }
100 
101 static u32 flow_get_iif(const struct sk_buff *skb)
102 {
103         return skb->skb_iif;
104 }
105 
106 static u32 flow_get_priority(const struct sk_buff *skb)
107 {
108         return skb->priority;
109 }
110 
111 static u32 flow_get_mark(const struct sk_buff *skb)
112 {
113         return skb->mark;
114 }
115 
116 static u32 flow_get_nfct(const struct sk_buff *skb)
117 {
118 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
119         return addr_fold(skb->nfct);
120 #else
121         return 0;
122 #endif
123 }
124 
125 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
126 #define CTTUPLE(skb, member)                                            \
127 ({                                                                      \
128         enum ip_conntrack_info ctinfo;                                  \
129         const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);             \
130         if (ct == NULL)                                                 \
131                 goto fallback;                                          \
132         ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;                 \
133 })
134 #else
135 #define CTTUPLE(skb, member)                                            \
136 ({                                                                      \
137         goto fallback;                                                  \
138         0;                                                              \
139 })
140 #endif
141 
142 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
143 {
144         switch (skb->protocol) {
145         case htons(ETH_P_IP):
146                 return ntohl(CTTUPLE(skb, src.u3.ip));
147         case htons(ETH_P_IPV6):
148                 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
149         }
150 fallback:
151         return flow_get_src(skb, flow);
152 }
153 
154 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
155 {
156         switch (skb->protocol) {
157         case htons(ETH_P_IP):
158                 return ntohl(CTTUPLE(skb, dst.u3.ip));
159         case htons(ETH_P_IPV6):
160                 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
161         }
162 fallback:
163         return flow_get_dst(skb, flow);
164 }
165 
166 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
167 {
168         return ntohs(CTTUPLE(skb, src.u.all));
169 fallback:
170         return flow_get_proto_src(skb, flow);
171 }
172 
173 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
174 {
175         return ntohs(CTTUPLE(skb, dst.u.all));
176 fallback:
177         return flow_get_proto_dst(skb, flow);
178 }
179 
180 static u32 flow_get_rtclassid(const struct sk_buff *skb)
181 {
182 #ifdef CONFIG_IP_ROUTE_CLASSID
183         if (skb_dst(skb))
184                 return skb_dst(skb)->tclassid;
185 #endif
186         return 0;
187 }
188 
189 static u32 flow_get_skuid(const struct sk_buff *skb)
190 {
191         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
192                 kuid_t skuid = skb->sk->sk_socket->file->f_cred->fsuid;
193                 return from_kuid(&init_user_ns, skuid);
194         }
195         return 0;
196 }
197 
198 static u32 flow_get_skgid(const struct sk_buff *skb)
199 {
200         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
201                 kgid_t skgid = skb->sk->sk_socket->file->f_cred->fsgid;
202                 return from_kgid(&init_user_ns, skgid);
203         }
204         return 0;
205 }
206 
207 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
208 {
209         u16 uninitialized_var(tag);
210 
211         if (vlan_get_tag(skb, &tag) < 0)
212                 return 0;
213         return tag & VLAN_VID_MASK;
214 }
215 
216 static u32 flow_get_rxhash(struct sk_buff *skb)
217 {
218         return skb_get_hash(skb);
219 }
220 
221 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
222 {
223         switch (key) {
224         case FLOW_KEY_SRC:
225                 return flow_get_src(skb, flow);
226         case FLOW_KEY_DST:
227                 return flow_get_dst(skb, flow);
228         case FLOW_KEY_PROTO:
229                 return flow_get_proto(skb, flow);
230         case FLOW_KEY_PROTO_SRC:
231                 return flow_get_proto_src(skb, flow);
232         case FLOW_KEY_PROTO_DST:
233                 return flow_get_proto_dst(skb, flow);
234         case FLOW_KEY_IIF:
235                 return flow_get_iif(skb);
236         case FLOW_KEY_PRIORITY:
237                 return flow_get_priority(skb);
238         case FLOW_KEY_MARK:
239                 return flow_get_mark(skb);
240         case FLOW_KEY_NFCT:
241                 return flow_get_nfct(skb);
242         case FLOW_KEY_NFCT_SRC:
243                 return flow_get_nfct_src(skb, flow);
244         case FLOW_KEY_NFCT_DST:
245                 return flow_get_nfct_dst(skb, flow);
246         case FLOW_KEY_NFCT_PROTO_SRC:
247                 return flow_get_nfct_proto_src(skb, flow);
248         case FLOW_KEY_NFCT_PROTO_DST:
249                 return flow_get_nfct_proto_dst(skb, flow);
