~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/socket.c

Version: ~ [ linux-6.2-rc3 ] ~ [ linux-6.1.5 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.87 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.162 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.228 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.269 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.302 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * NET          An implementation of the SOCKET network access protocol.
  3  *
  4  * Version:     @(#)socket.c    1.1.93  18/02/95
  5  *
  6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
  7  *              Ross Biro
  8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  9  *
 10  * Fixes:
 11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
 12  *                                      shutdown()
 13  *              Alan Cox        :       verify_area() fixes
 14  *              Alan Cox        :       Removed DDI
 15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
 16  *              Alan Cox        :       Moved a load of checks to the very
 17  *                                      top level.
 18  *              Alan Cox        :       Move address structures to/from user
 19  *                                      mode above the protocol layers.
 20  *              Rob Janssen     :       Allow 0 length sends.
 21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
 22  *                                      tty drivers).
 23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
 24  *              Jeff Uphoff     :       Made max number of sockets command-line
 25  *                                      configurable.
 26  *              Matti Aarnio    :       Made the number of sockets dynamic,
 27  *                                      to be allocated when needed, and mr.
 28  *                                      Uphoff's max is used as max to be
 29  *                                      allowed to allocate.
 30  *              Linus           :       Argh. removed all the socket allocation
 31  *                                      altogether: it's in the inode now.
 32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
 33  *                                      for NetROM and future kernel nfsd type
 34  *                                      stuff.
 35  *              Alan Cox        :       sendmsg/recvmsg basics.
 36  *              Tom Dyas        :       Export net symbols.
 37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
 38  *              Alan Cox        :       Added thread locking to sys_* calls
 39  *                                      for sockets. May have errors at the
 40  *                                      moment.
 41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
 42  *              Andi Kleen      :       Some small cleanups, optimizations,
 43  *                                      and fixed a copy_from_user() bug.
 44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
 45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
 46  *                                      protocol-independent
 47  *
 48  *
 49  *              This program is free software; you can redistribute it and/or
 50  *              modify it under the terms of the GNU General Public License
 51  *              as published by the Free Software Foundation; either version
 52  *              2 of the License, or (at your option) any later version.
 53  *
 54  *
 55  *      This module is effectively the top level interface to the BSD socket
 56  *      paradigm.
 57  *
 58  *      Based upon Swansea University Computer Society NET3.039
 59  */
 60 
 61 #include <linux/mm.h>
 62 #include <linux/socket.h>
 63 #include <linux/file.h>
 64 #include <linux/net.h>
 65 #include <linux/interrupt.h>
 66 #include <linux/thread_info.h>
 67 #include <linux/rcupdate.h>
 68 #include <linux/netdevice.h>
 69 #include <linux/proc_fs.h>
 70 #include <linux/seq_file.h>
 71 #include <linux/mutex.h>
 72 #include <linux/if_bridge.h>
 73 #include <linux/if_frad.h>
 74 #include <linux/if_vlan.h>
 75 #include <linux/ptp_classify.h>
 76 #include <linux/init.h>
 77 #include <linux/poll.h>
 78 #include <linux/cache.h>
 79 #include <linux/module.h>
 80 #include <linux/highmem.h>
 81 #include <linux/mount.h>
 82 #include <linux/security.h>
 83 #include <linux/syscalls.h>
 84 #include <linux/compat.h>
 85 #include <linux/kmod.h>
 86 #include <linux/audit.h>
 87 #include <linux/wireless.h>
 88 #include <linux/nsproxy.h>
 89 #include <linux/magic.h>
 90 #include <linux/slab.h>
 91 #include <linux/xattr.h>
 92 #include <linux/nospec.h>
 93 
 94 #include <linux/uaccess.h>
 95 #include <asm/unistd.h>
 96 
 97 #include <net/compat.h>
 98 #include <net/wext.h>
 99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122                               struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126                               unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130                              int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132                                 struct pipe_inode_info *pipe, size_t len,
133                                 unsigned int flags);
134 
135 /*
136  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *      in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141         .owner =        THIS_MODULE,
142         .llseek =       no_llseek,
143         .read_iter =    sock_read_iter,
144         .write_iter =   sock_write_iter,
145         .poll =         sock_poll,
146         .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148         .compat_ioctl = compat_sock_ioctl,
149 #endif
150         .mmap =         sock_mmap,
151         .release =      sock_close,
152         .fasync =       sock_fasync,
153         .sendpage =     sock_sendpage,
154         .splice_write = generic_splice_sendpage,
155         .splice_read =  sock_splice_read,
156 };
157 
158 /*
159  *      The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *      move_addr_to_kernel     -       copy a socket address into kernel space
173  *      @uaddr: Address in user space
174  *      @kaddr: Address in kernel space
175  *      @ulen: Length in user space
176  *
177  *      The address is copied into kernel space. If the provided address is
178  *      too long an error code of -EINVAL is returned. If the copy gives
179  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185                 return -EINVAL;
186         if (ulen == 0)
187                 return 0;
188         if (copy_from_user(kaddr, uaddr, ulen))
189                 return -EFAULT;
190         return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *      move_addr_to_user       -       copy an address to user space
195  *      @kaddr: kernel space address
196  *      @klen: length of address in kernel
197  *      @uaddr: user space address
198  *      @ulen: pointer to user length field
199  *
200  *      The value pointed to by ulen on entry is the buffer length available.
201  *      This is overwritten with the buffer space used. -EINVAL is returned
202  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *      is returned if either the buffer or the length field are not
204  *      accessible.
205  *      After copying the data up to the limit the user specifies, the true
206  *      length of the data is written over the length limit the user
207  *      specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211                              void __user *uaddr, int __user *ulen)
212 {
213         int err;
214         int len;
215 
216         BUG_ON(klen > sizeof(struct sockaddr_storage));
217         err = get_user(len, ulen);
218         if (err)
219                 return err;
220         if (len > klen)
221                 len = klen;
222         if (len < 0)
223                 return -EINVAL;
224         if (len) {
225                 if (audit_sockaddr(klen, kaddr))
226                         return -ENOMEM;
227                 if (copy_to_user(uaddr, kaddr, len))
228                         return -EFAULT;
229         }
230         /*
231          *      "fromlen shall refer to the value before truncation.."
232          *                      1003.1g
233          */
234         return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241         struct socket_alloc *ei;
242         struct socket_wq *wq;
243 
244         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245         if (!ei)
246                 return NULL;
247         wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248         if (!wq) {
249                 kmem_cache_free(sock_inode_cachep, ei);
250                 return NULL;
251         }
252         init_waitqueue_head(&wq->wait);
253         wq->fasync_list = NULL;
254         wq->flags = 0;
255         ei->socket.wq = wq;
256 
257         ei->socket.state = SS_UNCONNECTED;
258         ei->socket.flags = 0;
259         ei->socket.ops = NULL;
260         ei->socket.sk = NULL;
261         ei->socket.file = NULL;
262 
263         return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268         struct socket_alloc *ei;
269 
270         ei = container_of(inode, struct socket_alloc, vfs_inode);
271         kfree_rcu(ei->socket.wq, rcu);
272         kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277         struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279         inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285                                               sizeof(struct socket_alloc),
286                                               0,
287                                               (SLAB_HWCACHE_ALIGN |
288                                                SLAB_RECLAIM_ACCOUNT |
289                                                SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290                                               init_once);
291         BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295         .alloc_inode    = sock_alloc_inode,
296         .destroy_inode  = sock_destroy_inode,
297         .statfs         = simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306                                 d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310         .d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314                             struct dentry *dentry, struct inode *inode,
315                             const char *suffix, void *value, size_t size)
316 {
317         if (value) {
318                 if (dentry->d_name.len + 1 > size)
319                         return -ERANGE;
320                 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321         }
322         return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330         .name = XATTR_NAME_SOCKPROTONAME,
331         .get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335                                      struct dentry *dentry, struct inode *inode,
336                                      const char *suffix, const void *value,
337                                      size_t size, int flags)
338 {
339         /* Handled by LSM. */
340         return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344         .prefix = XATTR_SECURITY_PREFIX,
345         .set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349         &sockfs_xattr_handler,
350         &sockfs_security_xattr_handler,
351         NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355                          int flags, const char *dev_name, void *data)
356 {
357         return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358                                   sockfs_xattr_handlers,
359                                   &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365         .name =         "sockfs",
366         .mount =        sockfs_mount,
367         .kill_sb =      kill_anon_super,
368 };
369 
370 /*
371  *      Obtains the first available file descriptor and sets it up for use.
372  *
373  *      These functions create file structures and maps them to fd space
374  *      of the current process. On success it returns file descriptor
375  *      and file struct implicitly stored in sock->file.
376  *      Note that another thread may close file descriptor before we return
377  *      from this function. We use the fact that now we do not refer
378  *      to socket after mapping. If one day we will need it, this
379  *      function will increment ref. count on file by 1.
380  *
381  *      In any case returned fd MAY BE not valid!
382  *      This race condition is unavoidable
383  *      with shared fd spaces, we cannot solve it inside kernel,
384  *      but we take care of internal coherence yet.
385  */
386 
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388 {
389         struct file *file;
390 
391         if (!dname)
392                 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393 
394         file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395                                 O_RDWR | (flags & O_NONBLOCK),
396                                 &socket_file_ops);
397         if (IS_ERR(file)) {
398                 sock_release(sock);
399                 return file;
400         }
401 
402         sock->file = file;
403         file->private_data = sock;
404         return file;
405 }
406 EXPORT_SYMBOL(sock_alloc_file);
407 
408 static int sock_map_fd(struct socket *sock, int flags)
409 {
410         struct file *newfile;
411         int fd = get_unused_fd_flags(flags);
412         if (unlikely(fd < 0)) {
413                 sock_release(sock);
414                 return fd;
415         }
416 
417         newfile = sock_alloc_file(sock, flags, NULL);
418         if (likely(!IS_ERR(newfile))) {
419                 fd_install(fd, newfile);
420                 return fd;
421         }
422 
423         put_unused_fd(fd);
424         return PTR_ERR(newfile);
425 }
426 
427 struct socket *sock_from_file(struct file *file, int *err)
428 {
429         if (file->f_op == &socket_file_ops)
430                 return file->private_data;      /* set in sock_map_fd */
431 
432         *err = -ENOTSOCK;
433         return NULL;
434 }
435 EXPORT_SYMBOL(sock_from_file);
436 
437 /**
438  *      sockfd_lookup - Go from a file number to its socket slot
439  *      @fd: file handle
440  *      @err: pointer to an error code return
441  *
442  *      The file handle passed in is locked and the socket it is bound
443  *      to is returned. If an error occurs the err pointer is overwritten
444  *      with a negative errno code and NULL is returned. The function checks
445  *      for both invalid handles and passing a handle which is not a socket.
446  *
447  *      On a success the socket object pointer is returned.
448  */
449 
450 struct socket *sockfd_lookup(int fd, int *err)
451 {
452         struct file *file;
453         struct socket *sock;
454 
455         file = fget(fd);
456         if (!file) {
457                 *err = -EBADF;
458                 return NULL;
459         }
460 
461         sock = sock_from_file(file, err);
462         if (!sock)
463                 fput(file);
464         return sock;
465 }
466 EXPORT_SYMBOL(sockfd_lookup);
467 
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469 {
470         struct fd f = fdget(fd);
471         struct socket *sock;
472 
473         *err = -EBADF;
474         if (f.file) {
475                 sock = sock_from_file(f.file, err);
476                 if (likely(sock)) {
477                         *fput_needed = f.flags;
478                         return sock;
479                 }
480                 fdput(f);
481         }
482         return NULL;
483 }
484 
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486                                 size_t size)
487 {
488         ssize_t len;
489         ssize_t used = 0;
490 
491         len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492         if (len < 0)
493                 return len;
494         used += len;
495         if (buffer) {
496                 if (size < used)
497                         return -ERANGE;
498                 buffer += len;
499         }
500 
501         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502         used += len;
503         if (buffer) {
504                 if (size < used)
505                         return -ERANGE;
506                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507                 buffer += len;
508         }
509 
510         return used;
511 }
512 
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514 {
515         int err = simple_setattr(dentry, iattr);
516 
517         if (!err && (iattr->ia_valid & ATTR_UID)) {
518                 struct socket *sock = SOCKET_I(d_inode(dentry));
519 
520                 if (sock->sk)
521                         sock->sk->sk_uid = iattr->ia_uid;
522                 else
523                         err = -ENOENT;
524         }
525 
526         return err;
527 }
528 
529 static const struct inode_operations sockfs_inode_ops = {
530         .listxattr = sockfs_listxattr,
531         .setattr = sockfs_setattr,
532 };
533 
534 /**
535  *      sock_alloc      -       allocate a socket
536  *
537  *      Allocate a new inode and socket object. The two are bound together
538  *      and initialised. The socket is then returned. If we are out of inodes
539  *      NULL is returned.
