1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 #include <net/busy_poll.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 116 unsigned long nr_segs, loff_t pos); 117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static unsigned int sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_sendpage(struct file *file, struct page *page, 131 int offset, size_t size, loff_t *ppos, int more); 132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 133 struct pipe_inode_info *pipe, size_t len, 134 unsigned int flags); 135 136 /* 137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 138 * in the operation structures but are done directly via the socketcall() multiplexor. 139 */ 140 141 static const struct file_operations socket_file_ops = { 142 .owner = THIS_MODULE, 143 .llseek = no_llseek, 144 .aio_read = sock_aio_read, 145 .aio_write = sock_aio_write, 146 .poll = sock_poll, 147 .unlocked_ioctl = sock_ioctl, 148 #ifdef CONFIG_COMPAT 149 .compat_ioctl = compat_sock_ioctl, 150 #endif 151 .mmap = sock_mmap, 152 .open = sock_no_open, /* special open code to disallow open via /proc */ 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 err = get_user(len, ulen); 225 if (err) 226 return err; 227 if (len > klen) 228 len = klen; 229 if (len < 0 || len > sizeof(struct sockaddr_storage)) 230 return -EINVAL; 231 if (len) { 232 if (audit_sockaddr(klen, kaddr)) 233 return -ENOMEM; 234 if (copy_to_user(uaddr, kaddr, len)) 235 return -EFAULT; 236 } 237 /* 238 * "fromlen shall refer to the value before truncation.." 239 * 1003.1g 240 */ 241 return __put_user(klen, ulen); 242 } 243 244 static struct kmem_cache *sock_inode_cachep __read_mostly; 245 246 static struct inode *sock_alloc_inode(struct super_block *sb) 247 { 248 struct socket_alloc *ei; 249 struct socket_wq *wq; 250 251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 252 if (!ei) 253 return NULL; 254 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 255 if (!wq) { 256 kmem_cache_free(sock_inode_cachep, ei); 257 return NULL; 258 } 259 init_waitqueue_head(&wq->wait); 260 wq->fasync_list = NULL; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 dentry->d_inode->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 324 int flags, const char *dev_name, void *data) 325 { 326 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 327 &sockfs_dentry_operations, SOCKFS_MAGIC); 328 } 329 330 static struct vfsmount *sock_mnt __read_mostly; 331 332 static struct file_system_type sock_fs_type = { 333 .name = "sockfs", 334 .mount = sockfs_mount, 335 .kill_sb = kill_anon_super, 336 }; 337 338 /* 339 * Obtains the first available file descriptor and sets it up for use. 340 * 341 * These functions create file structures and maps them to fd space 342 * of the current process. On success it returns file descriptor 343 * and file struct implicitly stored in sock->file. 344 * Note that another thread may close file descriptor before we return 345 * from this function. We use the fact that now we do not refer 346 * to socket after mapping. If one day we will need it, this 347 * function will increment ref. count on file by 1. 348 * 349 * In any case returned fd MAY BE not valid! 350 * This race condition is unavoidable 351 * with shared fd spaces, we cannot solve it inside kernel, 352 * but we take care of internal coherence yet. 353 */ 354 355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 356 { 357 struct qstr name = { .name = "" }; 358 struct path path; 359 struct file *file; 360 361 if (dname) { 362 name.name = dname; 363 name.len = strlen(name.name); 364 } else if (sock->sk) { 365 name.name = sock->sk->sk_prot_creator->name; 366 name.len = strlen(name.name); 367 } 368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 369 if (unlikely(!path.dentry)) 370 return ERR_PTR(-ENOMEM); 371 path.mnt = mntget(sock_mnt); 372 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 SOCK_INODE(sock)->i_fop = &socket_file_ops; 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 *err = -EBADF; 456 file = fget_light(fd, fput_needed); 457 if (file) { 458 sock = sock_from_file(file, err); 459 if (sock) 460 return sock; 461 fput_light(file, *fput_needed); 462 } 463 return NULL; 464 } 465 466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 469 static ssize_t sockfs_getxattr(struct dentry *dentry, 470 const char *name, void *value, size_t size) 471 { 472 const char *proto_name; 473 size_t proto_size; 474 int error; 475 476 error = -ENODATA; 477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 478 proto_name = dentry->d_name.name; 479 proto_size = strlen(proto_name); 480 481 if (value) { 482 error = -ERANGE; 483 if (proto_size + 1 > size) 484 goto out; 485 486 strncpy(value, proto_name, proto_size + 1); 487 } 488 error = proto_size + 1; 489 } 490 491 out: 492 return error; 493 } 494 495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 496 size_t size) 497 { 498 ssize_t len; 499 ssize_t used = 0; 500 501 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 502 if (len < 0) 503 return len; 504 used += len; 505 if (buffer) { 506 if (size < used) 507 return -ERANGE; 508 buffer += len; 509 } 510 511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 512 used += len; 513 if (buffer) { 514 if (size < used) 515 return -ERANGE; 516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 517 buffer += len; 518 } 519 520 return used; 521 } 522 523 static const struct inode_operations sockfs_inode_ops = { 524 .getxattr = sockfs_getxattr, 525 .listxattr = sockfs_listxattr, 526 }; 527 528 /** 529 * sock_alloc - allocate a socket 530 * 531 * Allocate a new inode and socket object. The two are bound together 532 * and initialised. The socket is then returned. If we are out of inodes 533 * NULL is returned. 534 */ 535 536 static struct socket *sock_alloc(void) 537 { 538 struct inode *inode; 539 struct socket *sock; 540 541 inode = new_inode_pseudo(sock_mnt->mnt_sb); 542 if (!inode) 543 return NULL; 544 545 sock = SOCKET_I(inode); 546 547 kmemcheck_annotate_bitfield(sock, type); 548 inode->i_ino = get_next_ino(); 549 inode->i_mode = S_IFSOCK | S_IRWXUGO; 550 inode->i_uid = current_fsuid(); 551 inode->i_gid = current_fsgid(); 552 inode->i_op = &sockfs_inode_ops; 553 554 this_cpu_add(sockets_in_use, 1); 555 return sock; 556 } 557 558 /* 559 * In theory you can't get an open on this inode, but /proc provides 560 * a back door. Remember to keep it shut otherwise you'll let the 561 * creepy crawlies in. 562 */ 563 564 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 565 { 566 return -ENXIO; 567 } 568 569 const struct file_operations bad_sock_fops = { 570 .owner = THIS_MODULE, 571 .open = sock_no_open, 572 .llseek = noop_llseek, 573 }; 574 575 /** 576 * sock_release - close a socket 577 * @sock: socket to close 578 * 579 * The socket is released from the protocol stack if it has a release 580 * callback, and the inode is then released if the socket is bound to 581 * an inode not a file. 582 */ 583 584 void sock_release(struct socket *sock) 585 { 586 if (sock->ops) { 587 struct module *owner = sock->ops->owner; 588 589 sock->ops->release(sock); 590 sock->ops = NULL; 591 module_put(owner); 592 } 593 594 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 595 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 596 597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 598 return; 599 600 this_cpu_sub(sockets_in_use, 1); 601 if (!sock->file) { 602 iput(SOCK_INODE(sock)); 603 return; 604 } 605 sock->file = NULL; 606 } 607 EXPORT_SYMBOL(sock_release); 608 609 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 610 { 611 *tx_flags = 0; 612 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 613 *tx_flags |= SKBTX_HW_TSTAMP; 614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 615 *tx_flags |= SKBTX_SW_TSTAMP; 616 if (sock_flag(sk, SOCK_WIFI_STATUS)) 617 *tx_flags |= SKBTX_WIFI_STATUS; 618 } 619 EXPORT_SYMBOL(sock_tx_timestamp); 620 621 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 622 struct msghdr *msg, size_t size) 623 { 624 struct sock_iocb *si = kiocb_to_siocb(iocb); 625 626 si->sock = sock; 627 si->scm = NULL; 628 si->msg = msg; 629 si->size = size; 630 631 return sock->ops->sendmsg(iocb, sock, msg, size); 632 } 633 634 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 635 struct msghdr *msg, size_t size) 636 { 637 int err = security_socket_sendmsg(sock, msg, size); 638 639 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 640 } 641 642 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 643 { 644 struct kiocb iocb; 645 struct sock_iocb siocb; 646 int ret; 647 648 init_sync_kiocb(&iocb, NULL); 649 iocb.private = &siocb; 650 ret = __sock_sendmsg(&iocb, sock, msg, size); 651 if (-EIOCBQUEUED == ret) 652 ret = wait_on_sync_kiocb(&iocb); 653 return ret; 654 } 655 EXPORT_SYMBOL(sock_sendmsg); 656 657 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 658 { 659 struct kiocb iocb; 660 struct sock_iocb siocb; 661 int ret; 662 663 init_sync_kiocb(&iocb, NULL); 664 iocb.private = &siocb; 665 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 666 if (-EIOCBQUEUED == ret) 667 ret = wait_on_sync_kiocb(&iocb); 668 return ret; 669 } 670 671 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 672 struct kvec *vec, size_t num, size_t size) 673 { 674 mm_segment_t oldfs = get_fs(); 675 int result; 676 677 set_fs(KERNEL_DS); 678 /* 679 * the following is safe, since for compiler definitions of kvec and 680 * iovec are identical, yielding the same in-core layout and alignment 681 */ 682 msg->msg_iov = (struct iovec *)vec; 683 msg->msg_iovlen = num; 684 result = sock_sendmsg(sock, msg, size); 685 set_fs(oldfs); 686 return result; 687 } 688 EXPORT_SYMBOL(kernel_sendmsg); 689 690 /* 691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 692 */ 693 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 694 struct sk_buff *skb) 695 { 696 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 697 struct timespec ts[3]; 698 int empty = 1; 699 struct skb_shared_hwtstamps *shhwtstamps = 700 skb_hwtstamps(skb); 701 702 /* Race occurred between timestamp enabling and packet 703 receiving. Fill in the current time for now. */ 704 if (need_software_tstamp && skb->tstamp.tv64 == 0) 705 __net_timestamp(skb); 706 707 if (need_software_tstamp) { 708 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 709 struct timeval tv; 710 skb_get_timestamp(skb, &tv); 711 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 712 sizeof(tv), &tv); 713 } else { 714 skb_get_timestampns(skb, &ts[0]); 715 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 716 sizeof(ts[0]), &ts[0]); 717 } 718 } 719 720 721 memset(ts, 0, sizeof(ts)); 722 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && 723 ktime_to_timespec_cond(skb->tstamp, ts + 0)) 724 empty = 0; 725 if (shhwtstamps) { 726 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 727 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) 728 empty = 0; 729 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 730 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) 731 empty = 0; 732 } 733 if (!empty) 734 put_cmsg(msg, SOL_SOCKET, 735 SCM_TIMESTAMPING, sizeof(ts), &ts); 736 } 737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 738 739 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 740 struct sk_buff *skb) 741 { 742 int ack; 743 744 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 745 return; 746 if (!skb->wifi_acked_valid) 747 return; 748 749 ack = skb->wifi_acked; 750 751 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 752 } 753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 754 755 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 756 struct sk_buff *skb) 757 { 758 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 759 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 760 sizeof(__u32), &skb->dropcount); 761 } 762 763 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 764 struct sk_buff *skb) 765 { 766 sock_recv_timestamp(msg, sk, skb); 767 sock_recv_drops(msg, sk, skb); 768 } 769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 770 771 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 772 struct msghdr *msg, size_t size, int flags) 773 { 774 struct sock_iocb *si = kiocb_to_siocb(iocb); 775 776 si->sock = sock; 777 si->scm = NULL; 778 si->msg = msg; 779 si->size = size; 780 si->flags = flags; 781 782 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 783 } 784 785 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 786 struct msghdr *msg, size_t size, int flags) 787 { 788 int err = security_socket_recvmsg(sock, msg, size, flags); 789 790 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 791 } 792 793 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 794 size_t size, int flags) 795 { 796 struct kiocb iocb; 797 struct sock_iocb siocb; 798 int ret; 799 800 init_sync_kiocb(&iocb, NULL); 801 iocb.private = &siocb; 802 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 803 if (-EIOCBQUEUED == ret) 804 ret = wait_on_sync_kiocb(&iocb); 805 return ret; 806 } 807 EXPORT_SYMBOL(sock_recvmsg); 808 809 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 810 size_t size, int flags) 811 { 812 struct kiocb iocb; 813 struct sock_iocb siocb; 814 int ret; 815 816 init_sync_kiocb(&iocb, NULL); 817 iocb.private = &siocb; 818 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 819 if (-EIOCBQUEUED == ret) 820 ret = wait_on_sync_kiocb(&iocb); 821 return ret; 822 } 823 824 /** 825 * kernel_recvmsg - Receive a message from a socket (kernel space) 826 * @sock: The socket to receive the message from 827 * @msg: Received message 828 * @vec: Input s/g array for message data 829 * @num: Size of input s/g array 830 * @size: Number of bytes to read 831 * @flags: Message flags (MSG_DONTWAIT, etc...) 832 * 833 * On return the msg structure contains the scatter/gather array passed in the 834 * vec argument. The array is modified so that it consists of the unfilled 835 * portion of the original array. 836 * 837 * The returned value is the total number of bytes received, or an error. 838 */ 839 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 840 struct kvec *vec, size_t num, size_t size, int flags) 841 { 842 mm_segment_t oldfs = get_fs(); 843 int result; 844 845 set_fs(KERNEL_DS); 846 /* 847 * the following is safe, since for compiler definitions of kvec and 848 * iovec are identical, yielding the same in-core layout and alignment 849 */ 850 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 851 result = sock_recvmsg(sock, msg, size, flags); 852 set_fs(oldfs); 853 return result; 854 } 855 EXPORT_SYMBOL(kernel_recvmsg); 856 857 static void sock_aio_dtor(struct kiocb *iocb) 858 { 859 kfree(iocb->private); 860 } 861 862 static ssize_t sock_sendpage(struct file *file, struct page *page, 863 int offset, size_t size, loff_t *ppos, int more) 864 { 865 struct socket *sock; 866 int flags; 867 868 sock = file->private_data; 869 870 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 871 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 872 flags |= more; 873 874 return kernel_sendpage(sock, page, offset, size, flags); 875 } 876 877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 878 struct pipe_inode_info *pipe, size_t len, 879 unsigned int flags) 880 { 881 struct socket *sock = file->private_data; 882 883 if (unlikely(!sock->ops->splice_read)) 884 return -EINVAL; 885 886 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 887 } 888 889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 890 struct sock_iocb *siocb) 891 { 892 if (!is_sync_kiocb(iocb)) { 893 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 894 if (!siocb) 895 return NULL; 896 iocb->ki_dtor = sock_aio_dtor; 897 } 898 899 siocb->kiocb = iocb; 900 iocb->private = siocb; 901 return siocb; 902 } 903 904 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 905 struct file *file, const struct iovec *iov, 906 unsigned long nr_segs) 907 { 908 struct socket *sock = file->private_data; 909 size_t size = 0; 910 int i; 911 912 for (i = 0; i < nr_segs; i++) 913 size += iov[i].iov_len; 914 915 msg->msg_name = NULL; 916 msg->msg_namelen = 0; 917 msg->msg_control = NULL; 918 msg->msg_controllen = 0; 919 msg->msg_iov = (struct iovec *)iov; 920 msg->msg_iovlen = nr_segs; 921 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 922 923 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 924 } 925 926 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 927 unsigned long nr_segs, loff_t pos) 928 { 929 struct sock_iocb siocb, *x; 930 931 if (pos != 0) 932 return -ESPIPE; 933 934 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 935 return 0; 936 937 938 x = alloc_sock_iocb(iocb, &siocb); 939 if (!x) 940 return -ENOMEM; 941 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 942 } 943 944 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 945 struct file *file, const struct iovec *iov, 946 unsigned long nr_segs) 947 { 948 struct socket *sock = file->private_data; 949 size_t size = 0; 950 int i; 951 952 for (i = 0; i < nr_segs; i++) 953 size += iov[i].iov_len; 954 955 msg->msg_name = NULL; 956 msg->msg_namelen = 0; 957 msg->msg_control = NULL; 958 msg->msg_controllen = 0; 959 msg->msg_iov = (struct iovec *)iov; 960 msg->msg_iovlen = nr_segs; 961 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 962 if (sock->type == SOCK_SEQPACKET) 963 msg->msg_flags |= MSG_EOR; 964 965 return __sock_sendmsg(iocb, sock, msg, size); 966 } 967 968 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 969 unsigned long nr_segs, loff_t pos) 970 { 971 struct sock_iocb siocb, *x; 972 973 if (pos != 0) 974 return -ESPIPE; 975 976 x = alloc_sock_iocb(iocb, &siocb); 977 if (!x) 978 return -ENOMEM; 979 980 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 981 } 982 983 /* 984 * Atomic setting of ioctl hooks to avoid race 985 * with module unload. 986 */ 987 988 static DEFINE_MUTEX(br_ioctl_mutex); 989 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 990 991 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 992 { 993 mutex_lock(&br_ioctl_mutex); 994 br_ioctl_hook = hook; 995 mutex_unlock(&br_ioctl_mutex); 996 } 997 EXPORT_SYMBOL(brioctl_set); 998 999 static DEFINE_MUTEX(vlan_ioctl_mutex); 1000 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1001 1002 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1003 { 1004 mutex_lock(&vlan_ioctl_mutex); 1005 vlan_ioctl_hook = hook; 1006 mutex_unlock(&vlan_ioctl_mutex); 1007 } 1008 EXPORT_SYMBOL(vlan_ioctl_set); 1009 1010 static DEFINE_MUTEX(dlci_ioctl_mutex); 1011 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1012 1013 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1014 { 1015 mutex_lock(&dlci_ioctl_mutex); 1016 dlci_ioctl_hook = hook; 1017 mutex_unlock(&dlci_ioctl_mutex); 1018 } 1019 EXPORT_SYMBOL(dlci_ioctl_set); 1020 1021 static long sock_do_ioctl(struct net *net, struct socket *sock, 1022 unsigned int cmd, unsigned long arg) 1023 { 1024 int err; 1025 void __user *argp = (void __user *)arg; 1026 1027 err = sock->ops->ioctl(sock, cmd, arg); 1028 1029 /* 1030 * If this ioctl is unknown try to hand it down 1031 * to the NIC driver. 1032 */ 1033 if (err == -ENOIOCTLCMD) 1034 err = dev_ioctl(net, cmd, argp); 1035 1036 return err; 1037 } 1038 1039 /* 1040 * With an ioctl, arg may well be a user mode pointer, but we don't know 1041 * what to do with it - that's up to the protocol still. 1042 */ 1043 1044 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1045 { 1046 struct socket *sock; 1047 struct sock *sk; 1048 void __user *argp = (void __user *)arg; 1049 int pid, err; 1050 struct net *net; 1051 1052 sock = file->private_data; 1053 sk = sock->sk; 1054 net = sock_net(sk); 1055 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1056 err = dev_ioctl(net, cmd, argp); 1057 } else 1058 #ifdef CONFIG_WEXT_CORE 1059 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1060 err = dev_ioctl(net, cmd, argp); 1061 } else 1062 #endif 1063 switch (cmd) { 1064 case FIOSETOWN: 1065 case SIOCSPGRP: 1066 err = -EFAULT; 1067 if (get_user(pid, (int __user *)argp)) 1068 break; 1069 err = f_setown(sock->file, pid, 1); 1070 break; 1071 case FIOGETOWN: 1072 case SIOCGPGRP: 1073 err = put_user(f_getown(sock->file), 1074 (int __user *)argp); 1075 break; 1076 case SIOCGIFBR: 1077 case SIOCSIFBR: 1078 case SIOCBRADDBR: 1079 case SIOCBRDELBR: 1080 err = -ENOPKG; 1081 if (!br_ioctl_hook) 1082 request_module("bridge"); 1083 1084 mutex_lock(&br_ioctl_mutex); 1085 if (br_ioctl_hook) 1086 err = br_ioctl_hook(net, cmd, argp); 1087 mutex_unlock(&br_ioctl_mutex); 1088 break; 1089 case SIOCGIFVLAN: 1090 case SIOCSIFVLAN: 1091 err = -ENOPKG; 1092 if (!vlan_ioctl_hook) 1093 request_module("8021q"); 1094 1095 mutex_lock(&vlan_ioctl_mutex); 1096 if (vlan_ioctl_hook) 1097 err = vlan_ioctl_hook(net, argp); 1098 mutex_unlock(&vlan_ioctl_mutex); 1099 break; 1100 case SIOCADDDLCI: 1101 case SIOCDELDLCI: 1102 err = -ENOPKG; 1103 if (!dlci_ioctl_hook) 1104 request_module("dlci"); 1105 1106 mutex_lock(&dlci_ioctl_mutex); 1107 if (dlci_ioctl_hook) 1108 err = dlci_ioctl_hook(cmd, argp); 1109 mutex_unlock(&dlci_ioctl_mutex); 1110 break; 1111 default: 1112 err = sock_do_ioctl(net, sock, cmd, arg); 1113 break; 1114 } 1115 return err; 1116 } 1117 1118 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1119 { 1120 int err; 1121 struct socket *sock = NULL; 1122 1123 err = security_socket_create(family, type, protocol, 1); 1124 if (err) 1125 goto out; 1126 1127 sock = sock_alloc(); 1128 if (!sock) { 1129 err = -ENOMEM; 1130 goto out; 1131 } 1132 1133 sock->type = type; 1134 err = security_socket_post_create(sock, family, type, protocol, 1); 1135 if (err) 1136 goto out_release; 1137 1138 out: 1139 *res = sock; 1140 return err; 1141 out_release: 1142 sock_release(sock); 1143 sock = NULL; 1144 goto out; 1145 } 1146 EXPORT_SYMBOL(sock_create_lite); 1147 1148 /* No kernel lock held - perfect */ 1149 static unsigned int sock_poll(struct file *file, poll_table *wait) 1150 { 1151 unsigned int busy_flag = 0; 1152 struct socket *sock; 1153 1154 /* 1155 * We can't return errors to poll, so it's either yes or no. 1156 */ 1157 sock = file->private_data; 1158 1159 if (sk_can_busy_loop(sock->sk)) { 1160 /* this socket can poll_ll so tell the system call */ 1161 busy_flag = POLL_BUSY_LOOP; 1162 1163 /* once, only if requested by syscall */ 1164 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1165 sk_busy_loop(sock->sk, 1); 1166 } 1167 1168 return busy_flag | sock->ops->poll(file, sock, wait); 1169 } 1170 1171 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1172 { 1173 struct socket *sock = file->private_data; 1174 1175 return sock->ops->mmap(file, sock, vma); 1176 } 1177 1178 static int sock_close(struct inode *inode, struct file *filp) 1179 { 1180 sock_release(SOCKET_I(inode)); 1181 return 0; 1182 } 1183 1184 /* 1185 * Update the socket async list 1186 * 1187 * Fasync_list locking strategy. 