250         case FLOW_KEY_RTCLASSID:
251                 return flow_get_rtclassid(skb);
252         case FLOW_KEY_SKUID:
253                 return flow_get_skuid(skb);
254         case FLOW_KEY_SKGID:
255                 return flow_get_skgid(skb);
256         case FLOW_KEY_VLAN_TAG:
257                 return flow_get_vlan_tag(skb);
258         case FLOW_KEY_RXHASH:
259                 return flow_get_rxhash(skb);
260         default:
261                 WARN_ON(1);
262                 return 0;
263         }
264 }
265 
266 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) |                 \
267                           (1 << FLOW_KEY_DST) |                 \
268                           (1 << FLOW_KEY_PROTO) |               \
269                           (1 << FLOW_KEY_PROTO_SRC) |           \
270                           (1 << FLOW_KEY_PROTO_DST) |           \
271                           (1 << FLOW_KEY_NFCT_SRC) |            \
272                           (1 << FLOW_KEY_NFCT_DST) |            \
273                           (1 << FLOW_KEY_NFCT_PROTO_SRC) |      \
274                           (1 << FLOW_KEY_NFCT_PROTO_DST))
275 
276 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
277                          struct tcf_result *res)
278 {
279         struct flow_head *head = tp->root;
280         struct flow_filter *f;
281         u32 keymask;
282         u32 classid;
283         unsigned int n, key;
284         int r;
285 
286         list_for_each_entry(f, &head->filters, list) {
287                 u32 keys[FLOW_KEY_MAX + 1];
288                 struct flow_keys flow_keys;
289 
290                 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
291                         continue;
292 
293                 keymask = f->keymask;
294                 if (keymask & FLOW_KEYS_NEEDED)
295                         skb_flow_dissect(skb, &flow_keys);
296 
297                 for (n = 0; n < f->nkeys; n++) {
298                         key = ffs(keymask) - 1;
299                         keymask &= ~(1 << key);
300                         keys[n] = flow_key_get(skb, key, &flow_keys);
301                 }
302 
303                 if (f->mode == FLOW_MODE_HASH)
304                         classid = jhash2(keys, f->nkeys, f->hashrnd);
305                 else {
306                         classid = keys[0];
307                         classid = (classid & f->mask) ^ f->xor;
308                         classid = (classid >> f->rshift) + f->addend;
309                 }
310 
311                 if (f->divisor)
312                         classid %= f->divisor;
313 
314                 res->class   = 0;
315                 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
316 
317                 r = tcf_exts_exec(skb, &f->exts, res);
318                 if (r < 0)
319                         continue;
320                 return r;
321         }
322         return -1;
323 }
324 
325 static void flow_perturbation(unsigned long arg)
326 {
327         struct flow_filter *f = (struct flow_filter *)arg;
328 
329         get_random_bytes(&f->hashrnd, 4);
330         if (f->perturb_period)
331                 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
332 }
333 
334 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
335         [TCA_FLOW_KEYS]         = { .type = NLA_U32 },
336         [TCA_FLOW_MODE]         = { .type = NLA_U32 },
337         [TCA_FLOW_BASECLASS]    = { .type = NLA_U32 },
338         [TCA_FLOW_RSHIFT]       = { .type = NLA_U32 },
339         [TCA_FLOW_ADDEND]       = { .type = NLA_U32 },
340         [TCA_FLOW_MASK]         = { .type = NLA_U32 },
341         [TCA_FLOW_XOR]          = { .type = NLA_U32 },
342         [TCA_FLOW_DIVISOR]      = { .type = NLA_U32 },
343         [TCA_FLOW_ACT]          = { .type = NLA_NESTED },
344         [TCA_FLOW_POLICE]       = { .type = NLA_NESTED },
345         [TCA_FLOW_EMATCHES]     = { .type = NLA_NESTED },
346         [TCA_FLOW_PERTURB]      = { .type = NLA_U32 },
347 };
348 
349 static int flow_change(struct net *net, struct sk_buff *in_skb,
350                        struct tcf_proto *tp, unsigned long base,
351                        u32 handle, struct nlattr **tca,
352                        unsigned long *arg)
353 {
354         struct flow_head *head = tp->root;
355         struct flow_filter *f;
356         struct nlattr *opt = tca[TCA_OPTIONS];
357         struct nlattr *tb[TCA_FLOW_MAX + 1];
358         struct tcf_exts e;
359         struct tcf_ematch_tree t;
360         unsigned int nkeys = 0;
361         unsigned int perturb_period = 0;
362         u32 baseclass = 0;
363         u32 keymask = 0;
364         u32 mode;
365         int err;
366 
367         if (opt == NULL)
368                 return -EINVAL;
369 
370         err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
371         if (err < 0)
372                 return err;
373 
374         if (tb[TCA_FLOW_BASECLASS]) {
375                 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
376                 if (TC_H_MIN(baseclass) == 0)
377                         return -EINVAL;