540  */
541 
542 struct socket *sock_alloc(void)
543 {
544         struct inode *inode;
545         struct socket *sock;
546 
547         inode = new_inode_pseudo(sock_mnt->mnt_sb);
548         if (!inode)
549                 return NULL;
550 
551         sock = SOCKET_I(inode);
552 
553         inode->i_ino = get_next_ino();
554         inode->i_mode = S_IFSOCK | S_IRWXUGO;
555         inode->i_uid = current_fsuid();
556         inode->i_gid = current_fsgid();
557         inode->i_op = &sockfs_inode_ops;
558 
559         return sock;
560 }
561 EXPORT_SYMBOL(sock_alloc);
562 
563 /**
564  *      sock_release    -       close a socket
565  *      @sock: socket to close
566  *
567  *      The socket is released from the protocol stack if it has a release
568  *      callback, and the inode is then released if the socket is bound to
569  *      an inode not a file.
570  */
571 
572 static void __sock_release(struct socket *sock, struct inode *inode)
573 {
574         if (sock->ops) {
575                 struct module *owner = sock->ops->owner;
576 
577                 if (inode)
578                         inode_lock(inode);
579                 sock->ops->release(sock);
580                 sock->sk = NULL;
581                 if (inode)
582                         inode_unlock(inode);
583                 sock->ops = NULL;
584                 module_put(owner);
585         }
586 
587         if (sock->wq->fasync_list)
588                 pr_err("%s: fasync list not empty!\n", __func__);
589 
590         if (!sock->file) {
591                 iput(SOCK_INODE(sock));
592                 return;
593         }
594         sock->file = NULL;
595 }
596 
597 void sock_release(struct socket *sock)
598 {
599         __sock_release(sock, NULL);
600 }
601 EXPORT_SYMBOL(sock_release);
602 
603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 {
605         u8 flags = *tx_flags;
606 
607         if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
608                 flags |= SKBTX_HW_TSTAMP;
609 
610         if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
611                 flags |= SKBTX_SW_TSTAMP;
612 
613         if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
614                 flags |= SKBTX_SCHED_TSTAMP;
615 
616         *tx_flags = flags;
617 }
618 EXPORT_SYMBOL(__sock_tx_timestamp);
619 
620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 {
622         int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
623         BUG_ON(ret == -EIOCBQUEUED);
624         return ret;
625 }
626 
627 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 {
629         int err = security_socket_sendmsg(sock, msg,
630                                           msg_data_left(msg));
631 
632         return err ?: sock_sendmsg_nosec(sock, msg);
633 }
634 EXPORT_SYMBOL(sock_sendmsg);
635 
636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
637                    struct kvec *vec, size_t num, size_t size)
638 {
639         iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
640         return sock_sendmsg(sock, msg);
641 }
642 EXPORT_SYMBOL(kernel_sendmsg);
643 
644 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
645                           struct kvec *vec, size_t num, size_t size)
646 {
647         struct socket *sock = sk->sk_socket;
648 
649         if (!sock->ops->sendmsg_locked)
650                 return sock_no_sendmsg_locked(sk, msg, size);
651 
652         iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
653 
654         return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
655 }
656 EXPORT_SYMBOL(kernel_sendmsg_locked);
657 
658 static bool skb_is_err_queue(const struct sk_buff *skb)
659 {
660         /* pkt_type of skbs enqueued on the error queue are set to
661          * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
662          * in recvmsg, since skbs received on a local socket will never
663          * have a pkt_type of PACKET_OUTGOING.
664          */
665         return skb->pkt_type == PACKET_OUTGOING;
666 }
667 
668 /* On transmit, software and hardware timestamps are returned independently.
669  * As the two skb clones share the hardware timestamp, which may be updated
670  * before the software timestamp is received, a hardware TX timestamp may be
671  * returned only if there is no software TX timestamp. Ignore false software
672  * timestamps, which may be made in the __sock_recv_timestamp() call when the
673  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
674  * hardware timestamp.
675  */
676 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
677 {
678         return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
679 }
680 
681 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
682 {
683         struct scm_ts_pktinfo ts_pktinfo;
684         struct net_device *orig_dev;
685 
686         if (!skb_mac_header_was_set(skb))
687                 return;
688 
689         memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
690 
691         rcu_read_lock();
692         orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
693         if (orig_dev)
694                 ts_pktinfo.if_index = orig_dev->ifindex;
695         rcu_read_unlock();
696 
697         ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
698         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
699                  sizeof(ts_pktinfo), &ts_pktinfo);
700 }
701 
702 /*
703  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704  */
705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706         struct sk_buff *skb)
707 {
708         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709         struct scm_timestamping tss;
710         int empty = 1, false_tstamp = 0;
711         struct skb_shared_hwtstamps *shhwtstamps =
712                 skb_hwtstamps(skb);
713 
714         /* Race occurred between timestamp enabling and packet
715            receiving.  Fill in the current time for now. */
716         if (need_software_tstamp && skb->tstamp == 0) {
717                 __net_timestamp(skb);
718                 false_tstamp = 1;
719         }
720 
721         if (need_software_tstamp) {
722                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
723                         struct timeval tv;
724                         skb_get_timestamp(skb, &tv);
725                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
726                                  sizeof(tv), &tv);
727                 } else {
728                         struct timespec ts;
729                         skb_get_timestampns(skb, &ts);
730                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
731                                  sizeof(ts), &ts);
732                 }
733         }
734 
735         memset(&tss, 0, sizeof(tss));
736         if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
737             ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
738                 empty = 0;
739         if (shhwtstamps &&
740             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
741             !skb_is_swtx_tstamp(skb, false_tstamp) &&
742             ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
743                 empty = 0;
744                 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
745                     !skb_is_err_queue(skb))
746                         put_ts_pktinfo(msg, skb);
747         }
748         if (!empty) {
749                 put_cmsg(msg, SOL_SOCKET,
750                          SCM_TIMESTAMPING, sizeof(tss), &tss);
751 
752                 if (skb_is_err_queue(skb) && skb->len &&
753                     SKB_EXT_ERR(skb)->opt_stats)
754                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
755                                  skb->len, skb->data);
756         }
757 }
758 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
759 
760 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
761         struct sk_buff *skb)
762 {
763         int ack;
764 
765         if (!sock_flag(sk, SOCK_WIFI_STATUS))
766                 return;
767         if (!skb->wifi_acked_valid)
768                 return;
769 
770         ack = skb->wifi_acked;
771 
772         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
773 }
774 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
775 
776 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
777                                    struct sk_buff *skb)
778 {
779         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
780                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
781                         sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
782 }
783 
784 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
785         struct sk_buff *skb)
786 {
787         sock_recv_timestamp(msg, sk, skb);
788         sock_recv_drops(msg, sk, skb);
789 }
790 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
791 
792 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
793                                      int flags)
794 {
795         return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
796 }
797 
798 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
799 {
800         int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
801 
802         return err ?: sock_recvmsg_nosec(sock, msg, flags);
803 }
804 EXPORT_SYMBOL(sock_recvmsg);
805 
806 /**
807  * kernel_recvmsg - Receive a message from a socket (kernel space)
808  * @sock:       The socket to receive the message from
809  * @msg:        Received message
810  * @vec:        Input s/g array for message data
811  * @num:        Size of input s/g array
812  * @size:       Number of bytes to read
813  * @flags:      Message flags (MSG_DONTWAIT, etc...)
814  *
815  * On return the msg structure contains the scatter/gather array passed in the
816  * vec argument. The array is modified so that it consists of the unfilled
817  * portion of the original array.
818  *
819  * The returned value is the total number of bytes received, or an error.
820  */
821 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
822                    struct kvec *vec, size_t num, size_t size, int flags)
823 {
824         mm_segment_t oldfs = get_fs();
825         int result;
826 
827         iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
828         set_fs(KERNEL_DS);
829         result = sock_recvmsg(sock, msg, flags);
830         set_fs(oldfs);
831         return result;
832 }
833 EXPORT_SYMBOL(kernel_recvmsg);
834 
835 static ssize_t sock_sendpage(struct file *file, struct page *page,
836                              int offset, size_t size, loff_t *ppos, int more)
837 {
838         struct socket *sock;
839         int flags;
840 
841         sock = file->private_data;
842 
843         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
844         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
845         flags |= more;
846 
847         return kernel_sendpage(sock, page, offset, size, flags);
848 }
849 
850 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
851                                 struct pipe_inode_info *pipe, size_t len,
852                                 unsigned int flags)
853 {
854         struct socket *sock = file->private_data;
855 
856         if (unlikely(!sock->ops->splice_read))
857                 return generic_file_splice_read(file, ppos, pipe, len, flags);
858 
859         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
860 }
861 
862 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
863 {
864         struct file *file = iocb->ki_filp;
865         struct socket *sock = file->private_data;
866         struct msghdr msg = {.msg_iter = *to,
867                              .msg_iocb = iocb};
868         ssize_t res;
869 
870         if (file->f_flags & O_NONBLOCK)
871                 msg.msg_flags = MSG_DONTWAIT;
872 
873         if (iocb->ki_pos != 0)
874                 return -ESPIPE;
875 
876         if (!iov_iter_count(to))        /* Match SYS5 behaviour */
877                 return 0;
878 
879         res = sock_recvmsg(sock, &msg, msg.msg_flags);
880         *to = msg.msg_iter;
881         return res;
882 }
883 
884 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
885 {
886         struct file *file = iocb->ki_filp;
887         struct socket *sock = file->private_data;
888         struct msghdr msg = {.msg_iter = *from,
889                              .msg_iocb = iocb};
890         ssize_t res;
891 
892         if (iocb->ki_pos != 0)
893                 return -ESPIPE;
894 
895         if (file->f_flags & O_NONBLOCK)
896                 msg.msg_flags = MSG_DONTWAIT;
897 
898         if (sock->type == SOCK_SEQPACKET)
899                 msg.msg_flags |= MSG_EOR;
900 
901         res = sock_sendmsg(sock, &msg);
902         *from = msg.msg_iter;
903         return res;
904 }
905 
906 /*
907  * Atomic setting of ioctl hooks to avoid race
908  * with module unload.
909  */
910 
911 static DEFINE_MUTEX(br_ioctl_mutex);
912 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
913 
914 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
915 {
916         mutex_lock(&br_ioctl_mutex);
917         br_ioctl_hook = hook;
918         mutex_unlock(&br_ioctl_mutex);
919 }
920 EXPORT_SYMBOL(brioctl_set);
921 
922 static DEFINE_MUTEX(vlan_ioctl_mutex);
923 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
924 
925 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
926 {
927         mutex_lock(&vlan_ioctl_mutex);
928         vlan_ioctl_hook = hook;
929         mutex_unlock(&vlan_ioctl_mutex);
930 }
931 EXPORT_SYMBOL(vlan_ioctl_set);
932 
933 static DEFINE_MUTEX(dlci_ioctl_mutex);
934 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
935 
936 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
937 {
938         mutex_lock(&dlci_ioctl_mutex);
939         dlci_ioctl_hook = hook;
940         mutex_unlock(&dlci_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(dlci_ioctl_set);
943 
944 static long sock_do_ioctl(struct net *net, struct socket *sock,
945                           unsigned int cmd, unsigned long arg)
946 {
947         int err;
948         void __user *argp = (void __user *)arg;
949 
950         err = sock->ops->ioctl(sock, cmd, arg);
951 
952         /*
953          * If this ioctl is unknown try to hand it down
954          * to the NIC driver.
955          */
956         if (err != -ENOIOCTLCMD)
957                 return err;
958 
959         if (cmd == SIOCGIFCONF) {
960                 struct ifconf ifc;
961                 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
962                         return -EFAULT;
963                 rtnl_lock();
964                 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
965                 rtnl_unlock();
966                 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
967                         err = -EFAULT;
968         } else {
969                 struct ifreq ifr;
970                 bool need_copyout;
971                 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
972                         return -EFAULT;
973                 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
974                 if (!err && need_copyout)
975                         if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
976                                 return -EFAULT;
977         }
978         return err;
979 }
980 
981 /*
982  *      With an ioctl, arg may well be a user mode pointer, but we don't know
983  *      what to do with it - that's up to the protocol still.
984  */
985 
986 struct ns_common *get_net_ns(struct ns_common *ns)
987 {
988         return &get_net(container_of(ns, struct net, ns))->ns;
989 }
990 EXPORT_SYMBOL_GPL(get_net_ns);
991 
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
993 {
994         struct socket *sock;
995         struct sock *sk;
996         void __user *argp = (void __user *)arg;
997         int pid, err;
998         struct net *net;
999 
1000         sock = file->private_data;
1001         sk = sock->sk;
1002         net = sock_net(sk);
1003         if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1004                 struct ifreq ifr;
1005                 bool need_copyout;
1006                 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1007                         return -EFAULT;
1008                 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1009                 if (!err && need_copyout)
1010                         if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1011                                 return -EFAULT;
1012         } else
1013 #ifdef CONFIG_WEXT_CORE
1014         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1015                 err = wext_handle_ioctl(net, cmd, argp);
1016         } else
1017 #endif
1018                 switch (cmd) {
1019                 case FIOSETOWN:
1020                 case SIOCSPGRP:
1021                         err = -EFAULT;
1022                         if (get_user(pid, (int __user *)argp))
1023                                 break;
1024                         err = f_setown(sock->file, pid, 1);
1025                         break;
1026                 case FIOGETOWN:
1027                 case SIOCGPGRP:
1028                         err = put_user(f_getown(sock->file),
1029                                        (int __user *)argp);
1030                         break;
1031                 case SIOCGIFBR:
1032                 case SIOCSIFBR:
1033                 case SIOCBRADDBR:
1034                 case SIOCBRDELBR:
1035                         err = -ENOPKG;
1036                         if (!br_ioctl_hook)
1037                                 request_module("bridge");
1038 
1039                         mutex_lock(&br_ioctl_mutex);
1040                         if (br_ioctl_hook)
1041                                 err = br_ioctl_hook(net, cmd, argp);
1042                         mutex_unlock(&br_ioctl_mutex);
1043                         break;
1044                 case SIOCGIFVLAN:
1045                 case SIOCSIFVLAN:
1046                         err = -ENOPKG;
1047                         if (!vlan_ioctl_hook)
1048                                 request_module("8021q");
1049 
1050                         mutex_lock(&vlan_ioctl_mutex);
1051                         if (vlan_ioctl_hook)
1052                                 err = vlan_ioctl_hook(net, argp);
1053                         mutex_unlock(&vlan_ioctl_mutex);
1054                         break;
1055                 case SIOCADDDLCI:
1056                 case SIOCDELDLCI:
1057                         err = -ENOPKG;
1058                         if (!dlci_ioctl_hook)
1059                                 request_module("dlci");
1060 
1061                         mutex_lock(&dlci_ioctl_mutex);
1062                         if (dlci_ioctl_hook)
1063                                 err = dlci_ioctl_hook(cmd, argp);
1064                         mutex_unlock(&dlci_ioctl_mutex);
1065                         break;
1066                 case SIOCGSKNS:
1067                         err = -EPERM;
1068                         if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1069                                 break;
1070 
1071                         err = open_related_ns(&net->ns, get_net_ns);
1072                         break;
1073                 default:
1074                         err = sock_do_ioctl(net, sock, cmd, arg);
1075                         break;
1076                 }
1077         return err;
1078 }
1079 
1080 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1081 {
1082         int err;
1083         struct socket *sock = NULL;
1084 
1085         err = security_socket_create(family, type, protocol, 1);
1086         if (err)
1087                 goto out;
1088 
1089         sock = sock_alloc();
1090         if (!sock) {
1091                 err = -ENOMEM;
1092                 goto out;
1093         }
1094 
1095         sock->type = type;
1096         err = security_socket_post_create(sock, family, type, protocol, 1);
1097         if (err)
1098                 goto out_release;
1099 
1100 out:
1101         *res = sock;
1102         return err;
1103 out_release:
1104         sock_release(sock);
1105         sock = NULL;
1106         goto out;
1107 }
1108 EXPORT_SYMBOL(sock_create_lite);
1109 
1110 /* No kernel lock held - perfect */
1111 static __poll_t sock_poll(struct file *file, poll_table *wait)
1112 {
1113         struct socket *sock = file->private_data;
1114         __poll_t events = poll_requested_events(wait), flag = 0;
1115 
1116         if (!sock->ops->poll)
1117                 return 0;
1118 
1119         if (sk_can_busy_loop(sock->sk)) {
1120                 /* poll once if requested by the syscall */
1121                 if (events & POLL_BUSY_LOOP)
1122                         sk_busy_loop(sock->sk, 1);
1123 
1124                 /* if this socket can poll_ll, tell the system call */
1125                 flag = POLL_BUSY_LOOP;
1126         }
1127 
1128         return sock->ops->poll(file, sock, wait) | flag;
1129 }
1130 
1131 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1132 {
1133         struct socket *sock = file->private_data;
1134 
1135         return sock->ops->mmap(file, sock, vma);
1136 }
1137 
1138 static int sock_close(struct inode *inode, struct file *filp)
1139 {
1140         __sock_release(SOCKET_I(inode), inode);
1141         return 0;
1142 }
1143 
1144 /*
1145  *      Update the socket async list
1146  *
1147  *      Fasync_list locking strategy.
1148  *
1149  *      1. fasync_list is modified only under process context socket lock
1150  *         i.e. under semaphore.
1151  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1152  *         or under socket lock
1153  */
1154 
1155 static int sock_fasync(int fd, struct file *filp, int on)
1156 {
1157         struct socket *sock = filp->private_data;
1158         struct sock *sk = sock->sk;
1159         struct socket_wq *wq;
1160 
1161         if (sk == NULL)
1162                 return -EINVAL;
1163 
1164         lock_sock(sk);
1165         wq = sock->wq;
1166         fasync_helper(fd, filp, on, &wq->fasync_list);
1167 
1168         if (!wq->fasync_list)
1169                 sock_reset_flag(sk, SOCK_FASYNC);
1170         else
1171                 sock_set_flag(sk, SOCK_FASYNC);
1172 
1173         release_sock(sk);
1174         return 0;
1175 }
1176 
1177 /* This function may be called only under rcu_lock */
1178 
1179 int sock_wake_async(struct socket_wq *wq, int how, int band)
1180 {
1181         if (!wq || !wq->fasync_list)
1182                 return -1;
1183 
1184         switch (how) {
1185         case SOCK_WAKE_WAITD:
1186                 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1187                         break;
1188                 goto call_kill;
1189         case SOCK_WAKE_SPACE:
1190                 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1191                         break;
1192                 /* fall through */
1193         case SOCK_WAKE_IO:
1194 call_kill:
1195                 kill_fasync(&wq->fasync_list, SIGIO, band);
1196                 break;
1197         case SOCK_WAKE_URG:
1198                 kill_fasync(&wq->fasync_list, SIGURG, band);
1199         }
1200 
1201         return 0;
1202 }
1203 EXPORT_SYMBOL(sock_wake_async);
1204 
1205 int __sock_create(struct net *net, int family, int type, int protocol,
1206                          struct socket **res, int kern)
1207 {
1208         int err;
1209         struct socket *sock;
1210         const struct net_proto_family *pf;
1211 
1212         /*
1213          *      Check protocol is in range
1214          */
1215         if (family < 0 || family >= NPROTO)
1216                 return -EAFNOSUPPORT;
1217         if (type < 0 || type >= SOCK_MAX)
1218                 return -EINVAL;
1219 
1220         /* Compatibility.
1221 
1222            This uglymoron is moved from INET layer to here to avoid
1223            deadlock in module load.
1224          */
1225         if (family == PF_INET && type == SOCK_PACKET) {
1226                 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1227                              current->comm);
1228                 family = PF_PACKET;
1229         }
1230 
1231         err = security_socket_create(family, type, protocol, kern);
1232         if (err)
1233                 return err;
1234 
1235         /*
1236          *      Allocate the socket and allow the family to set things up. if
1237          *      the protocol is 0, the family is instructed to select an appropriate
1238          *      default.
1239          */
1240         sock = sock_alloc();
1241         if (!sock) {
1242                 net_warn_ratelimited("socket: no more sockets\n");
1243                 return -ENFILE; /* Not exactly a match, but its the
1244                                    closest posix thing */
1245         }
1246 
1247         sock->type = type;
1248 
1249 #ifdef CONFIG_MODULES
1250         /* Attempt to load a protocol module if the find failed.
1251          *
1252          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1253          * requested real, full-featured networking support upon configuration.
1254          * Otherwise module support will break!
1255          */
1256         if (rcu_access_pointer(net_families[family]) == NULL)
1257                 request_module("net-pf-%d", family);
1258 #endif
1259 
1260         rcu_read_lock();
1261         pf = rcu_dereference(net_families[family]);
1262         err = -EAFNOSUPPORT;
1263         if (!pf)
1264                 goto out_release;
1265 
1266         /*
1267          * We will call the ->create function, that possibly is in a loadable
1268          * module, so we have to bump that loadable module refcnt first.
1269          */
1270         if (!try_module_get(pf->owner))
1271                 goto out_release;
1272 
1273         /* Now protected by module ref count */
1274         rcu_read_unlock();
1275 
1276         err = pf->create(net, sock, protocol, kern);
1277         if (err < 0)
1278                 goto out_module_put;
1279 
1280         /*
1281          * Now to bump the refcnt of the [loadable] module that owns this
1282          * socket at sock_release time we decrement its refcnt.
1283          */
1284         if (!try_module_get(sock->ops->owner))
1285                 goto out_module_busy;
1286 
1287         /*
1288          * Now that we're done with the ->create function, the [loadable]
1289          * module can have its refcnt decremented
1290          */
1291         module_put(pf->owner);
1292         err = security_socket_post_create(sock, family, type, protocol, kern);
1293         if (err)
1294                 goto out_sock_release;
1295         *res = sock;
1296 
1297         return 0;
1298 
1299 out_module_busy:
1300         err = -EAFNOSUPPORT;
1301 out_module_put:
1302         sock->ops = NULL;
1303         module_put(pf->owner);
1304 out_sock_release:
1305         sock_release(sock);
1306         return err;
1307 
1308 out_release:
1309         rcu_read_unlock();
1310         goto out_sock_release;
1311 }
1312 EXPORT_SYMBOL(__sock_create);
1313 
1314 int sock_create(int family, int type, int protocol, struct socket **res)
1315 {
1316         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1317 }
1318 EXPORT_SYMBOL(sock_create);
1319 
1320 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1321 {
1322         return __sock_create(net, family, type, protocol, res, 1);
1323 }
1324 EXPORT_SYMBOL(sock_create_kern);
1325 
1326 int __sys_socket(int family, int type, int protocol)
1327 {
1328         int retval;
1329         struct socket *sock;
1330         int flags;
1331 
1332         /* Check the SOCK_* constants for consistency.  */
1333         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1334         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1335         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1336         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1337 
1338         flags = type & ~SOCK_TYPE_MASK;
1339         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1340                 return -EINVAL;
1341         type &= SOCK_TYPE_MASK;
1342 
1343         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1344                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1345 
1346         retval = sock_create(family, type, protocol, &sock);
1347         if (retval < 0)
1348                 return retval;
1349 
1350         return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1351 }
1352 
1353 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1354 {
1355         return __sys_socket(family, type, protocol);
1356 }
1357 
1358 /*
1359  *      Create a pair of connected sockets.
1360  */
1361 
1362 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1363 {
1364         struct socket *sock1, *sock2;
1365         int fd1, fd2, err;
1366         struct file *newfile1, *newfile2;
1367         int flags;
1368 
1369         flags = type & ~SOCK_TYPE_MASK;
1370         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1371                 return -EINVAL;
1372         type &= SOCK_TYPE_MASK;
1373 
1374         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1375                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1376 
1377         /*
1378          * reserve descriptors and make sure we won't fail
1379          * to return them to userland.
1380          */
1381         fd1 = get_unused_fd_flags(flags);
1382         if (unlikely(fd1 < 0))
1383                 return fd1;
1384 
1385         fd2 = get_unused_fd_flags(flags);
1386         if (unlikely(fd2 < 0)) {
1387                 put_unused_fd(fd1);
1388                 return fd2;
1389         }
1390 
1391         err = put_user(fd1, &usockvec[0]);
1392         if (err)
1393                 goto out;
1394 
1395         err = put_user(fd2, &usockvec[1]);
1396         if (err)
1397                 goto out;
1398 
1399         /*
1400          * Obtain the first socket and check if the underlying protocol
1401          * supports the socketpair call.
1402          */
1403 
1404         err = sock_create(family, type, protocol, &sock1);
1405         if (unlikely(err < 0))
1406                 goto out;
1407 
1408         err = sock_create(family, type, protocol, &sock2);
1409         if (unlikely(err < 0)) {
1410                 sock_release(sock1);
1411                 goto out;
1412         }
1413 
1414         err = security_socket_socketpair(sock1, sock2);
1415         if (unlikely(err)) {
1416                 sock_release(sock2);
1417                 sock_release(sock1);
1418                 goto out;
1419         }
1420 
1421         err = sock1->ops->socketpair(sock1, sock2);
1422         if (unlikely(err < 0)) {
1423                 sock_release(sock2);
1424                 sock_release(sock1);
1425                 goto out;
1426         }
1427 
1428         newfile1 = sock_alloc_file(sock1, flags, NULL);
1429         if (IS_ERR(newfile1)) {
1430                 err = PTR_ERR(newfile1);
1431                 sock_release(sock2);
1432                 goto out;
1433         }
1434 
1435         newfile2 = sock_alloc_file(sock2, flags, NULL);
1436         if (IS_ERR(newfile2)) {
1437                 err = PTR_ERR(newfile2);
1438                 fput(newfile1);
1439                 goto out;
1440         }
1441 
1442         audit_fd_pair(fd1, fd2);
1443 
1444         fd_install(fd1, newfile1);
1445         fd_install(fd2, newfile2);
1446         return 0;
1447 
1448 out:
1449         put_unused_fd(fd2);
1450         put_unused_fd(fd1);
1451         return err;
1452 }
1453 
1454 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1455                 int __user *, usockvec)
1456 {
1457         return __sys_socketpair(family, type, protocol, usockvec);
1458 }
1459 
1460 /*
1461  *      Bind a name to a socket. Nothing much to do here since it's
1462  *      the protocol's responsibility to handle the local address.
1463  *
1464  *      We move the socket address to kernel space before we call
1465  *      the protocol layer (having also checked the address is ok).
1466  */
1467 
1468 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1469 {
1470         struct socket *sock;
1471         struct sockaddr_storage address;
1472         int err, fput_needed;
1473 
1474         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1475         if (sock) {
1476                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1477                 if (!err) {
1478                         err = security_socket_bind(sock,
1479                                                    (struct sockaddr *)&address,
1480                                                    addrlen);
1481                         if (!err)
1482                                 err = sock->ops->bind(sock,
1483                                                       (struct sockaddr *)
1484                                                       &address, addrlen);
1485                 }
1486                 fput_light(sock->file, fput_needed);
1487         }
1488         return err;
1489 }
1490 
1491 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1492 {
1493         return __sys_bind(fd, umyaddr, addrlen);
1494 }
1495 
1496 /*
1497  *      Perform a listen. Basically, we allow the protocol to do anything
1498  *      necessary for a listen, and if that works, we mark the socket as
1499  *      ready for listening.
1500  */
1501 
1502 int __sys_listen(int fd, int backlog)
1503 {
1504         struct socket *sock;
1505         int err, fput_needed;
1506         int somaxconn;
1507 
1508         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509         if (sock) {
1510                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1511                 if ((unsigned int)backlog > somaxconn)
1512                         backlog = somaxconn;
1513 
1514                 err = security_socket_listen(sock, backlog);
1515                 if (!err)
1516                         err = sock->ops->listen(sock, backlog);
1517 
1518                 fput_light(sock->file, fput_needed);
1519         }
1520         return err;
1521 }
1522 
1523 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1524 {
1525         return __sys_listen(fd, backlog);
1526 }
1527 
1528 /*
1529  *      For accept, we attempt to create a new socket, set up the link
1530  *      with the client, wake up the client, then return the new
1531  *      connected fd. We collect the address of the connector in kernel
1532  *      space and move it to user at the very end. This is unclean because
1533  *      we open the socket then return an error.
1534  *
1535  *      1003.1g adds the ability to recvmsg() to query connection pending
1536  *      status to recvmsg. We need to add that support in a way thats
1537  *      clean when we restructure accept also.
1538  */
1539 
1540 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1541                   int __user *upeer_addrlen, int flags)
1542 {
1543         struct socket *sock, *newsock;
1544         struct file *newfile;
1545         int err, len, newfd, fput_needed;
1546         struct sockaddr_storage address;
1547 
1548         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1549                 return -EINVAL;
1550 
1551         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1552                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1553 
1554         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555         if (!sock)
1556                 goto out;
1557 
1558         err = -ENFILE;
1559         newsock = sock_alloc();
1560         if (!newsock)
1561                 goto out_put;
1562 
1563         newsock->type = sock->type;
1564         newsock->ops = sock->ops;
1565 
1566         /*
1567          * We don't need try_module_get here, as the listening socket (sock)
1568          * has the protocol module (sock->ops->owner) held.
1569          */
1570         __module_get(newsock->ops->owner);
1571 
1572         newfd = get_unused_fd_flags(flags);
1573         if (unlikely(newfd < 0)) {
1574                 err = newfd;
1575                 sock_release(newsock);
1576                 goto out_put;
1577         }
1578         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1579         if (IS_ERR(newfile)) {
1580                 err = PTR_ERR(newfile);
1581                 put_unused_fd(newfd);
1582                 goto out_put;
1583         }
1584 
1585         err = security_socket_accept(sock, newsock);
1586         if (err)
1587                 goto out_fd;
1588 
1589         err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1590         if (err < 0)
1591                 goto out_fd;
1592 
1593         if (ccs_socket_post_accept_permission(sock, newsock)) {
1594                 err = -EAGAIN; /* Hope less harmful than -EPERM. */
1595                 goto out_fd;
1596         }
1597         if (upeer_sockaddr) {
1598                 len = newsock->ops->getname(newsock,
1599                                         (struct sockaddr *)&address, 2);
1600                 if (len < 0) {
1601                         err = -ECONNABORTED;
1602                         goto out_fd;
1603                 }
1604                 err = move_addr_to_user(&address,
1605                                         len, upeer_sockaddr, upeer_addrlen);
1606                 if (err < 0)
1607                         goto out_fd;
1608         }
1609 
1610         /* File flags are not inherited via accept() unlike another OSes. */
1611 
1612         fd_install(newfd, newfile);
1613         err = newfd;
1614 
1615 out_put:
1616         fput_light(sock->file, fput_needed);
1617 out:
1618         return err;
1619 out_fd:
1620         fput(newfile);
1621         put_unused_fd(newfd);
1622         goto out_put;
1623 }
1624 
1625 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1626                 int __user *, upeer_addrlen, int, flags)
1627 {
1628         return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1629 }
1630 
1631 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1632                 int __user *, upeer_addrlen)
1633 {
1634         return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1635 }
1636 
1637 /*
1638  *      Attempt to connect to a socket with the server address.  The address
1639  *      is in user space so we verify it is OK and move it to kernel space.
1640  *
1641  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1642  *      break bindings
1643  *
1644  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1645  *      other SEQPACKET protocols that take time to connect() as it doesn't
1646  *      include the -EINPROGRESS status for such sockets.
1647  */
1648 
1649 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1650 {
1651         struct socket *sock;
1652         struct sockaddr_storage address;
1653         int err, fput_needed;
1654 
1655         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656         if (!sock)
1657                 goto out;
1658         err = move_addr_to_kernel(uservaddr, addrlen, &address);
1659         if (err < 0)
1660                 goto out_put;
1661 
1662         err =
1663             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1664         if (err)
1665                 goto out_put;
1666 
1667         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1668                                  sock->file->f_flags);
1669 out_put:
1670         fput_light(sock->file, fput_needed);
1671 out:
1672         return err;
1673 }
1674 
1675 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1676                 int, addrlen)
1677 {
1678         return __sys_connect(fd, uservaddr, addrlen);
1679 }
1680 
1681 /*
1682  *      Get the local address ('name') of a socket object. Move the obtained
1683  *      name to user space.
1684  */
1685 
1686 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1687                       int __user *usockaddr_len)
1688 {
1689         struct socket *sock;
1690         struct sockaddr_storage address;
1691         int err, fput_needed;
1692 
1693         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694         if (!sock)
1695                 goto out;
1696 
1697         err = security_socket_getsockname(sock);
1698         if (err)
1699                 goto out_put;
1700 
1701         err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1702         if (err < 0)
1703                 goto out_put;
1704         /* "err" is actually length in this case */
1705         err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1706 
1707 out_put:
1708         fput_light(sock->file, fput_needed);
1709 out:
1710         return err;
1711 }
1712 
1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1714                 int __user *, usockaddr_len)
1715 {
1716         return __sys_getsockname(fd, usockaddr, usockaddr_len);
1717 }
1718 
1719 /*
1720  *      Get the remote address ('name') of a socket object. Move the obtained
1721  *      name to user space.
1722  */
1723 
1724 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1725                       int __user *usockaddr_len)
1726 {
1727         struct socket *sock;
1728         struct sockaddr_storage address;
1729         int err, fput_needed;
1730 
1731         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732         if (sock != NULL) {
1733                 err = security_socket_getpeername(sock);
1734                 if (err) {
1735                         fput_light(sock->file, fput_needed);
1736                         return err;
1737                 }
1738 
1739                 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1740                 if (err >= 0)
1741                         /* "err" is actually length in this case */
1742                         err = move_addr_to_user(&address, err, usockaddr,
1743                                                 usockaddr_len);
1744                 fput_light(sock->file, fput_needed);
1745         }
1746         return err;
1747 }
1748 
1749 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1750                 int __user *, usockaddr_len)
1751 {
1752         return __sys_getpeername(fd, usockaddr, usockaddr_len);
1753 }
1754 
1755 /*
1756  *      Send a datagram to a given address. We move the address into kernel
1757  *      space and check the user space data area is readable before invoking
1758  *      the protocol.
1759  */
1760 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1761                  struct sockaddr __user *addr,  int addr_len)
1762 {
1763         struct socket *sock;
1764         struct sockaddr_storage address;
1765         int err;
1766         struct msghdr msg;
1767         struct iovec iov;
1768         int fput_needed;
1769 
1770         err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1771         if (unlikely(err))
1772                 return err;
1773         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1774         if (!sock)
1775                 goto out;
1776 
1777         msg.msg_name = NULL;
1778         msg.msg_control = NULL;
1779         msg.msg_controllen = 0;
1780         msg.msg_namelen = 0;
1781         if (addr) {
1782                 err = move_addr_to_kernel(addr, addr_len, &address);
1783                 if (err < 0)
1784                         goto out_put;
1785                 msg.msg_name = (struct sockaddr *)&address;
1786                 msg.msg_namelen = addr_len;
1787         }
1788         if (sock->file->f_flags & O_NONBLOCK)
1789                 flags |= MSG_DONTWAIT;
1790         msg.msg_flags = flags;
1791         err = sock_sendmsg(sock, &msg);
1792 
1793 out_put:
1794         fput_light(sock->file, fput_needed);
1795 out:
1796         return err;
1797 }
1798 
1799 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1800                 unsigned int, flags, struct sockaddr __user *, addr,
1801                 int, addr_len)
1802 {
1803         return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1804 }
1805 
1806 /*
1807  *      Send a datagram down a socket.
1808  */
1809 
1810 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1811                 unsigned int, flags)
1812 {
1813         return __sys_sendto(fd, buff, len, flags, NULL, 0);
1814 }
1815 
1816 /*
1817  *      Receive a frame from the socket and optionally record the address of the
1818  *      sender. We verify the buffers are writable and if needed move the
1819  *      sender address from kernel to user space.
1820  */
1821 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1822                    struct sockaddr __user *addr, int __user *addr_len)
1823 {
1824         struct socket *sock;
1825         struct iovec iov;
1826         struct msghdr msg;
1827         struct sockaddr_storage address;
1828         int err, err2;
1829         int fput_needed;
1830 
1831         err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1832         if (unlikely(err))
1833                 return err;
1834         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835         if (!sock)
1836                 goto out;
1837 
1838         msg.msg_control = NULL;
1839         msg.msg_controllen = 0;
1840         /* Save some cycles and don't copy the address if not needed */
1841         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1842         /* We assume all kernel code knows the size of sockaddr_storage */
1843         msg.msg_namelen = 0;
1844         msg.msg_iocb = NULL;
1845         msg.msg_flags = 0;
1846         if (sock->file->f_flags & O_NONBLOCK)
1847                 flags |= MSG_DONTWAIT;
1848         err = sock_recvmsg(sock, &msg, flags);
1849 
1850         if (err >= 0 && addr != NULL) {
1851                 err2 = move_addr_to_user(&address,
1852                                          msg.msg_namelen, addr, addr_len);
1853                 if (err2 < 0)
1854                         err = err2;
1855         }
1856 
1857         fput_light(sock->file, fput_needed);
1858 out:
1859         return err;
1860 }
1861 
1862 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1863                 unsigned int, flags, struct sockaddr __user *, addr,
1864                 int __user *, addr_len)
1865 {
1866         return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1867 }
1868 
1869 /*
1870  *      Receive a datagram from a socket.
1871  */
1872 
1873 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1874                 unsigned int, flags)
1875 {
1876         return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1877 }
1878 
1879 /*
1880  *      Set a socket option. Because we don't know the option lengths we have
1881  *      to pass the user mode parameter for the protocols to sort out.
1882  */
1883 
1884 static int __sys_setsockopt(int fd, int level, int optname,
1885                             char __user *optval, int optlen)
1886 {
1887         int err, fput_needed;
1888         struct socket *sock;
1889 
1890         if (optlen < 0)
1891                 return -EINVAL;
1892 
1893         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1894         if (sock != NULL) {
1895                 err = security_socket_setsockopt(sock, level, optname);
1896                 if (err)
1897                         goto out_put;
1898 
1899                 if (level == SOL_SOCKET)
1900                         err =
1901                             sock_setsockopt(sock, level, optname, optval,
1902                                             optlen);
1903                 else
1904                         err =
1905                             sock->ops->setsockopt(sock, level, optname, optval,
1906                                                   optlen);
1907 out_put:
1908                 fput_light(sock->file, fput_needed);
1909         }
1910         return err;
1911 }
1912 
1913 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1914                 char __user *, optval, int, optlen)
1915 {
1916         return __sys_setsockopt(fd, level, optname, optval, optlen);
1917 }
1918 
1919 /*
1920  *      Get a socket option. Because we don't know the option lengths we have
1921  *      to pass a user mode parameter for the protocols to sort out.
1922  */
1923 
1924 static int __sys_getsockopt(int fd, int level, int optname,
1925                             char __user *optval, int __user *optlen)
1926 {
1927         int err, fput_needed;
1928         struct socket *sock;
1929 
1930         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1931         if (sock != NULL) {
1932                 err = security_socket_getsockopt(sock, level, optname);
1933                 if (err)
1934                         goto out_put;
1935 
1936                 if (level == SOL_SOCKET)
1937                         err =
1938                             sock_getsockopt(sock, level, optname, optval,
1939                                             optlen);
1940                 else
1941                         err =
1942                             sock->ops->getsockopt(sock, level, optname, optval,
1943                                                   optlen);
1944 out_put:
1945                 fput_light(sock->file, fput_needed);
1946         }
1947         return err;
1948 }
1949 
1950 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1951                 char __user *, optval, int __user *, optlen)
1952 {
1953         return __sys_getsockopt(fd, level, optname, optval, optlen);
1954 }
1955 
1956 /*
1957  *      Shutdown a socket.
1958  */
1959 
1960 int __sys_shutdown(int fd, int how)
1961 {
1962         int err, fput_needed;
1963         struct socket *sock;
1964 
1965         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1966         if (sock != NULL) {
1967                 err = security_socket_shutdown(sock, how);
1968                 if (!err)
1969                         err = sock->ops->shutdown(sock, how);
1970                 fput_light(sock->file, fput_needed);
1971         }
1972         return err;
1973 }
1974 
1975 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1976 {
1977         return __sys_shutdown(fd, how);
1978 }
1979 
1980 /* A couple of helpful macros for getting the address of the 32/64 bit
1981  * fields which are the same type (int / unsigned) on our platforms.
1982  */
1983 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1984 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1985 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1986 
1987 struct used_address {
1988         struct sockaddr_storage name;
1989         unsigned int name_len;
1990 };
1991 
1992 static int copy_msghdr_from_user(struct msghdr *kmsg,
1993                                  struct user_msghdr __user *umsg,
1994                                  struct sockaddr __user **save_addr,
1995                                  struct iovec **iov)
1996 {
1997         struct user_msghdr msg;
1998         ssize_t err;
1999 
2000         if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2001                 return -EFAULT;
2002 
2003         kmsg->msg_control = (void __force *)msg.msg_control;
2004         kmsg->msg_controllen = msg.msg_controllen;
2005         kmsg->msg_flags = msg.msg_flags;
2006 
2007         kmsg->msg_namelen = msg.msg_namelen;
2008         if (!msg.msg_name)
2009                 kmsg->msg_namelen = 0;
2010 
2011         if (kmsg->msg_namelen < 0)
2012                 return -EINVAL;
2013 
2014         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2015                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2016 
2017         if (save_addr)
2018                 *save_addr = msg.msg_name;
2019 
2020         if (msg.msg_name && kmsg->msg_namelen) {
2021                 if (!save_addr) {
2022                         err = move_addr_to_kernel(msg.msg_name,
2023                                                   kmsg->msg_namelen,
2024                                                   kmsg->msg_name);
2025                         if (err < 0)
2026                                 return err;
2027                 }
2028         } else {
2029                 kmsg->msg_name = NULL;
2030                 kmsg->msg_namelen = 0;
2031         }
2032 
2033         if (msg.msg_iovlen > UIO_MAXIOV)
2034                 return -EMSGSIZE;
2035 
2036         kmsg->msg_iocb = NULL;
2037 
2038         return import_iovec(save_addr ? READ : WRITE,
2039                             msg.msg_iov, msg.msg_iovlen,
2040                             UIO_FASTIOV, iov, &kmsg->msg_iter);
2041 }
2042 
2043 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2044                          struct msghdr *msg_sys, unsigned int flags,
2045                          struct used_address *used_address,
2046                          unsigned int allowed_msghdr_flags)
2047 {
2048         struct compat_msghdr __user *msg_compat =
2049             (struct compat_msghdr __user *)msg;
2050         struct sockaddr_storage address;
2051         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2052         unsigned char ctl[sizeof(struct cmsghdr) + 20]
2053                                 __aligned(sizeof(__kernel_size_t));
2054         /* 20 is size of ipv6_pktinfo */
2055         unsigned char *ctl_buf = ctl;
2056         int ctl_len;
2057         ssize_t err;
2058 
2059         msg_sys->msg_name = &address;
2060 
2061         if (MSG_CMSG_COMPAT & flags)
2062                 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2063         else
2064                 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2065         if (err < 0)
2066                 return err;
2067 
2068         err = -ENOBUFS;
2069 
2070         if (msg_sys->msg_controllen > INT_MAX)
2071                 goto out_freeiov;
2072         flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2073         ctl_len = msg_sys->msg_controllen;
2074         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2075                 err =
2076                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2077                                                      sizeof(ctl));
2078                 if (err)
2079                         goto out_freeiov;
2080                 ctl_buf = msg_sys->msg_control;
2081                 ctl_len = msg_sys->msg_controllen;
2082         } else if (ctl_len) {
2083                 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2084                              CMSG_ALIGN(sizeof(struct cmsghdr)));
2085                 if (ctl_len > sizeof(ctl)) {
2086                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2087                         if (ctl_buf == NULL)
2088                                 goto out_freeiov;
2089                 }
2090                 err = -EFAULT;
2091                 /*
2092                  * Careful! Before this, msg_sys->msg_control contains a user pointer.
2093                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2094                  * checking falls down on this.
2095                  */
2096                 if (copy_from_user(ctl_buf,
2097                                    (void __user __force *)msg_sys->msg_control,
2098                                    ctl_len))
2099                         goto out_freectl;
2100                 msg_sys->msg_control = ctl_buf;
2101         }
2102         msg_sys->msg_flags = flags;
2103 
2104         if (sock->file->f_flags & O_NONBLOCK)
2105                 msg_sys->msg_flags |= MSG_DONTWAIT;
2106         /*
2107          * If this is sendmmsg() and current destination address is same as
2108          * previously succeeded address, omit asking LSM's decision.
2109          * used_address->name_len is initialized to UINT_MAX so that the first
2110          * destination address never matches.
2111          */
2112         if (used_address && msg_sys->msg_name &&
2113             used_address->name_len == msg_sys->msg_namelen &&
2114             !memcmp(&used_address->name, msg_sys->msg_name,
2115                     used_address->name_len)) {
2116                 err = sock_sendmsg_nosec(sock, msg_sys);
2117                 goto out_freectl;
2118         }
2119         err = sock_sendmsg(sock, msg_sys);
2120         /*
2121          * If this is sendmmsg() and sending to current destination address was
2122          * successful, remember it.
2123          */
2124         if (used_address && err >= 0) {
2125                 used_address->name_len = msg_sys->msg_namelen;
2126                 if (msg_sys->msg_name)
2127                         memcpy(&used_address->name, msg_sys->msg_name,
2128                                used_address->name_len);
2129         }
2130 
2131 out_freectl:
2132         if (ctl_buf != ctl)
2133                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2134 out_freeiov:
2135         kfree(iov);
2136         return err;
2137 }
2138 
2139 /*
2140  *      BSD sendmsg interface
2141  */
2142 
2143 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2144                    bool forbid_cmsg_compat)
2145 {
2146         int fput_needed, err;
2147         struct msghdr msg_sys;
2148         struct socket *sock;
2149 
2150         if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2151                 return -EINVAL;
2152 
2153         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2154         if (!sock)
2155                 goto out;
2156 
2157         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2158 
2159         fput_light(sock->file, fput_needed);
2160 out:
2161         return err;
2162 }
2163 
2164 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2165 {
2166         return __sys_sendmsg(fd, msg, flags, true);
2167 }
2168 
2169 /*
2170  *      Linux sendmmsg interface
2171  */
2172 
2173 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2174                    unsigned int flags, bool forbid_cmsg_compat)
2175 {
2176         int fput_needed, err, datagrams;
2177         struct socket *sock;
2178         struct mmsghdr __user *entry;
2179         struct compat_mmsghdr __user *compat_entry;
2180         struct msghdr msg_sys;
2181         struct used_address used_address;
2182         unsigned int oflags = flags;
2183 
2184         if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2185                 return -EINVAL;
2186 
2187         if (vlen > UIO_MAXIOV)
2188                 vlen = UIO_MAXIOV;
2189 
2190         datagrams = 0;
2191 
2192         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2193         if (!sock)
2194                 return err;
2195 
2196         used_address.name_len = UINT_MAX;
2197         entry = mmsg;
2198         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2199         err = 0;
2200         flags |= MSG_BATCH;
2201 
2202         while (datagrams < vlen) {
2203                 if (datagrams == vlen - 1)
2204                         flags = oflags;
2205 
2206                 if (MSG_CMSG_COMPAT & flags) {
2207                         err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2208                                              &msg_sys, flags, &used_address, MSG_EOR);
2209                         if (err < 0)
2210                                 break;
2211                         err = __put_user(err, &compat_entry->msg_len);
2212                         ++compat_entry;
2213                 } else {
2214                         err = ___sys_sendmsg(sock,
2215                                              (struct user_msghdr __user *)entry,
2216                                              &msg_sys, flags, &used_address, MSG_EOR);
2217                         if (err < 0)
2218                                 break;
2219                         err = put_user(err, &entry->msg_len);
2220                         ++entry;
2221                 }
2222 
2223                 if (err)
2224                         break;
2225                 ++datagrams;
2226                 if (msg_data_left(&msg_sys))
2227                         break;
2228                 cond_resched();
2229         }
2230 
2231         fput_light(sock->file, fput_needed);
2232 
2233         /* We only return an error if no datagrams were able to be sent */
2234         if (datagrams != 0)
2235                 return datagrams;
2236 
2237         return err;
2238 }
2239 
2240 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2241                 unsigned int, vlen, unsigned int, flags)
2242 {
2243         return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2244 }
2245 
2246 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2247                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2248 {
2249         struct compat_msghdr __user *msg_compat =
2250             (struct compat_msghdr __user *)msg;
2251         struct iovec iovstack[UIO_FASTIOV];
2252         struct iovec *iov = iovstack;
2253         unsigned long cmsg_ptr;
2254         int len;
2255         ssize_t err;
2256 
2257         /* kernel mode address */
2258         struct sockaddr_storage addr;
2259 
2260         /* user mode address pointers */
2261         struct sockaddr __user *uaddr;
2262         int __user *uaddr_len = COMPAT_NAMELEN(msg);
2263 
2264         msg_sys->msg_name = &addr;
2265 
2266         if (MSG_CMSG_COMPAT & flags)
2267                 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2268         else
2269                 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2270         if (err < 0)
2271                 return err;
2272 
2273         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2274         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2275 
2276         /* We assume all kernel code knows the size of sockaddr_storage */
2277         msg_sys->msg_namelen = 0;
2278 
2279         if (sock->file->f_flags & O_NONBLOCK)
2280                 flags |= MSG_DONTWAIT;
2281         err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2282         if (err < 0)
2283                 goto out_freeiov;
2284         len = err;
2285 
2286         if (uaddr != NULL) {
2287                 err = move_addr_to_user(&addr,
2288                                         msg_sys->msg_namelen, uaddr,
2289                                         uaddr_len);
2290                 if (err < 0)
2291                         goto out_freeiov;
2292         }
2293         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2294                          COMPAT_FLAGS(msg));
2295         if (err)
2296                 goto out_freeiov;
2297         if (MSG_CMSG_COMPAT & flags)
2298                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2299                                  &msg_compat->msg_controllen);
2300         else
2301                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2302                                  &msg->msg_controllen);
2303         if (err)
2304                 goto out_freeiov;
2305         err = len;
2306 
2307 out_freeiov:
2308         kfree(iov);
2309         return err;
2310 }
2311 
2312 /*
2313  *      BSD recvmsg interface
2314  */
2315 
2316 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2317                    bool forbid_cmsg_compat)
2318 {
2319         int fput_needed, err;
2320         struct msghdr msg_sys;
2321         struct socket *sock;
2322 
2323         if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2324                 return -EINVAL;
2325 
2326         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2327         if (!sock)
2328                 goto out;
2329 
2330         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2331 
2332         fput_light(sock->file, fput_needed);
2333 out:
2334         return err;
2335 }
2336 
2337 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2338                 unsigned int, flags)
2339 {
2340         return __sys_recvmsg(fd, msg, flags, true);
2341 }
2342 
2343 /*
2344  *     Linux recvmmsg interface
2345  */
2346 
2347 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2348                    unsigned int flags, struct timespec64 *timeout)
2349 {
2350         int fput_needed, err, datagrams;
2351         struct socket *sock;
2352         struct mmsghdr __user *entry;
2353         struct compat_mmsghdr __user *compat_entry;
2354         struct msghdr msg_sys;
2355         struct timespec64 end_time;
2356         struct timespec64 timeout64;
2357 
2358         if (timeout &&
2359             poll_select_set_timeout(&end_time, timeout->tv_sec,
2360                                     timeout->tv_nsec))
2361                 return -EINVAL;
2362 
2363         datagrams = 0;
2364 
2365         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2366         if (!sock)
2367                 return err;
2368 
2369         if (likely(!(flags & MSG_ERRQUEUE))) {
2370                 err = sock_error(sock->sk);
2371                 if (err) {
2372                         datagrams = err;
2373                         goto out_put;
2374                 }
2375         }
2376 
2377         entry = mmsg;
2378         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2379 
2380         while (datagrams < vlen) {
2381                 /*
2382                  * No need to ask LSM for more than the first datagram.
2383                  */
2384                 if (MSG_CMSG_COMPAT & flags) {
2385                         err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2386                                              &msg_sys, flags & ~MSG_WAITFORONE,
2387                                              datagrams);
2388                         if (err < 0)
2389                                 break;
2390                         err = __put_user(err, &compat_entry->msg_len);
2391                         ++compat_entry;
2392                 } else {
2393                         err = ___sys_recvmsg(sock,
2394                                              (struct user_msghdr __user *)entry,
2395                                              &msg_sys, flags & ~MSG_WAITFORONE,
2396                                              datagrams);
2397                         if (err < 0)
2398                                 break;
2399                         err = put_user(err, &entry->msg_len);
2400                         ++entry;
2401                 }
2402 
2403                 if (err)
2404                         break;
2405                 ++datagrams;
2406 
2407                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2408                 if (flags & MSG_WAITFORONE)
2409                         flags |= MSG_DONTWAIT;
2410 
2411                 if (timeout) {
2412                         ktime_get_ts64(&timeout64);
2413                         *timeout = timespec64_sub(end_time, timeout64);
2414                         if (timeout->tv_sec < 0) {
2415                                 timeout->tv_sec = timeout->tv_nsec = 0;
2416                                 break;
2417                         }
2418 
2419                         /* Timeout, return less than vlen datagrams */
2420                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2421                                 break;
2422                 }
2423 
2424                 /* Out of band data, return right away */
2425                 if (msg_sys.msg_flags & MSG_OOB)
2426                         break;
2427                 cond_resched();
2428         }
2429 
2430         if (err == 0)
2431                 goto out_put;
2432 
2433         if (datagrams == 0) {
2434                 datagrams = err;
2435                 goto out_put;
2436         }
2437 
2438         /*
2439          * We may return less entries than requested (vlen) if the
2440          * sock is non block and there aren't enough datagrams...
2441          */
2442         if (err != -EAGAIN) {
2443                 /*
2444                  * ... or  if recvmsg returns an error after we
2445                  * received some datagrams, where we record the
2446                  * error to return on the next call or if the
2447                  * app asks about it using getsockopt(SO_ERROR).
2448                  */
2449                 sock->sk->sk_err = -err;
2450         }
2451 out_put:
2452         fput_light(sock->file, fput_needed);
2453 
2454         return datagrams;
2455 }
2456 
2457 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2458                            unsigned int vlen, unsigned int flags,
2459                            struct __kernel_timespec __user *timeout)
2460 {
2461         int datagrams;
2462         struct timespec64 timeout_sys;
2463 
2464         if (flags & MSG_CMSG_COMPAT)
2465                 return -EINVAL;
2466 
2467         if (!timeout)
2468                 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2469 
2470         if (get_timespec64(&timeout_sys, timeout))
2471                 return -EFAULT;
2472 
2473         datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2474 
2475         if (datagrams > 0 && put_timespec64(&timeout_sys, timeout))
2476                 datagrams = -EFAULT;
2477 
2478         return datagrams;
2479 }
2480 
2481 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482                 unsigned int, vlen, unsigned int, flags,
2483                 struct __kernel_timespec __user *, timeout)
2484 {
2485         return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2486 }
2487 
2488 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2489 /* Argument list sizes for sys_socketcall */
2490 #define AL(x) ((x) * sizeof(unsigned long))
2491 static const unsigned char nargs[21] = {
2492         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2493         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2494         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2495         AL(4), AL(5), AL(4)
2496 };
2497 
2498 #undef AL
2499 
2500 /*
2501  *      System call vectors.
2502  *
2503  *      Argument checking cleaned up. Saved 20% in size.
2504  *  This function doesn't need to set the kernel lock because
2505  *  it is set by the callees.
2506  */
2507 
2508 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509 {
2510         unsigned long a[AUDITSC_ARGS];
2511         unsigned long a0, a1;
2512         int err;
2513         unsigned int len;
2514 
2515         if (call < 1 || call > SYS_SENDMMSG)
2516                 return -EINVAL;
2517         call = array_index_nospec(call, SYS_SENDMMSG + 1);
2518 
2519         len = nargs[call];
2520         if (len > sizeof(a))
2521                 return -EINVAL;
2522 
2523         /* copy_from_user should be SMP safe. */
2524         if (copy_from_user(a, args, len))
2525                 return -EFAULT;
2526 
2527         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2528         if (err)
2529                 return err;
2530 
2531         a0 = a[0];
2532         a1 = a[1];
2533 
2534         switch (call) {
2535         case SYS_SOCKET:
2536                 err = __sys_socket(a0, a1, a[2]);
2537                 break;
2538         case SYS_BIND:
2539                 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2540                 break;
2541         case SYS_CONNECT:
2542                 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2543                 break;
2544         case SYS_LISTEN:
2545                 err = __sys_listen(a0, a1);
2546                 break;
2547         case SYS_ACCEPT:
2548                 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2549                                     (int __user *)a[2], 0);
2550                 break;
2551         case SYS_GETSOCKNAME:
2552                 err =
2553                     __sys_getsockname(a0, (struct sockaddr __user *)a1,
2554                                       (int __user *)a[2]);
2555                 break;
2556         case SYS_GETPEERNAME:
2557                 err =
2558                     __sys_getpeername(a0, (struct sockaddr __user *)a1,
2559                                       (int __user *)a[2]);
2560                 break;
2561         case SYS_SOCKETPAIR:
2562                 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2563                 break;
2564         case SYS_SEND:
2565                 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2566                                    NULL, 0);
2567                 break;
2568         case SYS_SENDTO:
2569                 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2570                                    (struct sockaddr __user *)a[4], a[5]);
2571                 break;
2572         case SYS_RECV:
2573                 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2574                                      NULL, NULL);
2575                 break;
2576         case SYS_RECVFROM:
2577                 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2578                                      (struct sockaddr __user *)a[4],
2579                                      (int __user *)a[5]);
2580                 break;
2581         case SYS_SHUTDOWN:
2582                 err = __sys_shutdown(a0, a1);
2583                 break;
2584         case SYS_SETSOCKOPT:
2585                 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2586                                        a[4]);
2587                 break;
2588         case SYS_GETSOCKOPT:
2589                 err =
2590                     __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2591                                      (int __user *)a[4]);
2592                 break;
2593         case SYS_SENDMSG:
2594                 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2595                                     a[2], true);
2596                 break;
2597         case SYS_SENDMMSG:
2598                 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2599                                      a[3], true);
2600                 break;
2601         case SYS_RECVMSG:
2602                 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2603                                     a[2], true);
2604                 break;
2605         case SYS_RECVMMSG:
2606                 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2607                                       a[3], (struct __kernel_timespec __user *)a[4]);
2608                 break;
2609         case SYS_ACCEPT4:
2610                 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2611                                     (int __user *)a[2], a[3]);
2612                 break;
2613         default:
2614                 err = -EINVAL;
2615                 break;
2616         }
2617         return err;
2618 }
2619 
2620 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2621 
2622 /**
2623  *      sock_register - add a socket protocol handler
2624  *      @ops: description of protocol
2625  *
2626  *      This function is called by a protocol handler that wants to
2627  *      advertise its address family, and have it linked into the
2628  *      socket interface. The value ops->family corresponds to the
2629  *      socket system call protocol family.
2630  */
2631 int sock_register(const struct net_proto_family *ops)
2632 {
2633         int err;
2634 
2635         if (ops->family >= NPROTO) {
2636                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2637                 return -ENOBUFS;
2638         }
2639 
2640         spin_lock(&net_family_lock);
2641         if (rcu_dereference_protected(net_families[ops->family],
2642                                       lockdep_is_held(&net_family_lock)))
2643                 err = -EEXIST;
2644         else {
2645                 rcu_assign_pointer(net_families[ops->family], ops);
2646                 err = 0;
2647         }
2648         spin_unlock(&net_family_lock);
2649 
2650         pr_info("NET: Registered protocol family %d\n", ops->family);
2651         return err;
2652 }
2653 EXPORT_SYMBOL(sock_register);
2654 
2655 /**
2656  *      sock_unregister - remove a protocol handler
2657  *      @family: protocol family to remove
2658  *
2659  *      This function is called by a protocol handler that wants to
2660  *      remove its address family, and have it unlinked from the
2661  *      new socket creation.
2662  *
2663  *      If protocol handler is a module, then it can use module reference
2664  *      counts to protect against new references. If protocol handler is not
2665  *      a module then it needs to provide its own protection in
2666  *      the ops->create routine.
2667  */
2668 void sock_unregister(int family)
2669 {
2670         BUG_ON(family < 0 || family >= NPROTO);
2671 
2672         spin_lock(&net_family_lock);
2673         RCU_INIT_POINTER(net_families[family], NULL);
2674         spin_unlock(&net_family_lock);
2675 
2676         synchronize_rcu();
2677 
2678         pr_info("NET: Unregistered protocol family %d\n", family);
2679 }
2680 EXPORT_SYMBOL(sock_unregister);
2681 
2682 bool sock_is_registered(int family)
2683 {
2684         return family < NPROTO && rcu_access_pointer(net_families[family]);
2685 }
2686 
2687 static int __init sock_init(void)
2688 {
2689         int err;
2690         /*
2691          *      Initialize the network sysctl infrastructure.
2692          */
2693         err = net_sysctl_init();
2694         if (err)
2695                 goto out;
2696 
2697         /*
2698          *      Initialize skbuff SLAB cache
2699          */
2700         skb_init();
2701 
2702         /*
2703          *      Initialize the protocols module.
2704          */
2705 
2706         init_inodecache();
2707 
2708         err = register_filesystem(&sock_fs_type);
2709         if (err)
2710                 goto out_fs;
2711         sock_mnt = kern_mount(&sock_fs_type);
2712         if (IS_ERR(sock_mnt)) {
2713                 err = PTR_ERR(sock_mnt);
2714                 goto out_mount;
2715         }
2716 
2717         /* The real protocol initialization is performed in later initcalls.
2718          */
2719 
2720 #ifdef CONFIG_NETFILTER
2721         err = netfilter_init();
2722         if (err)
2723                 goto out;
2724 #endif
2725 
2726         ptp_classifier_init();
2727 
2728 out:
2729         return err;
2730 
2731 out_mount:
2732         unregister_filesystem(&sock_fs_type);
2733 out_fs:
2734         goto out;
2735 }
2736 
2737 core_initcall(sock_init);       /* early initcall */
2738 
2739 #ifdef CONFIG_PROC_FS
2740 void socket_seq_show(struct seq_file *seq)
2741 {
2742         seq_printf(seq, "sockets: used %d\n",
2743                    sock_inuse_get(seq->private));
2744 }
2745 #endif                          /* CONFIG_PROC_FS */
2746 
2747 #ifdef CONFIG_COMPAT
2748 static int do_siocgstamp(struct net *net, struct socket *sock,
2749                          unsigned int cmd, void __user *up)
2750 {
2751         mm_segment_t old_fs = get_fs();
2752         struct timeval ktv;
2753         int err;
2754 
2755         set_fs(KERNEL_DS);
2756         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2757         set_fs(old_fs);
2758         if (!err)
2759                 err = compat_put_timeval(&ktv, up);
2760 
2761         return err;
2762 }
2763 
2764 static int do_siocgstampns(struct net *net, struct socket *sock,
2765                            unsigned int cmd, void __user *up)
2766 {
2767         mm_segment_t old_fs = get_fs();
2768         struct timespec kts;
2769         int err;
2770 
2771         set_fs(KERNEL_DS);
2772         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2773         set_fs(old_fs);
2774         if (!err)
2775                 err = compat_put_timespec(&kts, up);
2776 
2777         return err;
2778 }
2779 
2780 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2781 {
2782         struct compat_ifconf ifc32;
2783         struct ifconf ifc;
2784         int err;
2785 
2786         if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2787                 return -EFAULT;
2788 
2789         ifc.ifc_len = ifc32.ifc_len;
2790         ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2791 
2792         rtnl_lock();
2793         err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2794         rtnl_unlock();
2795         if (err)
2796                 return err;
2797 
2798         ifc32.ifc_len = ifc.ifc_len;
2799         if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2800                 return -EFAULT;
2801 
2802         return 0;
2803 }
2804 
2805 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2806 {
2807         struct compat_ethtool_rxnfc __user *compat_rxnfc;
2808         bool convert_in = false, convert_out = false;
2809         size_t buf_size = 0;
2810         struct ethtool_rxnfc __user *rxnfc = NULL;
2811         struct ifreq ifr;
2812         u32 rule_cnt = 0, actual_rule_cnt;
2813         u32 ethcmd;
2814         u32 data;
2815         int ret;
2816 
2817         if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2818                 return -EFAULT;
2819 
2820         compat_rxnfc = compat_ptr(data);
2821 
2822         if (get_user(ethcmd, &compat_rxnfc->cmd))
2823                 return -EFAULT;
2824 
2825         /* Most ethtool structures are defined without padding.
2826          * Unfortunately struct ethtool_rxnfc is an exception.
2827          */
2828         switch (ethcmd) {
2829         default:
2830                 break;
2831         case ETHTOOL_GRXCLSRLALL:
2832                 /* Buffer size is variable */
2833                 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2834                         return -EFAULT;
2835                 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2836                         return -ENOMEM;
2837                 buf_size += rule_cnt * sizeof(u32);
2838                 /* fall through */
2839         case ETHTOOL_GRXRINGS:
2840         case ETHTOOL_GRXCLSRLCNT:
2841         case ETHTOOL_GRXCLSRULE:
2842         case ETHTOOL_SRXCLSRLINS:
2843                 convert_out = true;
2844                 /* fall through */
2845         case ETHTOOL_SRXCLSRLDEL:
2846                 buf_size += sizeof(struct ethtool_rxnfc);
2847                 convert_in = true;
2848                 rxnfc = compat_alloc_user_space(buf_size);
2849                 break;
2850         }
2851 
2852         if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2853                 return -EFAULT;
2854 
2855         ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2856 
2857         if (convert_in) {
2858                 /* We expect there to be holes between fs.m_ext and
2859                  * fs.ring_cookie and at the end of fs, but nowhere else.
2860                  */
2861                 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2862                              sizeof(compat_rxnfc->fs.m_ext) !=
2863                              offsetof(struct ethtool_rxnfc, fs.m_ext) +
2864                              sizeof(rxnfc->fs.m_ext));
2865                 BUILD_BUG_ON(
2866                         offsetof(struct compat_ethtool_rxnfc, fs.location) -
2867                         offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2868                         offsetof(struct ethtool_rxnfc, fs.location) -
2869                         offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2870 
2871                 if (copy_in_user(rxnfc, compat_rxnfc,
2872                                  (void __user *)(&rxnfc->fs.m_ext + 1) -
2873                                  (void __user *)rxnfc) ||
2874                     copy_in_user(&rxnfc->fs.ring_cookie,
2875                                  &compat_rxnfc->fs.ring_cookie,
2876                                  (void __user *)(&rxnfc->fs.location + 1) -
2877                                  (void __user *)&rxnfc->fs.ring_cookie))
2878                         return -EFAULT;
2879                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2880                         if (put_user(rule_cnt, &rxnfc->rule_cnt))
2881                                 return -EFAULT;
2882                 } else if (copy_in_user(&rxnfc->rule_cnt,
2883                                         &compat_rxnfc->rule_cnt,
2884                                         sizeof(rxnfc->rule_cnt)))
2885                         return -EFAULT;
2886         }
2887 
2888         ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2889         if (ret)
2890                 return ret;
2891 
2892         if (convert_out) {
2893                 if (copy_in_user(compat_rxnfc, rxnfc,
2894                                  (const void __user *)(&rxnfc->fs.m_ext + 1) -
2895                                  (const void __user *)rxnfc) ||
2896                     copy_in_user(&compat_rxnfc->fs.ring_cookie,
2897                                  &rxnfc->fs.ring_cookie,
2898                                  (const void __user *)(&rxnfc->fs.location + 1) -
2899                                  (const void __user *)&rxnfc->fs.ring_cookie) ||
2900                     copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2901                                  sizeof(rxnfc->rule_cnt)))
2902                         return -EFAULT;
2903 
2904                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2905                         /* As an optimisation, we only copy the actual
2906                          * number of rules that the underlying
2907                          * function returned.  Since Mallory might
2908                          * change the rule count in user memory, we
2909                          * check that it is less than the rule count
2910                          * originally given (as the user buffer size),
2911                          * which has been range-checked.
2912                          */
2913                         if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2914                                 return -EFAULT;
2915                         if (actual_rule_cnt < rule_cnt)
2916                                 rule_cnt = actual_rule_cnt;
2917                         if (copy_in_user(&compat_rxnfc->rule_locs[0],
2918                                          &rxnfc->rule_locs[0],
2919                                          rule_cnt * sizeof(u32)))
2920                                 return -EFAULT;
2921                 }
2922         }
2923 
2924         return 0;
2925 }
2926 
2927 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2928 {
2929         compat_uptr_t uptr32;
2930         struct ifreq ifr;
2931         void __user *saved;
2932         int err;
2933 
2934         if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2935                 return -EFAULT;
2936 
2937         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2938                 return -EFAULT;
2939 
2940         saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2941         ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2942 
2943         err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2944         if (!err) {
2945                 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2946                 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2947                         err = -EFAULT;
2948         }
2949         return err;
2950 }
2951 
2952 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2953 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2954                                  struct compat_ifreq __user *u_ifreq32)
2955 {
2956         struct ifreq ifreq;
2957         u32 data32;
2958 
2959         if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2960                 return -EFAULT;
2961         if (get_user(data32, &u_ifreq32->ifr_data))
2962                 return -EFAULT;
2963         ifreq.ifr_data = compat_ptr(data32);
2964 
2965         return dev_ioctl(net, cmd, &ifreq, NULL);
2966 }
2967 
2968 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
2969                               unsigned int cmd,
2970                               struct compat_ifreq __user *uifr32)
2971 {
2972         struct ifreq __user *uifr;
2973         int err;
2974 
2975         /* Handle the fact that while struct ifreq has the same *layout* on
2976          * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
2977          * which are handled elsewhere, it still has different *size* due to
2978          * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
2979          * resulting in struct ifreq being 32 and 40 bytes respectively).
2980          * As a result, if the struct happens to be at the end of a page and
2981          * the next page isn't readable/writable, we get a fault. To prevent
2982          * that, copy back and forth to the full size.
2983          */
2984 
2985         uifr = compat_alloc_user_space(sizeof(*uifr));
2986         if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2987                 return -EFAULT;
2988 
2989         err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2990 
2991         if (!err) {
2992                 switch (cmd) {
2993                 case SIOCGIFFLAGS:
2994                 case SIOCGIFMETRIC:
2995                 case SIOCGIFMTU:
2996                 case SIOCGIFMEM:
2997                 case SIOCGIFHWADDR:
2998                 case SIOCGIFINDEX:
2999                 case SIOCGIFADDR:
3000                 case SIOCGIFBRDADDR:
3001                 case SIOCGIFDSTADDR:
3002                 case SIOCGIFNETMASK:
3003                 case SIOCGIFPFLAGS:
3004                 case SIOCGIFTXQLEN:
3005                 case SIOCGMIIPHY:
3006                 case SIOCGMIIREG:
3007                 case SIOCGIFNAME:
3008                         if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3009                                 err = -EFAULT;
3010                         break;
3011                 }
3012         }
3013         return err;
3014 }
3015 
3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017                         struct compat_ifreq __user *uifr32)
3018 {
3019         struct ifreq ifr;
3020         struct compat_ifmap __user *uifmap32;
3021         int err;
3022 
3023         uifmap32 = &uifr32->ifr_ifru.ifru_map;
3024         err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3025         err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3026         err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3027         err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3028         err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3029         err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3030         err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3031         if (err)
3032                 return -EFAULT;
3033 
3034         err = dev_ioctl(net, cmd, &ifr, NULL);
3035 
3036         if (cmd == SIOCGIFMAP && !err) {
3037                 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3038                 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3039                 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3040                 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3041                 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3042                 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3043                 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3044                 if (err)
3045                         err = -EFAULT;
3046         }
3047         return err;
3048 }
3049 
3050 struct rtentry32 {
3051         u32             rt_pad1;
3052         struct sockaddr rt_dst;         /* target address               */
3053         struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3054         struct sockaddr rt_genmask;     /* target network mask (IP)     */
3055         unsigned short  rt_flags;
3056         short           rt_pad2;
3057         u32             rt_pad3;
3058         unsigned char   rt_tos;
3059         unsigned char   rt_class;
3060         short           rt_pad4;
3061         short           rt_metric;      /* +1 for binary compatibility! */
3062         /* char * */ u32 rt_dev;        /* forcing the device at add    */
3063         u32             rt_mtu;         /* per route MTU/Window         */
3064         u32             rt_window;      /* Window clamping              */
3065         unsigned short  rt_irtt;        /* Initial RTT                  */
3066 };
3067 
3068 struct in6_rtmsg32 {
3069         struct in6_addr         rtmsg_dst;
3070         struct in6_addr         rtmsg_src;
3071         struct in6_addr         rtmsg_gateway;
3072         u32                     rtmsg_type;
3073         u16                     rtmsg_dst_len;
3074         u16                     rtmsg_src_len;
3075         u32                     rtmsg_metric;
3076         u32                     rtmsg_info;
3077         u32                     rtmsg_flags;
3078         s32                     rtmsg_ifindex;
3079 };
3080 
3081 static int routing_ioctl(struct net *net, struct socket *sock,
3082                          unsigned int cmd, void __user *argp)
3083 {
3084         int ret;
3085         void *r = NULL;
3086         struct in6_rtmsg r6;
3087         struct rtentry r4;
3088         char devname[16];
3089         u32 rtdev;
3090         mm_segment_t old_fs = get_fs();
3091 
3092         if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3093                 struct in6_rtmsg32 __user *ur6 = argp;
3094                 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3095                         3 * sizeof(struct in6_addr));
3096                 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3097                 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3098                 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3099                 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3100                 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3101                 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3102                 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3103 
3104                 r = (void *) &r6;
3105         } else { /* ipv4 */
3106                 struct rtentry32 __user *ur4 = argp;
3107                 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3108                                         3 * sizeof(struct sockaddr));
3109                 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3110                 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3111                 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3112                 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3113                 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3114                 ret |= get_user(rtdev, &(ur4->rt_dev));
3115                 if (rtdev) {
3116                         ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3117                         r4.rt_dev = (char __user __force *)devname;
3118                         devname[15] = 0;
3119                 } else
3120                         r4.rt_dev = NULL;
3121 
3122                 r = (void *) &r4;
3123         }
3124 
3125         if (ret) {
3126                 ret = -EFAULT;
3127                 goto out;
3128         }
3129 
3130         set_fs(KERNEL_DS);
3131         ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3132         set_fs(old_fs);
3133 
3134 out:
3135         return ret;
3136 }
3137 
3138 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3139  * for some operations; this forces use of the newer bridge-utils that
3140  * use compatible ioctls
3141  */
3142 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3143 {
3144         compat_ulong_t tmp;
3145 
3146         if (get_user(tmp, argp))
3147                 return -EFAULT;
3148         if (tmp == BRCTL_GET_VERSION)
3149                 return BRCTL_VERSION + 1;
3150         return -EINVAL;
3151 }
3152 
3153 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3154                          unsigned int cmd, unsigned long arg)
3155 {
3156         void __user *argp = compat_ptr(arg);
3157         struct sock *sk = sock->sk;
3158         struct net *net = sock_net(sk);
3159 
3160         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3161                 return compat_ifr_data_ioctl(net, cmd, argp);
3162 
3163         switch (cmd) {
3164         case SIOCSIFBR:
3165         case SIOCGIFBR:
3166                 return old_bridge_ioctl(argp);
3167         case SIOCGIFCONF:
3168                 return compat_dev_ifconf(net, argp);
3169         case SIOCETHTOOL:
3170                 return ethtool_ioctl(net, argp);
3171         case SIOCWANDEV:
3172                 return compat_siocwandev(net, argp);
3173         case SIOCGIFMAP:
3174         case SIOCSIFMAP:
3175                 return compat_sioc_ifmap(net, cmd, argp);
3176         case SIOCADDRT:
3177         case SIOCDELRT:
3178                 return routing_ioctl(net, sock, cmd, argp);
3179         case SIOCGSTAMP:
3180                 return do_siocgstamp(net, sock, cmd, argp);
3181         case SIOCGSTAMPNS:
3182                 return do_siocgstampns(net, sock, cmd, argp);
3183         case SIOCBONDSLAVEINFOQUERY:
3184         case SIOCBONDINFOQUERY:
3185         case SIOCSHWTSTAMP:
3186         case SIOCGHWTSTAMP:
3187                 return compat_ifr_data_ioctl(net, cmd, argp);
3188 
3189         case FIOSETOWN:
3190         case SIOCSPGRP:
3191         case FIOGETOWN:
3192         case SIOCGPGRP:
3193         case SIOCBRADDBR:
3194         case SIOCBRDELBR:
3195         case SIOCGIFVLAN:
3196         case SIOCSIFVLAN:
3197         case SIOCADDDLCI:
3198         case SIOCDELDLCI:
3199         case SIOCGSKNS:
3200                 return sock_ioctl(file, cmd, arg);
3201 
3202         case SIOCGIFFLAGS:
3203         case SIOCSIFFLAGS:
3204         case SIOCGIFMETRIC:
3205         case SIOCSIFMETRIC:
3206         case SIOCGIFMTU:
3207         case SIOCSIFMTU:
3208         case SIOCGIFMEM:
3209         case SIOCSIFMEM:
3210         case SIOCGIFHWADDR:
3211         case SIOCSIFHWADDR:
3212         case SIOCADDMULTI:
3213         case SIOCDELMULTI:
3214         case SIOCGIFINDEX:
3215         case SIOCGIFADDR:
3216         case SIOCSIFADDR:
3217         case SIOCSIFHWBROADCAST:
3218         case SIOCDIFADDR:
3219         case SIOCGIFBRDADDR:
3220         case SIOCSIFBRDADDR:
3221         case SIOCGIFDSTADDR:
3222         case SIOCSIFDSTADDR:
3223         case SIOCGIFNETMASK:
3224         case SIOCSIFNETMASK:
3225         case SIOCSIFPFLAGS:
3226         case SIOCGIFPFLAGS:
3227         case SIOCGIFTXQLEN:
3228         case SIOCSIFTXQLEN:
3229         case SIOCBRADDIF:
3230         case SIOCBRDELIF:
3231         case SIOCGIFNAME:
3232         case SIOCSIFNAME:
3233         case SIOCGMIIPHY:
3234         case SIOCGMIIREG:
3235         case SIOCSMIIREG:
3236         case SIOCBONDENSLAVE:
3237         case SIOCBONDRELEASE:
3238         case SIOCBONDSETHWADDR:
3239         case SIOCBONDCHANGEACTIVE:
3240                 return compat_ifreq_ioctl(net, sock, cmd, argp);
3241 
3242         case SIOCSARP:
3243         case SIOCGARP:
3244         case SIOCDARP:
3245         case SIOCATMARK:
3246                 return sock_do_ioctl(net, sock, cmd, arg);
3247         }
3248 
3249         return -ENOIOCTLCMD;
3250 }
3251 
3252 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3253                               unsigned long arg)
3254 {
3255         struct socket *sock = file->private_data;
3256         int ret = -ENOIOCTLCMD;
3257         struct sock *sk;
3258         struct net *net;
3259 
3260         sk = sock->sk;
3261         net = sock_net(sk);
3262 
3263         if (sock->ops->compat_ioctl)
3264                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3265 
3266         if (ret == -ENOIOCTLCMD &&
3267             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3268                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3269 
3270         if (ret == -ENOIOCTLCMD)
3271                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3272 
3273         return ret;
3274 }
3275 #endif
3276 
3277 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3278 {
3279         return sock->ops->bind(sock, addr, addrlen);
3280 }
3281 EXPORT_SYMBOL(kernel_bind);
3282 
3283 int kernel_listen(struct socket *sock, int backlog)
3284 {
3285         return sock->ops->listen(sock, backlog);
3286 }
3287 EXPORT_SYMBOL(kernel_listen);
3288 
3289 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3290 {
3291         struct sock *sk = sock->sk;
3292         int err;
3293 
3294         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3295                                newsock);
3296         if (err < 0)
3297                 goto done;
3298 
3299         err = sock->ops->accept(sock, *newsock, flags, true);
3300         if (err < 0) {
3301                 sock_release(*newsock);
3302                 *newsock = NULL;
3303                 goto done;
3304         }
3305 
3306         (*newsock)->ops = sock->ops;
3307         __module_get((*newsock)->ops->owner);
3308 
3309 done:
3310         return err;
3311 }
3312 EXPORT_SYMBOL(kernel_accept);
3313 
3314 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3315                    int flags)
3316 {
3317         return sock->ops->connect(sock, addr, addrlen, flags);
3318 }
3319 EXPORT_SYMBOL(kernel_connect);
3320 
3321 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3322 {
3323         return sock->ops->getname(sock, addr, 0);
3324 }
3325 EXPORT_SYMBOL(kernel_getsockname);
3326 
3327 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3328 {
3329         return sock->ops->getname(sock, addr, 1);
3330 }
3331 EXPORT_SYMBOL(kernel_getpeername);
3332 
3333 int kernel_getsockopt(struct socket *sock, int level, int optname,
3334                         char *optval, int *optlen)
3335 {
3336         mm_segment_t oldfs = get_fs();
3337         char __user *uoptval;
3338         int __user *uoptlen;
3339         int err;
3340 
3341         uoptval = (char __user __force *) optval;
3342         uoptlen = (int __user __force *) optlen;
3343 
3344         set_fs(KERNEL_DS);
3345         if (level == SOL_SOCKET)
3346                 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3347         else
3348                 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3349                                             uoptlen);
3350         set_fs(oldfs);
3351         return err;
3352 }
3353 EXPORT_SYMBOL(kernel_getsockopt);
3354 
3355 int kernel_setsockopt(struct socket *sock, int level, int optname,
3356                         char *optval, unsigned int optlen)
3357 {
3358         mm_segment_t oldfs = get_fs();
3359         char __user *uoptval;
3360         int err;
3361 
3362         uoptval = (char __user __force *) optval;
3363 
3364         set_fs(KERNEL_DS);
3365         if (level == SOL_SOCKET)
3366                 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3367         else
3368                 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3369                                             optlen);
3370         set_fs(oldfs);
3371         return err;
3372 }
3373 EXPORT_SYMBOL(kernel_setsockopt);
3374 
3375 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3376                     size_t size, int flags)
3377 {
3378         if (sock->ops->sendpage)
3379                 return sock->ops->sendpage(sock, page, offset, size, flags);
3380 
3381         return sock_no_sendpage(sock, page, offset, size, flags);
3382 }
3383 EXPORT_SYMBOL(kernel_sendpage);
3384 
3385 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3386                            size_t size, int flags)
3387 {
3388         struct socket *sock = sk->sk_socket;
3389 
3390         if (sock->ops->sendpage_locked)
3391                 return sock->ops->sendpage_locked(sk, page, offset, size,
3392                                                   flags);
3393 
3394         return sock_no_sendpage_locked(sk, page, offset, size, flags);
3395 }
3396 EXPORT_SYMBOL(kernel_sendpage_locked);
3397 
3398 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3399 {
3400         return sock->ops->shutdown(sock, how);
3401 }
3402 EXPORT_SYMBOL(kernel_sock_shutdown);
3403 
3404 /* This routine returns the IP overhead imposed by a socket i.e.
3405  * the length of the underlying IP header, depending on whether
3406  * this is an IPv4 or IPv6 socket and the length from IP options turned
3407  * on at the socket. Assumes that the caller has a lock on the socket.
3408  */
3409 u32 kernel_sock_ip_overhead(struct sock *sk)
3410 {
3411         struct inet_sock *inet;
3412         struct ip_options_rcu *opt;
3413         u32 overhead = 0;
3414 #if IS_ENABLED(CONFIG_IPV6)
3415         struct ipv6_pinfo *np;
3416         struct ipv6_txoptions *optv6 = NULL;
3417 #endif /* IS_ENABLED(CONFIG_IPV6) */
3418 
3419         if (!sk)
3420                 return overhead;
3421 
3422         switch (sk->sk_family) {
3423         case AF_INET:
3424                 inet = inet_sk(sk);
3425                 overhead += sizeof(struct iphdr);
3426                 opt = rcu_dereference_protected(inet->inet_opt,
3427                                                 sock_owned_by_user(sk));
3428                 if (opt)
3429                         overhead += opt->opt.optlen;
3430                 return overhead;
3431 #if IS_ENABLED(CONFIG_IPV6)
3432         case AF_INET6:
3433                 np = inet6_sk(sk);
3434                 overhead += sizeof(struct ipv6hdr);
3435                 if (np)
3436                         optv6 = rcu_dereference_protected(np->opt,
3437                                                           sock_owned_by_user(sk));
3438                 if (optv6)
3439                         overhead += (optv6->opt_flen + optv6->opt_nflen);
3440                 return overhead;
3441 #endif /* IS_ENABLED(CONFIG_IPV6) */
3442         default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3443                 return overhead;
3444         }
3445 }
3446 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3447 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp