1 /* 2 * net/sched/sch_cbq.c Class-Based Queueing discipline. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 */ 12 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/string.h> 18 #include <linux/errno.h> 19 #include <linux/skbuff.h> 20 #include <net/netlink.h> 21 #include <net/pkt_sched.h> 22 23 24 /* Class-Based Queueing (CBQ) algorithm. 25 ======================================= 26 27 Sources: [1] Sally Floyd and Van Jacobson, "Link-sharing and Resource 28 Management Models for Packet Networks", 29 IEEE/ACM Transactions on Networking, Vol.3, No.4, 1995 30 31 [2] Sally Floyd, "Notes on CBQ and Guaranteed Service", 1995 32 33 [3] Sally Floyd, "Notes on Class-Based Queueing: Setting 34 Parameters", 1996 35 36 [4] Sally Floyd and Michael Speer, "Experimental Results 37 for Class-Based Queueing", 1998, not published. 38 39 ----------------------------------------------------------------------- 40 41 Algorithm skeleton was taken from NS simulator cbq.cc. 42 If someone wants to check this code against the LBL version, 43 he should take into account that ONLY the skeleton was borrowed, 44 the implementation is different. Particularly: 45 46 --- The WRR algorithm is different. Our version looks more 47 reasonable (I hope) and works when quanta are allowed to be 48 less than MTU, which is always the case when real time classes 49 have small rates. Note, that the statement of [3] is 50 incomplete, delay may actually be estimated even if class 51 per-round allotment is less than MTU. Namely, if per-round 52 allotment is W*r_i, and r_1+...+r_k = r < 1 53 54 delay_i <= ([MTU/(W*r_i)]*W*r + W*r + k*MTU)/B 55 56 In the worst case we have IntServ estimate with D = W*r+k*MTU 57 and C = MTU*r. The proof (if correct at all) is trivial. 58 59 60 --- It seems that cbq-2.0 is not very accurate. At least, I cannot 61 interpret some places, which look like wrong translations 62 from NS. Anyone is advised to find these differences 63 and explain to me, why I am wrong 8). 64 65 --- Linux has no EOI event, so that we cannot estimate true class 66 idle time. Workaround is to consider the next dequeue event 67 as sign that previous packet is finished. This is wrong because of 68 internal device queueing, but on a permanently loaded link it is true. 69 Moreover, combined with clock integrator, this scheme looks 70 very close to an ideal solution. */ 71 72 struct cbq_sched_data; 73 74 75 struct cbq_class { 76 struct Qdisc_class_common common; 77 struct cbq_class *next_alive; /* next class with backlog in this priority band */ 78 79 /* Parameters */ 80 unsigned char priority; /* class priority */ 81 unsigned char priority2; /* priority to be used after overlimit */ 82 unsigned char ewma_log; /* time constant for idle time calculation */ 83 84 u32 defmap; 85 86 /* Link-sharing scheduler parameters */ 87 long maxidle; /* Class parameters: see below. */ 88 long offtime; 89 long minidle; 90 u32 avpkt; 91 struct qdisc_rate_table *R_tab; 92 93 /* General scheduler (WRR) parameters */ 94 long allot; 95 long quantum; /* Allotment per WRR round */ 96 long weight; /* Relative allotment: see below */ 97 98 struct Qdisc *qdisc; /* Ptr to CBQ discipline */ 99 struct cbq_class *split; /* Ptr to split node */ 100 struct cbq_class *share; /* Ptr to LS parent in the class tree */ 101 struct cbq_class *tparent; /* Ptr to tree parent in the class tree */ 102 struct cbq_class *borrow; /* NULL if class is bandwidth limited; 103 parent otherwise */ 104 struct cbq_class *sibling; /* Sibling chain */ 105 struct cbq_class *children; /* Pointer to children chain */ 106 107 struct Qdisc *q; /* Elementary queueing discipline */ 108 109 110 /* Variables */ 111 unsigned char cpriority; /* Effective priority */ 112 unsigned char delayed; 113 unsigned char level; /* level of the class in hierarchy: 114 0 for leaf classes, and maximal 115 level of children + 1 for nodes. 116 */ 117 118 psched_time_t last; /* Last end of service */ 119 psched_time_t undertime; 120 long avgidle; 121 long deficit; /* Saved deficit for WRR */ 122 psched_time_t penalized; 123 struct gnet_stats_basic_packed bstats; 124 struct gnet_stats_queue qstats; 125 struct net_rate_estimator __rcu *rate_est; 126 struct tc_cbq_xstats xstats; 127 128 struct tcf_proto __rcu *filter_list; 129 130 int refcnt; 131 int filters; 132 133 struct cbq_class *defaults[TC_PRIO_MAX + 1]; 134 }; 135 136 struct cbq_sched_data { 137 struct Qdisc_class_hash clhash; /* Hash table of all classes */ 138 int nclasses[TC_CBQ_MAXPRIO + 1]; 139 unsigned int quanta[TC_CBQ_MAXPRIO + 1]; 140 141 struct cbq_class link; 142 143 unsigned int activemask; 144 struct cbq_class *active[TC_CBQ_MAXPRIO + 1]; /* List of all classes 145 with backlog */ 146 147 #ifdef CONFIG_NET_CLS_ACT 148 struct cbq_class *rx_class; 149 #endif 150 struct cbq_class *tx_class; 151 struct cbq_class *tx_borrowed; 152 int tx_len; 153 psched_time_t now; /* Cached timestamp */ 154 unsigned int pmask; 155 156 struct hrtimer delay_timer; 157 struct qdisc_watchdog watchdog; /* Watchdog timer, 158 started when CBQ has 159 backlog, but cannot 160 transmit just now */ 161 psched_tdiff_t wd_expires; 162 int toplevel; 163 u32 hgenerator; 164 }; 165 166 167 #define L2T(cl, len) qdisc_l2t((cl)->R_tab, len) 168 169 static inline struct cbq_class * 170 cbq_class_lookup(struct cbq_sched_data *q, u32 classid) 171 { 172 struct Qdisc_class_common *clc; 173 174 clc = qdisc_class_find(&q->clhash, classid); 175 if (clc == NULL) 176 return NULL; 177 return container_of(clc, struct cbq_class, common); 178 } 179 180 #ifdef CONFIG_NET_CLS_ACT 181 182 static struct cbq_class * 183 cbq_reclassify(struct sk_buff *skb, struct cbq_class *this) 184 { 185 struct cbq_class *cl; 186 187 for (cl = this->tparent; cl; cl = cl->tparent) { 188 struct cbq_class *new = cl->defaults[TC_PRIO_BESTEFFORT]; 189 190 if (new != NULL && new != this) 191 return new; 192 } 193 return NULL; 194 } 195 196 #endif 197 198 /* Classify packet. The procedure is pretty complicated, but 199 * it allows us to combine link sharing and priority scheduling 200 * transparently. 201 * 202 * Namely, you can put link sharing rules (f.e. route based) at root of CBQ, 203 * so that it resolves to split nodes. Then packets are classified 204 * by logical priority, or a more specific classifier may be attached 205 * to the split node. 206 */ 207 208 static struct cbq_class * 209 cbq_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 210 { 211 struct cbq_sched_data *q = qdisc_priv(sch); 212 struct cbq_class *head = &q->link; 213 struct cbq_class **defmap; 214 struct cbq_class *cl = NULL; 215 u32 prio = skb->priority; 216 struct tcf_proto *fl; 217 struct tcf_result res; 218 219 /* 220 * Step 1. If skb->priority points to one of our classes, use it. 221 */ 222 if (TC_H_MAJ(prio ^ sch->handle) == 0 && 223 (cl = cbq_class_lookup(q, prio)) != NULL) 224 return cl; 225 226 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 227 for (;;) { 228 int result = 0; 229 defmap = head->defaults; 230 231 fl = rcu_dereference_bh(head->filter_list); 232 /* 233 * Step 2+n. Apply classifier. 234 */ 235 result = tc_classify(skb, fl, &res, true); 236 if (!fl || result < 0) 237 goto fallback; 238 239 cl = (void *)res.class; 240 if (!cl) { 241 if (TC_H_MAJ(res.classid)) 242 cl = cbq_class_lookup(q, res.classid); 243 else if ((cl = defmap[res.classid & TC_PRIO_MAX]) == NULL) 244 cl = defmap[TC_PRIO_BESTEFFORT]; 245 246 if (cl == NULL) 247 goto fallback; 248 } 249 if (cl->level >= head->level) 250 goto fallback; 251 #ifdef CONFIG_NET_CLS_ACT 252 switch (result) { 253 case TC_ACT_QUEUED: 254 case TC_ACT_STOLEN: 255 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 256 case TC_ACT_SHOT: 257 return NULL; 258 case TC_ACT_RECLASSIFY: 259 return cbq_reclassify(skb, cl); 260 } 261 #endif 262 if (cl->level == 0) 263 return cl; 264 265 /* 266 * Step 3+n. If classifier selected a link sharing class, 267 * apply agency specific classifier. 268 * Repeat this procdure until we hit a leaf node. 269 */ 270 head = cl; 271 } 272 273 fallback: 274 cl = head; 275 276 /* 277 * Step 4. No success... 278 */ 279 if (TC_H_MAJ(prio) == 0 && 280 !(cl = head->defaults[prio & TC_PRIO_MAX]) && 281 !(cl = head->defaults[TC_PRIO_BESTEFFORT])) 282 return head; 283 284 return cl; 285 } 286 287 /* 288 * A packet has just been enqueued on the empty class. 289 * cbq_activate_class adds it to the tail of active class list 290 * of its priority band. 291 */ 292 293 static inline void cbq_activate_class(struct cbq_class *cl) 294 { 295 struct cbq_sched_data *q = qdisc_priv(cl->qdisc); 296 int prio = cl->cpriority; 297 struct cbq_class *cl_tail; 298 299 cl_tail = q->active[prio]; 300 q->active[prio] = cl; 301 302 if (cl_tail != NULL) { 303 cl->next_alive = cl_tail->next_alive; 304 cl_tail->next_alive = cl; 305 } else { 306 cl->next_alive = cl; 307 q->activemask |= (1<<prio); 308 } 309 } 310 311 /* 312 * Unlink class from active chain. 313 * Note that this same procedure is done directly in cbq_dequeue* 314 * during round-robin procedure. 315 */ 316 317 static void cbq_deactivate_class(struct cbq_class *this) 318 { 319 struct cbq_sched_data *q = qdisc_priv(this->qdisc); 320 int prio = this->cpriority; 321 struct cbq_class *cl; 322 struct cbq_class *cl_prev = q->active[prio]; 323 324 do { 325 cl = cl_prev->next_alive; 326 if (cl == this) { 327 cl_prev->next_alive = cl->next_alive; 328 cl->next_alive = NULL; 329 330 if (cl == q->active[prio]) { 331 q->active[prio] = cl_prev; 332 if (cl == q->active[prio]) { 333 q->active[prio] = NULL; 334 q->activemask &= ~(1<<prio); 335 return; 336 } 337 } 338 return; 339 } 340 } while ((cl_prev = cl) != q->active[prio]); 341 } 342 343 static void 344 cbq_mark_toplevel(struct cbq_sched_data *q, struct cbq_class *cl) 345 { 346 int toplevel = q->toplevel; 347 348 if (toplevel > cl->level) { 349 psched_time_t now = psched_get_time(); 350 351 do { 352 if (cl->undertime < now) { 353 q->toplevel = cl->level; 354 return; 355 } 356 } while ((cl = cl->borrow) != NULL && toplevel > cl->level); 357 } 358 } 359 360 static int 361 cbq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 362 struct sk_buff **to_free) 363 { 364 struct cbq_sched_data *q = qdisc_priv(sch); 365 int uninitialized_var(ret); 366 struct cbq_class *cl = cbq_classify(skb, sch, &ret); 367 368 #ifdef CONFIG_NET_CLS_ACT 369 q->rx_class = cl; 370 #endif 371 if (cl == NULL) { 372 if (ret & __NET_XMIT_BYPASS) 373 qdisc_qstats_drop(sch); 374 __qdisc_drop(skb, to_free); 375 return ret; 376 } 377 378 ret = qdisc_enqueue(skb, cl->q, to_free); 379 if (ret == NET_XMIT_SUCCESS) { 380 sch->q.qlen++; 381 cbq_mark_toplevel(q, cl); 382 if (!cl->next_alive) 383 cbq_activate_class(cl); 384 return ret; 385 } 386 387 if (net_xmit_drop_count(ret)) { 388 qdisc_qstats_drop(sch); 389 cbq_mark_toplevel(q, cl); 390 cl->qstats.drops++; 391 } 392 return ret; 393 } 394 395 /* Overlimit action: penalize leaf class by adding offtime */ 396 static void cbq_overlimit(struct cbq_class *cl) 397 { 398 struct cbq_sched_data *q = qdisc_priv(cl->qdisc); 399 psched_tdiff_t delay = cl->undertime - q->now; 400 401 if (!cl->delayed) { 402 delay += cl->offtime; 403 404 /* 405 * Class goes to sleep, so that it will have no 406 * chance to work avgidle. Let's forgive it 8) 407 * 408 * BTW cbq-2.0 has a crap in this 409 * place, apparently they forgot to shift it by cl->ewma_log. 410 */ 411 if (cl->avgidle < 0) 412 delay -= (-cl->avgidle) - ((-cl->avgidle) >> cl->ewma_log); 413 if (cl->avgidle < cl->minidle) 414 cl->avgidle = cl->minidle; 415 if (delay <= 0) 416 delay = 1; 417 cl->undertime = q->now + delay; 418 419 cl->xstats.overactions++; 420 cl->delayed = 1; 421 } 422 if (q->wd_expires == 0 || q->wd_expires > delay) 423 q->wd_expires = delay; 424 425 /* Dirty work! We must schedule wakeups based on 426 * real available rate, rather than leaf rate, 427 * which may be tiny (even zero). 428 */ 429 if (q->toplevel == TC_CBQ_MAXLEVEL) { 430 struct cbq_class *b; 431 psched_tdiff_t base_delay = q->wd_expires; 432 433 for (b = cl->borrow; b; b = b->borrow) { 434 delay = b->undertime - q->now; 435 if (delay < base_delay) { 436 if (delay <= 0) 437 delay = 1; 438 base_delay = delay; 439 } 440 } 441 442 q->wd_expires = base_delay; 443 } 444 } 445 446 static psched_tdiff_t cbq_undelay_prio(struct cbq_sched_data *q, int prio, 447 psched_time_t now) 448 { 449 struct cbq_class *cl; 450 struct cbq_class *cl_prev = q->active[prio]; 451 psched_time_t sched = now; 452 453 if (cl_prev == NULL) 454 return 0; 455 456 do { 457 cl = cl_prev->next_alive; 458 if (now - cl->penalized > 0) { 459 cl_prev->next_alive = cl->next_alive; 460 cl->next_alive = NULL; 461 cl->cpriority = cl->priority; 462 cl->delayed = 0; 463 cbq_activate_class(cl); 464 465 if (cl == q->active[prio]) { 466 q->active[prio] = cl_prev; 467 if (cl == q->active[prio]) { 468 q->active[prio] = NULL; 469 return 0; 470 } 471 } 472 473 cl = cl_prev->next_alive; 474 } else if (sched - cl->penalized > 0) 475 sched = cl->penalized; 476 } while ((cl_prev = cl) != q->active[prio]); 477 478 return sched - now; 479 } 480 481 static enum hrtimer_restart cbq_undelay(struct hrtimer *timer) 482 { 483 struct cbq_sched_data *q = container_of(timer, struct cbq_sched_data, 484 delay_timer); 485 struct Qdisc *sch = q->watchdog.qdisc; 486 psched_time_t now; 487 psched_tdiff_t delay = 0; 488 unsigned int pmask; 489 490 now = psched_get_time(); 491 492 pmask = q->pmask; 493 q->pmask = 0; 494 495 while (pmask) { 496 int prio = ffz(~pmask); 497 psched_tdiff_t tmp; 498 499 pmask &= ~(1<<prio); 500 501 tmp = cbq_undelay_prio(q, prio, now); 502 if (tmp > 0) { 503 q->pmask |= 1<<prio; 504 if (tmp < delay || delay == 0) 505 delay = tmp; 506 } 507 } 508 509 if (delay) { 510 ktime_t time; 511 512 time = 0; 513 time = ktime_add_ns(time, PSCHED_TICKS2NS(now + delay)); 514 hrtimer_start(&q->delay_timer, time, HRTIMER_MODE_ABS_PINNED); 515 } 516 517 __netif_schedule(qdisc_root(sch)); 518 return HRTIMER_NORESTART; 519 } 520 521 /* 522 * It is mission critical procedure. 523 * 524 * We "regenerate" toplevel cutoff, if transmitting class 525 * has backlog and it is not regulated. It is not part of 526 * original CBQ description, but looks more reasonable. 527 * Probably, it is wrong. This question needs further investigation. 528 */ 529 530 static inline void 531 cbq_update_toplevel(struct cbq_sched_data *q, struct cbq_class *cl, 532 struct cbq_class *borrowed) 533 { 534 if (cl && q->toplevel >= borrowed->level) { 535 if (cl->q->q.qlen > 1) { 536 do { 537 if (borrowed->undertime == PSCHED_PASTPERFECT) { 538 q->toplevel = borrowed->level; 539 return; 540 } 541 } while ((borrowed = borrowed->borrow) != NULL); 542 } 543 #if 0 544 /* It is not necessary now. Uncommenting it 545 will save CPU cycles, but decrease fairness. 546 */ 547 q->toplevel = TC_CBQ_MAXLEVEL; 548 #endif 549 } 550 } 551 552 static void 553 cbq_update(struct cbq_sched_data *q) 554 { 555 struct cbq_class *this = q->tx_class; 556 struct cbq_class *cl = this; 557 int len = q->tx_len; 558 psched_time_t now; 559 560 q->tx_class = NULL; 561 /* Time integrator. We calculate EOS time 562 * by adding expected packet transmission time. 563 */ 564 now = q->now + L2T(&q->link, len); 565 566 for ( ; cl; cl = cl->share) { 567 long avgidle = cl->avgidle; 568 long idle; 569 570 cl->bstats.packets++; 571 cl->bstats.bytes += len; 572 573 /* 574 * (now - last) is total time between packet right edges. 575 * (last_pktlen/rate) is "virtual" busy time, so that 576 * 577 * idle = (now - last) - last_pktlen/rate 578 */ 579 580 idle = now - cl->last; 581 if ((unsigned long)idle > 128*1024*1024) { 582 avgidle = cl->maxidle; 583 } else { 584 idle -= L2T(cl, len); 585 586 /* true_avgidle := (1-W)*true_avgidle + W*idle, 587 * where W=2^{-ewma_log}. But cl->avgidle is scaled: 588 * cl->avgidle == true_avgidle/W, 589 * hence: 590 */ 591 avgidle += idle - (avgidle>>cl->ewma_log); 592 } 593 594 if (avgidle <= 0) { 595 /* Overlimit or at-limit */ 596 597 if (avgidle < cl->minidle) 598 avgidle = cl->minidle; 599 600 cl->avgidle = avgidle; 601 602 /* Calculate expected time, when this class 603 * will be allowed to send. 604 * It will occur, when: 605 * (1-W)*true_avgidle + W*delay = 0, i.e. 606 * idle = (1/W - 1)*(-true_avgidle) 607 * or 608 * idle = (1 - W)*(-cl->avgidle); 609 */ 610 idle = (-avgidle) - ((-avgidle) >> cl->ewma_log); 611 612 /* 613 * That is not all. 614 * To maintain the rate allocated to the class, 615 * we add to undertime virtual clock, 616 * necessary to complete transmitted packet. 617 * (len/phys_bandwidth has been already passed 618 * to the moment of cbq_update) 619 */ 620 621 idle -= L2T(&q->link, len); 622 idle += L2T(cl, len); 623 624 cl->undertime = now + idle; 625 } else { 626 /* Underlimit */ 627 628 cl->undertime = PSCHED_PASTPERFECT; 629 if (avgidle > cl->maxidle) 630 cl->avgidle = cl->maxidle; 631 else 632 cl->avgidle = avgidle; 633 } 634 if ((s64)(now - cl->last) > 0) 635 cl->last = now; 636 } 637 638 cbq_update_toplevel(q, this, q->tx_borrowed); 639 } 640 641 static inline struct cbq_class * 642 cbq_under_limit(struct cbq_class *cl) 643 { 644 struct cbq_sched_data *q = qdisc_priv(cl->qdisc); 645 struct cbq_class *this_cl = cl; 646 647 if (cl->tparent == NULL) 648 return cl; 649 650 if (cl->undertime == PSCHED_PASTPERFECT || q->now >= cl->undertime) { 651 cl->delayed = 0; 652 return cl; 653 } 654 655 do { 656 /* It is very suspicious place. Now overlimit 657 * action is generated for not bounded classes 658 * only if link is completely congested. 659 * Though it is in agree with ancestor-only paradigm, 660 * it looks very stupid. Particularly, 661 * it means that this chunk of code will either 662 * never be called or result in strong amplification 663 * of burstiness. Dangerous, silly, and, however, 664 * no another solution exists. 665 */ 666 cl = cl->borrow; 667 if (!cl) { 668 this_cl->qstats.overlimits++; 669 cbq_overlimit(this_cl); 670 return NULL; 671 } 672 if (cl->level > q->toplevel) 673 return NULL; 674 } while (cl->undertime != PSCHED_PASTPERFECT && q->now < cl->undertime); 675 676 cl->delayed = 0; 677 return cl; 678 } 679 680 static inline struct sk_buff * 681 cbq_dequeue_prio(struct Qdisc *sch, int prio) 682 { 683 struct cbq_sched_data *q = qdisc_priv(sch); 684 struct cbq_class *cl_tail, *cl_prev, *cl; 685 struct sk_buff *skb; 686 int deficit; 687 688 cl_tail = cl_prev = q->active[prio]; 689 cl = cl_prev->next_alive; 690 691 do { 692 deficit = 0; 693 694 /* Start round */ 695 do { 696 struct cbq_class *borrow = cl; 697 698 if (cl->q->q.qlen && 699 (borrow = cbq_under_limit(cl)) == NULL) 700 goto skip_class; 701 702 if (cl->deficit <= 0) { 703 /* Class exhausted its allotment per 704 * this round. Switch to the next one. 705 */ 706 deficit = 1; 707 cl->deficit += cl->quantum; 708 goto next_class; 709 } 710 711 skb = cl->q->dequeue(cl->q); 712 713 /* Class did not give us any skb :-( 714 * It could occur even if cl->q->q.qlen != 0 715 * f.e. if cl->q == "tbf" 716 */ 717 if (skb == NULL) 718 goto skip_class; 719 720 cl->deficit -= qdisc_pkt_len(skb); 721 q->tx_class = cl; 722 q->tx_borrowed = borrow; 723 if (borrow != cl) { 724 #ifndef CBQ_XSTATS_BORROWS_BYTES 725 borrow->xstats.borrows++; 726 cl->xstats.borrows++; 727 #else 728 borrow->xstats.borrows += qdisc_pkt_len(skb); 729 cl->xstats.borrows += qdisc_pkt_len(skb); 730 #endif 731 } 732 q->tx_len = qdisc_pkt_len(skb); 733 734 if (cl->deficit <= 0) { 735 q->active[prio] = cl; 736 cl = cl->next_alive; 737 cl->deficit += cl->quantum; 738 } 739 return skb; 740 741 skip_class: 742 if (cl->q->q.qlen == 0 || prio != cl->cpriority) { 743 /* Class is empty or penalized. 744 * Unlink it from active chain. 745 */ 746 cl_prev->next_alive = cl->next_alive; 747 cl->next_alive = NULL; 748 749 /* Did cl_tail point to it? */ 750 if (cl == cl_tail) { 751 /* Repair it! */ 752 cl_tail = cl_prev; 753 754 /* Was it the last class in this band? */ 755 if (cl == cl_tail) { 756 /* Kill the band! */ 757 q->active[prio] = NULL; 758 q->activemask &= ~(1<<prio); 759 if (cl->q->q.qlen) 760 cbq_activate_class(cl); 761 return NULL; 762 } 763 764 q->active[prio] = cl_tail; 765 } 766 if (cl->q->q.qlen) 767 cbq_activate_class(cl); 768 769 cl = cl_prev; 770 } 771 772 next_class: 773 cl_prev = cl; 774 cl = cl->next_alive; 775 } while (cl_prev != cl_tail); 776 } while (deficit); 777 778 q->active[prio] = cl_prev; 779 780 return NULL; 781 } 782 783 static inline struct sk_buff * 784 cbq_dequeue_1(struct Qdisc *sch) 785 { 786 struct cbq_sched_data *q = qdisc_priv(sch); 787 struct sk_buff *skb; 788 unsigned int activemask; 789 790 activemask = q->activemask & 0xFF; 791 while (activemask) { 792 int prio = ffz(~activemask); 793 activemask &= ~(1<<prio); 794 skb = cbq_dequeue_prio(sch, prio); 795 if (skb) 796 return skb; 797 } 798 return NULL; 799 } 800 801 static struct sk_buff * 802 cbq_dequeue(struct Qdisc *sch) 803 { 804 struct sk_buff *skb; 805 struct cbq_sched_data *q = qdisc_priv(sch); 806 psched_time_t now; 807 808 now = psched_get_time(); 809 810 if (q->tx_class) 811 cbq_update(q); 812 813 q->now = now; 814 815 for (;;) { 816 q->wd_expires = 0; 817 818 skb = cbq_dequeue_1(sch); 819 if (skb) { 820 qdisc_bstats_update(sch, skb); 821 sch->q.qlen--; 822 return skb; 823 } 824 825 /* All the classes are overlimit. 826 * 827 * It is possible, if: 828 * 829 * 1. Scheduler is empty. 830 * 2. Toplevel cutoff inhibited borrowing. 831 * 3. Root class is overlimit. 832 * 833 * Reset 2d and 3d conditions and retry. 834 * 835 * Note, that NS and cbq-2.0 are buggy, peeking 836 * an arbitrary class is appropriate for ancestor-only 837 * sharing, but not for toplevel algorithm. 838 * 839 * Our version is better, but slower, because it requires 840 * two passes, but it is unavoidable with top-level sharing. 841 */ 842 843 if (q->toplevel == TC_CBQ_MAXLEVEL && 844 q->link.undertime == PSCHED_PASTPERFECT) 845 break; 846 847 q->toplevel = TC_CBQ_MAXLEVEL; 848 q->link.undertime = PSCHED_PASTPERFECT; 849 } 850 851 /* No packets in scheduler or nobody wants to give them to us :-( 852 * Sigh... start watchdog timer in the last case. 853 */ 854 855 if (sch->q.qlen) { 856 qdisc_qstats_overlimit(sch); 857 if (q->wd_expires) 858 qdisc_watchdog_schedule(&q->watchdog, 859 now + q->wd_expires); 860 } 861 return NULL; 862 } 863 864 /* CBQ class maintanance routines */ 865 866 static void cbq_adjust_levels(struct cbq_class *this) 867 { 868 if (this == NULL) 869 return; 870 871 do { 872 int level = 0; 873 struct cbq_class *cl; 874 875 cl = this->children; 876 if (cl) { 877 do { 878 if (cl->level > level) 879 level = cl->level; 880 } while ((cl = cl->sibling) != this->children); 881 } 882 this->level = level + 1; 883 } while ((this = this->tparent) != NULL); 884 } 885 886 static void cbq_normalize_quanta(struct cbq_sched_data *q, int prio) 887 { 888 struct cbq_class *cl; 889 unsigned int h; 890 891 if (q->quanta[prio] == 0) 892 return; 893 894 for (h = 0; h < q->clhash.hashsize; h++) { 895 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) { 896 /* BUGGGG... Beware! This expression suffer of 897 * arithmetic overflows! 898 */ 899 if (cl->priority == prio) { 900 cl->quantum = (cl->weight*cl->allot*q->nclasses[prio])/ 901 q->quanta[prio]; 902 } 903 if (cl->quantum <= 0 || 904 cl->quantum > 32*qdisc_dev(cl->qdisc)->mtu) { 905 pr_warn("CBQ: class %08x has bad quantum==%ld, repaired.\n", 906 cl->common.classid, cl->quantum); 907 cl->quantum = qdisc_dev(cl->qdisc)->mtu/2 + 1; 908 } 909 } 910 } 911 } 912 913 static void cbq_sync_defmap(struct cbq_class *cl) 914 { 915 struct cbq_sched_data *q = qdisc_priv(cl->qdisc); 916 struct cbq_class *split = cl->split; 917 unsigned int h; 918 int i; 919 920 if (split == NULL) 921 return; 922 923 for (i = 0; i <= TC_PRIO_MAX; i++) { 924 if (split->defaults[i] == cl && !(cl->defmap & (1<<i))) 925 split->defaults[i] = NULL; 926 } 927 928 for (i = 0; i <= TC_PRIO_MAX; i++) { 929 int level = split->level; 930 931 if (split->defaults[i]) 932 continue; 933 934 for (h = 0; h < q->clhash.hashsize; h++) { 935 struct cbq_class *c; 936 937 hlist_for_each_entry(c, &q->clhash.hash[h], 938 common.hnode) { 939 if (c->split == split && c->level < level && 940 c->defmap & (1<<i)) { 941 split->defaults[i] = c; 942 level = c->level; 943 } 944 } 945 } 946 } 947 } 948 949 static void cbq_change_defmap(struct cbq_class *cl, u32 splitid, u32 def, u32 mask) 950 { 951 struct cbq_class *split = NULL; 952 953 if (splitid == 0) { 954 split = cl->split; 955 if (!split) 956 return; 957 splitid = split->common.classid; 958 } 959 960 if (split == NULL || split->common.classid != splitid) { 961 for (split = cl->tparent; split; split = split->tparent) 962 if (split->common.classid == splitid) 963 break; 964 } 965 966 if (split == NULL) 967 return; 968 969 if (cl->split != split) { 970 cl->defmap = 0; 971 cbq_sync_defmap(cl); 972 cl->split = split; 973 cl->defmap = def & mask; 974 } else 975 cl->defmap = (cl->defmap & ~mask) | (def & mask); 976 977 cbq_sync_defmap(cl); 978 } 979 980 static void cbq_unlink_class(struct cbq_class *this) 981 { 982 struct cbq_class *cl, **clp; 983 struct cbq_sched_data *q = qdisc_priv(this->qdisc); 984 985 qdisc_class_hash_remove(&q->clhash, &this->common); 986 987 if (this->tparent) { 988 clp = &this->sibling; 989 cl = *clp; 990 do { 991 if (cl == this) { 992 *clp = cl->sibling; 993 break; 994 } 995 clp = &cl->sibling; 996 } while ((cl = *clp) != this->sibling); 997 998 if (this->tparent->children == this) { 999 this->tparent->children = this->sibling; 1000 if (this->sibling == this) 1001 this->tparent->children = NULL; 1002 } 1003 } else { 1004 WARN_ON(this->sibling != this); 1005 } 1006 } 1007 1008 static void cbq_link_class(struct cbq_class *this) 1009 { 1010 struct cbq_sched_data *q = qdisc_priv(this->qdisc); 1011 struct cbq_class *parent = this->tparent; 1012 1013 this->sibling = this; 1014 qdisc_class_hash_insert(&q->clhash, &this->common); 1015 1016 if (parent == NULL) 1017 return; 1018 1019 if (parent->children == NULL) { 1020 parent->children = this; 1021 } else { 1022 this->sibling = parent->children->sibling; 1023 parent->children->sibling = this; 1024 } 1025 } 1026 1027 static void 1028 cbq_reset(struct Qdisc *sch) 1029 { 1030 struct cbq_sched_data *q = qdisc_priv(sch); 1031 struct cbq_class *cl; 1032 int prio; 1033 unsigned int h; 1034 1035 q->activemask = 0; 1036 q->pmask = 0; 1037 q->tx_class = NULL; 1038 q->tx_borrowed = NULL; 1039 qdisc_watchdog_cancel(&q->watchdog); 1040 hrtimer_cancel(&q->delay_timer); 1041 q->toplevel = TC_CBQ_MAXLEVEL; 1042 q->now = psched_get_time(); 1043 1044 for (prio = 0; prio <= TC_CBQ_MAXPRIO; prio++) 1045 q->active[prio] = NULL; 1046 1047 for (h = 0; h < q->clhash.hashsize; h++) { 1048 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) { 1049 qdisc_reset(cl->q); 1050 1051 cl->next_alive = NULL; 1052 cl->undertime = PSCHED_PASTPERFECT; 1053 cl->avgidle = cl->maxidle; 1054 cl->deficit = cl->quantum; 1055 cl->cpriority = cl->priority; 1056 } 1057 } 1058 sch->q.qlen = 0; 1059 } 1060 1061 1062 static int cbq_set_lss(struct cbq_class *cl, struct tc_cbq_lssopt *lss) 1063 { 1064 if (lss->change & TCF_CBQ_LSS_FLAGS) { 1065 cl->share = (lss->flags & TCF_CBQ_LSS_ISOLATED) ? NULL : cl->tparent; 1066 cl->borrow = (lss->flags & TCF_CBQ_LSS_BOUNDED) ? NULL : cl->tparent; 1067 } 1068 if (lss->change & TCF_CBQ_LSS_EWMA) 1069 cl->ewma_log = lss->ewma_log; 1070 if (lss->change & TCF_CBQ_LSS_AVPKT) 1071 cl->avpkt = lss->avpkt; 1072 if (lss->change & TCF_CBQ_LSS_MINIDLE) 1073 cl->minidle = -(long)lss->minidle; 1074 if (lss->change & TCF_CBQ_LSS_MAXIDLE) { 1075 cl->maxidle = lss->maxidle; 1076 cl->avgidle = lss->maxidle; 1077 } 1078 if (lss->change & TCF_CBQ_LSS_OFFTIME) 1079 cl->offtime = lss->offtime; 1080 return 0; 1081 } 1082 1083 static void cbq_rmprio(struct cbq_sched_data *q, struct cbq_class *cl) 1084 { 1085 q->nclasses[cl->priority]--; 1086 q->quanta[cl->priority] -= cl->weight; 1087 cbq_normalize_quanta(q, cl->priority); 1088 } 1089 1090 static void cbq_addprio(struct cbq_sched_data *q, struct cbq_class *cl) 1091 { 1092 q->nclasses[cl->priority]++; 1093 q->quanta[cl->priority] += cl->weight; 1094 cbq_normalize_quanta(q, cl->priority); 1095 } 1096 1097 static int cbq_set_wrr(struct cbq_class *cl, struct tc_cbq_wrropt *wrr) 1098 { 1099 struct cbq_sched_data *q = qdisc_priv(cl->qdisc); 1100 1101 if (wrr->allot) 1102 cl->allot = wrr->allot; 1103 if (wrr->weight) 1104 cl->weight = wrr->weight; 1105 if (wrr->priority) { 1106 cl->priority = wrr->priority - 1; 1107 cl->cpriority = cl->priority; 1108 if (cl->priority >= cl->priority2) 1109 cl->priority2 = TC_CBQ_MAXPRIO - 1; 1110 } 1111 1112 cbq_addprio(q, cl); 1113 return 0; 1114 } 1115 1116 static int cbq_set_fopt(struct cbq_class *cl, struct tc_cbq_fopt *fopt) 1117 { 1118 cbq_change_defmap(cl, fopt->split, fopt->defmap, fopt->defchange); 1119 return 0; 1120 } 1121 1122 static const struct nla_policy cbq_policy[TCA_CBQ_MAX + 1] = { 1123 [TCA_CBQ_LSSOPT] = { .len = sizeof(struct tc_cbq_lssopt) }, 1124 [TCA_CBQ_WRROPT] = { .len = sizeof(struct tc_cbq_wrropt) }, 1125 [TCA_CBQ_FOPT] = { .len = sizeof(struct tc_cbq_fopt) }, 1126 [TCA_CBQ_OVL_STRATEGY] = { .len = sizeof(struct tc_cbq_ovl) }, 1127 [TCA_CBQ_RATE] = { .len = sizeof(struct tc_ratespec) }, 1128 [TCA_CBQ_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 1129 [TCA_CBQ_POLICE] = { .len = sizeof(struct tc_cbq_police) }, 1130 }; 1131 1132 static int cbq_init(struct Qdisc *sch, struct nlattr *opt) 1133 { 1134 struct cbq_sched_data *q = qdisc_priv(sch); 1135 struct nlattr *tb[TCA_CBQ_MAX + 1]; 1136 struct tc_ratespec *r; 1137 int err; 1138 1139 err = nla_parse_nested(tb, TCA_CBQ_MAX, opt, cbq_policy); 1140 if (err < 0) 1141 return err; 1142 1143 if (tb[TCA_CBQ_RTAB] == NULL || tb[TCA_CBQ_RATE] == NULL) 1144 return -EINVAL; 1145 1146 r = nla_data(tb[TCA_CBQ_RATE]); 1147 1148 if ((q->link.R_tab = qdisc_get_rtab(r, tb[TCA_CBQ_RTAB])) == NULL) 1149 return -EINVAL; 1150 1151 err = qdisc_class_hash_init(&q->clhash); 1152 if (err < 0) 1153 goto put_rtab; 1154 1155 q->link.refcnt = 1; 1156 q->link.sibling = &q->link; 1157 q->link.common.classid = sch->handle; 1158 q->link.qdisc = sch; 1159 q->link.q = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1160 sch->handle); 1161 if (!q->link.q) 1162 q->link.q = &noop_qdisc; 1163 1164 q->link.priority = TC_CBQ_MAXPRIO - 1; 1165 q->link.priority2 = TC_CBQ_MAXPRIO - 1; 1166 q->link.cpriority = TC_CBQ_MAXPRIO - 1; 1167 q->link.allot = psched_mtu(qdisc_dev(sch)); 1168 q->link.quantum = q->link.allot; 1169 q->link.weight = q->link.R_tab->rate.rate; 1170 1171 q->link.ewma_log = TC_CBQ_DEF_EWMA; 1172 q->link.avpkt = q->link.allot/2; 1173 q->link.minidle = -0x7FFFFFFF; 1174 1175 qdisc_watchdog_init(&q->watchdog, sch); 1176 hrtimer_init(&q->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1177 q->delay_timer.function = cbq_undelay; 1178 q->toplevel = TC_CBQ_MAXLEVEL; 1179 q->now = psched_get_time(); 1180 1181 cbq_link_class(&q->link); 1182 1183 if (tb[TCA_CBQ_LSSOPT]) 1184 cbq_set_lss(&q->link, nla_data(tb[TCA_CBQ_LSSOPT])); 1185 1186 cbq_addprio(q, &q->link); 1187 return 0; 1188 1189 put_rtab: 1190 qdisc_put_rtab(q->link.R_tab); 1191 return err; 1192 } 1193 1194 static int cbq_dump_rate(struct sk_buff *skb, struct cbq_class *cl) 1195 { 1196 unsigned char *b = skb_tail_pointer(skb); 1197 1198 if (nla_put(skb, TCA_CBQ_RATE, sizeof(cl->R_tab->rate), &cl->R_tab->rate)) 1199 goto nla_put_failure; 1200 return skb->len; 1201 1202 nla_put_failure: 1203 nlmsg_trim(skb, b); 1204 return -1; 1205 } 1206 1207 static int cbq_dump_lss(struct sk_buff *skb, struct cbq_class *cl) 1208 { 1209 unsigned char *b = skb_tail_pointer(skb); 1210 struct tc_cbq_lssopt opt; 1211 1212 opt.flags = 0; 1213 if (cl->borrow == NULL) 1214 opt.flags |= TCF_CBQ_LSS_BOUNDED; 1215 if (cl->share == NULL) 1216 opt.flags |= TCF_CBQ_LSS_ISOLATED; 1217 opt.ewma_log = cl->ewma_log; 1218 opt.level = cl->level; 1219 opt.avpkt = cl->avpkt; 1220 opt.maxidle = cl->maxidle; 1221 opt.minidle = (u32)(-cl->minidle); 1222 opt.offtime = cl->offtime; 1223 opt.change = ~0; 1224 if (nla_put(skb, TCA_CBQ_LSSOPT, sizeof(opt), &opt)) 1225 goto nla_put_failure; 1226 return skb->len; 1227 1228 nla_put_failure: 1229 nlmsg_trim(skb, b); 1230 return -1; 1231 } 1232 1233 static int cbq_dump_wrr(struct sk_buff *skb, struct cbq_class *cl) 1234 { 1235 unsigned char *b = skb_tail_pointer(skb); 1236 struct tc_cbq_wrropt opt; 1237 1238 memset(&opt, 0, sizeof(opt)); 1239 opt.flags = 0; 1240 opt.allot = cl->allot; 1241 opt.priority = cl->priority + 1; 1242 opt.cpriority = cl->cpriority + 1; 1243 opt.weight = cl->weight; 1244 if (nla_put(skb, TCA_CBQ_WRROPT, sizeof(opt), &opt)) 1245 goto nla_put_failure; 1246 return skb->len; 1247 1248 nla_put_failure: 1249 nlmsg_trim(skb, b); 1250 return -1; 1251 } 1252 1253 static int cbq_dump_fopt(struct sk_buff *skb, struct cbq_class *cl) 1254 { 1255 unsigned char *b = skb_tail_pointer(skb); 1256 struct tc_cbq_fopt opt; 1257 1258 if (cl->split || cl->defmap) { 1259 opt.split = cl->split ? cl->split->common.classid : 0; 1260 opt.defmap = cl->defmap; 1261 opt.defchange = ~0; 1262 if (nla_put(skb, TCA_CBQ_FOPT, sizeof(opt), &opt)) 1263 goto nla_put_failure; 1264 } 1265 return skb->len; 1266 1267 nla_put_failure: 1268 nlmsg_trim(skb, b); 1269 return -1; 1270 } 1271 1272 static int cbq_dump_attr(struct sk_buff *skb, struct cbq_class *cl) 1273 { 1274 if (cbq_dump_lss(skb, cl) < 0 || 1275 cbq_dump_rate(skb, cl) < 0 || 1276 cbq_dump_wrr(skb, cl) < 0 || 1277 cbq_dump_fopt(skb, cl) < 0) 1278 return -1; 1279 return 0; 1280 } 1281 1282 static int cbq_dump(struct Qdisc *sch, struct sk_buff *skb) 1283 { 1284 struct cbq_sched_data *q = qdisc_priv(sch); 1285 struct nlattr *nest; 1286 1287 nest = nla_nest_start(skb, TCA_OPTIONS); 1288 if (nest == NULL) 1289 goto nla_put_failure; 1290 if (cbq_dump_attr(skb, &q->link) < 0) 1291 goto nla_put_failure; 1292 return nla_nest_end(skb, nest); 1293 1294 nla_put_failure: 1295 nla_nest_cancel(skb, nest); 1296 return -1; 1297 } 1298 1299 static int 1300 cbq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 1301 { 1302 struct cbq_sched_data *q = qdisc_priv(sch); 1303 1304 q->link.xstats.avgidle = q->link.avgidle; 1305 return gnet_stats_copy_app(d, &q->link.xstats, sizeof(q->link.xstats)); 1306 } 1307 1308 static int 1309 cbq_dump_class(struct Qdisc *sch, unsigned long arg, 1310 struct sk_buff *skb, struct tcmsg *tcm) 1311 { 1312 struct cbq_class *cl = (struct cbq_class *)arg; 1313 struct nlattr *nest; 1314 1315 if (cl->tparent) 1316 tcm->tcm_parent = cl->tparent->common.classid; 1317 else 1318 tcm->tcm_parent = TC_H_ROOT; 1319 tcm->tcm_handle = cl->common.classid; 1320 tcm->tcm_info = cl->q->handle; 1321 1322 nest = nla_nest_start(skb, TCA_OPTIONS); 1323 if (nest == NULL) 1324 goto nla_put_failure; 1325 if (cbq_dump_attr(skb, cl) < 0) 1326 goto nla_put_failure; 1327 return nla_nest_end(skb, nest); 1328 1329 nla_put_failure: 1330 nla_nest_cancel(skb, nest); 1331 return -1; 1332 } 1333 1334 static int 1335 cbq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1336 struct gnet_dump *d) 1337 { 1338 struct cbq_sched_data *q = qdisc_priv(sch); 1339 struct cbq_class *cl = (struct cbq_class *)arg; 1340 1341 cl->xstats.avgidle = cl->avgidle; 1342 cl->xstats.undertime = 0; 1343 1344 if (cl->undertime != PSCHED_PASTPERFECT) 1345 cl->xstats.undertime = cl->undertime - q->now; 1346 1347 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), 1348 d, NULL, &cl->bstats) < 0 || 1349 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 1350 gnet_stats_copy_queue(d, NULL, &cl->qstats, cl->q->q.qlen) < 0) 1351 return -1; 1352 1353 return gnet_stats_copy_app(d, &cl->xstats, sizeof(cl->xstats)); 1354 } 1355 1356 static int cbq_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1357 struct Qdisc **old) 1358 { 1359 struct cbq_class *cl = (struct cbq_class *)arg; 1360 1361 if (new == NULL) { 1362 new = qdisc_create_dflt(sch->dev_queue, 1363 &pfifo_qdisc_ops, cl->common.classid); 1364 if (new == NULL) 1365 return -ENOBUFS; 1366 } 1367 1368 *old = qdisc_replace(sch, new, &cl->q); 1369 return 0; 1370 } 1371 1372 static struct Qdisc *cbq_leaf(struct Qdisc *sch, unsigned long arg) 1373 { 1374 struct cbq_class *cl = (struct cbq_class *)arg; 1375 1376 return cl->q; 1377 } 1378 1379 static void cbq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1380 { 1381 struct cbq_class *cl = (struct cbq_class *)arg; 1382 1383 if (cl->q->q.qlen == 0) 1384 cbq_deactivate_class(cl); 1385 } 1386 1387 static unsigned long cbq_get(struct Qdisc *sch, u32 classid) 1388 { 1389 struct cbq_sched_data *q = qdisc_priv(sch); 1390 struct cbq_class *cl = cbq_class_lookup(q, classid); 1391 1392 if (cl) { 1393 cl->refcnt++; 1394 return (unsigned long)cl; 1395 } 1396 return 0; 1397 } 1398 1399 static void cbq_destroy_class(struct Qdisc *sch, struct cbq_class *cl) 1400 { 1401 struct cbq_sched_data *q = qdisc_priv(sch); 1402 1403 WARN_ON(cl->filters); 1404 1405 tcf_destroy_chain(&cl->filter_list); 1406 qdisc_destroy(cl->q); 1407 qdisc_put_rtab(cl->R_tab); 1408 gen_kill_estimator(&cl->rate_est); 1409 if (cl != &q->link) 1410 kfree(cl); 1411 } 1412 1413 static void cbq_destroy(struct Qdisc *sch) 1414 { 1415 struct cbq_sched_data *q = qdisc_priv(sch); 1416 struct hlist_node *next; 1417 struct cbq_class *cl; 1418 unsigned int h; 1419 1420 #ifdef CONFIG_NET_CLS_ACT 1421 q->rx_class = NULL; 1422 #endif 1423 /* 1424 * Filters must be destroyed first because we don't destroy the 1425 * classes from root to leafs which means that filters can still 1426 * be bound to classes which have been destroyed already. --TGR '04 1427 */ 1428 for (h = 0; h < q->clhash.hashsize; h++) { 1429 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) 1430 tcf_destroy_chain(&cl->filter_list); 1431 } 1432 for (h = 0; h < q->clhash.hashsize; h++) { 1433 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[h], 1434 common.hnode) 1435 cbq_destroy_class(sch, cl); 1436 } 1437 qdisc_class_hash_destroy(&q->clhash); 1438 } 1439 1440 static void cbq_put(struct Qdisc *sch, unsigned long arg) 1441 { 1442 struct cbq_class *cl = (struct cbq_class *)arg; 1443 1444 if (--cl->refcnt == 0) { 1445 #ifdef CONFIG_NET_CLS_ACT 1446 spinlock_t *root_lock = qdisc_root_sleeping_lock(sch); 1447 struct cbq_sched_data *q = qdisc_priv(sch); 1448 1449 spin_lock_bh(root_lock); 1450 if (q->rx_class == cl) 1451 q->rx_class = NULL; 1452 spin_unlock_bh(root_lock); 1453 #endif 1454 1455 cbq_destroy_class(sch, cl); 1456 } 1457 } 1458 1459 static int 1460 cbq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, struct nlattr **tca, 1461 unsigned long *arg) 1462 { 1463 int err; 1464 struct cbq_sched_data *q = qdisc_priv(sch); 1465 struct cbq_class *cl = (struct cbq_class *)*arg; 1466 struct nlattr *opt = tca[TCA_OPTIONS]; 1467 struct nlattr *tb[TCA_CBQ_MAX + 1]; 1468 struct cbq_class *parent; 1469 struct qdisc_rate_table *rtab = NULL; 1470 1471 if (opt == NULL) 1472 return -EINVAL; 1473 1474 err = nla_parse_nested(tb, TCA_CBQ_MAX, opt, cbq_policy); 1475 if (err < 0) 1476 return err; 1477 1478 if (tb[TCA_CBQ_OVL_STRATEGY] || tb[TCA_CBQ_POLICE]) 1479 return -EOPNOTSUPP; 1480 1481 if (cl) { 1482 /* Check parent */ 1483 if (parentid) { 1484 if (cl->tparent && 1485 cl->tparent->common.classid != parentid) 1486 return -EINVAL; 1487 if (!cl->tparent && parentid != TC_H_ROOT) 1488 return -EINVAL; 1489 } 1490 1491 if (tb[TCA_CBQ_RATE]) { 1492 rtab = qdisc_get_rtab(nla_data(tb[TCA_CBQ_RATE]), 1493 tb[TCA_CBQ_RTAB]); 1494 if (rtab == NULL) 1495 return -EINVAL; 1496 } 1497 1498 if (tca[TCA_RATE]) { 1499 err = gen_replace_estimator(&cl->bstats, NULL, 1500 &cl->rate_est, 1501 NULL, 1502 qdisc_root_sleeping_running(sch), 1503 tca[TCA_RATE]); 1504 if (err) { 1505 qdisc_put_rtab(rtab); 1506 return err; 1507 } 1508 } 1509 1510 /* Change class parameters */ 1511 sch_tree_lock(sch); 1512 1513 if (cl->next_alive != NULL) 1514 cbq_deactivate_class(cl); 1515 1516 if (rtab) { 1517 qdisc_put_rtab(cl->R_tab); 1518 cl->R_tab = rtab; 1519 } 1520 1521 if (tb[TCA_CBQ_LSSOPT]) 1522 cbq_set_lss(cl, nla_data(tb[TCA_CBQ_LSSOPT])); 1523 1524 if (tb[TCA_CBQ_WRROPT]) { 1525 cbq_rmprio(q, cl); 1526 cbq_set_wrr(cl, nla_data(tb[TCA_CBQ_WRROPT])); 1527 } 1528 1529 if (tb[TCA_CBQ_FOPT]) 1530 cbq_set_fopt(cl, nla_data(tb[TCA_CBQ_FOPT])); 1531 1532 if (cl->q->q.qlen) 1533 cbq_activate_class(cl); 1534 1535 sch_tree_unlock(sch); 1536 1537 return 0; 1538 } 1539 1540 if (parentid == TC_H_ROOT) 1541 return -EINVAL; 1542 1543 if (tb[TCA_CBQ_WRROPT] == NULL || tb[TCA_CBQ_RATE] == NULL || 1544 tb[TCA_CBQ_LSSOPT] == NULL) 1545 return -EINVAL; 1546 1547 rtab = qdisc_get_rtab(nla_data(tb[TCA_CBQ_RATE]), tb[TCA_CBQ_RTAB]); 1548 if (rtab == NULL) 1549 return -EINVAL; 1550 1551 if (classid) { 1552 err = -EINVAL; 1553 if (TC_H_MAJ(classid ^ sch->handle) || 1554 cbq_class_lookup(q, classid)) 1555 goto failure; 1556 } else { 1557 int i; 1558 classid = TC_H_MAKE(sch->handle, 0x8000); 1559 1560 for (i = 0; i < 0x8000; i++) { 1561 if (++q->hgenerator >= 0x8000) 1562 q->hgenerator = 1; 1563 if (cbq_class_lookup(q, classid|q->hgenerator) == NULL) 1564 break; 1565 } 1566 err = -ENOSR; 1567 if (i >= 0x8000) 1568 goto failure; 1569 classid = classid|q->hgenerator; 1570 } 1571 1572 parent = &q->link; 1573 if (parentid) { 1574 parent = cbq_class_lookup(q, parentid); 1575 err = -EINVAL; 1576 if (parent == NULL) 1577 goto failure; 1578 } 1579 1580 err = -ENOBUFS; 1581 cl = kzalloc(sizeof(*cl), GFP_KERNEL); 1582 if (cl == NULL) 1583 goto failure; 1584 1585 if (tca[TCA_RATE]) { 1586 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est, 1587 NULL, 1588 qdisc_root_sleeping_running(sch), 1589 tca[TCA_RATE]); 1590 if (err) { 1591 kfree(cl); 1592 goto failure; 1593 } 1594 } 1595 1596 cl->R_tab = rtab; 1597 rtab = NULL; 1598 cl->refcnt = 1; 1599 cl->q = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, classid); 1600 if (!cl->q) 1601 cl->q = &noop_qdisc; 1602 cl->common.classid = classid; 1603 cl->tparent = parent; 1604 cl->qdisc = sch; 1605 cl->allot = parent->allot; 1606 cl->quantum = cl->allot; 1607 cl->weight = cl->R_tab->rate.rate; 1608 1609 sch_tree_lock(sch); 1610 cbq_link_class(cl); 1611 cl->borrow = cl->tparent; 1612 if (cl->tparent != &q->link) 1613 cl->share = cl->tparent; 1614 cbq_adjust_levels(parent); 1615 cl->minidle = -0x7FFFFFFF; 1616 cbq_set_lss(cl, nla_data(tb[TCA_CBQ_LSSOPT])); 1617 cbq_set_wrr(cl, nla_data(tb[TCA_CBQ_WRROPT])); 1618 if (cl->ewma_log == 0) 1619 cl->ewma_log = q->link.ewma_log; 1620 if (cl->maxidle == 0) 1621 cl->maxidle = q->link.maxidle; 1622 if (cl->avpkt == 0) 1623 cl->avpkt = q->link.avpkt; 1624 if (tb[TCA_CBQ_FOPT]) 1625 cbq_set_fopt(cl, nla_data(tb[TCA_CBQ_FOPT])); 1626 sch_tree_unlock(sch); 1627 1628 qdisc_class_hash_grow(sch, &q->clhash); 1629 1630 *arg = (unsigned long)cl; 1631 return 0; 1632 1633 failure: 1634 qdisc_put_rtab(rtab); 1635 return err; 1636 } 1637 1638 static int cbq_delete(struct Qdisc *sch, unsigned long arg) 1639 { 1640 struct cbq_sched_data *q = qdisc_priv(sch); 1641 struct cbq_class *cl = (struct cbq_class *)arg; 1642 unsigned int qlen, backlog; 1643 1644 if (cl->filters || cl->children || cl == &q->link) 1645 return -EBUSY; 1646 1647 sch_tree_lock(sch); 1648 1649 qlen = cl->q->q.qlen; 1650 backlog = cl->q->qstats.backlog; 1651 qdisc_reset(cl->q); 1652 qdisc_tree_reduce_backlog(cl->q, qlen, backlog); 1653 1654 if (cl->next_alive) 1655 cbq_deactivate_class(cl); 1656 1657 if (q->tx_borrowed == cl) 1658 q->tx_borrowed = q->tx_class; 1659 if (q->tx_class == cl) { 1660 q->tx_class = NULL; 1661 q->tx_borrowed = NULL; 1662 } 1663 #ifdef CONFIG_NET_CLS_ACT 1664 if (q->rx_class == cl) 1665 q->rx_class = NULL; 1666 #endif 1667 1668 cbq_unlink_class(cl); 1669 cbq_adjust_levels(cl->tparent); 1670 cl->defmap = 0; 1671 cbq_sync_defmap(cl); 1672 1673 cbq_rmprio(q, cl); 1674 sch_tree_unlock(sch); 1675 1676 BUG_ON(--cl->refcnt == 0); 1677 /* 1678 * This shouldn't happen: we "hold" one cops->get() when called 1679 * from tc_ctl_tclass; the destroy method is done from cops->put(). 1680 */ 1681 1682 return 0; 1683 } 1684 1685 static struct tcf_proto __rcu **cbq_find_tcf(struct Qdisc *sch, 1686 unsigned long arg) 1687 { 1688 struct cbq_sched_data *q = qdisc_priv(sch); 1689 struct cbq_class *cl = (struct cbq_class *)arg; 1690 1691 if (cl == NULL) 1692 cl = &q->link; 1693 1694 return &cl->filter_list; 1695 } 1696 1697 static unsigned long cbq_bind_filter(struct Qdisc *sch, unsigned long parent, 1698 u32 classid) 1699 { 1700 struct cbq_sched_data *q = qdisc_priv(sch); 1701 struct cbq_class *p = (struct cbq_class *)parent; 1702 struct cbq_class *cl = cbq_class_lookup(q, classid); 1703 1704 if (cl) { 1705 if (p && p->level <= cl->level) 1706 return 0; 1707 cl->filters++; 1708 return (unsigned long)cl; 1709 } 1710 return 0; 1711 } 1712 1713 static void cbq_unbind_filter(struct Qdisc *sch, unsigned long arg) 1714 { 1715 struct cbq_class *cl = (struct cbq_class *)arg; 1716 1717 cl->filters--; 1718 } 1719 1720 static void cbq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1721 { 1722 struct cbq_sched_data *q = qdisc_priv(sch); 1723 struct cbq_class *cl; 1724 unsigned int h; 1725 1726 if (arg->stop) 1727 return; 1728 1729 for (h = 0; h < q->clhash.hashsize; h++) { 1730 hlist_for_each_entry(cl, &q->clhash.hash[h], common.hnode) { 1731 if (arg->count < arg->skip) { 1732 arg->count++; 1733 continue; 1734 } 1735 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 1736 arg->stop = 1; 1737 return; 1738 } 1739 arg->count++; 1740 } 1741 } 1742 } 1743 1744 static const struct Qdisc_class_ops cbq_class_ops = { 1745 .graft = cbq_graft, 1746 .leaf = cbq_leaf, 1747 .qlen_notify = cbq_qlen_notify, 1748 .get = cbq_get, 1749 .put = cbq_put, 1750 .change = cbq_change_class, 1751 .delete = cbq_delete, 1752 .walk = cbq_walk, 1753 .tcf_chain = cbq_find_tcf, 1754 .bind_tcf = cbq_bind_filter, 1755 .unbind_tcf = cbq_unbind_filter, 1756 .dump = cbq_dump_class, 1757 .dump_stats = cbq_dump_class_stats, 1758 }; 1759 1760 static struct Qdisc_ops cbq_qdisc_ops __read_mostly = { 1761 .next = NULL, 1762 .cl_ops = &cbq_class_ops, 1763 .id = "cbq", 1764 .priv_size = sizeof(struct cbq_sched_data), 1765 .enqueue = cbq_enqueue, 1766 .dequeue = cbq_dequeue, 1767 .peek = qdisc_peek_dequeued, 1768 .init = cbq_init, 1769 .reset = cbq_reset, 1770 .destroy = cbq_destroy, 1771 .change = NULL, 1772 .dump = cbq_dump, 1773 .dump_stats = cbq_dump_stats, 1774 .owner = THIS_MODULE, 1775 }; 1776 1777 static int __init cbq_module_init(void) 1778 { 1779 return register_qdisc(&cbq_qdisc_ops); 1780 } 1781 static void __exit cbq_module_exit(void) 1782 { 1783 unregister_qdisc(&cbq_qdisc_ops); 1784 } 1785 module_init(cbq_module_init) 1786 module_exit(cbq_module_exit) 1787 MODULE_LICENSE("GPL"); 1788
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.