1188 * 1189 * 1. fasync_list is modified only under process context socket lock 1190 * i.e. under semaphore. 1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1192 * or under socket lock 1193 */ 1194 1195 static int sock_fasync(int fd, struct file *filp, int on) 1196 { 1197 struct socket *sock = filp->private_data; 1198 struct sock *sk = sock->sk; 1199 struct socket_wq *wq; 1200 1201 if (sk == NULL) 1202 return -EINVAL; 1203 1204 lock_sock(sk); 1205 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1206 fasync_helper(fd, filp, on, &wq->fasync_list); 1207 1208 if (!wq->fasync_list) 1209 sock_reset_flag(sk, SOCK_FASYNC); 1210 else 1211 sock_set_flag(sk, SOCK_FASYNC); 1212 1213 release_sock(sk); 1214 return 0; 1215 } 1216 1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1218 1219 int sock_wake_async(struct socket *sock, int how, int band) 1220 { 1221 struct socket_wq *wq; 1222 1223 if (!sock) 1224 return -1; 1225 rcu_read_lock(); 1226 wq = rcu_dereference(sock->wq); 1227 if (!wq || !wq->fasync_list) { 1228 rcu_read_unlock(); 1229 return -1; 1230 } 1231 switch (how) { 1232 case SOCK_WAKE_WAITD: 1233 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1234 break; 1235 goto call_kill; 1236 case SOCK_WAKE_SPACE: 1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1238 break; 1239 /* fall through */ 1240 case SOCK_WAKE_IO: 1241 call_kill: 1242 kill_fasync(&wq->fasync_list, SIGIO, band); 1243 break; 1244 case SOCK_WAKE_URG: 1245 kill_fasync(&wq->fasync_list, SIGURG, band); 1246 } 1247 rcu_read_unlock(); 1248 return 0; 1249 } 1250 EXPORT_SYMBOL(sock_wake_async); 1251 1252 int __sock_create(struct net *net, int family, int type, int protocol, 1253 struct socket **res, int kern) 1254 { 1255 int err; 1256 struct socket *sock; 1257 const struct net_proto_family *pf; 1258 1259 /* 1260 * Check protocol is in range 1261 */ 1262 if (family < 0 || family >= NPROTO) 1263 return -EAFNOSUPPORT; 1264 if (type < 0 || type >= SOCK_MAX) 1265 return -EINVAL; 1266 1267 /* Compatibility. 1268 1269 This uglymoron is moved from INET layer to here to avoid 1270 deadlock in module load. 1271 */ 1272 if (family == PF_INET && type == SOCK_PACKET) { 1273 static int warned; 1274 if (!warned) { 1275 warned = 1; 1276 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1277 current->comm); 1278 } 1279 family = PF_PACKET; 1280 } 1281 1282 err = security_socket_create(family, type, protocol, kern); 1283 if (err) 1284 return err; 1285 1286 /* 1287 * Allocate the socket and allow the family to set things up. if 1288 * the protocol is 0, the family is instructed to select an appropriate 1289 * default. 1290 */ 1291 sock = sock_alloc(); 1292 if (!sock) { 1293 net_warn_ratelimited("socket: no more sockets\n"); 1294 return -ENFILE; /* Not exactly a match, but its the 1295 closest posix thing */ 1296 } 1297 1298 sock->type = type; 1299 1300 #ifdef CONFIG_MODULES 1301 /* Attempt to load a protocol module if the find failed. 1302 * 1303 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1304 * requested real, full-featured networking support upon configuration. 1305 * Otherwise module support will break! 1306 */ 1307 if (rcu_access_pointer(net_families[family]) == NULL) 1308 request_module("net-pf-%d", family); 1309 #endif 1310 1311 rcu_read_lock(); 1312 pf = rcu_dereference(net_families[family]); 1313 err = -EAFNOSUPPORT; 1314 if (!pf) 1315 goto out_release; 1316 1317 /* 1318 * We will call the ->create function, that possibly is in a loadable 1319 * module, so we have to bump that loadable module refcnt first. 1320 */ 1321 if (!try_module_get(pf->owner)) 1322 goto out_release; 1323 1324 /* Now protected by module ref count */ 1325 rcu_read_unlock(); 1326 1327 err = pf->create(net, sock, protocol, kern); 1328 if (err < 0) 1329 goto out_module_put; 1330 1331 /* 1332 * Now to bump the refcnt of the [loadable] module that owns this 1333 * socket at sock_release time we decrement its refcnt. 1334 */ 1335 if (!try_module_get(sock->ops->owner)) 1336 goto out_module_busy; 1337 1338 /* 1339 * Now that we're done with the ->create function, the [loadable] 1340 * module can have its refcnt decremented 1341 */ 1342 module_put(pf->owner); 1343 err = security_socket_post_create(sock, family, type, protocol, kern); 1344 if (err) 1345 goto out_sock_release; 1346 *res = sock; 1347 1348 return 0; 1349 1350 out_module_busy: 1351 err = -EAFNOSUPPORT; 1352 out_module_put: 1353 sock->ops = NULL; 1354 module_put(pf->owner); 1355 out_sock_release: 1356 sock_release(sock); 1357 return err; 1358 1359 out_release: 1360 rcu_read_unlock(); 1361 goto out_sock_release; 1362 } 1363 EXPORT_SYMBOL(__sock_create); 1364 1365 int sock_create(int family, int type, int protocol, struct socket **res) 1366 { 1367 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1368 } 1369 EXPORT_SYMBOL(sock_create); 1370 1371 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1372 { 1373 return __sock_create(&init_net, family, type, protocol, res, 1); 1374 } 1375 EXPORT_SYMBOL(sock_create_kern); 1376 1377 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1378 { 1379 int retval; 1380 struct socket *sock; 1381 int flags; 1382 1383 /* Check the SOCK_* constants for consistency. */ 1384 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1385 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1386 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1387 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1388 1389 flags = type & ~SOCK_TYPE_MASK; 1390 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1391 return -EINVAL; 1392 type &= SOCK_TYPE_MASK; 1393 1394 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1395 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1396 1397 retval = sock_create(family, type, protocol, &sock); 1398 if (retval < 0) 1399 goto out; 1400 1401 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1402 if (retval < 0) 1403 goto out_release; 1404 1405 out: 1406 /* It may be already another descriptor 8) Not kernel problem. */ 1407 return retval; 1408 1409 out_release: 1410 sock_release(sock); 1411 return retval; 1412 } 1413 1414 /* 1415 * Create a pair of connected sockets. 1416 */ 1417 1418 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1419 int __user *, usockvec) 1420 { 1421 struct socket *sock1, *sock2; 1422 int fd1, fd2, err; 1423 struct file *newfile1, *newfile2; 1424 int flags; 1425 1426 flags = type & ~SOCK_TYPE_MASK; 1427 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1428 return -EINVAL; 1429 type &= SOCK_TYPE_MASK; 1430 1431 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1432 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1433 1434 /* 1435 * Obtain the first socket and check if the underlying protocol 1436 * supports the socketpair call. 1437 */ 1438 1439 err = sock_create(family, type, protocol, &sock1); 1440 if (err < 0) 1441 goto out; 1442 1443 err = sock_create(family, type, protocol, &sock2); 1444 if (err < 0) 1445 goto out_release_1; 1446 1447 err = sock1->ops->socketpair(sock1, sock2); 1448 if (err < 0) 1449 goto out_release_both; 1450 1451 fd1 = get_unused_fd_flags(flags); 1452 if (unlikely(fd1 < 0)) { 1453 err = fd1; 1454 goto out_release_both; 1455 } 1456 fd2 = get_unused_fd_flags(flags); 1457 if (unlikely(fd2 < 0)) { 1458 err = fd2; 1459 put_unused_fd(fd1); 1460 goto out_release_both; 1461 } 1462 1463 newfile1 = sock_alloc_file(sock1, flags, NULL); 1464 if (unlikely(IS_ERR(newfile1))) { 1465 err = PTR_ERR(newfile1); 1466 put_unused_fd(fd1); 1467 put_unused_fd(fd2); 1468 goto out_release_both; 1469 } 1470 1471 newfile2 = sock_alloc_file(sock2, flags, NULL); 1472 if (IS_ERR(newfile2)) { 1473 err = PTR_ERR(newfile2); 1474 fput(newfile1); 1475 put_unused_fd(fd1); 1476 put_unused_fd(fd2); 1477 sock_release(sock2); 1478 goto out; 1479 } 1480 1481 audit_fd_pair(fd1, fd2); 1482 fd_install(fd1, newfile1); 1483 fd_install(fd2, newfile2); 1484 /* fd1 and fd2 may be already another descriptors. 1485 * Not kernel problem. 1486 */ 1487 1488 err = put_user(fd1, &usockvec[0]); 1489 if (!err) 1490 err = put_user(fd2, &usockvec[1]); 1491 if (!err) 1492 return 0; 1493 1494 sys_close(fd2); 1495 sys_close(fd1); 1496 return err; 1497 1498 out_release_both: 1499 sock_release(sock2); 1500 out_release_1: 1501 sock_release(sock1); 1502 out: 1503 return err; 1504 } 1505 1506 /* 1507 * Bind a name to a socket. Nothing much to do here since it's 1508 * the protocol's responsibility to handle the local address. 1509 * 1510 * We move the socket address to kernel space before we call 1511 * the protocol layer (having also checked the address is ok). 1512 */ 1513 1514 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1515 { 1516 struct socket *sock; 1517 struct sockaddr_storage address; 1518 int err, fput_needed; 1519 1520 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1521 if (sock) { 1522 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1523 if (err >= 0) { 1524 err = security_socket_bind(sock, 1525 (struct sockaddr *)&address, 1526 addrlen); 1527 if (!err) 1528 err = sock->ops->bind(sock, 1529 (struct sockaddr *) 1530 &address, addrlen); 1531 } 1532 fput_light(sock->file, fput_needed); 1533 } 1534 return err; 1535 } 1536 1537 /* 1538 * Perform a listen. Basically, we allow the protocol to do anything 1539 * necessary for a listen, and if that works, we mark the socket as 1540 * ready for listening. 1541 */ 1542 1543 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1544 { 1545 struct socket *sock; 1546 int err, fput_needed; 1547 int somaxconn; 1548 1549 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1550 if (sock) { 1551 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1552 if ((unsigned int)backlog > somaxconn) 1553 backlog = somaxconn; 1554 1555 err = security_socket_listen(sock, backlog); 1556 if (!err) 1557 err = sock->ops->listen(sock, backlog); 1558 1559 fput_light(sock->file, fput_needed); 1560 } 1561 return err; 1562 } 1563 1564 /* 1565 * For accept, we attempt to create a new socket, set up the link 1566 * with the client, wake up the client, then return the new 1567 * connected fd. We collect the address of the connector in kernel 1568 * space and move it to user at the very end. This is unclean because 1569 * we open the socket then return an error. 1570 * 1571 * 1003.1g adds the ability to recvmsg() to query connection pending 1572 * status to recvmsg. We need to add that support in a way thats 1573 * clean when we restucture accept also. 1574 */ 1575 1576 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1577 int __user *, upeer_addrlen, int, flags) 1578 { 1579 struct socket *sock, *newsock; 1580 struct file *newfile; 1581 int err, len, newfd, fput_needed; 1582 struct sockaddr_storage address; 1583 1584 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1585 return -EINVAL; 1586 1587 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1588 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1589 1590 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1591 if (!sock) 1592 goto out; 1593 1594 err = -ENFILE; 1595 newsock = sock_alloc(); 1596 if (!newsock) 1597 goto out_put; 1598 1599 newsock->type = sock->type; 1600 newsock->ops = sock->ops; 1601 1602 /* 1603 * We don't need try_module_get here, as the listening socket (sock) 1604 * has the protocol module (sock->ops->owner) held. 1605 */ 1606 __module_get(newsock->ops->owner); 1607 1608 newfd = get_unused_fd_flags(flags); 1609 if (unlikely(newfd < 0)) { 1610 err = newfd; 1611 sock_release(newsock); 1612 goto out_put; 1613 } 1614 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1615 if (unlikely(IS_ERR(newfile))) { 1616 err = PTR_ERR(newfile); 1617 put_unused_fd(newfd); 1618 sock_release(newsock); 1619 goto out_put; 1620 } 1621 1622 err = security_socket_accept(sock, newsock); 1623 if (err) 1624 goto out_fd; 1625 1626 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1627 if (err < 0) 1628 goto out_fd; 1629 1630 if (ccs_socket_post_accept_permission(sock, newsock)) { 1631 err = -EAGAIN; /* Hope less harmful than -EPERM. */ 1632 goto out_fd; 1633 } 1634 if (upeer_sockaddr) { 1635 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1636 &len, 2) < 0) { 1637 err = -ECONNABORTED; 1638 goto out_fd; 1639 } 1640 err = move_addr_to_user(&address, 1641 len, upeer_sockaddr, upeer_addrlen); 1642 if (err < 0) 1643 goto out_fd; 1644 } 1645 1646 /* File flags are not inherited via accept() unlike another OSes. */ 1647 1648 fd_install(newfd, newfile); 1649 err = newfd; 1650 1651 out_put: 1652 fput_light(sock->file, fput_needed); 1653 out: 1654 return err; 1655 out_fd: 1656 fput(newfile); 1657 put_unused_fd(newfd); 1658 goto out_put; 1659 } 1660 1661 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1662 int __user *, upeer_addrlen) 1663 { 1664 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1665 } 1666 1667 /* 1668 * Attempt to connect to a socket with the server address. The address 1669 * is in user space so we verify it is OK and move it to kernel space. 1670 * 1671 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1672 * break bindings 1673 * 1674 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1675 * other SEQPACKET protocols that take time to connect() as it doesn't 1676 * include the -EINPROGRESS status for such sockets. 1677 */ 1678 1679 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1680 int, addrlen) 1681 { 1682 struct socket *sock; 1683 struct sockaddr_storage address; 1684 int err, fput_needed; 1685 1686 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1687 if (!sock) 1688 goto out; 1689 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1690 if (err < 0) 1691 goto out_put; 1692 1693 err = 1694 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1695 if (err) 1696 goto out_put; 1697 1698 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1699 sock->file->f_flags); 1700 out_put: 1701 fput_light(sock->file, fput_needed); 1702 out: 1703 return err; 1704 } 1705 1706 /* 1707 * Get the local address ('name') of a socket object. Move the obtained 1708 * name to user space. 1709 */ 1710 1711 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1712 int __user *, usockaddr_len) 1713 { 1714 struct socket *sock; 1715 struct sockaddr_storage address; 1716 int len, err, fput_needed; 1717 1718 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1719 if (!sock) 1720 goto out; 1721 1722 err = security_socket_getsockname(sock); 1723 if (err) 1724 goto out_put; 1725 1726 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1727 if (err) 1728 goto out_put; 1729 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1730 1731 out_put: 1732 fput_light(sock->file, fput_needed); 1733 out: 1734 return err; 1735 } 1736 1737 /* 1738 * Get the remote address ('name') of a socket object. Move the obtained 1739 * name to user space. 1740 */ 1741 1742 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1743 int __user *, usockaddr_len) 1744 { 1745 struct socket *sock; 1746 struct sockaddr_storage address; 1747 int len, err, fput_needed; 1748 1749 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1750 if (sock != NULL) { 1751 err = security_socket_getpeername(sock); 1752 if (err) { 1753 fput_light(sock->file, fput_needed); 1754 return err; 1755 } 1756 1757 err = 1758 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1759 1); 1760 if (!err) 1761 err = move_addr_to_user(&address, len, usockaddr, 1762 usockaddr_len); 1763 fput_light(sock->file, fput_needed); 1764 } 1765 return err; 1766 } 1767 1768 /* 1769 * Send a datagram to a given address. We move the address into kernel 1770 * space and check the user space data area is readable before invoking 1771 * the protocol. 1772 */ 1773 1774 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1775 unsigned int, flags, struct sockaddr __user *, addr, 1776 int, addr_len) 1777 { 1778 struct socket *sock; 1779 struct sockaddr_storage address; 1780 int err; 1781 struct msghdr msg; 1782 struct iovec iov; 1783 int fput_needed; 1784 1785 if (len > INT_MAX) 1786 len = INT_MAX; 1787 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1788 if (!sock) 1789 goto out; 1790 1791 iov.iov_base = buff; 1792 iov.iov_len = len; 1793 msg.msg_name = NULL; 1794 msg.msg_iov = &iov; 1795 msg.msg_iovlen = 1; 1796 msg.msg_control = NULL; 1797 msg.msg_controllen = 0; 1798 msg.msg_namelen = 0; 1799 if (addr) { 1800 err = move_addr_to_kernel(addr, addr_len, &address); 1801 if (err < 0) 1802 goto out_put; 1803 msg.msg_name = (struct sockaddr *)&address; 1804 msg.msg_namelen = addr_len; 1805 } 1806 if (sock->file->f_flags & O_NONBLOCK) 1807 flags |= MSG_DONTWAIT; 1808 msg.msg_flags = flags; 1809 err = sock_sendmsg(sock, &msg, len); 1810 1811 out_put: 1812 fput_light(sock->file, fput_needed); 1813 out: 1814 return err; 1815 } 1816 1817 /* 1818 * Send a datagram down a socket. 1819 */ 1820 1821 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1822 unsigned int, flags) 1823 { 1824 return sys_sendto(fd, buff, len, flags, NULL, 0); 1825 } 1826 1827 /* 1828 * Receive a frame from the socket and optionally record the address of the 1829 * sender. We verify the buffers are writable and if needed move the 1830 * sender address from kernel to user space. 1831 */ 1832 1833 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1834 unsigned int, flags, struct sockaddr __user *, addr, 1835 int __user *, addr_len) 1836 { 1837 struct socket *sock; 1838 struct iovec iov; 1839 struct msghdr msg; 1840 struct sockaddr_storage address; 1841 int err, err2; 1842 int fput_needed; 1843 1844 if (size > INT_MAX) 1845 size = INT_MAX; 1846 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1847 if (!sock) 1848 goto out; 1849 1850 msg.msg_control = NULL; 1851 msg.msg_controllen = 0; 1852 msg.msg_iovlen = 1; 1853 msg.msg_iov = &iov; 1854 iov.iov_len = size; 1855 iov.iov_base = ubuf; 1856 msg.msg_name = (struct sockaddr *)&address; 1857 msg.msg_namelen = sizeof(address); 1858 if (sock->file->f_flags & O_NONBLOCK) 1859 flags |= MSG_DONTWAIT; 1860 err = sock_recvmsg(sock, &msg, size, flags); 1861 1862 if (err >= 0 && addr != NULL) { 1863 err2 = move_addr_to_user(&address, 1864 msg.msg_namelen, addr, addr_len); 1865 if (err2 < 0) 1866 err = err2; 1867 } 1868 1869 fput_light(sock->file, fput_needed); 1870 out: 1871 return err; 1872 } 1873 1874 /* 1875 * Receive a datagram from a socket. 1876 */ 1877 1878 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1879 unsigned int flags) 1880 { 1881 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1882 } 1883 1884 /* 1885 * Set a socket option. Because we don't know the option lengths we have 1886 * to pass the user mode parameter for the protocols to sort out. 1887 */ 1888 1889 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1890 char __user *, optval, int, optlen) 1891 { 1892 int err, fput_needed; 1893 struct socket *sock; 1894 1895 if (optlen < 0) 1896 return -EINVAL; 1897 1898 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1899 if (sock != NULL) { 1900 err = security_socket_setsockopt(sock, level, optname); 1901 if (err) 1902 goto out_put; 1903 1904 if (level == SOL_SOCKET) 1905 err = 1906 sock_setsockopt(sock, level, optname, optval, 1907 optlen); 1908 else 1909 err = 1910 sock->ops->setsockopt(sock, level, optname, optval, 1911 optlen); 1912 out_put: 1913 fput_light(sock->file, fput_needed); 1914 } 1915 return err; 1916 } 1917 1918 /* 1919 * Get a socket option. Because we don't know the option lengths we have 1920 * to pass a user mode parameter for the protocols to sort out. 1921 */ 1922 1923 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1924 char __user *, optval, int __user *, optlen) 1925 { 1926 int err, fput_needed; 1927 struct socket *sock; 1928 1929 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1930 if (sock != NULL) { 1931 err = security_socket_getsockopt(sock, level, optname); 1932 if (err) 1933 goto out_put; 1934 1935 if (level == SOL_SOCKET) 1936 err = 1937 sock_getsockopt(sock, level, optname, optval, 1938 optlen); 1939 else 1940 err = 1941 sock->ops->getsockopt(sock, level, optname, optval, 1942 optlen); 1943 out_put: 1944 fput_light(sock->file, fput_needed); 1945 } 1946 return err; 1947 } 1948 1949 /* 1950 * Shutdown a socket. 1951 */ 1952 1953 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1954 { 1955 int err, fput_needed; 1956 struct socket *sock; 1957 1958 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1959 if (sock != NULL) { 1960 err = security_socket_shutdown(sock, how); 1961 if (!err) 1962 err = sock->ops->shutdown(sock, how); 1963 fput_light(sock->file, fput_needed); 1964 } 1965 return err; 1966 } 1967 1968 /* A couple of helpful macros for getting the address of the 32/64 bit 1969 * fields which are the same type (int / unsigned) on our platforms. 1970 */ 1971 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1972 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1973 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1974 1975 struct used_address { 1976 struct sockaddr_storage name; 1977 unsigned int name_len; 1978 }; 1979 1980 static int copy_msghdr_from_user(struct msghdr *kmsg, 1981 struct msghdr __user *umsg) 1982 { 1983 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1984 return -EFAULT; 1985 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1986 return -EINVAL; 1987 return 0; 1988 } 1989 1990 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1991 struct msghdr *msg_sys, unsigned int flags, 1992 struct used_address *used_address) 1993 { 1994 struct compat_msghdr __user *msg_compat = 1995 (struct compat_msghdr __user *)msg; 1996 struct sockaddr_storage address; 1997 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1998 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1999 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2000 /* 20 is size of ipv6_pktinfo */ 2001 unsigned char *ctl_buf = ctl; 2002 int err, ctl_len, total_len; 2003 2004 err = -EFAULT; 2005 if (MSG_CMSG_COMPAT & flags) { 2006 if (get_compat_msghdr(msg_sys, msg_compat)) 2007 return -EFAULT; 2008 } else { 2009 err = copy_msghdr_from_user(msg_sys, msg); 2010 if (err) 2011 return err; 2012 } 2013 2014 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2015 err = -EMSGSIZE; 2016 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2017 goto out; 2018 err = -ENOMEM; 2019 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2020 GFP_KERNEL); 2021 if (!iov) 2022 goto out; 2023 } 2024 2025 /* This will also move the address data into kernel space */ 2026 if (MSG_CMSG_COMPAT & flags) { 2027 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2028 } else 2029 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2030 if (err < 0) 2031 goto out_freeiov; 2032 total_len = err; 2033 2034 err = -ENOBUFS; 2035 2036 if (msg_sys->msg_controllen > INT_MAX) 2037 goto out_freeiov; 2038 ctl_len = msg_sys->msg_controllen; 2039 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2040 err = 2041 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2042 sizeof(ctl)); 2043 if (err) 2044 goto out_freeiov; 2045 ctl_buf = msg_sys->msg_control; 2046 ctl_len = msg_sys->msg_controllen; 2047 } else if (ctl_len) { 2048 if (ctl_len > sizeof(ctl)) { 2049 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2050 if (ctl_buf == NULL) 2051 goto out_freeiov; 2052 } 2053 err = -EFAULT; 2054 /* 2055 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2056 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2057 * checking falls down on this. 2058 */ 2059 if (copy_from_user(ctl_buf, 2060 (void __user __force *)msg_sys->msg_control, 2061 ctl_len)) 2062 goto out_freectl; 2063 msg_sys->msg_control = ctl_buf; 2064 } 2065 msg_sys->msg_flags = flags; 2066 2067 if (sock->file->f_flags & O_NONBLOCK) 2068 msg_sys->msg_flags |= MSG_DONTWAIT; 2069 /* 2070 * If this is sendmmsg() and current destination address is same as 2071 * previously succeeded address, omit asking LSM's decision. 2072 * used_address->name_len is initialized to UINT_MAX so that the first 2073 * destination address never matches. 2074 */ 2075 if (used_address && msg_sys->msg_name && 2076 used_address->name_len == msg_sys->msg_namelen && 2077 !memcmp(&used_address->name, msg_sys->msg_name, 2078 used_address->name_len)) { 2079 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2080 goto out_freectl; 2081 } 2082 err = sock_sendmsg(sock, msg_sys, total_len); 2083 /* 2084 * If this is sendmmsg() and sending to current destination address was 2085 * successful, remember it. 2086 */ 2087 if (used_address && err >= 0) { 2088 used_address->name_len = msg_sys->msg_namelen; 2089 if (msg_sys->msg_name) 2090 memcpy(&used_address->name, msg_sys->msg_name, 2091 used_address->name_len); 2092 } 2093 2094 out_freectl: 2095 if (ctl_buf != ctl) 2096 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2097 out_freeiov: 2098 if (iov != iovstack) 2099 kfree(iov); 2100 out: 2101 return err; 2102 } 2103 2104 /* 2105 * BSD sendmsg interface 2106 */ 2107 2108 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2109 { 2110 int fput_needed, err; 2111 struct msghdr msg_sys; 2112 struct socket *sock; 2113 2114 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2115 if (!sock) 2116 goto out; 2117 2118 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2119 2120 fput_light(sock->file, fput_needed); 2121 out: 2122 return err; 2123 } 2124 2125 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2126 { 2127 if (flags & MSG_CMSG_COMPAT) 2128 return -EINVAL; 2129 return __sys_sendmsg(fd, msg, flags); 2130 } 2131 2132 /* 2133 * Linux sendmmsg interface 2134 */ 2135 2136 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2137 unsigned int flags) 2138 { 2139 int fput_needed, err, datagrams; 2140 struct socket *sock; 2141 struct mmsghdr __user *entry; 2142 struct compat_mmsghdr __user *compat_entry; 2143 struct msghdr msg_sys; 2144 struct used_address used_address; 2145 2146 if (vlen > UIO_MAXIOV) 2147 vlen = UIO_MAXIOV; 2148 2149 datagrams = 0; 2150 2151 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2152 if (!sock) 2153 return err; 2154 2155 used_address.name_len = UINT_MAX; 2156 entry = mmsg; 2157 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2158 err = 0; 2159 2160 while (datagrams < vlen) { 2161 if (MSG_CMSG_COMPAT & flags) { 2162 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2163 &msg_sys, flags, &used_address); 2164 if (err < 0) 2165 break; 2166 err = __put_user(err, &compat_entry->msg_len); 2167 ++compat_entry; 2168 } else { 2169 err = ___sys_sendmsg(sock, 2170 (struct msghdr __user *)entry, 2171 &msg_sys, flags, &used_address); 2172 if (err < 0) 2173 break; 2174 err = put_user(err, &entry->msg_len); 2175 ++entry; 2176 } 2177 2178 if (err) 2179 break; 2180 ++datagrams; 2181 } 2182 2183 fput_light(sock->file, fput_needed); 2184 2185 /* We only return an error if no datagrams were able to be sent */ 2186 if (datagrams != 0) 2187 return datagrams; 2188 2189 return err; 2190 } 2191 2192 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2193 unsigned int, vlen, unsigned int, flags) 2194 { 2195 if (flags & MSG_CMSG_COMPAT) 2196 return -EINVAL; 2197 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2198 } 2199 2200 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2201 struct msghdr *msg_sys, unsigned int flags, int nosec) 2202 { 2203 struct compat_msghdr __user *msg_compat = 2204 (struct compat_msghdr __user *)msg; 2205 struct iovec iovstack[UIO_FASTIOV]; 2206 struct iovec *iov = iovstack; 2207 unsigned long cmsg_ptr; 2208 int err, total_len, len; 2209 2210 /* kernel mode address */ 2211 struct sockaddr_storage addr; 2212 2213 /* user mode address pointers */ 2214 struct sockaddr __user *uaddr; 2215 int __user *uaddr_len; 2216 2217 if (MSG_CMSG_COMPAT & flags) { 2218 if (get_compat_msghdr(msg_sys, msg_compat)) 2219 return -EFAULT; 2220 } else { 2221 err = copy_msghdr_from_user(msg_sys, msg); 2222 if (err) 2223 return err; 2224 } 2225 2226 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2227 err = -EMSGSIZE; 2228 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2229 goto out; 2230 err = -ENOMEM; 2231 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2232 GFP_KERNEL); 2233 if (!iov) 2234 goto out; 2235 } 2236 2237 /* 2238 * Save the user-mode address (verify_iovec will change the 2239 * kernel msghdr to use the kernel address space) 2240 */ 2241 2242 uaddr = (__force void __user *)msg_sys->msg_name; 2243 uaddr_len = COMPAT_NAMELEN(msg); 2244 if (MSG_CMSG_COMPAT & flags) { 2245 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2246 } else 2247 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2248 if (err < 0) 2249 goto out_freeiov; 2250 total_len = err; 2251 2252 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2253 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2254 2255 if (sock->file->f_flags & O_NONBLOCK) 2256 flags |= MSG_DONTWAIT; 2257 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2258 total_len, flags); 2259 if (err < 0) 2260 goto out_freeiov; 2261 len = err; 2262 2263 if (uaddr != NULL) { 2264 err = move_addr_to_user(&addr, 2265 msg_sys->msg_namelen, uaddr, 2266 uaddr_len); 2267 if (err < 0) 2268 goto out_freeiov; 2269 } 2270 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2271 COMPAT_FLAGS(msg)); 2272 if (err) 2273 goto out_freeiov; 2274 if (MSG_CMSG_COMPAT & flags) 2275 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2276 &msg_compat->msg_controllen); 2277 else 2278 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2279 &msg->msg_controllen); 2280 if (err) 2281 goto out_freeiov; 2282 err = len; 2283 2284 out_freeiov: 2285 if (iov != iovstack) 2286 kfree(iov); 2287 out: 2288 return err; 2289 } 2290 2291 /* 2292 * BSD recvmsg interface 2293 */ 2294 2295 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2296 { 2297 int fput_needed, err; 2298 struct msghdr msg_sys; 2299 struct socket *sock; 2300 2301 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2302 if (!sock) 2303 goto out; 2304 2305 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2306 2307 fput_light(sock->file, fput_needed); 2308 out: 2309 return err; 2310 } 2311 2312 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2313 unsigned int, flags) 2314 { 2315 if (flags & MSG_CMSG_COMPAT) 2316 return -EINVAL; 2317 return __sys_recvmsg(fd, msg, flags); 2318 } 2319 2320 /* 2321 * Linux recvmmsg interface 2322 */ 2323 2324 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2325 unsigned int flags, struct timespec *timeout) 2326 { 2327 int fput_needed, err, datagrams; 2328 struct socket *sock; 2329 struct mmsghdr __user *entry; 2330 struct compat_mmsghdr __user *compat_entry; 2331 struct msghdr msg_sys; 2332 struct timespec end_time; 2333 2334 if (timeout && 2335 poll_select_set_timeout(&end_time, timeout->tv_sec, 2336 timeout->tv_nsec)) 2337 return -EINVAL; 2338 2339 datagrams = 0; 2340 2341 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2342 if (!sock) 2343 return err; 2344 2345 err = sock_error(sock->sk); 2346 if (err) 2347 goto out_put; 2348 2349 entry = mmsg; 2350 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2351 2352 while (datagrams < vlen) { 2353 /* 2354 * No need to ask LSM for more than the first datagram. 2355 */ 2356 if (MSG_CMSG_COMPAT & flags) { 2357 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2358 &msg_sys, flags & ~MSG_WAITFORONE, 2359 datagrams); 2360 if (err < 0) 2361 break; 2362 err = __put_user(err, &compat_entry->msg_len); 2363 ++compat_entry; 2364 } else { 2365 err = ___sys_recvmsg(sock, 2366 (struct msghdr __user *)entry, 2367 &msg_sys, flags & ~MSG_WAITFORONE, 2368 datagrams); 2369 if (err < 0) 2370 break; 2371 err = put_user(err, &entry->msg_len); 2372 ++entry; 2373 } 2374 2375 if (err) 2376 break; 2377 ++datagrams; 2378 2379 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2380 if (flags & MSG_WAITFORONE) 2381 flags |= MSG_DONTWAIT; 2382 2383 if (timeout) { 2384 ktime_get_ts(timeout); 2385 *timeout = timespec_sub(end_time, *timeout); 2386 if (timeout->tv_sec < 0) { 2387 timeout->tv_sec = timeout->tv_nsec = 0; 2388 break; 2389 } 2390 2391 /* Timeout, return less than vlen datagrams */ 2392 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2393 break; 2394 } 2395 2396 /* Out of band data, return right away */ 2397 if (msg_sys.msg_flags & MSG_OOB) 2398 break; 2399 } 2400 2401 out_put: 2402 fput_light(sock->file, fput_needed); 2403 2404 if (err == 0) 2405 return datagrams; 2406 2407 if (datagrams != 0) { 2408 /* 2409 * We may return less entries than requested (vlen) if the 2410 * sock is non block and there aren't enough datagrams... 2411 */ 2412 if (err != -EAGAIN) { 2413 /* 2414 * ... or if recvmsg returns an error after we 2415 * received some datagrams, where we record the 2416 * error to return on the next call or if the 2417 * app asks about it using getsockopt(SO_ERROR). 2418 */ 2419 sock->sk->sk_err = -err; 2420 } 2421 2422 return datagrams; 2423 } 2424 2425 return err; 2426 } 2427 2428 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2429 unsigned int, vlen, unsigned int, flags, 2430 struct timespec __user *, timeout) 2431 { 2432 int datagrams; 2433 struct timespec timeout_sys; 2434 2435 if (flags & MSG_CMSG_COMPAT) 2436 return -EINVAL; 2437 2438 if (!timeout) 2439 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2440 2441 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2442 return -EFAULT; 2443 2444 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2445 2446 if (datagrams > 0 && 2447 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2448 datagrams = -EFAULT; 2449 2450 return datagrams; 2451 } 2452 2453 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2454 /* Argument list sizes for sys_socketcall */ 2455 #define AL(x) ((x) * sizeof(unsigned long)) 2456 static const unsigned char nargs[21] = { 2457 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2458 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2459 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2460 AL(4), AL(5), AL(4) 2461 }; 2462 2463 #undef AL 2464 2465 /* 2466 * System call vectors. 2467 * 2468 * Argument checking cleaned up. Saved 20% in size. 2469 * This function doesn't need to set the kernel lock because 2470 * it is set by the callees. 2471 */ 2472 2473 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2474 { 2475 unsigned long a[AUDITSC_ARGS]; 2476 unsigned long a0, a1; 2477 int err; 2478 unsigned int len; 2479 2480 if (call < 1 || call > SYS_SENDMMSG) 2481 return -EINVAL; 2482 2483 len = nargs[call]; 2484 if (len > sizeof(a)) 2485 return -EINVAL; 2486 2487 /* copy_from_user should be SMP safe. */ 2488 if (copy_from_user(a, args, len)) 2489 return -EFAULT; 2490 2491 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2492 if (err) 2493 return err; 2494 2495 a0 = a[0]; 2496 a1 = a[1]; 2497 2498 switch (call) { 2499 case SYS_SOCKET: 2500 err = sys_socket(a0, a1, a[2]); 2501 break; 2502 case SYS_BIND: 2503 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2504 break; 2505 case SYS_CONNECT: 2506 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2507 break; 2508 case SYS_LISTEN: 2509 err = sys_listen(a0, a1); 2510 break; 2511 case SYS_ACCEPT: 2512 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2513 (int __user *)a[2], 0); 2514 break; 2515 case SYS_GETSOCKNAME: 2516 err = 2517 sys_getsockname(a0, (struct sockaddr __user *)a1, 2518 (int __user *)a[2]); 2519 break; 2520 case SYS_GETPEERNAME: 2521 err = 2522 sys_getpeername(a0, (struct sockaddr __user *)a1, 2523 (int __user *)a[2]); 2524 break; 2525 case SYS_SOCKETPAIR: 2526 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2527 break; 2528 case SYS_SEND: 2529 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2530 break; 2531 case SYS_SENDTO: 2532 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2533 (struct sockaddr __user *)a[4], a[5]); 2534 break; 2535 case SYS_RECV: 2536 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2537 break; 2538 case SYS_RECVFROM: 2539 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2540 (struct sockaddr __user *)a[4], 2541 (int __user *)a[5]); 2542 break; 2543 case SYS_SHUTDOWN: 2544 err = sys_shutdown(a0, a1); 2545 break; 2546 case SYS_SETSOCKOPT: 2547 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2548 break; 2549 case SYS_GETSOCKOPT: 2550 err = 2551 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2552 (int __user *)a[4]); 2553 break; 2554 case SYS_SENDMSG: 2555 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2556 break; 2557 case SYS_SENDMMSG: 2558 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2559 break; 2560 case SYS_RECVMSG: 2561 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2562 break; 2563 case SYS_RECVMMSG: 2564 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2565 (struct timespec __user *)a[4]); 2566 break; 2567 case SYS_ACCEPT4: 2568 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2569 (int __user *)a[2], a[3]); 2570 break; 2571 default: 2572 err = -EINVAL; 2573 break; 2574 } 2575 return err; 2576 } 2577 2578 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2579 2580 /** 2581 * sock_register - add a socket protocol handler 2582 * @ops: description of protocol 2583 * 2584 * This function is called by a protocol handler that wants to 2585 * advertise its address family, and have it linked into the 2586 * socket interface. The value ops->family coresponds to the 2587 * socket system call protocol family. 2588 */ 2589 int sock_register(const struct net_proto_family *ops) 2590 { 2591 int err; 2592 2593 if (ops->family >= NPROTO) { 2594 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2595 NPROTO); 2596 return -ENOBUFS; 2597 } 2598 2599 spin_lock(&net_family_lock); 2600 if (rcu_dereference_protected(net_families[ops->family], 2601 lockdep_is_held(&net_family_lock))) 2602 err = -EEXIST; 2603 else { 2604 rcu_assign_pointer(net_families[ops->family], ops); 2605 err = 0; 2606 } 2607 spin_unlock(&net_family_lock); 2608 2609 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2610 return err; 2611 } 2612 EXPORT_SYMBOL(sock_register); 2613 2614 /** 2615 * sock_unregister - remove a protocol handler 2616 * @family: protocol family to remove 2617 * 2618 * This function is called by a protocol handler that wants to 2619 * remove its address family, and have it unlinked from the 2620 * new socket creation. 2621 * 2622 * If protocol handler is a module, then it can use module reference 2623 * counts to protect against new references. If protocol handler is not 2624 * a module then it needs to provide its own protection in 2625 * the ops->create routine. 2626 */ 2627 void sock_unregister(int family) 2628 { 2629 BUG_ON(family < 0 || family >= NPROTO); 2630 2631 spin_lock(&net_family_lock); 2632 RCU_INIT_POINTER(net_families[family], NULL); 2633 spin_unlock(&net_family_lock); 2634 2635 synchronize_rcu(); 2636 2637 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2638 } 2639 EXPORT_SYMBOL(sock_unregister); 2640 2641 static int __init sock_init(void) 2642 { 2643 int err; 2644 /* 2645 * Initialize the network sysctl infrastructure. 2646 */ 2647 err = net_sysctl_init(); 2648 if (err) 2649 goto out; 2650 2651 /* 2652 * Initialize skbuff SLAB cache 2653 */ 2654 skb_init(); 2655 2656 /* 2657 * Initialize the protocols module. 2658 */ 2659 2660 init_inodecache(); 2661 2662 err = register_filesystem(&sock_fs_type); 2663 if (err) 2664 goto out_fs; 2665 sock_mnt = kern_mount(&sock_fs_type); 2666 if (IS_ERR(sock_mnt)) { 2667 err = PTR_ERR(sock_mnt); 2668 goto out_mount; 2669 } 2670 2671 /* The real protocol initialization is performed in later initcalls. 2672 */ 2673 2674 #ifdef CONFIG_NETFILTER 2675 err = netfilter_init(); 2676 if (err) 2677 goto out; 2678 #endif 2679 2680 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2681 skb_timestamping_init(); 2682 #endif 2683 2684 out: 2685 return err; 2686 2687 out_mount: 2688 unregister_filesystem(&sock_fs_type); 2689 out_fs: 2690 goto out; 2691 } 2692 2693 core_initcall(sock_init); /* early initcall */ 2694 2695 #ifdef CONFIG_PROC_FS 2696 void socket_seq_show(struct seq_file *seq) 2697 { 2698 int cpu; 2699 int counter = 0; 2700 2701 for_each_possible_cpu(cpu) 2702 counter += per_cpu(sockets_in_use, cpu); 2703 2704 /* It can be negative, by the way. 8) */ 2705 if (counter < 0) 2706 counter = 0; 2707 2708 seq_printf(seq, "sockets: used %d\n", counter); 2709 } 2710 #endif /* CONFIG_PROC_FS */ 2711 2712 #ifdef CONFIG_COMPAT 2713 static int do_siocgstamp(struct net *net, struct socket *sock, 2714 unsigned int cmd, void __user *up) 2715 { 2716 mm_segment_t old_fs = get_fs(); 2717 struct timeval ktv; 2718 int err; 2719 2720 set_fs(KERNEL_DS); 2721 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2722 set_fs(old_fs); 2723 if (!err) 2724 err = compat_put_timeval(&ktv, up); 2725 2726 return err; 2727 } 2728 2729 static int do_siocgstampns(struct net *net, struct socket *sock, 2730 unsigned int cmd, void __user *up) 2731 { 2732 mm_segment_t old_fs = get_fs(); 2733 struct timespec kts; 2734 int err; 2735 2736 set_fs(KERNEL_DS); 2737 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2738 set_fs(old_fs); 2739 if (!err) 2740 err = compat_put_timespec(&kts, up); 2741 2742 return err; 2743 } 2744 2745 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2746 { 2747 struct ifreq __user *uifr; 2748 int err; 2749 2750 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2751 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2752 return -EFAULT; 2753 2754 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2755 if (err) 2756 return err; 2757 2758 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2759 return -EFAULT; 2760 2761 return 0; 2762 } 2763 2764 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2765 { 2766 struct compat_ifconf ifc32; 2767 struct ifconf ifc; 2768 struct ifconf __user *uifc; 2769 struct compat_ifreq __user *ifr32; 2770 struct ifreq __user *ifr; 2771 unsigned int i, j; 2772 int err; 2773 2774 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2775 return -EFAULT; 2776 2777 memset(&ifc, 0, sizeof(ifc)); 2778 if (ifc32.ifcbuf == 0) { 2779 ifc32.ifc_len = 0; 2780 ifc.ifc_len = 0; 2781 ifc.ifc_req = NULL; 2782 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2783 } else { 2784 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2785 sizeof(struct ifreq); 2786 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2787 ifc.ifc_len = len; 2788 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2789 ifr32 = compat_ptr(ifc32.ifcbuf); 2790 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2791 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2792 return -EFAULT; 2793 ifr++; 2794 ifr32++; 2795 } 2796 } 2797 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2798 return -EFAULT; 2799 2800 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2801 if (err) 2802 return err; 2803 2804 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2805 return -EFAULT; 2806 2807 ifr = ifc.ifc_req; 2808 ifr32 = compat_ptr(ifc32.ifcbuf); 2809 for (i = 0, j = 0; 2810 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2811 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2812 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2813 return -EFAULT; 2814 ifr32++; 2815 ifr++; 2816 } 2817 2818 if (ifc32.ifcbuf == 0) { 2819 /* Translate from 64-bit structure multiple to 2820 * a 32-bit one. 2821 */ 2822 i = ifc.ifc_len; 2823 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2824 ifc32.ifc_len = i; 2825 } else { 2826 ifc32.ifc_len = i; 2827 } 2828 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2829 return -EFAULT; 2830 2831 return 0; 2832 } 2833 2834 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2835 { 2836 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2837 bool convert_in = false, convert_out = false; 2838 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2839 struct ethtool_rxnfc __user *rxnfc; 2840 struct ifreq __user *ifr; 2841 u32 rule_cnt = 0, actual_rule_cnt; 2842 u32 ethcmd; 2843 u32 data; 2844 int ret; 2845 2846 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2847 return -EFAULT; 2848 2849 compat_rxnfc = compat_ptr(data); 2850 2851 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2852 return -EFAULT; 2853 2854 /* Most ethtool structures are defined without padding. 2855 * Unfortunately struct ethtool_rxnfc is an exception. 2856 */ 2857 switch (ethcmd) { 2858 default: 2859 break; 2860 case ETHTOOL_GRXCLSRLALL: 2861 /* Buffer size is variable */ 2862 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2863 return -EFAULT; 2864 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2865 return -ENOMEM; 2866 buf_size += rule_cnt * sizeof(u32); 2867 /* fall through */ 2868 case ETHTOOL_GRXRINGS: 2869 case ETHTOOL_GRXCLSRLCNT: 2870 case ETHTOOL_GRXCLSRULE: 2871 case ETHTOOL_SRXCLSRLINS: 2872 convert_out = true; 2873 /* fall through */ 2874 case ETHTOOL_SRXCLSRLDEL: 2875 buf_size += sizeof(struct ethtool_rxnfc); 2876 convert_in = true; 2877 break; 2878 } 2879 2880 ifr = compat_alloc_user_space(buf_size); 2881 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2882 2883 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2884 return -EFAULT; 2885 2886 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2887 &ifr->ifr_ifru.ifru_data)) 2888 return -EFAULT; 2889 2890 if (convert_in) { 2891 /* We expect there to be holes between fs.m_ext and 2892 * fs.ring_cookie and at the end of fs, but nowhere else. 2893 */ 2894 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2895 sizeof(compat_rxnfc->fs.m_ext) != 2896 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2897 sizeof(rxnfc->fs.m_ext)); 2898 BUILD_BUG_ON( 2899 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2900 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2901 offsetof(struct ethtool_rxnfc, fs.location) - 2902 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2903 2904 if (copy_in_user(rxnfc, compat_rxnfc, 2905 (void __user *)(&rxnfc->fs.m_ext + 1) - 2906 (void __user *)rxnfc) || 2907 copy_in_user(&rxnfc->fs.ring_cookie, 2908 &compat_rxnfc->fs.ring_cookie, 2909 (void __user *)(&rxnfc->fs.location + 1) - 2910 (void __user *)&rxnfc->fs.ring_cookie) || 2911 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2912 sizeof(rxnfc->rule_cnt))) 2913 return -EFAULT; 2914 } 2915 2916 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2917 if (ret) 2918 return ret; 2919 2920 if (convert_out) { 2921 if (copy_in_user(compat_rxnfc, rxnfc, 2922 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2923 (const void __user *)rxnfc) || 2924 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2925 &rxnfc->fs.ring_cookie, 2926 (const void __user *)(&rxnfc->fs.location + 1) - 2927 (const void __user *)&rxnfc->fs.ring_cookie) || 2928 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2929 sizeof(rxnfc->rule_cnt))) 2930 return -EFAULT; 2931 2932 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2933 /* As an optimisation, we only copy the actual 2934 * number of rules that the underlying 2935 * function returned. Since Mallory might 2936 * change the rule count in user memory, we 2937 * check that it is less than the rule count 2938 * originally given (as the user buffer size), 2939 * which has been range-checked. 2940 */ 2941 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2942 return -EFAULT; 2943 if (actual_rule_cnt < rule_cnt) 2944 rule_cnt = actual_rule_cnt; 2945 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2946 &rxnfc->rule_locs[0], 2947 rule_cnt * sizeof(u32))) 2948 return -EFAULT; 2949 } 2950 } 2951 2952 return 0; 2953 } 2954 2955 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2956 { 2957 void __user *uptr; 2958 compat_uptr_t uptr32; 2959 struct ifreq __user *uifr; 2960 2961 uifr = compat_alloc_user_space(sizeof(*uifr)); 2962 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2963 return -EFAULT; 2964 2965 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2966 return -EFAULT; 2967 2968 uptr = compat_ptr(uptr32); 2969 2970 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2971 return -EFAULT; 2972 2973 return dev_ioctl(net, SIOCWANDEV, uifr); 2974 } 2975 2976 static int bond_ioctl(struct net *net, unsigned int cmd, 2977 struct compat_ifreq __user *ifr32) 2978 { 2979 struct ifreq kifr; 2980 struct ifreq __user *uifr; 2981 mm_segment_t old_fs; 2982 int err; 2983 u32 data; 2984 void __user *datap; 2985 2986 switch (cmd) { 2987 case SIOCBONDENSLAVE: 2988 case SIOCBONDRELEASE: 2989 case SIOCBONDSETHWADDR: 2990 case SIOCBONDCHANGEACTIVE: 2991 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2992 return -EFAULT; 2993 2994 old_fs = get_fs(); 2995 set_fs(KERNEL_DS); 2996 err = dev_ioctl(net, cmd, 2997 (struct ifreq __user __force *) &kifr); 2998 set_fs(old_fs); 2999 3000 return err; 3001 case SIOCBONDSLAVEINFOQUERY: 3002 case SIOCBONDINFOQUERY: 3003 uifr = compat_alloc_user_space(sizeof(*uifr)); 3004 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3005 return -EFAULT; 3006 3007 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3008 return -EFAULT; 3009 3010 datap = compat_ptr(data); 3011 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 3012 return -EFAULT; 3013 3014 return dev_ioctl(net, cmd, uifr); 3015 default: 3016 return -ENOIOCTLCMD; 3017 } 3018 } 3019 3020 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 3021 struct compat_ifreq __user *u_ifreq32) 3022 { 3023 struct ifreq __user *u_ifreq64; 3024 char tmp_buf[IFNAMSIZ]; 3025 void __user *data64; 3026 u32 data32; 3027 3028 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3029 IFNAMSIZ)) 3030 return -EFAULT; 3031 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3032 return -EFAULT; 3033 data64 = compat_ptr(data32); 3034 3035 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3036 3037 /* Don't check these user accesses, just let that get trapped 3038 * in the ioctl handler instead. 3039 */ 3040 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3041 IFNAMSIZ)) 3042 return -EFAULT; 3043 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3044 return -EFAULT; 3045 3046 return dev_ioctl(net, cmd, u_ifreq64); 3047 } 3048 3049 static int dev_ifsioc(struct net *net, struct socket *sock, 3050 unsigned int cmd, struct compat_ifreq __user *uifr32) 3051 { 3052 struct ifreq __user *uifr; 3053 int err; 3054 3055 uifr = compat_alloc_user_space(sizeof(*uifr)); 3056 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3057 return -EFAULT; 3058 3059 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3060 3061 if (!err) { 3062 switch (cmd) { 3063 case SIOCGIFFLAGS: 3064 case SIOCGIFMETRIC: 3065 case SIOCGIFMTU: 3066 case SIOCGIFMEM: 3067 case SIOCGIFHWADDR: 3068 case SIOCGIFINDEX: 3069 case SIOCGIFADDR: 3070 case SIOCGIFBRDADDR: 3071 case SIOCGIFDSTADDR: 3072 case SIOCGIFNETMASK: 3073 case SIOCGIFPFLAGS: 3074 case SIOCGIFTXQLEN: 3075 case SIOCGMIIPHY: 3076 case SIOCGMIIREG: 3077 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3078 err = -EFAULT; 3079 break; 3080 } 3081 } 3082 return err; 3083 } 3084 3085 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3086 struct compat_ifreq __user *uifr32) 3087 { 3088 struct ifreq ifr; 3089 struct compat_ifmap __user *uifmap32; 3090 mm_segment_t old_fs; 3091 int err; 3092 3093 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3094 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3095 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3096 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3097 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3098 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 3099 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 3100 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 3101 if (err) 3102 return -EFAULT; 3103 3104 old_fs = get_fs(); 3105 set_fs(KERNEL_DS); 3106 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3107 set_fs(old_fs); 3108 3109 if (cmd == SIOCGIFMAP && !err) { 3110 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3111 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3112 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3113 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3114 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 3115 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 3116 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3117 if (err) 3118 err = -EFAULT; 3119 } 3120 return err; 3121 } 3122 3123 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3124 { 3125 void __user *uptr; 3126 compat_uptr_t uptr32; 3127 struct ifreq __user *uifr; 3128 3129 uifr = compat_alloc_user_space(sizeof(*uifr)); 3130 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3131 return -EFAULT; 3132 3133 if (get_user(uptr32, &uifr32->ifr_data)) 3134 return -EFAULT; 3135 3136 uptr = compat_ptr(uptr32); 3137 3138 if (put_user(uptr, &uifr->ifr_data)) 3139 return -EFAULT; 3140 3141 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3142 } 3143 3144 struct rtentry32 { 3145 u32 rt_pad1; 3146 struct sockaddr rt_dst; /* target address */ 3147 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3148 struct sockaddr rt_genmask; /* target network mask (IP) */ 3149 unsigned short rt_flags; 3150 short rt_pad2; 3151 u32 rt_pad3; 3152 unsigned char rt_tos; 3153 unsigned char rt_class; 3154 short rt_pad4; 3155 short rt_metric; /* +1 for binary compatibility! */ 3156 /* char * */ u32 rt_dev; /* forcing the device at add */ 3157 u32 rt_mtu; /* per route MTU/Window */ 3158 u32 rt_window; /* Window clamping */ 3159 unsigned short rt_irtt; /* Initial RTT */ 3160 }; 3161 3162 struct in6_rtmsg32 { 3163 struct in6_addr rtmsg_dst; 3164 struct in6_addr rtmsg_src; 3165 struct in6_addr rtmsg_gateway; 3166 u32 rtmsg_type; 3167 u16 rtmsg_dst_len; 3168 u16 rtmsg_src_len; 3169 u32 rtmsg_metric; 3170 u32 rtmsg_info; 3171 u32 rtmsg_flags; 3172 s32 rtmsg_ifindex; 3173 }; 3174 3175 static int routing_ioctl(struct net *net, struct socket *sock, 3176 unsigned int cmd, void __user *argp) 3177 { 3178 int ret; 3179 void *r = NULL; 3180 struct in6_rtmsg r6; 3181 struct rtentry r4; 3182 char devname[16]; 3183 u32 rtdev; 3184 mm_segment_t old_fs = get_fs(); 3185 3186 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3187 struct in6_rtmsg32 __user *ur6 = argp; 3188 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3189 3 * sizeof(struct in6_addr)); 3190 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3191 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3192 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3193 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3194 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3195 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3196 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3197 3198 r = (void *) &r6; 3199 } else { /* ipv4 */ 3200 struct rtentry32 __user *ur4 = argp; 3201 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3202 3 * sizeof(struct sockaddr)); 3203 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3204 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3205 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3206 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3207 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3208 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3209 if (rtdev) { 3210 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3211 r4.rt_dev = (char __user __force *)devname; 3212 devname[15] = 0; 3213 } else 3214 r4.rt_dev = NULL; 3215 3216 r = (void *) &r4; 3217 } 3218 3219 if (ret) { 3220 ret = -EFAULT; 3221 goto out; 3222 } 3223 3224 set_fs(KERNEL_DS); 3225 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3226 set_fs(old_fs); 3227 3228 out: 3229 return ret; 3230 } 3231 3232 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3233 * for some operations; this forces use of the newer bridge-utils that 3234 * use compatible ioctls 3235 */ 3236 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3237 { 3238 compat_ulong_t tmp; 3239 3240 if (get_user(tmp, argp)) 3241 return -EFAULT; 3242 if (tmp == BRCTL_GET_VERSION) 3243 return BRCTL_VERSION + 1; 3244 return -EINVAL; 3245 } 3246 3247 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3248 unsigned int cmd, unsigned long arg) 3249 { 3250 void __user *argp = compat_ptr(arg); 3251 struct sock *sk = sock->sk; 3252 struct net *net = sock_net(sk); 3253 3254 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3255 return siocdevprivate_ioctl(net, cmd, argp); 3256 3257 switch (cmd) { 3258 case SIOCSIFBR: 3259 case SIOCGIFBR: 3260 return old_bridge_ioctl(argp); 3261 case SIOCGIFNAME: 3262 return dev_ifname32(net, argp); 3263 case SIOCGIFCONF: 3264 return dev_ifconf(net, argp); 3265 case SIOCETHTOOL: 3266 return ethtool_ioctl(net, argp); 3267 case SIOCWANDEV: 3268 return compat_siocwandev(net, argp); 3269 case SIOCGIFMAP: 3270 case SIOCSIFMAP: 3271 return compat_sioc_ifmap(net, cmd, argp); 3272 case SIOCBONDENSLAVE: 3273 case SIOCBONDRELEASE: 3274 case SIOCBONDSETHWADDR: 3275 case SIOCBONDSLAVEINFOQUERY: 3276 case SIOCBONDINFOQUERY: 3277 case SIOCBONDCHANGEACTIVE: 3278 return bond_ioctl(net, cmd, argp); 3279 case SIOCADDRT: 3280 case SIOCDELRT: 3281 return routing_ioctl(net, sock, cmd, argp); 3282 case SIOCGSTAMP: 3283 return do_siocgstamp(net, sock, cmd, argp); 3284 case SIOCGSTAMPNS: 3285 return do_siocgstampns(net, sock, cmd, argp); 3286 case SIOCSHWTSTAMP: 3287 return compat_siocshwtstamp(net, argp); 3288 3289 case FIOSETOWN: 3290 case SIOCSPGRP: 3291 case FIOGETOWN: 3292 case SIOCGPGRP: 3293 case SIOCBRADDBR: 3294 case SIOCBRDELBR: 3295 case SIOCGIFVLAN: 3296 case SIOCSIFVLAN: 3297 case SIOCADDDLCI: 3298 case SIOCDELDLCI: 3299 return sock_ioctl(file, cmd, arg); 3300 3301 case SIOCGIFFLAGS: 3302 case SIOCSIFFLAGS: 3303 case SIOCGIFMETRIC: 3304 case SIOCSIFMETRIC: 3305 case SIOCGIFMTU: 3306 case SIOCSIFMTU: 3307 case SIOCGIFMEM: 3308 case SIOCSIFMEM: 3309 case SIOCGIFHWADDR: 3310 case SIOCSIFHWADDR: 3311 case SIOCADDMULTI: 3312 case SIOCDELMULTI: 3313 case SIOCGIFINDEX: 3314 case SIOCGIFADDR: 3315 case SIOCSIFADDR: 3316 case SIOCSIFHWBROADCAST: 3317 case SIOCDIFADDR: 3318 case SIOCGIFBRDADDR: 3319 case SIOCSIFBRDADDR: 3320 case SIOCGIFDSTADDR: 3321 case SIOCSIFDSTADDR: 3322 case SIOCGIFNETMASK: 3323 case SIOCSIFNETMASK: 3324 case SIOCSIFPFLAGS: 3325 case SIOCGIFPFLAGS: 3326 case SIOCGIFTXQLEN: 3327 case SIOCSIFTXQLEN: 3328 case SIOCBRADDIF: 3329 case SIOCBRDELIF: 3330 case SIOCSIFNAME: 3331 case SIOCGMIIPHY: 3332 case SIOCGMIIREG: 3333 case SIOCSMIIREG: 3334 return dev_ifsioc(net, sock, cmd, argp); 3335 3336 case SIOCSARP: 3337 case SIOCGARP: 3338 case SIOCDARP: 3339 case SIOCATMARK: 3340 return sock_do_ioctl(net, sock, cmd, arg); 3341 } 3342 3343 return -ENOIOCTLCMD; 3344 } 3345 3346 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3347 unsigned long arg) 3348 { 3349 struct socket *sock = file->private_data; 3350 int ret = -ENOIOCTLCMD; 3351 struct sock *sk; 3352 struct net *net; 3353 3354 sk = sock->sk; 3355 net = sock_net(sk); 3356 3357 if (sock->ops->compat_ioctl) 3358 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3359 3360 if (ret == -ENOIOCTLCMD && 3361 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3362 ret = compat_wext_handle_ioctl(net, cmd, arg); 3363 3364 if (ret == -ENOIOCTLCMD) 3365 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3366 3367 return ret; 3368 } 3369 #endif 3370 3371 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3372 { 3373 return sock->ops->bind(sock, addr, addrlen); 3374 } 3375 EXPORT_SYMBOL(kernel_bind); 3376 3377 int kernel_listen(struct socket *sock, int backlog) 3378 { 3379 return sock->ops->listen(sock, backlog); 3380 } 3381 EXPORT_SYMBOL(kernel_listen); 3382 3383 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3384 { 3385 struct sock *sk = sock->sk; 3386 int err; 3387 3388 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3389 newsock); 3390 if (err < 0) 3391 goto done; 3392 3393 err = sock->ops->accept(sock, *newsock, flags); 3394 if (err < 0) { 3395 sock_release(*newsock); 3396 *newsock = NULL; 3397 goto done; 3398 } 3399 3400 (*newsock)->ops = sock->ops; 3401 __module_get((*newsock)->ops->owner); 3402 3403 done: 3404 return err; 3405 } 3406 EXPORT_SYMBOL(kernel_accept); 3407 3408 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3409 int flags) 3410 { 3411 return sock->ops->connect(sock, addr, addrlen, flags); 3412 } 3413 EXPORT_SYMBOL(kernel_connect); 3414 3415 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3416 int *addrlen) 3417 { 3418 return sock->ops->getname(sock, addr, addrlen, 0); 3419 } 3420 EXPORT_SYMBOL(kernel_getsockname); 3421 3422 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3423 int *addrlen) 3424 { 3425 return sock->ops->getname(sock, addr, addrlen, 1); 3426 } 3427 EXPORT_SYMBOL(kernel_getpeername); 3428 3429 int kernel_getsockopt(struct socket *sock, int level, int optname, 3430 char *optval, int *optlen) 3431 { 3432 mm_segment_t oldfs = get_fs(); 3433 char __user *uoptval; 3434 int __user *uoptlen; 3435 int err; 3436 3437 uoptval = (char __user __force *) optval; 3438 uoptlen = (int __user __force *) optlen; 3439 3440 set_fs(KERNEL_DS); 3441 if (level == SOL_SOCKET) 3442 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3443 else 3444 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3445 uoptlen); 3446 set_fs(oldfs); 3447 return err; 3448 } 3449 EXPORT_SYMBOL(kernel_getsockopt); 3450 3451 int kernel_setsockopt(struct socket *sock, int level, int optname, 3452 char *optval, unsigned int optlen) 3453 { 3454 mm_segment_t oldfs = get_fs(); 3455 char __user *uoptval; 3456 int err; 3457 3458 uoptval = (char __user __force *) optval; 3459 3460 set_fs(KERNEL_DS); 3461 if (level == SOL_SOCKET) 3462 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3463 else 3464 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3465 optlen); 3466 set_fs(oldfs); 3467 return err; 3468 } 3469 EXPORT_SYMBOL(kernel_setsockopt); 3470 3471 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3472 size_t size, int flags) 3473 { 3474 if (sock->ops->sendpage) 3475 return sock->ops->sendpage(sock, page, offset, size, flags); 3476 3477 return sock_no_sendpage(sock, page, offset, size, flags); 3478 } 3479 EXPORT_SYMBOL(kernel_sendpage); 3480 3481 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3482 { 3483 mm_segment_t oldfs = get_fs(); 3484 int err; 3485 3486 set_fs(KERNEL_DS); 3487 err = sock->ops->ioctl(sock, cmd, arg); 3488 set_fs(oldfs); 3489 3490 return err; 3491 } 3492 EXPORT_SYMBOL(kernel_sock_ioctl); 3493 3494 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3495 { 3496 return sock->ops->shutdown(sock, how); 3497 } 3498 EXPORT_SYMBOL(kernel_sock_shutdown); 3499
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.