1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388 { 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405 } 406 EXPORT_SYMBOL(sock_alloc_file); 407 408 static int sock_map_fd(struct socket *sock, int flags) 409 { 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425 } 426 427 struct socket *sock_from_file(struct file *file, int *err) 428 { 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434 } 435 EXPORT_SYMBOL(sock_from_file); 436 437 /** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450 struct socket *sockfd_lookup(int fd, int *err) 451 { 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465 } 466 EXPORT_SYMBOL(sockfd_lookup); 467 468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469 { 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483 } 484 485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487 { 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511 } 512 513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514 { 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527 } 528 529 static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532 }; 533 534 /** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542 struct socket *sock_alloc(void) 543 { 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560 } 561 EXPORT_SYMBOL(sock_alloc); 562 563 /** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572 static void __sock_release(struct socket *sock, struct inode *inode) 573 { 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 sock->sk = NULL; 581 if (inode) 582 inode_unlock(inode); 583 sock->ops = NULL; 584 module_put(owner); 585 } 586 587 if (sock->wq->fasync_list) 588 pr_err("%s: fasync list not empty!\n", __func__); 589 590 if (!sock->file) { 591 iput(SOCK_INODE(sock)); 592 return; 593 } 594 sock->file = NULL; 595 } 596 597 void sock_release(struct socket *sock) 598 { 599 __sock_release(sock, NULL); 600 } 601 EXPORT_SYMBOL(sock_release); 602 603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 604 { 605 u8 flags = *tx_flags; 606 607 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 608 flags |= SKBTX_HW_TSTAMP; 609 610 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 611 flags |= SKBTX_SW_TSTAMP; 612 613 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 614 flags |= SKBTX_SCHED_TSTAMP; 615 616 *tx_flags = flags; 617 } 618 EXPORT_SYMBOL(__sock_tx_timestamp); 619 620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 621 { 622 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 623 BUG_ON(ret == -EIOCBQUEUED); 624 return ret; 625 } 626 627 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 628 { 629 int err = security_socket_sendmsg(sock, msg, 630 msg_data_left(msg)); 631 632 return err ?: sock_sendmsg_nosec(sock, msg); 633 } 634 EXPORT_SYMBOL(sock_sendmsg); 635 636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 637 struct kvec *vec, size_t num, size_t size) 638 { 639 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 640 return sock_sendmsg(sock, msg); 641 } 642 EXPORT_SYMBOL(kernel_sendmsg); 643 644 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 645 struct kvec *vec, size_t num, size_t size) 646 { 647 struct socket *sock = sk->sk_socket; 648 649 if (!sock->ops->sendmsg_locked) 650 return sock_no_sendmsg_locked(sk, msg, size); 651 652 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 653 654 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 655 } 656 EXPORT_SYMBOL(kernel_sendmsg_locked); 657 658 static bool skb_is_err_queue(const struct sk_buff *skb) 659 { 660 /* pkt_type of skbs enqueued on the error queue are set to 661 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 662 * in recvmsg, since skbs received on a local socket will never 663 * have a pkt_type of PACKET_OUTGOING. 664 */ 665 return skb->pkt_type == PACKET_OUTGOING; 666 } 667 668 /* On transmit, software and hardware timestamps are returned independently. 669 * As the two skb clones share the hardware timestamp, which may be updated 670 * before the software timestamp is received, a hardware TX timestamp may be 671 * returned only if there is no software TX timestamp. Ignore false software 672 * timestamps, which may be made in the __sock_recv_timestamp() call when the 673 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 674 * hardware timestamp. 675 */ 676 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 677 { 678 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 679 } 680 681 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 682 { 683 struct scm_ts_pktinfo ts_pktinfo; 684 struct net_device *orig_dev; 685 686 if (!skb_mac_header_was_set(skb)) 687 return; 688 689 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 690 691 rcu_read_lock(); 692 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 693 if (orig_dev) 694 ts_pktinfo.if_index = orig_dev->ifindex; 695 rcu_read_unlock(); 696 697 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 698 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 699 sizeof(ts_pktinfo), &ts_pktinfo); 700 } 701 702 /* 703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 704 */ 705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 706 struct sk_buff *skb) 707 { 708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 709 struct scm_timestamping tss; 710 int empty = 1, false_tstamp = 0; 711 struct skb_shared_hwtstamps *shhwtstamps = 712 skb_hwtstamps(skb); 713 714 /* Race occurred between timestamp enabling and packet 715 receiving. Fill in the current time for now. */ 716 if (need_software_tstamp && skb->tstamp == 0) { 717 __net_timestamp(skb); 718 false_tstamp = 1; 719 } 720 721 if (need_software_tstamp) { 722 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 723 struct timeval tv; 724 skb_get_timestamp(skb, &tv); 725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 726 sizeof(tv), &tv); 727 } else { 728 struct timespec ts; 729 skb_get_timestampns(skb, &ts); 730 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 731 sizeof(ts), &ts); 732 } 733 } 734 735 memset(&tss, 0, sizeof(tss)); 736 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 737 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 738 empty = 0; 739 if (shhwtstamps && 740 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 741 !skb_is_swtx_tstamp(skb, false_tstamp) && 742 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 743 empty = 0; 744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 745 !skb_is_err_queue(skb)) 746 put_ts_pktinfo(msg, skb); 747 } 748 if (!empty) { 749 put_cmsg(msg, SOL_SOCKET, 750 SCM_TIMESTAMPING, sizeof(tss), &tss); 751 752 if (skb_is_err_queue(skb) && skb->len && 753 SKB_EXT_ERR(skb)->opt_stats) 754 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 755 skb->len, skb->data); 756 } 757 } 758 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 759 760 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 761 struct sk_buff *skb) 762 { 763 int ack; 764 765 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 766 return; 767 if (!skb->wifi_acked_valid) 768 return; 769 770 ack = skb->wifi_acked; 771 772 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 773 } 774 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 775 776 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 777 struct sk_buff *skb) 778 { 779 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 780 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 781 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 782 } 783 784 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 785 struct sk_buff *skb) 786 { 787 sock_recv_timestamp(msg, sk, skb); 788 sock_recv_drops(msg, sk, skb); 789 } 790 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 791 792 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 793 int flags) 794 { 795 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 796 } 797 798 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 799 { 800 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 801 802 return err ?: sock_recvmsg_nosec(sock, msg, flags); 803 } 804 EXPORT_SYMBOL(sock_recvmsg); 805 806 /** 807 * kernel_recvmsg - Receive a message from a socket (kernel space) 808 * @sock: The socket to receive the message from 809 * @msg: Received message 810 * @vec: Input s/g array for message data 811 * @num: Size of input s/g array 812 * @size: Number of bytes to read 813 * @flags: Message flags (MSG_DONTWAIT, etc...) 814 * 815 * On return the msg structure contains the scatter/gather array passed in the 816 * vec argument. The array is modified so that it consists of the unfilled 817 * portion of the original array. 818 * 819 * The returned value is the total number of bytes received, or an error. 820 */ 821 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 822 struct kvec *vec, size_t num, size_t size, int flags) 823 { 824 mm_segment_t oldfs = get_fs(); 825 int result; 826 827 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 828 set_fs(KERNEL_DS); 829 result = sock_recvmsg(sock, msg, flags); 830 set_fs(oldfs); 831 return result; 832 } 833 EXPORT_SYMBOL(kernel_recvmsg); 834 835 static ssize_t sock_sendpage(struct file *file, struct page *page, 836 int offset, size_t size, loff_t *ppos, int more) 837 { 838 struct socket *sock; 839 int flags; 840 841 sock = file->private_data; 842 843 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 844 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 845 flags |= more; 846 847 return kernel_sendpage(sock, page, offset, size, flags); 848 } 849 850 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 851 struct pipe_inode_info *pipe, size_t len, 852 unsigned int flags) 853 { 854 struct socket *sock = file->private_data; 855 856 if (unlikely(!sock->ops->splice_read)) 857 return generic_file_splice_read(file, ppos, pipe, len, flags); 858 859 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 860 } 861 862 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 863 { 864 struct file *file = iocb->ki_filp; 865 struct socket *sock = file->private_data; 866 struct msghdr msg = {.msg_iter = *to, 867 .msg_iocb = iocb}; 868 ssize_t res; 869 870 if (file->f_flags & O_NONBLOCK) 871 msg.msg_flags = MSG_DONTWAIT; 872 873 if (iocb->ki_pos != 0) 874 return -ESPIPE; 875 876 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 877 return 0; 878 879 res = sock_recvmsg(sock, &msg, msg.msg_flags); 880 *to = msg.msg_iter; 881 return res; 882 } 883 884 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 885 { 886 struct file *file = iocb->ki_filp; 887 struct socket *sock = file->private_data; 888 struct msghdr msg = {.msg_iter = *from, 889 .msg_iocb = iocb}; 890 ssize_t res; 891 892 if (iocb->ki_pos != 0) 893 return -ESPIPE; 894 895 if (file->f_flags & O_NONBLOCK) 896 msg.msg_flags = MSG_DONTWAIT; 897 898 if (sock->type == SOCK_SEQPACKET) 899 msg.msg_flags |= MSG_EOR; 900 901 res = sock_sendmsg(sock, &msg); 902 *from = msg.msg_iter; 903 return res; 904 } 905 906 /* 907 * Atomic setting of ioctl hooks to avoid race 908 * with module unload. 909 */ 910 911 static DEFINE_MUTEX(br_ioctl_mutex); 912 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 913 914 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 915 { 916 mutex_lock(&br_ioctl_mutex); 917 br_ioctl_hook = hook; 918 mutex_unlock(&br_ioctl_mutex); 919 } 920 EXPORT_SYMBOL(brioctl_set); 921 922 static DEFINE_MUTEX(vlan_ioctl_mutex); 923 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 924 925 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 926 { 927 mutex_lock(&vlan_ioctl_mutex); 928 vlan_ioctl_hook = hook; 929 mutex_unlock(&vlan_ioctl_mutex); 930 } 931 EXPORT_SYMBOL(vlan_ioctl_set); 932 933 static DEFINE_MUTEX(dlci_ioctl_mutex); 934 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 935 936 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 937 { 938 mutex_lock(&dlci_ioctl_mutex); 939 dlci_ioctl_hook = hook; 940 mutex_unlock(&dlci_ioctl_mutex); 941 } 942 EXPORT_SYMBOL(dlci_ioctl_set); 943 944 static long sock_do_ioctl(struct net *net, struct socket *sock, 945 unsigned int cmd, unsigned long arg) 946 { 947 int err; 948 void __user *argp = (void __user *)arg; 949 950 err = sock->ops->ioctl(sock, cmd, arg); 951 952 /* 953 * If this ioctl is unknown try to hand it down 954 * to the NIC driver. 955 */ 956 if (err != -ENOIOCTLCMD) 957 return err; 958 959 if (cmd == SIOCGIFCONF) { 960 struct ifconf ifc; 961 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 962 return -EFAULT; 963 rtnl_lock(); 964 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 965 rtnl_unlock(); 966 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 967 err = -EFAULT; 968 } else { 969 struct ifreq ifr; 970 bool need_copyout; 971 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 972 return -EFAULT; 973 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 974 if (!err && need_copyout) 975 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 976 return -EFAULT; 977 } 978 return err; 979 } 980 981 /* 982 * With an ioctl, arg may well be a user mode pointer, but we don't know 983 * what to do with it - that's up to the protocol still. 984 */ 985 986 struct ns_common *get_net_ns(struct ns_common *ns) 987 { 988 return &get_net(container_of(ns, struct net, ns))->ns; 989 } 990 EXPORT_SYMBOL_GPL(get_net_ns); 991 992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 993 { 994 struct socket *sock; 995 struct sock *sk; 996 void __user *argp = (void __user *)arg; 997 int pid, err; 998 struct net *net; 999 1000 sock = file->private_data; 1001 sk = sock->sk; 1002 net = sock_net(sk); 1003 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1004 struct ifreq ifr; 1005 bool need_copyout; 1006 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1007 return -EFAULT; 1008 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1009 if (!err && need_copyout) 1010 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1011 return -EFAULT; 1012 } else 1013 #ifdef CONFIG_WEXT_CORE 1014 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1015 err = wext_handle_ioctl(net, cmd, argp); 1016 } else 1017 #endif 1018 switch (cmd) { 1019 case FIOSETOWN: 1020 case SIOCSPGRP: 1021 err = -EFAULT; 1022 if (get_user(pid, (int __user *)argp)) 1023 break; 1024 err = f_setown(sock->file, pid, 1); 1025 break; 1026 case FIOGETOWN: 1027 case SIOCGPGRP: 1028 err = put_user(f_getown(sock->file), 1029 (int __user *)argp); 1030 break; 1031 case SIOCGIFBR: 1032 case SIOCSIFBR: 1033 case SIOCBRADDBR: 1034 case SIOCBRDELBR: 1035 err = -ENOPKG; 1036 if (!br_ioctl_hook) 1037 request_module("bridge"); 1038 1039 mutex_lock(&br_ioctl_mutex); 1040 if (br_ioctl_hook) 1041 err = br_ioctl_hook(net, cmd, argp); 1042 mutex_unlock(&br_ioctl_mutex); 1043 break; 1044 case SIOCGIFVLAN: 1045 case SIOCSIFVLAN: 1046 err = -ENOPKG; 1047 if (!vlan_ioctl_hook) 1048 request_module("8021q"); 1049 1050 mutex_lock(&vlan_ioctl_mutex); 1051 if (vlan_ioctl_hook) 1052 err = vlan_ioctl_hook(net, argp); 1053 mutex_unlock(&vlan_ioctl_mutex); 1054 break; 1055 case SIOCADDDLCI: 1056 case SIOCDELDLCI: 1057 err = -ENOPKG; 1058 if (!dlci_ioctl_hook) 1059 request_module("dlci"); 1060 1061 mutex_lock(&dlci_ioctl_mutex); 1062 if (dlci_ioctl_hook) 1063 err = dlci_ioctl_hook(cmd, argp); 1064 mutex_unlock(&dlci_ioctl_mutex); 1065 break; 1066 case SIOCGSKNS: 1067 err = -EPERM; 1068 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1069 break; 1070 1071 err = open_related_ns(&net->ns, get_net_ns); 1072 break; 1073 default: 1074 err = sock_do_ioctl(net, sock, cmd, arg); 1075 break; 1076 } 1077 return err; 1078 } 1079 1080 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1081 { 1082 int err; 1083 struct socket *sock = NULL; 1084 1085 err = security_socket_create(family, type, protocol, 1); 1086 if (err) 1087 goto out; 1088 1089 sock = sock_alloc(); 1090 if (!sock) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 1095 sock->type = type; 1096 err = security_socket_post_create(sock, family, type, protocol, 1); 1097 if (err) 1098 goto out_release; 1099 1100 out: 1101 *res = sock; 1102 return err; 1103 out_release: 1104 sock_release(sock); 1105 sock = NULL; 1106 goto out; 1107 } 1108 EXPORT_SYMBOL(sock_create_lite); 1109 1110 /* No kernel lock held - perfect */ 1111 static __poll_t sock_poll(struct file *file, poll_table *wait) 1112 { 1113 struct socket *sock = file->private_data; 1114 __poll_t events = poll_requested_events(wait), flag = 0; 1115 1116 if (!sock->ops->poll) 1117 return 0; 1118 1119 if (sk_can_busy_loop(sock->sk)) { 1120 /* poll once if requested by the syscall */ 1121 if (events & POLL_BUSY_LOOP) 1122 sk_busy_loop(sock->sk, 1); 1123 1124 /* if this socket can poll_ll, tell the system call */ 1125 flag = POLL_BUSY_LOOP; 1126 } 1127 1128 return sock->ops->poll(file, sock, wait) | flag; 1129 } 1130 1131 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1132 { 1133 struct socket *sock = file->private_data; 1134 1135 return sock->ops->mmap(file, sock, vma); 1136 } 1137 1138 static int sock_close(struct inode *inode, struct file *filp) 1139 { 1140 __sock_release(SOCKET_I(inode), inode); 1141 return 0; 1142 } 1143 1144 /* 1145 * Update the socket async list 1146 * 1147 * Fasync_list locking strategy. 1148 * 1149 * 1. fasync_list is modified only under process context socket lock 1150 * i.e. under semaphore. 1151 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1152 * or under socket lock 1153 */ 1154 1155 static int sock_fasync(int fd, struct file *filp, int on) 1156 { 1157 struct socket *sock = filp->private_data; 1158 struct sock *sk = sock->sk; 1159 struct socket_wq *wq; 1160 1161 if (sk == NULL) 1162 return -EINVAL; 1163 1164 lock_sock(sk); 1165 wq = sock->wq; 1166 fasync_helper(fd, filp, on, &wq->fasync_list); 1167 1168 if (!wq->fasync_list) 1169 sock_reset_flag(sk, SOCK_FASYNC); 1170 else 1171 sock_set_flag(sk, SOCK_FASYNC); 1172 1173 release_sock(sk); 1174 return 0; 1175 } 1176 1177 /* This function may be called only under rcu_lock */ 1178 1179 int sock_wake_async(struct socket_wq *wq, int how, int band) 1180 { 1181 if (!wq || !wq->fasync_list) 1182 return -1; 1183 1184 switch (how) { 1185 case SOCK_WAKE_WAITD: 1186 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1187 break; 1188 goto call_kill; 1189 case SOCK_WAKE_SPACE: 1190 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1191 break; 1192 /* fall through */ 1193 case SOCK_WAKE_IO: 1194 call_kill: 1195 kill_fasync(&wq->fasync_list, SIGIO, band); 1196 break; 1197 case SOCK_WAKE_URG: 1198 kill_fasync(&wq->fasync_list, SIGURG, band); 1199 } 1200 1201 return 0; 1202 } 1203 EXPORT_SYMBOL(sock_wake_async); 1204 1205 int __sock_create(struct net *net, int family, int type, int protocol, 1206 struct socket **res, int kern) 1207 { 1208 int err; 1209 struct socket *sock; 1210 const struct net_proto_family *pf; 1211 1212 /* 1213 * Check protocol is in range 1214 */ 1215 if (family < 0 || family >= NPROTO) 1216 return -EAFNOSUPPORT; 1217 if (type < 0 || type >= SOCK_MAX) 1218 return -EINVAL; 1219 1220 /* Compatibility. 1221 1222 This uglymoron is moved from INET layer to here to avoid 1223 deadlock in module load. 1224 */ 1225 if (family == PF_INET && type == SOCK_PACKET) { 1226 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1227 current->comm); 1228 family = PF_PACKET; 1229 } 1230 1231 err = security_socket_create(family, type, protocol, kern); 1232 if (err) 1233 return err; 1234 1235 /* 1236 * Allocate the socket and allow the family to set things up. if 1237 * the protocol is 0, the family is instructed to select an appropriate 1238 * default. 1239 */ 1240 sock = sock_alloc(); 1241 if (!sock) { 1242 net_warn_ratelimited("socket: no more sockets\n"); 1243 return -ENFILE; /* Not exactly a match, but its the 1244 closest posix thing */ 1245 } 1246 1247 sock->type = type; 1248 1249 #ifdef CONFIG_MODULES 1250 /* Attempt to load a protocol module if the find failed. 1251 * 1252 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1253 * requested real, full-featured networking support upon configuration. 1254 * Otherwise module support will break! 1255 */ 1256 if (rcu_access_pointer(net_families[family]) == NULL) 1257 request_module("net-pf-%d", family); 1258 #endif 1259 1260 rcu_read_lock(); 1261 pf = rcu_dereference(net_families[family]); 1262 err = -EAFNOSUPPORT; 1263 if (!pf) 1264 goto out_release; 1265 1266 /* 1267 * We will call the ->create function, that possibly is in a loadable 1268 * module, so we have to bump that loadable module refcnt first. 1269 */ 1270 if (!try_module_get(pf->owner)) 1271 goto out_release; 1272 1273 /* Now protected by module ref count */ 1274 rcu_read_unlock(); 1275 1276 err = pf->create(net, sock, protocol, kern); 1277 if (err < 0) 1278 goto out_module_put; 1279 1280 /* 1281 * Now to bump the refcnt of the [loadable] module that owns this 1282 * socket at sock_release time we decrement its refcnt. 1283 */ 1284 if (!try_module_get(sock->ops->owner)) 1285 goto out_module_busy; 1286 1287 /* 1288 * Now that we're done with the ->create function, the [loadable] 1289 * module can have its refcnt decremented 1290 */ 1291 module_put(pf->owner); 1292 err = security_socket_post_create(sock, family, type, protocol, kern); 1293 if (err) 1294 goto out_sock_release; 1295 *res = sock; 1296 1297 return 0; 1298 1299 out_module_busy: 1300 err = -EAFNOSUPPORT; 1301 out_module_put: 1302 sock->ops = NULL; 1303 module_put(pf->owner); 1304 out_sock_release: 1305 sock_release(sock); 1306 return err; 1307 1308 out_release: 1309 rcu_read_unlock(); 1310 goto out_sock_release; 1311 } 1312 EXPORT_SYMBOL(__sock_create); 1313 1314 int sock_create(int family, int type, int protocol, struct socket **res) 1315 { 1316 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1317 } 1318 EXPORT_SYMBOL(sock_create); 1319 1320 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1321 { 1322 return __sock_create(net, family, type, protocol, res, 1); 1323 } 1324 EXPORT_SYMBOL(sock_create_kern); 1325 1326 int __sys_socket(int family, int type, int protocol) 1327 { 1328 int retval; 1329 struct socket *sock; 1330 int flags; 1331 1332 /* Check the SOCK_* constants for consistency. */ 1333 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1334 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1335 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1336 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1337 1338 flags = type & ~SOCK_TYPE_MASK; 1339 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1340 return -EINVAL; 1341 type &= SOCK_TYPE_MASK; 1342 1343 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1344 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1345 1346 retval = sock_create(family, type, protocol, &sock); 1347 if (retval < 0) 1348 return retval; 1349 1350 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1351 } 1352 1353 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1354 { 1355 return __sys_socket(family, type, protocol); 1356 } 1357 1358 /* 1359 * Create a pair of connected sockets. 1360 */ 1361 1362 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1363 { 1364 struct socket *sock1, *sock2; 1365 int fd1, fd2, err; 1366 struct file *newfile1, *newfile2; 1367 int flags; 1368 1369 flags = type & ~SOCK_TYPE_MASK; 1370 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1371 return -EINVAL; 1372 type &= SOCK_TYPE_MASK; 1373 1374 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1375 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1376 1377 /* 1378 * reserve descriptors and make sure we won't fail 1379 * to return them to userland. 1380 */ 1381 fd1 = get_unused_fd_flags(flags); 1382 if (unlikely(fd1 < 0)) 1383 return fd1; 1384 1385 fd2 = get_unused_fd_flags(flags); 1386 if (unlikely(fd2 < 0)) { 1387 put_unused_fd(fd1); 1388 return fd2; 1389 } 1390 1391 err = put_user(fd1, &usockvec[0]); 1392 if (err) 1393 goto out; 1394 1395 err = put_user(fd2, &usockvec[1]); 1396 if (err) 1397 goto out; 1398 1399 /* 1400 * Obtain the first socket and check if the underlying protocol 1401 * supports the socketpair call. 1402 */ 1403 1404 err = sock_create(family, type, protocol, &sock1); 1405 if (unlikely(err < 0)) 1406 goto out; 1407 1408 err = sock_create(family, type, protocol, &sock2); 1409 if (unlikely(err < 0)) { 1410 sock_release(sock1); 1411 goto out; 1412 } 1413 1414 err = security_socket_socketpair(sock1, sock2); 1415 if (unlikely(err)) { 1416 sock_release(sock2); 1417 sock_release(sock1); 1418 goto out; 1419 } 1420 1421 err = sock1->ops->socketpair(sock1, sock2); 1422 if (unlikely(err < 0)) { 1423 sock_release(sock2); 1424 sock_release(sock1); 1425 goto out; 1426 } 1427 1428 newfile1 = sock_alloc_file(sock1, flags, NULL); 1429 if (IS_ERR(newfile1)) { 1430 err = PTR_ERR(newfile1); 1431 sock_release(sock2); 1432 goto out; 1433 } 1434 1435 newfile2 = sock_alloc_file(sock2, flags, NULL); 1436 if (IS_ERR(newfile2)) { 1437 err = PTR_ERR(newfile2); 1438 fput(newfile1); 1439 goto out; 1440 } 1441 1442 audit_fd_pair(fd1, fd2); 1443 1444 fd_install(fd1, newfile1); 1445 fd_install(fd2, newfile2); 1446 return 0; 1447 1448 out: 1449 put_unused_fd(fd2); 1450 put_unused_fd(fd1); 1451 return err; 1452 } 1453 1454 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1455 int __user *, usockvec) 1456 { 1457 return __sys_socketpair(family, type, protocol, usockvec); 1458 } 1459 1460 /* 1461 * Bind a name to a socket. Nothing much to do here since it's 1462 * the protocol's responsibility to handle the local address. 1463 * 1464 * We move the socket address to kernel space before we call 1465 * the protocol layer (having also checked the address is ok). 1466 */ 1467 1468 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1469 { 1470 struct socket *sock; 1471 struct sockaddr_storage address; 1472 int err, fput_needed; 1473 1474 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1475 if (sock) { 1476 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1477 if (!err) { 1478 err = security_socket_bind(sock, 1479 (struct sockaddr *)&address, 1480 addrlen); 1481 if (!err) 1482 err = sock->ops->bind(sock, 1483 (struct sockaddr *) 1484 &address, addrlen); 1485 } 1486 fput_light(sock->file, fput_needed); 1487 } 1488 return err; 1489 } 1490 1491 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1492 { 1493 return __sys_bind(fd, umyaddr, addrlen); 1494 } 1495 1496 /* 1497 * Perform a listen. Basically, we allow the protocol to do anything 1498 * necessary for a listen, and if that works, we mark the socket as 1499 * ready for listening. 1500 */ 1501 1502 int __sys_listen(int fd, int backlog) 1503 { 1504 struct socket *sock; 1505 int err, fput_needed; 1506 int somaxconn; 1507 1508 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1509 if (sock) { 1510 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1511 if ((unsigned int)backlog > somaxconn) 1512 backlog = somaxconn; 1513 1514 err = security_socket_listen(sock, backlog); 1515 if (!err) 1516 err = sock->ops->listen(sock, backlog); 1517 1518 fput_light(sock->file, fput_needed); 1519 } 1520 return err; 1521 } 1522 1523 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1524 { 1525 return __sys_listen(fd, backlog); 1526 } 1527 1528 /* 1529 * For accept, we attempt to create a new socket, set up the link 1530 * with the client, wake up the client, then return the new 1531 * connected fd. We collect the address of the connector in kernel 1532 * space and move it to user at the very end. This is unclean because 1533 * we open the socket then return an error. 1534 * 1535 * 1003.1g adds the ability to recvmsg() to query connection pending 1536 * status to recvmsg. We need to add that support in a way thats 1537 * clean when we restructure accept also. 1538 */ 1539 1540 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1541 int __user *upeer_addrlen, int flags) 1542 { 1543 struct socket *sock, *newsock; 1544 struct file *newfile; 1545 int err, len, newfd, fput_needed; 1546 struct sockaddr_storage address; 1547 1548 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1549 return -EINVAL; 1550 1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1553 1554 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1555 if (!sock) 1556 goto out; 1557 1558 err = -ENFILE; 1559 newsock = sock_alloc(); 1560 if (!newsock) 1561 goto out_put; 1562 1563 newsock->type = sock->type; 1564 newsock->ops = sock->ops; 1565 1566 /* 1567 * We don't need try_module_get here, as the listening socket (sock) 1568 * has the protocol module (sock->ops->owner) held. 1569 */ 1570 __module_get(newsock->ops->owner); 1571 1572 newfd = get_unused_fd_flags(flags); 1573 if (unlikely(newfd < 0)) { 1574 err = newfd; 1575 sock_release(newsock); 1576 goto out_put; 1577 } 1578 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1579 if (IS_ERR(newfile)) { 1580 err = PTR_ERR(newfile); 1581 put_unused_fd(newfd); 1582 goto out_put; 1583 } 1584 1585 err = security_socket_accept(sock, newsock); 1586 if (err) 1587 goto out_fd; 1588 1589 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1590 if (err < 0) 1591 goto out_fd; 1592 1593 if (ccs_socket_post_accept_permission(sock, newsock)) { 1594 err = -EAGAIN; /* Hope less harmful than -EPERM. */ 1595 goto out_fd; 1596 } 1597 if (upeer_sockaddr) { 1598 len = newsock->ops->getname(newsock, 1599 (struct sockaddr *)&address, 2); 1600 if (len < 0) { 1601 err = -ECONNABORTED; 1602 goto out_fd; 1603 } 1604 err = move_addr_to_user(&address, 1605 len, upeer_sockaddr, upeer_addrlen); 1606 if (err < 0) 1607 goto out_fd; 1608 } 1609 1610 /* File flags are not inherited via accept() unlike another OSes. */ 1611 1612 fd_install(newfd, newfile); 1613 err = newfd; 1614 1615 out_put: 1616 fput_light(sock->file, fput_needed); 1617 out: 1618 return err; 1619 out_fd: 1620 fput(newfile); 1621 put_unused_fd(newfd); 1622 goto out_put; 1623 } 1624 1625 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1626 int __user *, upeer_addrlen, int, flags) 1627 { 1628 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1629 } 1630 1631 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1632 int __user *, upeer_addrlen) 1633 { 1634 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1635 } 1636 1637 /* 1638 * Attempt to connect to a socket with the server address. The address 1639 * is in user space so we verify it is OK and move it to kernel space. 1640 * 1641 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1642 * break bindings 1643 * 1644 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1645 * other SEQPACKET protocols that take time to connect() as it doesn't 1646 * include the -EINPROGRESS status for such sockets. 1647 */ 1648 1649 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1650 { 1651 struct socket *sock; 1652 struct sockaddr_storage address; 1653 int err, fput_needed; 1654 1655 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1656 if (!sock) 1657 goto out; 1658 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1659 if (err < 0) 1660 goto out_put; 1661 1662 err = 1663 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1664 if (err) 1665 goto out_put; 1666 1667 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1668 sock->file->f_flags); 1669 out_put: 1670 fput_light(sock->file, fput_needed); 1671 out: 1672 return err; 1673 } 1674 1675 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1676 int, addrlen) 1677 { 1678 return __sys_connect(fd, uservaddr, addrlen); 1679 } 1680 1681 /* 1682 * Get the local address ('name') of a socket object. Move the obtained 1683 * name to user space. 1684 */ 1685 1686 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1687 int __user *usockaddr_len) 1688 { 1689 struct socket *sock; 1690 struct sockaddr_storage address; 1691 int err, fput_needed; 1692 1693 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1694 if (!sock) 1695 goto out; 1696 1697 err = security_socket_getsockname(sock); 1698 if (err) 1699 goto out_put; 1700 1701 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1702 if (err < 0) 1703 goto out_put; 1704 /* "err" is actually length in this case */ 1705 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1706 1707 out_put: 1708 fput_light(sock->file, fput_needed); 1709 out: 1710 return err; 1711 } 1712 1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1714 int __user *, usockaddr_len) 1715 { 1716 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1717 } 1718 1719 /* 1720 * Get the remote address ('name') of a socket object. Move the obtained 1721 * name to user space. 1722 */ 1723 1724 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1725 int __user *usockaddr_len) 1726 { 1727 struct socket *sock; 1728 struct sockaddr_storage address; 1729 int err, fput_needed; 1730 1731 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1732 if (sock != NULL) { 1733 err = security_socket_getpeername(sock); 1734 if (err) { 1735 fput_light(sock->file, fput_needed); 1736 return err; 1737 } 1738 1739 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1740 if (err >= 0) 1741 /* "err" is actually length in this case */ 1742 err = move_addr_to_user(&address, err, usockaddr, 1743 usockaddr_len); 1744 fput_light(sock->file, fput_needed); 1745 } 1746 return err; 1747 } 1748 1749 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1750 int __user *, usockaddr_len) 1751 { 1752 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1753 } 1754 1755 /* 1756 * Send a datagram to a given address. We move the address into kernel 1757 * space and check the user space data area is readable before invoking 1758 * the protocol. 1759 */ 1760 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1761 struct sockaddr __user *addr, int addr_len) 1762 { 1763 struct socket *sock; 1764 struct sockaddr_storage address; 1765 int err; 1766 struct msghdr msg; 1767 struct iovec iov; 1768 int fput_needed; 1769 1770 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1771 if (unlikely(err)) 1772 return err; 1773 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1774 if (!sock) 1775 goto out; 1776 1777 msg.msg_name = NULL; 1778 msg.msg_control = NULL; 1779 msg.msg_controllen = 0; 1780 msg.msg_namelen = 0; 1781 if (addr) { 1782 err = move_addr_to_kernel(addr, addr_len, &address); 1783 if (err < 0) 1784 goto out_put; 1785 msg.msg_name = (struct sockaddr *)&address; 1786 msg.msg_namelen = addr_len; 1787 } 1788 if (sock->file->f_flags & O_NONBLOCK) 1789 flags |= MSG_DONTWAIT; 1790 msg.msg_flags = flags; 1791 err = sock_sendmsg(sock, &msg); 1792 1793 out_put: 1794 fput_light(sock->file, fput_needed); 1795 out: 1796 return err; 1797 } 1798 1799 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1800 unsigned int, flags, struct sockaddr __user *, addr, 1801 int, addr_len) 1802 { 1803 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1804 } 1805 1806 /* 1807 * Send a datagram down a socket. 1808 */ 1809 1810 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1811 unsigned int, flags) 1812 { 1813 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1814 } 1815 1816 /* 1817 * Receive a frame from the socket and optionally record the address of the 1818 * sender. We verify the buffers are writable and if needed move the 1819 * sender address from kernel to user space. 1820 */ 1821 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1822 struct sockaddr __user *addr, int __user *addr_len) 1823 { 1824 struct socket *sock; 1825 struct iovec iov; 1826 struct msghdr msg; 1827 struct sockaddr_storage address; 1828 int err, err2; 1829 int fput_needed; 1830 1831 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1832 if (unlikely(err)) 1833 return err; 1834 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1835 if (!sock) 1836 goto out; 1837 1838 msg.msg_control = NULL; 1839 msg.msg_controllen = 0; 1840 /* Save some cycles and don't copy the address if not needed */ 1841 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1842 /* We assume all kernel code knows the size of sockaddr_storage */ 1843 msg.msg_namelen = 0; 1844 msg.msg_iocb = NULL; 1845 msg.msg_flags = 0; 1846 if (sock->file->f_flags & O_NONBLOCK) 1847 flags |= MSG_DONTWAIT; 1848 err = sock_recvmsg(sock, &msg, flags); 1849 1850 if (err >= 0 && addr != NULL) { 1851 err2 = move_addr_to_user(&address, 1852 msg.msg_namelen, addr, addr_len); 1853 if (err2 < 0) 1854 err = err2; 1855 } 1856 1857 fput_light(sock->file, fput_needed); 1858 out: 1859 return err; 1860 } 1861 1862 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1863 unsigned int, flags, struct sockaddr __user *, addr, 1864 int __user *, addr_len) 1865 { 1866 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1867 } 1868 1869 /* 1870 * Receive a datagram from a socket. 1871 */ 1872 1873 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1874 unsigned int, flags) 1875 { 1876 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1877 } 1878 1879 /* 1880 * Set a socket option. Because we don't know the option lengths we have 1881 * to pass the user mode parameter for the protocols to sort out. 1882 */ 1883 1884 static int __sys_setsockopt(int fd, int level, int optname, 1885 char __user *optval, int optlen) 1886 { 1887 int err, fput_needed; 1888 struct socket *sock; 1889 1890 if (optlen < 0) 1891 return -EINVAL; 1892 1893 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1894 if (sock != NULL) { 1895 err = security_socket_setsockopt(sock, level, optname); 1896 if (err) 1897 goto out_put; 1898 1899 if (level == SOL_SOCKET) 1900 err = 1901 sock_setsockopt(sock, level, optname, optval, 1902 optlen); 1903 else 1904 err = 1905 sock->ops->setsockopt(sock, level, optname, optval, 1906 optlen); 1907 out_put: 1908 fput_light(sock->file, fput_needed); 1909 } 1910 return err; 1911 } 1912 1913 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1914 char __user *, optval, int, optlen) 1915 { 1916 return __sys_setsockopt(fd, level, optname, optval, optlen); 1917 } 1918 1919 /* 1920 * Get a socket option. Because we don't know the option lengths we have 1921 * to pass a user mode parameter for the protocols to sort out. 1922 */ 1923 1924 static int __sys_getsockopt(int fd, int level, int optname, 1925 char __user *optval, int __user *optlen) 1926 { 1927 int err, fput_needed; 1928 struct socket *sock; 1929 1930 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1931 if (sock != NULL) { 1932 err = security_socket_getsockopt(sock, level, optname); 1933 if (err) 1934 goto out_put; 1935 1936 if (level == SOL_SOCKET) 1937 err = 1938 sock_getsockopt(sock, level, optname, optval, 1939 optlen); 1940 else 1941 err = 1942 sock->ops->getsockopt(sock, level, optname, optval, 1943 optlen); 1944 out_put: 1945 fput_light(sock->file, fput_needed); 1946 } 1947 return err; 1948 } 1949 1950 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1951 char __user *, optval, int __user *, optlen) 1952 { 1953 return __sys_getsockopt(fd, level, optname, optval, optlen); 1954 } 1955 1956 /* 1957 * Shutdown a socket. 1958 */ 1959 1960 int __sys_shutdown(int fd, int how) 1961 { 1962 int err, fput_needed; 1963 struct socket *sock; 1964 1965 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1966 if (sock != NULL) { 1967 err = security_socket_shutdown(sock, how); 1968 if (!err) 1969 err = sock->ops->shutdown(sock, how); 1970 fput_light(sock->file, fput_needed); 1971 } 1972 return err; 1973 } 1974 1975 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1976 { 1977 return __sys_shutdown(fd, how); 1978 } 1979 1980 /* A couple of helpful macros for getting the address of the 32/64 bit 1981 * fields which are the same type (int / unsigned) on our platforms. 1982 */ 1983 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1984 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1985 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1986 1987 struct used_address { 1988 struct sockaddr_storage name; 1989 unsigned int name_len; 1990 }; 1991 1992 static int copy_msghdr_from_user(struct msghdr *kmsg, 1993 struct user_msghdr __user *umsg, 1994 struct sockaddr __user **save_addr, 1995 struct iovec **iov) 1996 { 1997 struct user_msghdr msg; 1998 ssize_t err; 1999 2000 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2001 return -EFAULT; 2002 2003 kmsg->msg_control = (void __force *)msg.msg_control; 2004 kmsg->msg_controllen = msg.msg_controllen; 2005 kmsg->msg_flags = msg.msg_flags; 2006 2007 kmsg->msg_namelen = msg.msg_namelen; 2008 if (!msg.msg_name) 2009 kmsg->msg_namelen = 0; 2010 2011 if (kmsg->msg_namelen < 0) 2012 return -EINVAL; 2013 2014 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2015 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2016 2017 if (save_addr) 2018 *save_addr = msg.msg_name; 2019 2020 if (msg.msg_name && kmsg->msg_namelen) { 2021 if (!save_addr) { 2022 err = move_addr_to_kernel(msg.msg_name, 2023 kmsg->msg_namelen, 2024 kmsg->msg_name); 2025 if (err < 0) 2026 return err; 2027 } 2028 } else { 2029 kmsg->msg_name = NULL; 2030 kmsg->msg_namelen = 0; 2031 } 2032 2033 if (msg.msg_iovlen > UIO_MAXIOV) 2034 return -EMSGSIZE; 2035 2036 kmsg->msg_iocb = NULL; 2037 2038 return import_iovec(save_addr ? READ : WRITE, 2039 msg.msg_iov, msg.msg_iovlen, 2040 UIO_FASTIOV, iov, &kmsg->msg_iter); 2041 } 2042 2043 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2044 struct msghdr *msg_sys, unsigned int flags, 2045 struct used_address *used_address, 2046 unsigned int allowed_msghdr_flags) 2047 { 2048 struct compat_msghdr __user *msg_compat = 2049 (struct compat_msghdr __user *)msg; 2050 struct sockaddr_storage address; 2051 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2052 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2053 __aligned(sizeof(__kernel_size_t)); 2054 /* 20 is size of ipv6_pktinfo */ 2055 unsigned char *ctl_buf = ctl; 2056 int ctl_len; 2057 ssize_t err; 2058 2059 msg_sys->msg_name = &address; 2060 2061 if (MSG_CMSG_COMPAT & flags) 2062 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2063 else 2064 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2065 if (err < 0) 2066 return err; 2067 2068 err = -ENOBUFS; 2069 2070 if (msg_sys->msg_controllen > INT_MAX) 2071 goto out_freeiov; 2072 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2073 ctl_len = msg_sys->msg_controllen; 2074 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2075 err = 2076 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2077 sizeof(ctl)); 2078 if (err) 2079 goto out_freeiov; 2080 ctl_buf = msg_sys->msg_control; 2081 ctl_len = msg_sys->msg_controllen; 2082 } else if (ctl_len) { 2083 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2084 CMSG_ALIGN(sizeof(struct cmsghdr))); 2085 if (ctl_len > sizeof(ctl)) { 2086 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2087 if (ctl_buf == NULL) 2088 goto out_freeiov; 2089 } 2090 err = -EFAULT; 2091 /* 2092 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2093 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2094 * checking falls down on this. 2095 */ 2096 if (copy_from_user(ctl_buf, 2097 (void __user __force *)msg_sys->msg_control, 2098 ctl_len)) 2099 goto out_freectl; 2100 msg_sys->msg_control = ctl_buf; 2101 } 2102 msg_sys->msg_flags = flags; 2103 2104 if (sock->file->f_flags & O_NONBLOCK) 2105 msg_sys->msg_flags |= MSG_DONTWAIT; 2106 /* 2107 * If this is sendmmsg() and current destination address is same as 2108 * previously succeeded address, omit asking LSM's decision. 2109 * used_address->name_len is initialized to UINT_MAX so that the first 2110 * destination address never matches. 2111 */ 2112 if (used_address && msg_sys->msg_name && 2113 used_address->name_len == msg_sys->msg_namelen && 2114 !memcmp(&used_address->name, msg_sys->msg_name, 2115 used_address->name_len)) { 2116 err = sock_sendmsg_nosec(sock, msg_sys); 2117 goto out_freectl; 2118 } 2119 err = sock_sendmsg(sock, msg_sys); 2120 /* 2121 * If this is sendmmsg() and sending to current destination address was 2122 * successful, remember it. 2123 */ 2124 if (used_address && err >= 0) { 2125 used_address->name_len = msg_sys->msg_namelen; 2126 if (msg_sys->msg_name) 2127 memcpy(&used_address->name, msg_sys->msg_name, 2128 used_address->name_len); 2129 } 2130 2131 out_freectl: 2132 if (ctl_buf != ctl) 2133 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2134 out_freeiov: 2135 kfree(iov); 2136 return err; 2137 } 2138 2139 /* 2140 * BSD sendmsg interface 2141 */ 2142 2143 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2144 bool forbid_cmsg_compat) 2145 { 2146 int fput_needed, err; 2147 struct msghdr msg_sys; 2148 struct socket *sock; 2149 2150 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2151 return -EINVAL; 2152 2153 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2154 if (!sock) 2155 goto out; 2156 2157 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2158 2159 fput_light(sock->file, fput_needed); 2160 out: 2161 return err; 2162 } 2163 2164 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2165 { 2166 return __sys_sendmsg(fd, msg, flags, true); 2167 } 2168 2169 /* 2170 * Linux sendmmsg interface 2171 */ 2172 2173 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2174 unsigned int flags, bool forbid_cmsg_compat) 2175 { 2176 int fput_needed, err, datagrams; 2177 struct socket *sock; 2178 struct mmsghdr __user *entry; 2179 struct compat_mmsghdr __user *compat_entry; 2180 struct msghdr msg_sys; 2181 struct used_address used_address; 2182 unsigned int oflags = flags; 2183 2184 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2185 return -EINVAL; 2186 2187 if (vlen > UIO_MAXIOV) 2188 vlen = UIO_MAXIOV; 2189 2190 datagrams = 0; 2191 2192 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2193 if (!sock) 2194 return err; 2195 2196 used_address.name_len = UINT_MAX; 2197 entry = mmsg; 2198 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2199 err = 0; 2200 flags |= MSG_BATCH; 2201 2202 while (datagrams < vlen) { 2203 if (datagrams == vlen - 1) 2204 flags = oflags; 2205 2206 if (MSG_CMSG_COMPAT & flags) { 2207 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2208 &msg_sys, flags, &used_address, MSG_EOR); 2209 if (err < 0) 2210 break; 2211 err = __put_user(err, &compat_entry->msg_len); 2212 ++compat_entry; 2213 } else { 2214 err = ___sys_sendmsg(sock, 2215 (struct user_msghdr __user *)entry, 2216 &msg_sys, flags, &used_address, MSG_EOR); 2217 if (err < 0) 2218 break; 2219 err = put_user(err, &entry->msg_len); 2220 ++entry; 2221 } 2222 2223 if (err) 2224 break; 2225 ++datagrams; 2226 if (msg_data_left(&msg_sys)) 2227 break; 2228 cond_resched(); 2229 } 2230 2231 fput_light(sock->file, fput_needed); 2232 2233 /* We only return an error if no datagrams were able to be sent */ 2234 if (datagrams != 0) 2235 return datagrams; 2236 2237 return err; 2238 } 2239 2240 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2241 unsigned int, vlen, unsigned int, flags) 2242 { 2243 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2244 } 2245 2246 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2247 struct msghdr *msg_sys, unsigned int flags, int nosec) 2248 { 2249 struct compat_msghdr __user *msg_compat = 2250 (struct compat_msghdr __user *)msg; 2251 struct iovec iovstack[UIO_FASTIOV]; 2252 struct iovec *iov = iovstack; 2253 unsigned long cmsg_ptr; 2254 int len; 2255 ssize_t err; 2256 2257 /* kernel mode address */ 2258 struct sockaddr_storage addr; 2259 2260 /* user mode address pointers */ 2261 struct sockaddr __user *uaddr; 2262 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2263 2264 msg_sys->msg_name = &addr; 2265 2266 if (MSG_CMSG_COMPAT & flags) 2267 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2268 else 2269 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2270 if (err < 0) 2271 return err; 2272 2273 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2274 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2275 2276 /* We assume all kernel code knows the size of sockaddr_storage */ 2277 msg_sys->msg_namelen = 0; 2278 2279 if (sock->file->f_flags & O_NONBLOCK) 2280 flags |= MSG_DONTWAIT; 2281 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2282 if (err < 0) 2283 goto out_freeiov; 2284 len = err; 2285 2286 if (uaddr != NULL) { 2287 err = move_addr_to_user(&addr, 2288 msg_sys->msg_namelen, uaddr, 2289 uaddr_len); 2290 if (err < 0) 2291 goto out_freeiov; 2292 } 2293 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2294 COMPAT_FLAGS(msg)); 2295 if (err) 2296 goto out_freeiov; 2297 if (MSG_CMSG_COMPAT & flags) 2298 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2299 &msg_compat->msg_controllen); 2300 else 2301 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2302 &msg->msg_controllen); 2303 if (err) 2304 goto out_freeiov; 2305 err = len; 2306 2307 out_freeiov: 2308 kfree(iov); 2309 return err; 2310 } 2311 2312 /* 2313 * BSD recvmsg interface 2314 */ 2315 2316 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2317 bool forbid_cmsg_compat) 2318 { 2319 int fput_needed, err; 2320 struct msghdr msg_sys; 2321 struct socket *sock; 2322 2323 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2324 return -EINVAL; 2325 2326 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2327 if (!sock) 2328 goto out; 2329 2330 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2331 2332 fput_light(sock->file, fput_needed); 2333 out: 2334 return err; 2335 } 2336 2337 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2338 unsigned int, flags) 2339 { 2340 return __sys_recvmsg(fd, msg, flags, true); 2341 } 2342 2343 /* 2344 * Linux recvmmsg interface 2345 */ 2346 2347 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2348 unsigned int flags, struct timespec64 *timeout) 2349 { 2350 int fput_needed, err, datagrams; 2351 struct socket *sock; 2352 struct mmsghdr __user *entry; 2353 struct compat_mmsghdr __user *compat_entry; 2354 struct msghdr msg_sys; 2355 struct timespec64 end_time; 2356 struct timespec64 timeout64; 2357 2358 if (timeout && 2359 poll_select_set_timeout(&end_time, timeout->tv_sec, 2360 timeout->tv_nsec)) 2361 return -EINVAL; 2362 2363 datagrams = 0; 2364 2365 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2366 if (!sock) 2367 return err; 2368 2369 if (likely(!(flags & MSG_ERRQUEUE))) { 2370 err = sock_error(sock->sk); 2371 if (err) { 2372 datagrams = err; 2373 goto out_put; 2374 } 2375 } 2376 2377 entry = mmsg; 2378 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2379 2380 while (datagrams < vlen) { 2381 /* 2382 * No need to ask LSM for more than the first datagram. 2383 */ 2384 if (MSG_CMSG_COMPAT & flags) { 2385 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2386 &msg_sys, flags & ~MSG_WAITFORONE, 2387 datagrams); 2388 if (err < 0) 2389 break; 2390 err = __put_user(err, &compat_entry->msg_len); 2391 ++compat_entry; 2392 } else { 2393 err = ___sys_recvmsg(sock, 2394 (struct user_msghdr __user *)entry, 2395 &msg_sys, flags & ~MSG_WAITFORONE, 2396 datagrams); 2397 if (err < 0) 2398 break; 2399 err = put_user(err, &entry->msg_len); 2400 ++entry; 2401 } 2402 2403 if (err) 2404 break; 2405 ++datagrams; 2406 2407 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2408 if (flags & MSG_WAITFORONE) 2409 flags |= MSG_DONTWAIT; 2410 2411 if (timeout) { 2412 ktime_get_ts64(&timeout64); 2413 *timeout = timespec64_sub(end_time, timeout64); 2414 if (timeout->tv_sec < 0) { 2415 timeout->tv_sec = timeout->tv_nsec = 0; 2416 break; 2417 } 2418 2419 /* Timeout, return less than vlen datagrams */ 2420 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2421 break; 2422 } 2423 2424 /* Out of band data, return right away */ 2425 if (msg_sys.msg_flags & MSG_OOB) 2426 break; 2427 cond_resched(); 2428 } 2429 2430 if (err == 0) 2431 goto out_put; 2432 2433 if (datagrams == 0) { 2434 datagrams = err; 2435 goto out_put; 2436 } 2437 2438 /* 2439 * We may return less entries than requested (vlen) if the 2440 * sock is non block and there aren't enough datagrams... 2441 */ 2442 if (err != -EAGAIN) { 2443 /* 2444 * ... or if recvmsg returns an error after we 2445 * received some datagrams, where we record the 2446 * error to return on the next call or if the 2447 * app asks about it using getsockopt(SO_ERROR). 2448 */ 2449 sock->sk->sk_err = -err; 2450 } 2451 out_put: 2452 fput_light(sock->file, fput_needed); 2453 2454 return datagrams; 2455 } 2456 2457 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2458 unsigned int vlen, unsigned int flags, 2459 struct __kernel_timespec __user *timeout) 2460 { 2461 int datagrams; 2462 struct timespec64 timeout_sys; 2463 2464 if (flags & MSG_CMSG_COMPAT) 2465 return -EINVAL; 2466 2467 if (!timeout) 2468 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2469 2470 if (get_timespec64(&timeout_sys, timeout)) 2471 return -EFAULT; 2472 2473 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2474 2475 if (datagrams > 0 && put_timespec64(&timeout_sys, timeout)) 2476 datagrams = -EFAULT; 2477 2478 return datagrams; 2479 } 2480 2481 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2482 unsigned int, vlen, unsigned int, flags, 2483 struct __kernel_timespec __user *, timeout) 2484 { 2485 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2486 } 2487 2488 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2489 /* Argument list sizes for sys_socketcall */ 2490 #define AL(x) ((x) * sizeof(unsigned long)) 2491 static const unsigned char nargs[21] = { 2492 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2493 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2494 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2495 AL(4), AL(5), AL(4) 2496 }; 2497 2498 #undef AL 2499 2500 /* 2501 * System call vectors. 2502 * 2503 * Argument checking cleaned up. Saved 20% in size. 2504 * This function doesn't need to set the kernel lock because 2505 * it is set by the callees. 2506 */ 2507 2508 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2509 { 2510 unsigned long a[AUDITSC_ARGS]; 2511 unsigned long a0, a1; 2512 int err; 2513 unsigned int len; 2514 2515 if (call < 1 || call > SYS_SENDMMSG) 2516 return -EINVAL; 2517 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2518 2519 len = nargs[call]; 2520 if (len > sizeof(a)) 2521 return -EINVAL; 2522 2523 /* copy_from_user should be SMP safe. */ 2524 if (copy_from_user(a, args, len)) 2525 return -EFAULT; 2526 2527 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2528 if (err) 2529 return err; 2530 2531 a0 = a[0]; 2532 a1 = a[1]; 2533 2534 switch (call) { 2535 case SYS_SOCKET: 2536 err = __sys_socket(a0, a1, a[2]); 2537 break; 2538 case SYS_BIND: 2539 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2540 break; 2541 case SYS_CONNECT: 2542 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2543 break; 2544 case SYS_LISTEN: 2545 err = __sys_listen(a0, a1); 2546 break; 2547 case SYS_ACCEPT: 2548 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2549 (int __user *)a[2], 0); 2550 break; 2551 case SYS_GETSOCKNAME: 2552 err = 2553 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2554 (int __user *)a[2]); 2555 break; 2556 case SYS_GETPEERNAME: 2557 err = 2558 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2559 (int __user *)a[2]); 2560 break; 2561 case SYS_SOCKETPAIR: 2562 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2563 break; 2564 case SYS_SEND: 2565 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2566 NULL, 0); 2567 break; 2568 case SYS_SENDTO: 2569 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2570 (struct sockaddr __user *)a[4], a[5]); 2571 break; 2572 case SYS_RECV: 2573 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2574 NULL, NULL); 2575 break; 2576 case SYS_RECVFROM: 2577 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2578 (struct sockaddr __user *)a[4], 2579 (int __user *)a[5]); 2580 break; 2581 case SYS_SHUTDOWN: 2582 err = __sys_shutdown(a0, a1); 2583 break; 2584 case SYS_SETSOCKOPT: 2585 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2586 a[4]); 2587 break; 2588 case SYS_GETSOCKOPT: 2589 err = 2590 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2591 (int __user *)a[4]); 2592 break; 2593 case SYS_SENDMSG: 2594 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2595 a[2], true); 2596 break; 2597 case SYS_SENDMMSG: 2598 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2599 a[3], true); 2600 break; 2601 case SYS_RECVMSG: 2602 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2603 a[2], true); 2604 break; 2605 case SYS_RECVMMSG: 2606 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2607 a[3], (struct __kernel_timespec __user *)a[4]); 2608 break; 2609 case SYS_ACCEPT4: 2610 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2611 (int __user *)a[2], a[3]); 2612 break; 2613 default: 2614 err = -EINVAL; 2615 break; 2616 } 2617 return err; 2618 } 2619 2620 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2621 2622 /** 2623 * sock_register - add a socket protocol handler 2624 * @ops: description of protocol 2625 * 2626 * This function is called by a protocol handler that wants to 2627 * advertise its address family, and have it linked into the 2628 * socket interface. The value ops->family corresponds to the 2629 * socket system call protocol family. 2630 */ 2631 int sock_register(const struct net_proto_family *ops) 2632 { 2633 int err; 2634 2635 if (ops->family >= NPROTO) { 2636 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2637 return -ENOBUFS; 2638 } 2639 2640 spin_lock(&net_family_lock); 2641 if (rcu_dereference_protected(net_families[ops->family], 2642 lockdep_is_held(&net_family_lock))) 2643 err = -EEXIST; 2644 else { 2645 rcu_assign_pointer(net_families[ops->family], ops); 2646 err = 0; 2647 } 2648 spin_unlock(&net_family_lock); 2649 2650 pr_info("NET: Registered protocol family %d\n", ops->family); 2651 return err; 2652 } 2653 EXPORT_SYMBOL(sock_register); 2654 2655 /** 2656 * sock_unregister - remove a protocol handler 2657 * @family: protocol family to remove 2658 * 2659 * This function is called by a protocol handler that wants to 2660 * remove its address family, and have it unlinked from the 2661 * new socket creation. 2662 * 2663 * If protocol handler is a module, then it can use module reference 2664 * counts to protect against new references. If protocol handler is not 2665 * a module then it needs to provide its own protection in 2666 * the ops->create routine. 2667 */ 2668 void sock_unregister(int family) 2669 { 2670 BUG_ON(family < 0 || family >= NPROTO); 2671 2672 spin_lock(&net_family_lock); 2673 RCU_INIT_POINTER(net_families[family], NULL); 2674 spin_unlock(&net_family_lock); 2675 2676 synchronize_rcu(); 2677 2678 pr_info("NET: Unregistered protocol family %d\n", family); 2679 } 2680 EXPORT_SYMBOL(sock_unregister); 2681 2682 bool sock_is_registered(int family) 2683 { 2684 return family < NPROTO && rcu_access_pointer(net_families[family]); 2685 } 2686 2687 static int __init sock_init(void) 2688 { 2689 int err; 2690 /* 2691 * Initialize the network sysctl infrastructure. 2692 */ 2693 err = net_sysctl_init(); 2694 if (err) 2695 goto out; 2696 2697 /* 2698 * Initialize skbuff SLAB cache 2699 */ 2700 skb_init(); 2701 2702 /* 2703 * Initialize the protocols module. 2704 */ 2705 2706 init_inodecache(); 2707 2708 err = register_filesystem(&sock_fs_type); 2709 if (err) 2710 goto out_fs; 2711 sock_mnt = kern_mount(&sock_fs_type); 2712 if (IS_ERR(sock_mnt)) { 2713 err = PTR_ERR(sock_mnt); 2714 goto out_mount; 2715 } 2716 2717 /* The real protocol initialization is performed in later initcalls. 2718 */ 2719 2720 #ifdef CONFIG_NETFILTER 2721 err = netfilter_init(); 2722 if (err) 2723 goto out; 2724 #endif 2725 2726 ptp_classifier_init(); 2727 2728 out: 2729 return err; 2730 2731 out_mount: 2732 unregister_filesystem(&sock_fs_type); 2733 out_fs: 2734 goto out; 2735 } 2736 2737 core_initcall(sock_init); /* early initcall */ 2738 2739 #ifdef CONFIG_PROC_FS 2740 void socket_seq_show(struct seq_file *seq) 2741 { 2742 seq_printf(seq, "sockets: used %d\n", 2743 sock_inuse_get(seq->private)); 2744 } 2745 #endif /* CONFIG_PROC_FS */ 2746 2747 #ifdef CONFIG_COMPAT 2748 static int do_siocgstamp(struct net *net, struct socket *sock, 2749 unsigned int cmd, void __user *up) 2750 { 2751 mm_segment_t old_fs = get_fs(); 2752 struct timeval ktv; 2753 int err; 2754 2755 set_fs(KERNEL_DS); 2756 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2757 set_fs(old_fs); 2758 if (!err) 2759 err = compat_put_timeval(&ktv, up); 2760 2761 return err; 2762 } 2763 2764 static int do_siocgstampns(struct net *net, struct socket *sock, 2765 unsigned int cmd, void __user *up) 2766 { 2767 mm_segment_t old_fs = get_fs(); 2768 struct timespec kts; 2769 int err; 2770 2771 set_fs(KERNEL_DS); 2772 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2773 set_fs(old_fs); 2774 if (!err) 2775 err = compat_put_timespec(&kts, up); 2776 2777 return err; 2778 } 2779 2780 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2781 { 2782 struct compat_ifconf ifc32; 2783 struct ifconf ifc; 2784 int err; 2785 2786 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2787 return -EFAULT; 2788 2789 ifc.ifc_len = ifc32.ifc_len; 2790 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2791 2792 rtnl_lock(); 2793 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2794 rtnl_unlock(); 2795 if (err) 2796 return err; 2797 2798 ifc32.ifc_len = ifc.ifc_len; 2799 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2800 return -EFAULT; 2801 2802 return 0; 2803 } 2804 2805 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2806 { 2807 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2808 bool convert_in = false, convert_out = false; 2809 size_t buf_size = 0; 2810 struct ethtool_rxnfc __user *rxnfc = NULL; 2811 struct ifreq ifr; 2812 u32 rule_cnt = 0, actual_rule_cnt; 2813 u32 ethcmd; 2814 u32 data; 2815 int ret; 2816 2817 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2818 return -EFAULT; 2819 2820 compat_rxnfc = compat_ptr(data); 2821 2822 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2823 return -EFAULT; 2824 2825 /* Most ethtool structures are defined without padding. 2826 * Unfortunately struct ethtool_rxnfc is an exception. 2827 */ 2828 switch (ethcmd) { 2829 default: 2830 break; 2831 case ETHTOOL_GRXCLSRLALL: 2832 /* Buffer size is variable */ 2833 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2834 return -EFAULT; 2835 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2836 return -ENOMEM; 2837 buf_size += rule_cnt * sizeof(u32); 2838 /* fall through */ 2839 case ETHTOOL_GRXRINGS: 2840 case ETHTOOL_GRXCLSRLCNT: 2841 case ETHTOOL_GRXCLSRULE: 2842 case ETHTOOL_SRXCLSRLINS: 2843 convert_out = true; 2844 /* fall through */ 2845 case ETHTOOL_SRXCLSRLDEL: 2846 buf_size += sizeof(struct ethtool_rxnfc); 2847 convert_in = true; 2848 rxnfc = compat_alloc_user_space(buf_size); 2849 break; 2850 } 2851 2852 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2853 return -EFAULT; 2854 2855 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2856 2857 if (convert_in) { 2858 /* We expect there to be holes between fs.m_ext and 2859 * fs.ring_cookie and at the end of fs, but nowhere else. 2860 */ 2861 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2862 sizeof(compat_rxnfc->fs.m_ext) != 2863 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2864 sizeof(rxnfc->fs.m_ext)); 2865 BUILD_BUG_ON( 2866 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2867 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2868 offsetof(struct ethtool_rxnfc, fs.location) - 2869 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2870 2871 if (copy_in_user(rxnfc, compat_rxnfc, 2872 (void __user *)(&rxnfc->fs.m_ext + 1) - 2873 (void __user *)rxnfc) || 2874 copy_in_user(&rxnfc->fs.ring_cookie, 2875 &compat_rxnfc->fs.ring_cookie, 2876 (void __user *)(&rxnfc->fs.location + 1) - 2877 (void __user *)&rxnfc->fs.ring_cookie)) 2878 return -EFAULT; 2879 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2880 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 2881 return -EFAULT; 2882 } else if (copy_in_user(&rxnfc->rule_cnt, 2883 &compat_rxnfc->rule_cnt, 2884 sizeof(rxnfc->rule_cnt))) 2885 return -EFAULT; 2886 } 2887 2888 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2889 if (ret) 2890 return ret; 2891 2892 if (convert_out) { 2893 if (copy_in_user(compat_rxnfc, rxnfc, 2894 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2895 (const void __user *)rxnfc) || 2896 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2897 &rxnfc->fs.ring_cookie, 2898 (const void __user *)(&rxnfc->fs.location + 1) - 2899 (const void __user *)&rxnfc->fs.ring_cookie) || 2900 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2901 sizeof(rxnfc->rule_cnt))) 2902 return -EFAULT; 2903 2904 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2905 /* As an optimisation, we only copy the actual 2906 * number of rules that the underlying 2907 * function returned. Since Mallory might 2908 * change the rule count in user memory, we 2909 * check that it is less than the rule count 2910 * originally given (as the user buffer size), 2911 * which has been range-checked. 2912 */ 2913 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2914 return -EFAULT; 2915 if (actual_rule_cnt < rule_cnt) 2916 rule_cnt = actual_rule_cnt; 2917 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2918 &rxnfc->rule_locs[0], 2919 rule_cnt * sizeof(u32))) 2920 return -EFAULT; 2921 } 2922 } 2923 2924 return 0; 2925 } 2926 2927 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2928 { 2929 compat_uptr_t uptr32; 2930 struct ifreq ifr; 2931 void __user *saved; 2932 int err; 2933 2934 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2935 return -EFAULT; 2936 2937 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2938 return -EFAULT; 2939 2940 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2941 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2942 2943 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2944 if (!err) { 2945 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2946 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2947 err = -EFAULT; 2948 } 2949 return err; 2950 } 2951 2952 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2953 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2954 struct compat_ifreq __user *u_ifreq32) 2955 { 2956 struct ifreq ifreq; 2957 u32 data32; 2958 2959 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2960 return -EFAULT; 2961 if (get_user(data32, &u_ifreq32->ifr_data)) 2962 return -EFAULT; 2963 ifreq.ifr_data = compat_ptr(data32); 2964 2965 return dev_ioctl(net, cmd, &ifreq, NULL); 2966 } 2967 2968 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 2969 unsigned int cmd, 2970 struct compat_ifreq __user *uifr32) 2971 { 2972 struct ifreq __user *uifr; 2973 int err; 2974 2975 /* Handle the fact that while struct ifreq has the same *layout* on 2976 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 2977 * which are handled elsewhere, it still has different *size* due to 2978 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 2979 * resulting in struct ifreq being 32 and 40 bytes respectively). 2980 * As a result, if the struct happens to be at the end of a page and 2981 * the next page isn't readable/writable, we get a fault. To prevent 2982 * that, copy back and forth to the full size. 2983 */ 2984 2985 uifr = compat_alloc_user_space(sizeof(*uifr)); 2986 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2987 return -EFAULT; 2988 2989 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2990 2991 if (!err) { 2992 switch (cmd) { 2993 case SIOCGIFFLAGS: 2994 case SIOCGIFMETRIC: 2995 case SIOCGIFMTU: 2996 case SIOCGIFMEM: 2997 case SIOCGIFHWADDR: 2998 case SIOCGIFINDEX: 2999 case SIOCGIFADDR: 3000 case SIOCGIFBRDADDR: 3001 case SIOCGIFDSTADDR: 3002 case SIOCGIFNETMASK: 3003 case SIOCGIFPFLAGS: 3004 case SIOCGIFTXQLEN: 3005 case SIOCGMIIPHY: 3006 case SIOCGMIIREG: 3007 case SIOCGIFNAME: 3008 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3009 err = -EFAULT; 3010 break; 3011 } 3012 } 3013 return err; 3014 } 3015 3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3017 struct compat_ifreq __user *uifr32) 3018 { 3019 struct ifreq ifr; 3020 struct compat_ifmap __user *uifmap32; 3021 int err; 3022 3023 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3024 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3025 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3026 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3027 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3028 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3029 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3030 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3031 if (err) 3032 return -EFAULT; 3033 3034 err = dev_ioctl(net, cmd, &ifr, NULL); 3035 3036 if (cmd == SIOCGIFMAP && !err) { 3037 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3038 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3039 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3040 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3041 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3042 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3043 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3044 if (err) 3045 err = -EFAULT; 3046 } 3047 return err; 3048 } 3049 3050 struct rtentry32 { 3051 u32 rt_pad1; 3052 struct sockaddr rt_dst; /* target address */ 3053 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3054 struct sockaddr rt_genmask; /* target network mask (IP) */ 3055 unsigned short rt_flags; 3056 short rt_pad2; 3057 u32 rt_pad3; 3058 unsigned char rt_tos; 3059 unsigned char rt_class; 3060 short rt_pad4; 3061 short rt_metric; /* +1 for binary compatibility! */ 3062 /* char * */ u32 rt_dev; /* forcing the device at add */ 3063 u32 rt_mtu; /* per route MTU/Window */ 3064 u32 rt_window; /* Window clamping */ 3065 unsigned short rt_irtt; /* Initial RTT */ 3066 }; 3067 3068 struct in6_rtmsg32 { 3069 struct in6_addr rtmsg_dst; 3070 struct in6_addr rtmsg_src; 3071 struct in6_addr rtmsg_gateway; 3072 u32 rtmsg_type; 3073 u16 rtmsg_dst_len; 3074 u16 rtmsg_src_len; 3075 u32 rtmsg_metric; 3076 u32 rtmsg_info; 3077 u32 rtmsg_flags; 3078 s32 rtmsg_ifindex; 3079 }; 3080 3081 static int routing_ioctl(struct net *net, struct socket *sock, 3082 unsigned int cmd, void __user *argp) 3083 { 3084 int ret; 3085 void *r = NULL; 3086 struct in6_rtmsg r6; 3087 struct rtentry r4; 3088 char devname[16]; 3089 u32 rtdev; 3090 mm_segment_t old_fs = get_fs(); 3091 3092 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3093 struct in6_rtmsg32 __user *ur6 = argp; 3094 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3095 3 * sizeof(struct in6_addr)); 3096 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3097 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3098 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3099 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3100 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3101 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3102 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3103 3104 r = (void *) &r6; 3105 } else { /* ipv4 */ 3106 struct rtentry32 __user *ur4 = argp; 3107 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3108 3 * sizeof(struct sockaddr)); 3109 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3110 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3111 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3112 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3113 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3114 ret |= get_user(rtdev, &(ur4->rt_dev)); 3115 if (rtdev) { 3116 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3117 r4.rt_dev = (char __user __force *)devname; 3118 devname[15] = 0; 3119 } else 3120 r4.rt_dev = NULL; 3121 3122 r = (void *) &r4; 3123 } 3124 3125 if (ret) { 3126 ret = -EFAULT; 3127 goto out; 3128 } 3129 3130 set_fs(KERNEL_DS); 3131 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3132 set_fs(old_fs); 3133 3134 out: 3135 return ret; 3136 } 3137 3138 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3139 * for some operations; this forces use of the newer bridge-utils that 3140 * use compatible ioctls 3141 */ 3142 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3143 { 3144 compat_ulong_t tmp; 3145 3146 if (get_user(tmp, argp)) 3147 return -EFAULT; 3148 if (tmp == BRCTL_GET_VERSION) 3149 return BRCTL_VERSION + 1; 3150 return -EINVAL; 3151 } 3152 3153 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3154 unsigned int cmd, unsigned long arg) 3155 { 3156 void __user *argp = compat_ptr(arg); 3157 struct sock *sk = sock->sk; 3158 struct net *net = sock_net(sk); 3159 3160 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3161 return compat_ifr_data_ioctl(net, cmd, argp); 3162 3163 switch (cmd) { 3164 case SIOCSIFBR: 3165 case SIOCGIFBR: 3166 return old_bridge_ioctl(argp); 3167 case SIOCGIFCONF: 3168 return compat_dev_ifconf(net, argp); 3169 case SIOCETHTOOL: 3170 return ethtool_ioctl(net, argp); 3171 case SIOCWANDEV: 3172 return compat_siocwandev(net, argp); 3173 case SIOCGIFMAP: 3174 case SIOCSIFMAP: 3175 return compat_sioc_ifmap(net, cmd, argp); 3176 case SIOCADDRT: 3177 case SIOCDELRT: 3178 return routing_ioctl(net, sock, cmd, argp); 3179 case SIOCGSTAMP: 3180 return do_siocgstamp(net, sock, cmd, argp); 3181 case SIOCGSTAMPNS: 3182 return do_siocgstampns(net, sock, cmd, argp); 3183 case SIOCBONDSLAVEINFOQUERY: 3184 case SIOCBONDINFOQUERY: 3185 case SIOCSHWTSTAMP: 3186 case SIOCGHWTSTAMP: 3187 return compat_ifr_data_ioctl(net, cmd, argp); 3188 3189 case FIOSETOWN: 3190 case SIOCSPGRP: 3191 case FIOGETOWN: 3192 case SIOCGPGRP: 3193 case SIOCBRADDBR: 3194 case SIOCBRDELBR: 3195 case SIOCGIFVLAN: 3196 case SIOCSIFVLAN: 3197 case SIOCADDDLCI: 3198 case SIOCDELDLCI: 3199 case SIOCGSKNS: 3200 return sock_ioctl(file, cmd, arg); 3201 3202 case SIOCGIFFLAGS: 3203 case SIOCSIFFLAGS: 3204 case SIOCGIFMETRIC: 3205 case SIOCSIFMETRIC: 3206 case SIOCGIFMTU: 3207 case SIOCSIFMTU: 3208 case SIOCGIFMEM: 3209 case SIOCSIFMEM: 3210 case SIOCGIFHWADDR: 3211 case SIOCSIFHWADDR: 3212 case SIOCADDMULTI: 3213 case SIOCDELMULTI: 3214 case SIOCGIFINDEX: 3215 case SIOCGIFADDR: 3216 case SIOCSIFADDR: 3217 case SIOCSIFHWBROADCAST: 3218 case SIOCDIFADDR: 3219 case SIOCGIFBRDADDR: 3220 case SIOCSIFBRDADDR: 3221 case SIOCGIFDSTADDR: 3222 case SIOCSIFDSTADDR: 3223 case SIOCGIFNETMASK: 3224 case SIOCSIFNETMASK: 3225 case SIOCSIFPFLAGS: 3226 case SIOCGIFPFLAGS: 3227 case SIOCGIFTXQLEN: 3228 case SIOCSIFTXQLEN: 3229 case SIOCBRADDIF: 3230 case SIOCBRDELIF: 3231 case SIOCGIFNAME: 3232 case SIOCSIFNAME: 3233 case SIOCGMIIPHY: 3234 case SIOCGMIIREG: 3235 case SIOCSMIIREG: 3236 case SIOCBONDENSLAVE: 3237 case SIOCBONDRELEASE: 3238 case SIOCBONDSETHWADDR: 3239 case SIOCBONDCHANGEACTIVE: 3240 return compat_ifreq_ioctl(net, sock, cmd, argp); 3241 3242 case SIOCSARP: 3243 case SIOCGARP: 3244 case SIOCDARP: 3245 case SIOCATMARK: 3246 return sock_do_ioctl(net, sock, cmd, arg); 3247 } 3248 3249 return -ENOIOCTLCMD; 3250 } 3251 3252 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3253 unsigned long arg) 3254 { 3255 struct socket *sock = file->private_data; 3256 int ret = -ENOIOCTLCMD; 3257 struct sock *sk; 3258 struct net *net; 3259 3260 sk = sock->sk; 3261 net = sock_net(sk); 3262 3263 if (sock->ops->compat_ioctl) 3264 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3265 3266 if (ret == -ENOIOCTLCMD && 3267 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3268 ret = compat_wext_handle_ioctl(net, cmd, arg); 3269 3270 if (ret == -ENOIOCTLCMD) 3271 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3272 3273 return ret; 3274 } 3275 #endif 3276 3277 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3278 { 3279 return sock->ops->bind(sock, addr, addrlen); 3280 } 3281 EXPORT_SYMBOL(kernel_bind); 3282 3283 int kernel_listen(struct socket *sock, int backlog) 3284 { 3285 return sock->ops->listen(sock, backlog); 3286 } 3287 EXPORT_SYMBOL(kernel_listen); 3288 3289 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3290 { 3291 struct sock *sk = sock->sk; 3292 int err; 3293 3294 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3295 newsock); 3296 if (err < 0) 3297 goto done; 3298 3299 err = sock->ops->accept(sock, *newsock, flags, true); 3300 if (err < 0) { 3301 sock_release(*newsock); 3302 *newsock = NULL; 3303 goto done; 3304 } 3305 3306 (*newsock)->ops = sock->ops; 3307 __module_get((*newsock)->ops->owner); 3308 3309 done: 3310 return err; 3311 } 3312 EXPORT_SYMBOL(kernel_accept); 3313 3314 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3315 int flags) 3316 { 3317 return sock->ops->connect(sock, addr, addrlen, flags); 3318 } 3319 EXPORT_SYMBOL(kernel_connect); 3320 3321 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3322 { 3323 return sock->ops->getname(sock, addr, 0); 3324 } 3325 EXPORT_SYMBOL(kernel_getsockname); 3326 3327 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3328 { 3329 return sock->ops->getname(sock, addr, 1); 3330 } 3331 EXPORT_SYMBOL(kernel_getpeername); 3332 3333 int kernel_getsockopt(struct socket *sock, int level, int optname, 3334 char *optval, int *optlen) 3335 { 3336 mm_segment_t oldfs = get_fs(); 3337 char __user *uoptval; 3338 int __user *uoptlen; 3339 int err; 3340 3341 uoptval = (char __user __force *) optval; 3342 uoptlen = (int __user __force *) optlen; 3343 3344 set_fs(KERNEL_DS); 3345 if (level == SOL_SOCKET) 3346 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3347 else 3348 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3349 uoptlen); 3350 set_fs(oldfs); 3351 return err; 3352 } 3353 EXPORT_SYMBOL(kernel_getsockopt); 3354 3355 int kernel_setsockopt(struct socket *sock, int level, int optname, 3356 char *optval, unsigned int optlen) 3357 { 3358 mm_segment_t oldfs = get_fs(); 3359 char __user *uoptval; 3360 int err; 3361 3362 uoptval = (char __user __force *) optval; 3363 3364 set_fs(KERNEL_DS); 3365 if (level == SOL_SOCKET) 3366 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3367 else 3368 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3369 optlen); 3370 set_fs(oldfs); 3371 return err; 3372 } 3373 EXPORT_SYMBOL(kernel_setsockopt); 3374 3375 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3376 size_t size, int flags) 3377 { 3378 if (sock->ops->sendpage) 3379 return sock->ops->sendpage(sock, page, offset, size, flags); 3380 3381 return sock_no_sendpage(sock, page, offset, size, flags); 3382 } 3383 EXPORT_SYMBOL(kernel_sendpage); 3384 3385 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3386 size_t size, int flags) 3387 { 3388 struct socket *sock = sk->sk_socket; 3389 3390 if (sock->ops->sendpage_locked) 3391 return sock->ops->sendpage_locked(sk, page, offset, size, 3392 flags); 3393 3394 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3395 } 3396 EXPORT_SYMBOL(kernel_sendpage_locked); 3397 3398 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3399 { 3400 return sock->ops->shutdown(sock, how); 3401 } 3402 EXPORT_SYMBOL(kernel_sock_shutdown); 3403 3404 /* This routine returns the IP overhead imposed by a socket i.e. 3405 * the length of the underlying IP header, depending on whether 3406 * this is an IPv4 or IPv6 socket and the length from IP options turned 3407 * on at the socket. Assumes that the caller has a lock on the socket. 3408 */ 3409 u32 kernel_sock_ip_overhead(struct sock *sk) 3410 { 3411 struct inet_sock *inet; 3412 struct ip_options_rcu *opt; 3413 u32 overhead = 0; 3414 #if IS_ENABLED(CONFIG_IPV6) 3415 struct ipv6_pinfo *np; 3416 struct ipv6_txoptions *optv6 = NULL; 3417 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3418 3419 if (!sk) 3420 return overhead; 3421 3422 switch (sk->sk_family) { 3423 case AF_INET: 3424 inet = inet_sk(sk); 3425 overhead += sizeof(struct iphdr); 3426 opt = rcu_dereference_protected(inet->inet_opt, 3427 sock_owned_by_user(sk)); 3428 if (opt) 3429 overhead += opt->opt.optlen; 3430 return overhead; 3431 #if IS_ENABLED(CONFIG_IPV6) 3432 case AF_INET6: 3433 np = inet6_sk(sk); 3434 overhead += sizeof(struct ipv6hdr); 3435 if (np) 3436 optv6 = rcu_dereference_protected(np->opt, 3437 sock_owned_by_user(sk)); 3438 if (optv6) 3439 overhead += (optv6->opt_flen + optv6->opt_nflen); 3440 return overhead; 3441 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3442 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3443 return overhead; 3444 } 3445 } 3446 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3447
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.