378         }
379 
380         if (tb[TCA_FLOW_KEYS]) {
381                 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
382 
383                 nkeys = hweight32(keymask);
384                 if (nkeys == 0)
385                         return -EINVAL;
386 
387                 if (fls(keymask) - 1 > FLOW_KEY_MAX)
388                         return -EOPNOTSUPP;
389 
390                 if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
391                     sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
392                         return -EOPNOTSUPP;
393         }
394 
395         tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE);
396         err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e);
397         if (err < 0)
398                 return err;
399 
400         err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
401         if (err < 0)
402                 goto err1;
403 
404         f = (struct flow_filter *)*arg;
405         if (f != NULL) {
406                 err = -EINVAL;
407                 if (f->handle != handle && handle)
408                         goto err2;
409 
410                 mode = f->mode;
411                 if (tb[TCA_FLOW_MODE])
412                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
413                 if (mode != FLOW_MODE_HASH && nkeys > 1)
414                         goto err2;
415 
416                 if (mode == FLOW_MODE_HASH)
417                         perturb_period = f->perturb_period;
418                 if (tb[TCA_FLOW_PERTURB]) {
419                         if (mode != FLOW_MODE_HASH)
420                                 goto err2;
421                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
422                 }
423         } else {
424                 err = -EINVAL;
425                 if (!handle)
426                         goto err2;
427                 if (!tb[TCA_FLOW_KEYS])
428                         goto err2;
429 
430                 mode = FLOW_MODE_MAP;
431                 if (tb[TCA_FLOW_MODE])
432                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
433                 if (mode != FLOW_MODE_HASH && nkeys > 1)
434                         goto err2;
435 
436                 if (tb[TCA_FLOW_PERTURB]) {
437                         if (mode != FLOW_MODE_HASH)
438                                 goto err2;
439                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
440                 }
441 
442                 if (TC_H_MAJ(baseclass) == 0)
443                         baseclass = TC_H_MAKE(tp->q->handle, baseclass);
444                 if (TC_H_MIN(baseclass) == 0)
445                         baseclass = TC_H_MAKE(baseclass, 1);
446 
447                 err = -ENOBUFS;
448                 f = kzalloc(sizeof(*f), GFP_KERNEL);
449                 if (f == NULL)
450                         goto err2;
451 
452                 f->handle = handle;
453                 f->mask   = ~0U;
454                 tcf_exts_init(&f->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
455 
456                 get_random_bytes(&f->hashrnd, 4);
457                 f->perturb_timer.function = flow_perturbation;
458                 f->perturb_timer.data = (unsigned long)f;
459                 init_timer_deferrable(&f->perturb_timer);
460         }
461 
462         tcf_exts_change(tp, &f->exts, &e);
463         tcf_em_tree_change(tp, &f->ematches, &t);
464 
465         tcf_tree_lock(tp);
466 
467         if (tb[TCA_FLOW_KEYS]) {
468                 f->keymask = keymask;
469                 f->nkeys   = nkeys;
470         }
471 
472         f->mode = mode;
473 
474         if (tb[TCA_FLOW_MASK])
475                 f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
476         if (tb[TCA_FLOW_XOR])
477                 f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
478         if (tb[TCA_FLOW_RSHIFT])
479                 f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
480         if (tb[TCA_FLOW_ADDEND])
481                 f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
482 
483         if (tb[TCA_FLOW_DIVISOR])
484                 f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
485         if (baseclass)
486                 f->baseclass = baseclass;
487 
488         f->perturb_period = perturb_period;
489         del_timer(&f->perturb_timer);
490         if (perturb_period)
491                 mod_timer(&f->perturb_timer, jiffies + perturb_period);
492 
493         if (*arg == 0)
494                 list_add_tail(&f->list, &head->filters);
495 
496         tcf_tree_unlock(tp);
497 
498         *arg = (unsigned long)f;
499         return 0;
500 
501 err2:
502         tcf_em_tree_destroy(tp, &t);
503 err1:
504         tcf_exts_destroy(tp, &e);
505         return err;
506 }
507 
508 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
509 {
510         del_timer_sync(&f->perturb_timer);
511         tcf_exts_destroy(tp, &f->exts);
512         tcf_em_tree_destroy(tp, &f->ematches);
513         kfree(f);
514 }
515 
516 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
517 {
518         struct flow_filter *f = (struct flow_filter *)arg;
519 
520         tcf_tree_lock(tp);
521         list_del(&f->list);
522         tcf_tree_unlock(tp);
523         flow_destroy_filter(tp, f);
524         return 0;
525 }
526 
527 static int flow_init(struct tcf_proto *tp)
528 {
529         struct flow_head *head;
530 
531         head = kzalloc(sizeof(*head), GFP_KERNEL);
532         if (head == NULL)
533                 return -ENOBUFS;
534         INIT_LIST_HEAD(&head->filters);
535         tp->root = head;
536         return 0;
537 }
538 
539 static void flow_destroy(struct tcf_proto *tp)
540 {
541         struct flow_head *head = tp->root;
542         struct flow_filter *f, *next;
543 
544         list_for_each_entry_safe(f, next, &head->filters, list) {
545                 list_del(&f->list);
546                 flow_destroy_filter(tp, f);
547         }
548         kfree(head);
549 }
550 
551 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
552 {
553         struct flow_head *head = tp->root;
554         struct flow_filter *f;
555 
556         list_for_each_entry(f, &head->filters, list)
557                 if (f->handle == handle)
558                         return (unsigned long)f;
559         return 0;
560 }
561 
562 static void flow_put(struct tcf_proto *tp, unsigned long f)
563 {
564 }
565 
566 static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
567                      struct sk_buff *skb, struct tcmsg *t)
568 {
569         struct flow_filter *f = (struct flow_filter *)fh;
570         struct nlattr *nest;
571 
572         if (f == NULL)
573                 return skb->len;
574 
575         t->tcm_handle = f->handle;
576 
577         nest = nla_nest_start(skb, TCA_OPTIONS);
578         if (nest == NULL)
579                 goto nla_put_failure;
580 
581         if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
582             nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
583                 goto nla_put_failure;
584 
585         if (f->mask != ~0 || f->xor != 0) {
586                 if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
587                     nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
588                         goto nla_put_failure;
589         }
590         if (f->rshift &&
591             nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
592                 goto nla_put_failure;
593         if (f->addend &&
594             nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
595                 goto nla_put_failure;
596 
597         if (f->divisor &&
598             nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
599                 goto nla_put_failure;
600         if (f->baseclass &&
601             nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
602                 goto nla_put_failure;
603 
604         if (f->perturb_period &&
605             nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
606                 goto nla_put_failure;
607 
608         if (tcf_exts_dump(skb, &f->exts) < 0)
609                 goto nla_put_failure;
610 #ifdef CONFIG_NET_EMATCH
611         if (f->ematches.hdr.nmatches &&
612             tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
613                 goto nla_put_failure;
614 #endif
615         nla_nest_end(skb, nest);
616 
617         if (tcf_exts_dump_stats(skb, &f->exts) < 0)
618                 goto nla_put_failure;
619 
620         return skb->len;
621 
622 nla_put_failure:
623         nlmsg_trim(skb, nest);
624         return -1;
625 }
626 
627 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
628 {
629         struct flow_head *head = tp->root;
630         struct flow_filter *f;
631 
632         list_for_each_entry(f, &head->filters, list) {
633                 if (arg->count < arg->skip)
634                         goto skip;
635                 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
636                         arg->stop = 1;
637                         break;
638                 }
639 skip:
640                 arg->count++;
641         }
642 }
643 
644 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
645         .kind           = "flow",
646         .classify       = flow_classify,
647         .init           = flow_init,
648         .destroy        = flow_destroy,
649         .change         = flow_change,
650         .delete         = flow_delete,
651         .get            = flow_get,
652         .put            = flow_put,
653         .dump           = flow_dump,
654         .walk           = flow_walk,
655         .owner          = THIS_MODULE,
656 };
657 
658 static int __init cls_flow_init(void)
659 {
660         return register_tcf_proto_ops(&cls_flow_ops);
661 }
662 
663 static void __exit cls_flow_exit(void)
664 {
665         unregister_tcf_proto_ops(&cls_flow_ops);
666 }
667 
668 module_init(cls_flow_init);
669 module_exit(cls_flow_exit);
670 
671 MODULE_LICENSE("GPL");
672 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
673 MODULE_DESCRIPTION("TC flow classifier");
674 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp