1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 324 int flags, const char *dev_name, void *data) 325 { 326 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 327 &sockfs_dentry_operations, SOCKFS_MAGIC); 328 } 329 330 static struct vfsmount *sock_mnt __read_mostly; 331 332 static struct file_system_type sock_fs_type = { 333 .name = "sockfs", 334 .mount = sockfs_mount, 335 .kill_sb = kill_anon_super, 336 }; 337 338 /* 339 * Obtains the first available file descriptor and sets it up for use. 340 * 341 * These functions create file structures and maps them to fd space 342 * of the current process. On success it returns file descriptor 343 * and file struct implicitly stored in sock->file. 344 * Note that another thread may close file descriptor before we return 345 * from this function. We use the fact that now we do not refer 346 * to socket after mapping. If one day we will need it, this 347 * function will increment ref. count on file by 1. 348 * 349 * In any case returned fd MAY BE not valid! 350 * This race condition is unavoidable 351 * with shared fd spaces, we cannot solve it inside kernel, 352 * but we take care of internal coherence yet. 353 */ 354 355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 356 { 357 struct qstr name = { .name = "" }; 358 struct path path; 359 struct file *file; 360 361 if (dname) { 362 name.name = dname; 363 name.len = strlen(name.name); 364 } else if (sock->sk) { 365 name.name = sock->sk->sk_prot_creator->name; 366 name.len = strlen(name.name); 367 } 368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 369 if (unlikely(!path.dentry)) 370 return ERR_PTR(-ENOMEM); 371 path.mnt = mntget(sock_mnt); 372 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 376 &socket_file_ops); 377 if (IS_ERR(file)) { 378 /* drop dentry, keep inode */ 379 ihold(d_inode(path.dentry)); 380 path_put(&path); 381 return file; 382 } 383 384 sock->file = file; 385 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 386 file->private_data = sock; 387 return file; 388 } 389 EXPORT_SYMBOL(sock_alloc_file); 390 391 static int sock_map_fd(struct socket *sock, int flags) 392 { 393 struct file *newfile; 394 int fd = get_unused_fd_flags(flags); 395 if (unlikely(fd < 0)) 396 return fd; 397 398 newfile = sock_alloc_file(sock, flags, NULL); 399 if (likely(!IS_ERR(newfile))) { 400 fd_install(fd, newfile); 401 return fd; 402 } 403 404 put_unused_fd(fd); 405 return PTR_ERR(newfile); 406 } 407 408 struct socket *sock_from_file(struct file *file, int *err) 409 { 410 if (file->f_op == &socket_file_ops) 411 return file->private_data; /* set in sock_map_fd */ 412 413 *err = -ENOTSOCK; 414 return NULL; 415 } 416 EXPORT_SYMBOL(sock_from_file); 417 418 /** 419 * sockfd_lookup - Go from a file number to its socket slot 420 * @fd: file handle 421 * @err: pointer to an error code return 422 * 423 * The file handle passed in is locked and the socket it is bound 424 * too is returned. If an error occurs the err pointer is overwritten 425 * with a negative errno code and NULL is returned. The function checks 426 * for both invalid handles and passing a handle which is not a socket. 427 * 428 * On a success the socket object pointer is returned. 429 */ 430 431 struct socket *sockfd_lookup(int fd, int *err) 432 { 433 struct file *file; 434 struct socket *sock; 435 436 file = fget(fd); 437 if (!file) { 438 *err = -EBADF; 439 return NULL; 440 } 441 442 sock = sock_from_file(file, err); 443 if (!sock) 444 fput(file); 445 return sock; 446 } 447 EXPORT_SYMBOL(sockfd_lookup); 448 449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 450 { 451 struct fd f = fdget(fd); 452 struct socket *sock; 453 454 *err = -EBADF; 455 if (f.file) { 456 sock = sock_from_file(f.file, err); 457 if (likely(sock)) { 458 *fput_needed = f.flags; 459 return sock; 460 } 461 fdput(f); 462 } 463 return NULL; 464 } 465 466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 469 static ssize_t sockfs_getxattr(struct dentry *dentry, 470 const char *name, void *value, size_t size) 471 { 472 const char *proto_name; 473 size_t proto_size; 474 int error; 475 476 error = -ENODATA; 477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 478 proto_name = dentry->d_name.name; 479 proto_size = strlen(proto_name); 480 481 if (value) { 482 error = -ERANGE; 483 if (proto_size + 1 > size) 484 goto out; 485 486 strncpy(value, proto_name, proto_size + 1); 487 } 488 error = proto_size + 1; 489 } 490 491 out: 492 return error; 493 } 494 495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 496 size_t size) 497 { 498 ssize_t len; 499 ssize_t used = 0; 500 501 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 502 if (len < 0) 503 return len; 504 used += len; 505 if (buffer) { 506 if (size < used) 507 return -ERANGE; 508 buffer += len; 509 } 510 511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 512 used += len; 513 if (buffer) { 514 if (size < used) 515 return -ERANGE; 516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 517 buffer += len; 518 } 519 520 return used; 521 } 522 523 static const struct inode_operations sockfs_inode_ops = { 524 .getxattr = sockfs_getxattr, 525 .listxattr = sockfs_listxattr, 526 }; 527 528 /** 529 * sock_alloc - allocate a socket 530 * 531 * Allocate a new inode and socket object. The two are bound together 532 * and initialised. The socket is then returned. If we are out of inodes 533 * NULL is returned. 534 */ 535 536 struct socket *sock_alloc(void) 537 { 538 struct inode *inode; 539 struct socket *sock; 540 541 inode = new_inode_pseudo(sock_mnt->mnt_sb); 542 if (!inode) 543 return NULL; 544 545 sock = SOCKET_I(inode); 546 547 kmemcheck_annotate_bitfield(sock, type); 548 inode->i_ino = get_next_ino(); 549 inode->i_mode = S_IFSOCK | S_IRWXUGO; 550 inode->i_uid = current_fsuid(); 551 inode->i_gid = current_fsgid(); 552 inode->i_op = &sockfs_inode_ops; 553 554 this_cpu_add(sockets_in_use, 1); 555 return sock; 556 } 557 EXPORT_SYMBOL(sock_alloc); 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 this_cpu_sub(sockets_in_use, 1); 582 if (!sock->file) { 583 iput(SOCK_INODE(sock)); 584 return; 585 } 586 sock->file = NULL; 587 } 588 EXPORT_SYMBOL(sock_release); 589 590 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 591 { 592 u8 flags = *tx_flags; 593 594 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 595 flags |= SKBTX_HW_TSTAMP; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 598 flags |= SKBTX_SW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 601 flags |= SKBTX_SCHED_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 604 flags |= SKBTX_ACK_TSTAMP; 605 606 *tx_flags = flags; 607 } 608 EXPORT_SYMBOL(__sock_tx_timestamp); 609 610 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 611 { 612 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 613 BUG_ON(ret == -EIOCBQUEUED); 614 return ret; 615 } 616 617 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 618 { 619 int err = security_socket_sendmsg(sock, msg, 620 msg_data_left(msg)); 621 622 return err ?: sock_sendmsg_nosec(sock, msg); 623 } 624 EXPORT_SYMBOL(sock_sendmsg); 625 626 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 627 struct kvec *vec, size_t num, size_t size) 628 { 629 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 630 return sock_sendmsg(sock, msg); 631 } 632 EXPORT_SYMBOL(kernel_sendmsg); 633 634 /* 635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 636 */ 637 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 638 struct sk_buff *skb) 639 { 640 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 641 struct scm_timestamping tss; 642 int empty = 1; 643 struct skb_shared_hwtstamps *shhwtstamps = 644 skb_hwtstamps(skb); 645 646 /* Race occurred between timestamp enabling and packet 647 receiving. Fill in the current time for now. */ 648 if (need_software_tstamp && skb->tstamp.tv64 == 0) 649 __net_timestamp(skb); 650 651 if (need_software_tstamp) { 652 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 653 struct timeval tv; 654 skb_get_timestamp(skb, &tv); 655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 656 sizeof(tv), &tv); 657 } else { 658 struct timespec ts; 659 skb_get_timestampns(skb, &ts); 660 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 661 sizeof(ts), &ts); 662 } 663 } 664 665 memset(&tss, 0, sizeof(tss)); 666 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 667 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 668 empty = 0; 669 if (shhwtstamps && 670 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 671 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 672 empty = 0; 673 if (!empty) 674 put_cmsg(msg, SOL_SOCKET, 675 SCM_TIMESTAMPING, sizeof(tss), &tss); 676 } 677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 678 679 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 680 struct sk_buff *skb) 681 { 682 int ack; 683 684 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 685 return; 686 if (!skb->wifi_acked_valid) 687 return; 688 689 ack = skb->wifi_acked; 690 691 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 692 } 693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 694 695 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 696 struct sk_buff *skb) 697 { 698 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 699 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 700 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 701 } 702 703 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 704 struct sk_buff *skb) 705 { 706 sock_recv_timestamp(msg, sk, skb); 707 sock_recv_drops(msg, sk, skb); 708 } 709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 710 711 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 712 size_t size, int flags) 713 { 714 return sock->ops->recvmsg(sock, msg, size, flags); 715 } 716 717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 718 int flags) 719 { 720 int err = security_socket_recvmsg(sock, msg, size, flags); 721 722 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 723 } 724 EXPORT_SYMBOL(sock_recvmsg); 725 726 /** 727 * kernel_recvmsg - Receive a message from a socket (kernel space) 728 * @sock: The socket to receive the message from 729 * @msg: Received message 730 * @vec: Input s/g array for message data 731 * @num: Size of input s/g array 732 * @size: Number of bytes to read 733 * @flags: Message flags (MSG_DONTWAIT, etc...) 734 * 735 * On return the msg structure contains the scatter/gather array passed in the 736 * vec argument. The array is modified so that it consists of the unfilled 737 * portion of the original array. 738 * 739 * The returned value is the total number of bytes received, or an error. 740 */ 741 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 742 struct kvec *vec, size_t num, size_t size, int flags) 743 { 744 mm_segment_t oldfs = get_fs(); 745 int result; 746 747 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 748 set_fs(KERNEL_DS); 749 result = sock_recvmsg(sock, msg, size, flags); 750 set_fs(oldfs); 751 return result; 752 } 753 EXPORT_SYMBOL(kernel_recvmsg); 754 755 static ssize_t sock_sendpage(struct file *file, struct page *page, 756 int offset, size_t size, loff_t *ppos, int more) 757 { 758 struct socket *sock; 759 int flags; 760 761 sock = file->private_data; 762 763 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 764 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 765 flags |= more; 766 767 return kernel_sendpage(sock, page, offset, size, flags); 768 } 769 770 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 771 struct pipe_inode_info *pipe, size_t len, 772 unsigned int flags) 773 { 774 struct socket *sock = file->private_data; 775 776 if (unlikely(!sock->ops->splice_read)) 777 return -EINVAL; 778 779 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 780 } 781 782 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 783 { 784 struct file *file = iocb->ki_filp; 785 struct socket *sock = file->private_data; 786 struct msghdr msg = {.msg_iter = *to, 787 .msg_iocb = iocb}; 788 ssize_t res; 789 790 if (file->f_flags & O_NONBLOCK) 791 msg.msg_flags = MSG_DONTWAIT; 792 793 if (iocb->ki_pos != 0) 794 return -ESPIPE; 795 796 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 797 return 0; 798 799 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 800 *to = msg.msg_iter; 801 return res; 802 } 803 804 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 805 { 806 struct file *file = iocb->ki_filp; 807 struct socket *sock = file->private_data; 808 struct msghdr msg = {.msg_iter = *from, 809 .msg_iocb = iocb}; 810 ssize_t res; 811 812 if (iocb->ki_pos != 0) 813 return -ESPIPE; 814 815 if (file->f_flags & O_NONBLOCK) 816 msg.msg_flags = MSG_DONTWAIT; 817 818 if (sock->type == SOCK_SEQPACKET) 819 msg.msg_flags |= MSG_EOR; 820 821 res = sock_sendmsg(sock, &msg); 822 *from = msg.msg_iter; 823 return res; 824 } 825 826 /* 827 * Atomic setting of ioctl hooks to avoid race 828 * with module unload. 829 */ 830 831 static DEFINE_MUTEX(br_ioctl_mutex); 832 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 833 834 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 835 { 836 mutex_lock(&br_ioctl_mutex); 837 br_ioctl_hook = hook; 838 mutex_unlock(&br_ioctl_mutex); 839 } 840 EXPORT_SYMBOL(brioctl_set); 841 842 static DEFINE_MUTEX(vlan_ioctl_mutex); 843 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 844 845 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 846 { 847 mutex_lock(&vlan_ioctl_mutex); 848 vlan_ioctl_hook = hook; 849 mutex_unlock(&vlan_ioctl_mutex); 850 } 851 EXPORT_SYMBOL(vlan_ioctl_set); 852 853 static DEFINE_MUTEX(dlci_ioctl_mutex); 854 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 855 856 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 857 { 858 mutex_lock(&dlci_ioctl_mutex); 859 dlci_ioctl_hook = hook; 860 mutex_unlock(&dlci_ioctl_mutex); 861 } 862 EXPORT_SYMBOL(dlci_ioctl_set); 863 864 static long sock_do_ioctl(struct net *net, struct socket *sock, 865 unsigned int cmd, unsigned long arg) 866 { 867 int err; 868 void __user *argp = (void __user *)arg; 869 870 err = sock->ops->ioctl(sock, cmd, arg); 871 872 /* 873 * If this ioctl is unknown try to hand it down 874 * to the NIC driver. 875 */ 876 if (err == -ENOIOCTLCMD) 877 err = dev_ioctl(net, cmd, argp); 878 879 return err; 880 } 881 882 /* 883 * With an ioctl, arg may well be a user mode pointer, but we don't know 884 * what to do with it - that's up to the protocol still. 885 */ 886 887 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 888 { 889 struct socket *sock; 890 struct sock *sk; 891 void __user *argp = (void __user *)arg; 892 int pid, err; 893 struct net *net; 894 895 sock = file->private_data; 896 sk = sock->sk; 897 net = sock_net(sk); 898 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 899 err = dev_ioctl(net, cmd, argp); 900 } else 901 #ifdef CONFIG_WEXT_CORE 902 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 903 err = dev_ioctl(net, cmd, argp); 904 } else 905 #endif 906 switch (cmd) { 907 case FIOSETOWN: 908 case SIOCSPGRP: 909 err = -EFAULT; 910 if (get_user(pid, (int __user *)argp)) 911 break; 912 f_setown(sock->file, pid, 1); 913 err = 0; 914 break; 915 case FIOGETOWN: 916 case SIOCGPGRP: 917 err = put_user(f_getown(sock->file), 918 (int __user *)argp); 919 break; 920 case SIOCGIFBR: 921 case SIOCSIFBR: 922 case SIOCBRADDBR: 923 case SIOCBRDELBR: 924 err = -ENOPKG; 925 if (!br_ioctl_hook) 926 request_module("bridge"); 927 928 mutex_lock(&br_ioctl_mutex); 929 if (br_ioctl_hook) 930 err = br_ioctl_hook(net, cmd, argp); 931 mutex_unlock(&br_ioctl_mutex); 932 break; 933 case SIOCGIFVLAN: 934 case SIOCSIFVLAN: 935 err = -ENOPKG; 936 if (!vlan_ioctl_hook) 937 request_module("8021q"); 938 939 mutex_lock(&vlan_ioctl_mutex); 940 if (vlan_ioctl_hook) 941 err = vlan_ioctl_hook(net, argp); 942 mutex_unlock(&vlan_ioctl_mutex); 943 break; 944 case SIOCADDDLCI: 945 case SIOCDELDLCI: 946 err = -ENOPKG; 947 if (!dlci_ioctl_hook) 948 request_module("dlci"); 949 950 mutex_lock(&dlci_ioctl_mutex); 951 if (dlci_ioctl_hook) 952 err = dlci_ioctl_hook(cmd, argp); 953 mutex_unlock(&dlci_ioctl_mutex); 954 break; 955 default: 956 err = sock_do_ioctl(net, sock, cmd, arg); 957 break; 958 } 959 return err; 960 } 961 962 int sock_create_lite(int family, int type, int protocol, struct socket **res) 963 { 964 int err; 965 struct socket *sock = NULL; 966 967 err = security_socket_create(family, type, protocol, 1); 968 if (err) 969 goto out; 970 971 sock = sock_alloc(); 972 if (!sock) { 973 err = -ENOMEM; 974 goto out; 975 } 976 977 sock->type = type; 978 err = security_socket_post_create(sock, family, type, protocol, 1); 979 if (err) 980 goto out_release; 981 982 out: 983 *res = sock; 984 return err; 985 out_release: 986 sock_release(sock); 987 sock = NULL; 988 goto out; 989 } 990 EXPORT_SYMBOL(sock_create_lite); 991 992 /* No kernel lock held - perfect */ 993 static unsigned int sock_poll(struct file *file, poll_table *wait) 994 { 995 unsigned int busy_flag = 0; 996 struct socket *sock; 997 998 /* 999 * We can't return errors to poll, so it's either yes or no. 1000 */ 1001 sock = file->private_data; 1002 1003 if (sk_can_busy_loop(sock->sk)) { 1004 /* this socket can poll_ll so tell the system call */ 1005 busy_flag = POLL_BUSY_LOOP; 1006 1007 /* once, only if requested by syscall */ 1008 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1009 sk_busy_loop(sock->sk, 1); 1010 } 1011 1012 return busy_flag | sock->ops->poll(file, sock, wait); 1013 } 1014 1015 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1016 { 1017 struct socket *sock = file->private_data; 1018 1019 return sock->ops->mmap(file, sock, vma); 1020 } 1021 1022 static int sock_close(struct inode *inode, struct file *filp) 1023 { 1024 sock_release(SOCKET_I(inode)); 1025 return 0; 1026 } 1027 1028 /* 1029 * Update the socket async list 1030 * 1031 * Fasync_list locking strategy. 1032 * 1033 * 1. fasync_list is modified only under process context socket lock 1034 * i.e. under semaphore. 1035 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1036 * or under socket lock 1037 */ 1038 1039 static int sock_fasync(int fd, struct file *filp, int on) 1040 { 1041 struct socket *sock = filp->private_data; 1042 struct sock *sk = sock->sk; 1043 struct socket_wq *wq; 1044 1045 if (sk == NULL) 1046 return -EINVAL; 1047 1048 lock_sock(sk); 1049 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1050 fasync_helper(fd, filp, on, &wq->fasync_list); 1051 1052 if (!wq->fasync_list) 1053 sock_reset_flag(sk, SOCK_FASYNC); 1054 else 1055 sock_set_flag(sk, SOCK_FASYNC); 1056 1057 release_sock(sk); 1058 return 0; 1059 } 1060 1061 /* This function may be called only under rcu_lock */ 1062 1063 int sock_wake_async(struct socket_wq *wq, int how, int band) 1064 { 1065 if (!wq || !wq->fasync_list) 1066 return -1; 1067 1068 switch (how) { 1069 case SOCK_WAKE_WAITD: 1070 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1071 break; 1072 goto call_kill; 1073 case SOCK_WAKE_SPACE: 1074 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1075 break; 1076 /* fall through */ 1077 case SOCK_WAKE_IO: 1078 call_kill: 1079 kill_fasync(&wq->fasync_list, SIGIO, band); 1080 break; 1081 case SOCK_WAKE_URG: 1082 kill_fasync(&wq->fasync_list, SIGURG, band); 1083 } 1084 1085 return 0; 1086 } 1087 EXPORT_SYMBOL(sock_wake_async); 1088 1089 int __sock_create(struct net *net, int family, int type, int protocol, 1090 struct socket **res, int kern) 1091 { 1092 int err; 1093 struct socket *sock; 1094 const struct net_proto_family *pf; 1095 1096 /* 1097 * Check protocol is in range 1098 */ 1099 if (family < 0 || family >= NPROTO) 1100 return -EAFNOSUPPORT; 1101 if (type < 0 || type >= SOCK_MAX) 1102 return -EINVAL; 1103 1104 /* Compatibility. 1105 1106 This uglymoron is moved from INET layer to here to avoid 1107 deadlock in module load. 1108 */ 1109 if (family == PF_INET && type == SOCK_PACKET) { 1110 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1111 current->comm); 1112 family = PF_PACKET; 1113 } 1114 1115 err = security_socket_create(family, type, protocol, kern); 1116 if (err) 1117 return err; 1118 1119 /* 1120 * Allocate the socket and allow the family to set things up. if 1121 * the protocol is 0, the family is instructed to select an appropriate 1122 * default. 1123 */ 1124 sock = sock_alloc(); 1125 if (!sock) { 1126 net_warn_ratelimited("socket: no more sockets\n"); 1127 return -ENFILE; /* Not exactly a match, but its the 1128 closest posix thing */ 1129 } 1130 1131 sock->type = type; 1132 1133 #ifdef CONFIG_MODULES 1134 /* Attempt to load a protocol module if the find failed. 1135 * 1136 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1137 * requested real, full-featured networking support upon configuration. 1138 * Otherwise module support will break! 1139 */ 1140 if (rcu_access_pointer(net_families[family]) == NULL) 1141 request_module("net-pf-%d", family); 1142 #endif 1143 1144 rcu_read_lock(); 1145 pf = rcu_dereference(net_families[family]); 1146 err = -EAFNOSUPPORT; 1147 if (!pf) 1148 goto out_release; 1149 1150 /* 1151 * We will call the ->create function, that possibly is in a loadable 1152 * module, so we have to bump that loadable module refcnt first. 1153 */ 1154 if (!try_module_get(pf->owner)) 1155 goto out_release; 1156 1157 /* Now protected by module ref count */ 1158 rcu_read_unlock(); 1159 1160 err = pf->create(net, sock, protocol, kern); 1161 if (err < 0) 1162 goto out_module_put; 1163 1164 /* 1165 * Now to bump the refcnt of the [loadable] module that owns this 1166 * socket at sock_release time we decrement its refcnt. 1167 */ 1168 if (!try_module_get(sock->ops->owner)) 1169 goto out_module_busy; 1170 1171 /* 1172 * Now that we're done with the ->create function, the [loadable] 1173 * module can have its refcnt decremented 1174 */ 1175 module_put(pf->owner); 1176 err = security_socket_post_create(sock, family, type, protocol, kern); 1177 if (err) 1178 goto out_sock_release; 1179 *res = sock; 1180 1181 return 0; 1182 1183 out_module_busy: 1184 err = -EAFNOSUPPORT; 1185 out_module_put: 1186 sock->ops = NULL; 1187 module_put(pf->owner); 1188 out_sock_release: 1189 sock_release(sock); 1190 return err; 1191 1192 out_release: 1193 rcu_read_unlock(); 1194 goto out_sock_release; 1195 } 1196 EXPORT_SYMBOL(__sock_create); 1197 1198 int sock_create(int family, int type, int protocol, struct socket **res) 1199 { 1200 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1201 } 1202 EXPORT_SYMBOL(sock_create); 1203 1204 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1205 { 1206 return __sock_create(net, family, type, protocol, res, 1); 1207 } 1208 EXPORT_SYMBOL(sock_create_kern); 1209 1210 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1211 { 1212 int retval; 1213 struct socket *sock; 1214 int flags; 1215 1216 /* Check the SOCK_* constants for consistency. */ 1217 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1218 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1219 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1220 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1221 1222 flags = type & ~SOCK_TYPE_MASK; 1223 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1224 return -EINVAL; 1225 type &= SOCK_TYPE_MASK; 1226 1227 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1228 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1229 1230 retval = sock_create(family, type, protocol, &sock); 1231 if (retval < 0) 1232 goto out; 1233 1234 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1235 if (retval < 0) 1236 goto out_release; 1237 1238 out: 1239 /* It may be already another descriptor 8) Not kernel problem. */ 1240 return retval; 1241 1242 out_release: 1243 sock_release(sock); 1244 return retval; 1245 } 1246 1247 /* 1248 * Create a pair of connected sockets. 1249 */ 1250 1251 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1252 int __user *, usockvec) 1253 { 1254 struct socket *sock1, *sock2; 1255 int fd1, fd2, err; 1256 struct file *newfile1, *newfile2; 1257 int flags; 1258 1259 flags = type & ~SOCK_TYPE_MASK; 1260 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1261 return -EINVAL; 1262 type &= SOCK_TYPE_MASK; 1263 1264 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1265 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1266 1267 /* 1268 * Obtain the first socket and check if the underlying protocol 1269 * supports the socketpair call. 1270 */ 1271 1272 err = sock_create(family, type, protocol, &sock1); 1273 if (err < 0) 1274 goto out; 1275 1276 err = sock_create(family, type, protocol, &sock2); 1277 if (err < 0) 1278 goto out_release_1; 1279 1280 err = sock1->ops->socketpair(sock1, sock2); 1281 if (err < 0) 1282 goto out_release_both; 1283 1284 fd1 = get_unused_fd_flags(flags); 1285 if (unlikely(fd1 < 0)) { 1286 err = fd1; 1287 goto out_release_both; 1288 } 1289 1290 fd2 = get_unused_fd_flags(flags); 1291 if (unlikely(fd2 < 0)) { 1292 err = fd2; 1293 goto out_put_unused_1; 1294 } 1295 1296 newfile1 = sock_alloc_file(sock1, flags, NULL); 1297 if (IS_ERR(newfile1)) { 1298 err = PTR_ERR(newfile1); 1299 goto out_put_unused_both; 1300 } 1301 1302 newfile2 = sock_alloc_file(sock2, flags, NULL); 1303 if (IS_ERR(newfile2)) { 1304 err = PTR_ERR(newfile2); 1305 goto out_fput_1; 1306 } 1307 1308 err = put_user(fd1, &usockvec[0]); 1309 if (err) 1310 goto out_fput_both; 1311 1312 err = put_user(fd2, &usockvec[1]); 1313 if (err) 1314 goto out_fput_both; 1315 1316 audit_fd_pair(fd1, fd2); 1317 1318 fd_install(fd1, newfile1); 1319 fd_install(fd2, newfile2); 1320 /* fd1 and fd2 may be already another descriptors. 1321 * Not kernel problem. 1322 */ 1323 1324 return 0; 1325 1326 out_fput_both: 1327 fput(newfile2); 1328 fput(newfile1); 1329 put_unused_fd(fd2); 1330 put_unused_fd(fd1); 1331 goto out; 1332 1333 out_fput_1: 1334 fput(newfile1); 1335 put_unused_fd(fd2); 1336 put_unused_fd(fd1); 1337 sock_release(sock2); 1338 goto out; 1339 1340 out_put_unused_both: 1341 put_unused_fd(fd2); 1342 out_put_unused_1: 1343 put_unused_fd(fd1); 1344 out_release_both: 1345 sock_release(sock2); 1346 out_release_1: 1347 sock_release(sock1); 1348 out: 1349 return err; 1350 } 1351 1352 /* 1353 * Bind a name to a socket. Nothing much to do here since it's 1354 * the protocol's responsibility to handle the local address. 1355 * 1356 * We move the socket address to kernel space before we call 1357 * the protocol layer (having also checked the address is ok). 1358 */ 1359 1360 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1361 { 1362 struct socket *sock; 1363 struct sockaddr_storage address; 1364 int err, fput_needed; 1365 1366 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1367 if (sock) { 1368 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1369 if (err >= 0) { 1370 err = security_socket_bind(sock, 1371 (struct sockaddr *)&address, 1372 addrlen); 1373 if (!err) 1374 err = sock->ops->bind(sock, 1375 (struct sockaddr *) 1376 &address, addrlen); 1377 } 1378 fput_light(sock->file, fput_needed); 1379 } 1380 return err; 1381 } 1382 1383 /* 1384 * Perform a listen. Basically, we allow the protocol to do anything 1385 * necessary for a listen, and if that works, we mark the socket as 1386 * ready for listening. 1387 */ 1388 1389 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1390 { 1391 struct socket *sock; 1392 int err, fput_needed; 1393 int somaxconn; 1394 1395 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1396 if (sock) { 1397 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1398 if ((unsigned int)backlog > somaxconn) 1399 backlog = somaxconn; 1400 1401 err = security_socket_listen(sock, backlog); 1402 if (!err) 1403 err = sock->ops->listen(sock, backlog); 1404 1405 fput_light(sock->file, fput_needed); 1406 } 1407 return err; 1408 } 1409 1410 /* 1411 * For accept, we attempt to create a new socket, set up the link 1412 * with the client, wake up the client, then return the new 1413 * connected fd. We collect the address of the connector in kernel 1414 * space and move it to user at the very end. This is unclean because 1415 * we open the socket then return an error. 1416 * 1417 * 1003.1g adds the ability to recvmsg() to query connection pending 1418 * status to recvmsg. We need to add that support in a way thats 1419 * clean when we restucture accept also. 1420 */ 1421 1422 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1423 int __user *, upeer_addrlen, int, flags) 1424 { 1425 struct socket *sock, *newsock; 1426 struct file *newfile; 1427 int err, len, newfd, fput_needed; 1428 struct sockaddr_storage address; 1429 1430 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1431 return -EINVAL; 1432 1433 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1434 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1435 1436 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1437 if (!sock) 1438 goto out; 1439 1440 err = -ENFILE; 1441 newsock = sock_alloc(); 1442 if (!newsock) 1443 goto out_put; 1444 1445 newsock->type = sock->type; 1446 newsock->ops = sock->ops; 1447 1448 /* 1449 * We don't need try_module_get here, as the listening socket (sock) 1450 * has the protocol module (sock->ops->owner) held. 1451 */ 1452 __module_get(newsock->ops->owner); 1453 1454 newfd = get_unused_fd_flags(flags); 1455 if (unlikely(newfd < 0)) { 1456 err = newfd; 1457 sock_release(newsock); 1458 goto out_put; 1459 } 1460 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1461 if (IS_ERR(newfile)) { 1462 err = PTR_ERR(newfile); 1463 put_unused_fd(newfd); 1464 sock_release(newsock); 1465 goto out_put; 1466 } 1467 1468 err = security_socket_accept(sock, newsock); 1469 if (err) 1470 goto out_fd; 1471 1472 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1473 if (err < 0) 1474 goto out_fd; 1475 1476 if (ccs_socket_post_accept_permission(sock, newsock)) { 1477 err = -EAGAIN; /* Hope less harmful than -EPERM. */ 1478 goto out_fd; 1479 } 1480 if (upeer_sockaddr) { 1481 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1482 &len, 2) < 0) { 1483 err = -ECONNABORTED; 1484 goto out_fd; 1485 } 1486 err = move_addr_to_user(&address, 1487 len, upeer_sockaddr, upeer_addrlen); 1488 if (err < 0) 1489 goto out_fd; 1490 } 1491 1492 /* File flags are not inherited via accept() unlike another OSes. */ 1493 1494 fd_install(newfd, newfile); 1495 err = newfd; 1496 1497 out_put: 1498 fput_light(sock->file, fput_needed); 1499 out: 1500 return err; 1501 out_fd: 1502 fput(newfile); 1503 put_unused_fd(newfd); 1504 goto out_put; 1505 } 1506 1507 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1508 int __user *, upeer_addrlen) 1509 { 1510 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1511 } 1512 1513 /* 1514 * Attempt to connect to a socket with the server address. The address 1515 * is in user space so we verify it is OK and move it to kernel space. 1516 * 1517 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1518 * break bindings 1519 * 1520 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1521 * other SEQPACKET protocols that take time to connect() as it doesn't 1522 * include the -EINPROGRESS status for such sockets. 1523 */ 1524 1525 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1526 int, addrlen) 1527 { 1528 struct socket *sock; 1529 struct sockaddr_storage address; 1530 int err, fput_needed; 1531 1532 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1533 if (!sock) 1534 goto out; 1535 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1536 if (err < 0) 1537 goto out_put; 1538 1539 err = 1540 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1541 if (err) 1542 goto out_put; 1543 1544 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1545 sock->file->f_flags); 1546 out_put: 1547 fput_light(sock->file, fput_needed); 1548 out: 1549 return err; 1550 } 1551 1552 /* 1553 * Get the local address ('name') of a socket object. Move the obtained 1554 * name to user space. 1555 */ 1556 1557 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1558 int __user *, usockaddr_len) 1559 { 1560 struct socket *sock; 1561 struct sockaddr_storage address; 1562 int len, err, fput_needed; 1563 1564 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1565 if (!sock) 1566 goto out; 1567 1568 err = security_socket_getsockname(sock); 1569 if (err) 1570 goto out_put; 1571 1572 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1573 if (err) 1574 goto out_put; 1575 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1576 1577 out_put: 1578 fput_light(sock->file, fput_needed); 1579 out: 1580 return err; 1581 } 1582 1583 /* 1584 * Get the remote address ('name') of a socket object. Move the obtained 1585 * name to user space. 1586 */ 1587 1588 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1589 int __user *, usockaddr_len) 1590 { 1591 struct socket *sock; 1592 struct sockaddr_storage address; 1593 int len, err, fput_needed; 1594 1595 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1596 if (sock != NULL) { 1597 err = security_socket_getpeername(sock); 1598 if (err) { 1599 fput_light(sock->file, fput_needed); 1600 return err; 1601 } 1602 1603 err = 1604 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1605 1); 1606 if (!err) 1607 err = move_addr_to_user(&address, len, usockaddr, 1608 usockaddr_len); 1609 fput_light(sock->file, fput_needed); 1610 } 1611 return err; 1612 } 1613 1614 /* 1615 * Send a datagram to a given address. We move the address into kernel 1616 * space and check the user space data area is readable before invoking 1617 * the protocol. 1618 */ 1619 1620 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1621 unsigned int, flags, struct sockaddr __user *, addr, 1622 int, addr_len) 1623 { 1624 struct socket *sock; 1625 struct sockaddr_storage address; 1626 int err; 1627 struct msghdr msg; 1628 struct iovec iov; 1629 int fput_needed; 1630 1631 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1632 if (unlikely(err)) 1633 return err; 1634 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1635 if (!sock) 1636 goto out; 1637 1638 msg.msg_name = NULL; 1639 msg.msg_control = NULL; 1640 msg.msg_controllen = 0; 1641 msg.msg_namelen = 0; 1642 if (addr) { 1643 err = move_addr_to_kernel(addr, addr_len, &address); 1644 if (err < 0) 1645 goto out_put; 1646 msg.msg_name = (struct sockaddr *)&address; 1647 msg.msg_namelen = addr_len; 1648 } 1649 if (sock->file->f_flags & O_NONBLOCK) 1650 flags |= MSG_DONTWAIT; 1651 msg.msg_flags = flags; 1652 err = sock_sendmsg(sock, &msg); 1653 1654 out_put: 1655 fput_light(sock->file, fput_needed); 1656 out: 1657 return err; 1658 } 1659 1660 /* 1661 * Send a datagram down a socket. 1662 */ 1663 1664 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1665 unsigned int, flags) 1666 { 1667 return sys_sendto(fd, buff, len, flags, NULL, 0); 1668 } 1669 1670 /* 1671 * Receive a frame from the socket and optionally record the address of the 1672 * sender. We verify the buffers are writable and if needed move the 1673 * sender address from kernel to user space. 1674 */ 1675 1676 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1677 unsigned int, flags, struct sockaddr __user *, addr, 1678 int __user *, addr_len) 1679 { 1680 struct socket *sock; 1681 struct iovec iov; 1682 struct msghdr msg; 1683 struct sockaddr_storage address; 1684 int err, err2; 1685 int fput_needed; 1686 1687 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1688 if (unlikely(err)) 1689 return err; 1690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1691 if (!sock) 1692 goto out; 1693 1694 msg.msg_control = NULL; 1695 msg.msg_controllen = 0; 1696 /* Save some cycles and don't copy the address if not needed */ 1697 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1698 /* We assume all kernel code knows the size of sockaddr_storage */ 1699 msg.msg_namelen = 0; 1700 msg.msg_iocb = NULL; 1701 if (sock->file->f_flags & O_NONBLOCK) 1702 flags |= MSG_DONTWAIT; 1703 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1704 1705 if (err >= 0 && addr != NULL) { 1706 err2 = move_addr_to_user(&address, 1707 msg.msg_namelen, addr, addr_len); 1708 if (err2 < 0) 1709 err = err2; 1710 } 1711 1712 fput_light(sock->file, fput_needed); 1713 out: 1714 return err; 1715 } 1716 1717 /* 1718 * Receive a datagram from a socket. 1719 */ 1720 1721 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1722 unsigned int, flags) 1723 { 1724 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1725 } 1726 1727 /* 1728 * Set a socket option. Because we don't know the option lengths we have 1729 * to pass the user mode parameter for the protocols to sort out. 1730 */ 1731 1732 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1733 char __user *, optval, int, optlen) 1734 { 1735 int err, fput_needed; 1736 struct socket *sock; 1737 1738 if (optlen < 0) 1739 return -EINVAL; 1740 1741 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1742 if (sock != NULL) { 1743 err = security_socket_setsockopt(sock, level, optname); 1744 if (err) 1745 goto out_put; 1746 1747 if (level == SOL_SOCKET) 1748 err = 1749 sock_setsockopt(sock, level, optname, optval, 1750 optlen); 1751 else 1752 err = 1753 sock->ops->setsockopt(sock, level, optname, optval, 1754 optlen); 1755 out_put: 1756 fput_light(sock->file, fput_needed); 1757 } 1758 return err; 1759 } 1760 1761 /* 1762 * Get a socket option. Because we don't know the option lengths we have 1763 * to pass a user mode parameter for the protocols to sort out. 1764 */ 1765 1766 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1767 char __user *, optval, int __user *, optlen) 1768 { 1769 int err, fput_needed; 1770 struct socket *sock; 1771 1772 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1773 if (sock != NULL) { 1774 err = security_socket_getsockopt(sock, level, optname); 1775 if (err) 1776 goto out_put; 1777 1778 if (level == SOL_SOCKET) 1779 err = 1780 sock_getsockopt(sock, level, optname, optval, 1781 optlen); 1782 else 1783 err = 1784 sock->ops->getsockopt(sock, level, optname, optval, 1785 optlen); 1786 out_put: 1787 fput_light(sock->file, fput_needed); 1788 } 1789 return err; 1790 } 1791 1792 /* 1793 * Shutdown a socket. 1794 */ 1795 1796 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1797 { 1798 int err, fput_needed; 1799 struct socket *sock; 1800 1801 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1802 if (sock != NULL) { 1803 err = security_socket_shutdown(sock, how); 1804 if (!err) 1805 err = sock->ops->shutdown(sock, how); 1806 fput_light(sock->file, fput_needed); 1807 } 1808 return err; 1809 } 1810 1811 /* A couple of helpful macros for getting the address of the 32/64 bit 1812 * fields which are the same type (int / unsigned) on our platforms. 1813 */ 1814 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1815 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1816 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1817 1818 struct used_address { 1819 struct sockaddr_storage name; 1820 unsigned int name_len; 1821 }; 1822 1823 static int copy_msghdr_from_user(struct msghdr *kmsg, 1824 struct user_msghdr __user *umsg, 1825 struct sockaddr __user **save_addr, 1826 struct iovec **iov) 1827 { 1828 struct sockaddr __user *uaddr; 1829 struct iovec __user *uiov; 1830 size_t nr_segs; 1831 ssize_t err; 1832 1833 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1834 __get_user(uaddr, &umsg->msg_name) || 1835 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1836 __get_user(uiov, &umsg->msg_iov) || 1837 __get_user(nr_segs, &umsg->msg_iovlen) || 1838 __get_user(kmsg->msg_control, &umsg->msg_control) || 1839 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1840 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1841 return -EFAULT; 1842 1843 if (!uaddr) 1844 kmsg->msg_namelen = 0; 1845 1846 if (kmsg->msg_namelen < 0) 1847 return -EINVAL; 1848 1849 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1850 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1851 1852 if (save_addr) 1853 *save_addr = uaddr; 1854 1855 if (uaddr && kmsg->msg_namelen) { 1856 if (!save_addr) { 1857 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1858 kmsg->msg_name); 1859 if (err < 0) 1860 return err; 1861 } 1862 } else { 1863 kmsg->msg_name = NULL; 1864 kmsg->msg_namelen = 0; 1865 } 1866 1867 if (nr_segs > UIO_MAXIOV) 1868 return -EMSGSIZE; 1869 1870 kmsg->msg_iocb = NULL; 1871 1872 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1873 UIO_FASTIOV, iov, &kmsg->msg_iter); 1874 } 1875 1876 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1877 struct msghdr *msg_sys, unsigned int flags, 1878 struct used_address *used_address, 1879 unsigned int allowed_msghdr_flags) 1880 { 1881 struct compat_msghdr __user *msg_compat = 1882 (struct compat_msghdr __user *)msg; 1883 struct sockaddr_storage address; 1884 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1885 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1886 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1887 /* 20 is size of ipv6_pktinfo */ 1888 unsigned char *ctl_buf = ctl; 1889 int ctl_len; 1890 ssize_t err; 1891 1892 msg_sys->msg_name = &address; 1893 1894 if (MSG_CMSG_COMPAT & flags) 1895 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1896 else 1897 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1898 if (err < 0) 1899 return err; 1900 1901 err = -ENOBUFS; 1902 1903 if (msg_sys->msg_controllen > INT_MAX) 1904 goto out_freeiov; 1905 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1906 ctl_len = msg_sys->msg_controllen; 1907 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1908 err = 1909 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1910 sizeof(ctl)); 1911 if (err) 1912 goto out_freeiov; 1913 ctl_buf = msg_sys->msg_control; 1914 ctl_len = msg_sys->msg_controllen; 1915 } else if (ctl_len) { 1916 if (ctl_len > sizeof(ctl)) { 1917 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1918 if (ctl_buf == NULL) 1919 goto out_freeiov; 1920 } 1921 err = -EFAULT; 1922 /* 1923 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1924 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1925 * checking falls down on this. 1926 */ 1927 if (copy_from_user(ctl_buf, 1928 (void __user __force *)msg_sys->msg_control, 1929 ctl_len)) 1930 goto out_freectl; 1931 msg_sys->msg_control = ctl_buf; 1932 } 1933 msg_sys->msg_flags = flags; 1934 1935 if (sock->file->f_flags & O_NONBLOCK) 1936 msg_sys->msg_flags |= MSG_DONTWAIT; 1937 /* 1938 * If this is sendmmsg() and current destination address is same as 1939 * previously succeeded address, omit asking LSM's decision. 1940 * used_address->name_len is initialized to UINT_MAX so that the first 1941 * destination address never matches. 1942 */ 1943 if (used_address && msg_sys->msg_name && 1944 used_address->name_len == msg_sys->msg_namelen && 1945 !memcmp(&used_address->name, msg_sys->msg_name, 1946 used_address->name_len)) { 1947 err = sock_sendmsg_nosec(sock, msg_sys); 1948 goto out_freectl; 1949 } 1950 err = sock_sendmsg(sock, msg_sys); 1951 /* 1952 * If this is sendmmsg() and sending to current destination address was 1953 * successful, remember it. 1954 */ 1955 if (used_address && err >= 0) { 1956 used_address->name_len = msg_sys->msg_namelen; 1957 if (msg_sys->msg_name) 1958 memcpy(&used_address->name, msg_sys->msg_name, 1959 used_address->name_len); 1960 } 1961 1962 out_freectl: 1963 if (ctl_buf != ctl) 1964 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1965 out_freeiov: 1966 kfree(iov); 1967 return err; 1968 } 1969 1970 /* 1971 * BSD sendmsg interface 1972 */ 1973 1974 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1975 { 1976 int fput_needed, err; 1977 struct msghdr msg_sys; 1978 struct socket *sock; 1979 1980 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1981 if (!sock) 1982 goto out; 1983 1984 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 1985 1986 fput_light(sock->file, fput_needed); 1987 out: 1988 return err; 1989 } 1990 1991 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1992 { 1993 if (flags & MSG_CMSG_COMPAT) 1994 return -EINVAL; 1995 return __sys_sendmsg(fd, msg, flags); 1996 } 1997 1998 /* 1999 * Linux sendmmsg interface 2000 */ 2001 2002 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2003 unsigned int flags) 2004 { 2005 int fput_needed, err, datagrams; 2006 struct socket *sock; 2007 struct mmsghdr __user *entry; 2008 struct compat_mmsghdr __user *compat_entry; 2009 struct msghdr msg_sys; 2010 struct used_address used_address; 2011 unsigned int oflags = flags; 2012 2013 if (vlen > UIO_MAXIOV) 2014 vlen = UIO_MAXIOV; 2015 2016 datagrams = 0; 2017 2018 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2019 if (!sock) 2020 return err; 2021 2022 used_address.name_len = UINT_MAX; 2023 entry = mmsg; 2024 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2025 err = 0; 2026 flags |= MSG_BATCH; 2027 2028 while (datagrams < vlen) { 2029 if (datagrams == vlen - 1) 2030 flags = oflags; 2031 2032 if (MSG_CMSG_COMPAT & flags) { 2033 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2034 &msg_sys, flags, &used_address, MSG_EOR); 2035 if (err < 0) 2036 break; 2037 err = __put_user(err, &compat_entry->msg_len); 2038 ++compat_entry; 2039 } else { 2040 err = ___sys_sendmsg(sock, 2041 (struct user_msghdr __user *)entry, 2042 &msg_sys, flags, &used_address, MSG_EOR); 2043 if (err < 0) 2044 break; 2045 err = put_user(err, &entry->msg_len); 2046 ++entry; 2047 } 2048 2049 if (err) 2050 break; 2051 ++datagrams; 2052 cond_resched(); 2053 } 2054 2055 fput_light(sock->file, fput_needed); 2056 2057 /* We only return an error if no datagrams were able to be sent */ 2058 if (datagrams != 0) 2059 return datagrams; 2060 2061 return err; 2062 } 2063 2064 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2065 unsigned int, vlen, unsigned int, flags) 2066 { 2067 if (flags & MSG_CMSG_COMPAT) 2068 return -EINVAL; 2069 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2070 } 2071 2072 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2073 struct msghdr *msg_sys, unsigned int flags, int nosec) 2074 { 2075 struct compat_msghdr __user *msg_compat = 2076 (struct compat_msghdr __user *)msg; 2077 struct iovec iovstack[UIO_FASTIOV]; 2078 struct iovec *iov = iovstack; 2079 unsigned long cmsg_ptr; 2080 int total_len, len; 2081 ssize_t err; 2082 2083 /* kernel mode address */ 2084 struct sockaddr_storage addr; 2085 2086 /* user mode address pointers */ 2087 struct sockaddr __user *uaddr; 2088 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2089 2090 msg_sys->msg_name = &addr; 2091 2092 if (MSG_CMSG_COMPAT & flags) 2093 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2094 else 2095 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2096 if (err < 0) 2097 return err; 2098 total_len = iov_iter_count(&msg_sys->msg_iter); 2099 2100 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2101 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2102 2103 /* We assume all kernel code knows the size of sockaddr_storage */ 2104 msg_sys->msg_namelen = 0; 2105 2106 if (sock->file->f_flags & O_NONBLOCK) 2107 flags |= MSG_DONTWAIT; 2108 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2109 total_len, flags); 2110 if (err < 0) 2111 goto out_freeiov; 2112 len = err; 2113 2114 if (uaddr != NULL) { 2115 err = move_addr_to_user(&addr, 2116 msg_sys->msg_namelen, uaddr, 2117 uaddr_len); 2118 if (err < 0) 2119 goto out_freeiov; 2120 } 2121 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2122 COMPAT_FLAGS(msg)); 2123 if (err) 2124 goto out_freeiov; 2125 if (MSG_CMSG_COMPAT & flags) 2126 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2127 &msg_compat->msg_controllen); 2128 else 2129 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2130 &msg->msg_controllen); 2131 if (err) 2132 goto out_freeiov; 2133 err = len; 2134 2135 out_freeiov: 2136 kfree(iov); 2137 return err; 2138 } 2139 2140 /* 2141 * BSD recvmsg interface 2142 */ 2143 2144 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2145 { 2146 int fput_needed, err; 2147 struct msghdr msg_sys; 2148 struct socket *sock; 2149 2150 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2151 if (!sock) 2152 goto out; 2153 2154 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2155 2156 fput_light(sock->file, fput_needed); 2157 out: 2158 return err; 2159 } 2160 2161 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2162 unsigned int, flags) 2163 { 2164 if (flags & MSG_CMSG_COMPAT) 2165 return -EINVAL; 2166 return __sys_recvmsg(fd, msg, flags); 2167 } 2168 2169 /* 2170 * Linux recvmmsg interface 2171 */ 2172 2173 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2174 unsigned int flags, struct timespec *timeout) 2175 { 2176 int fput_needed, err, datagrams; 2177 struct socket *sock; 2178 struct mmsghdr __user *entry; 2179 struct compat_mmsghdr __user *compat_entry; 2180 struct msghdr msg_sys; 2181 struct timespec end_time; 2182 2183 if (timeout && 2184 poll_select_set_timeout(&end_time, timeout->tv_sec, 2185 timeout->tv_nsec)) 2186 return -EINVAL; 2187 2188 datagrams = 0; 2189 2190 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2191 if (!sock) 2192 return err; 2193 2194 err = sock_error(sock->sk); 2195 if (err) 2196 goto out_put; 2197 2198 entry = mmsg; 2199 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2200 2201 while (datagrams < vlen) { 2202 /* 2203 * No need to ask LSM for more than the first datagram. 2204 */ 2205 if (MSG_CMSG_COMPAT & flags) { 2206 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2207 &msg_sys, flags & ~MSG_WAITFORONE, 2208 datagrams); 2209 if (err < 0) 2210 break; 2211 err = __put_user(err, &compat_entry->msg_len); 2212 ++compat_entry; 2213 } else { 2214 err = ___sys_recvmsg(sock, 2215 (struct user_msghdr __user *)entry, 2216 &msg_sys, flags & ~MSG_WAITFORONE, 2217 datagrams); 2218 if (err < 0) 2219 break; 2220 err = put_user(err, &entry->msg_len); 2221 ++entry; 2222 } 2223 2224 if (err) 2225 break; 2226 ++datagrams; 2227 2228 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2229 if (flags & MSG_WAITFORONE) 2230 flags |= MSG_DONTWAIT; 2231 2232 if (timeout) { 2233 ktime_get_ts(timeout); 2234 *timeout = timespec_sub(end_time, *timeout); 2235 if (timeout->tv_sec < 0) { 2236 timeout->tv_sec = timeout->tv_nsec = 0; 2237 break; 2238 } 2239 2240 /* Timeout, return less than vlen datagrams */ 2241 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2242 break; 2243 } 2244 2245 /* Out of band data, return right away */ 2246 if (msg_sys.msg_flags & MSG_OOB) 2247 break; 2248 cond_resched(); 2249 } 2250 2251 if (err == 0) 2252 goto out_put; 2253 2254 if (datagrams == 0) { 2255 datagrams = err; 2256 goto out_put; 2257 } 2258 2259 /* 2260 * We may return less entries than requested (vlen) if the 2261 * sock is non block and there aren't enough datagrams... 2262 */ 2263 if (err != -EAGAIN) { 2264 /* 2265 * ... or if recvmsg returns an error after we 2266 * received some datagrams, where we record the 2267 * error to return on the next call or if the 2268 * app asks about it using getsockopt(SO_ERROR). 2269 */ 2270 sock->sk->sk_err = -err; 2271 } 2272 out_put: 2273 fput_light(sock->file, fput_needed); 2274 2275 return datagrams; 2276 } 2277 2278 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2279 unsigned int, vlen, unsigned int, flags, 2280 struct timespec __user *, timeout) 2281 { 2282 int datagrams; 2283 struct timespec timeout_sys; 2284 2285 if (flags & MSG_CMSG_COMPAT) 2286 return -EINVAL; 2287 2288 if (!timeout) 2289 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2290 2291 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2292 return -EFAULT; 2293 2294 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2295 2296 if (datagrams > 0 && 2297 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2298 datagrams = -EFAULT; 2299 2300 return datagrams; 2301 } 2302 2303 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2304 /* Argument list sizes for sys_socketcall */ 2305 #define AL(x) ((x) * sizeof(unsigned long)) 2306 static const unsigned char nargs[21] = { 2307 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2308 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2309 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2310 AL(4), AL(5), AL(4) 2311 }; 2312 2313 #undef AL 2314 2315 /* 2316 * System call vectors. 2317 * 2318 * Argument checking cleaned up. Saved 20% in size. 2319 * This function doesn't need to set the kernel lock because 2320 * it is set by the callees. 2321 */ 2322 2323 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2324 { 2325 unsigned long a[AUDITSC_ARGS]; 2326 unsigned long a0, a1; 2327 int err; 2328 unsigned int len; 2329 2330 if (call < 1 || call > SYS_SENDMMSG) 2331 return -EINVAL; 2332 2333 len = nargs[call]; 2334 if (len > sizeof(a)) 2335 return -EINVAL; 2336 2337 /* copy_from_user should be SMP safe. */ 2338 if (copy_from_user(a, args, len)) 2339 return -EFAULT; 2340 2341 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2342 if (err) 2343 return err; 2344 2345 a0 = a[0]; 2346 a1 = a[1]; 2347 2348 switch (call) { 2349 case SYS_SOCKET: 2350 err = sys_socket(a0, a1, a[2]); 2351 break; 2352 case SYS_BIND: 2353 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2354 break; 2355 case SYS_CONNECT: 2356 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2357 break; 2358 case SYS_LISTEN: 2359 err = sys_listen(a0, a1); 2360 break; 2361 case SYS_ACCEPT: 2362 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2363 (int __user *)a[2], 0); 2364 break; 2365 case SYS_GETSOCKNAME: 2366 err = 2367 sys_getsockname(a0, (struct sockaddr __user *)a1, 2368 (int __user *)a[2]); 2369 break; 2370 case SYS_GETPEERNAME: 2371 err = 2372 sys_getpeername(a0, (struct sockaddr __user *)a1, 2373 (int __user *)a[2]); 2374 break; 2375 case SYS_SOCKETPAIR: 2376 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2377 break; 2378 case SYS_SEND: 2379 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2380 break; 2381 case SYS_SENDTO: 2382 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2383 (struct sockaddr __user *)a[4], a[5]); 2384 break; 2385 case SYS_RECV: 2386 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2387 break; 2388 case SYS_RECVFROM: 2389 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2390 (struct sockaddr __user *)a[4], 2391 (int __user *)a[5]); 2392 break; 2393 case SYS_SHUTDOWN: 2394 err = sys_shutdown(a0, a1); 2395 break; 2396 case SYS_SETSOCKOPT: 2397 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2398 break; 2399 case SYS_GETSOCKOPT: 2400 err = 2401 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2402 (int __user *)a[4]); 2403 break; 2404 case SYS_SENDMSG: 2405 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2406 break; 2407 case SYS_SENDMMSG: 2408 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2409 break; 2410 case SYS_RECVMSG: 2411 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2412 break; 2413 case SYS_RECVMMSG: 2414 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2415 (struct timespec __user *)a[4]); 2416 break; 2417 case SYS_ACCEPT4: 2418 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2419 (int __user *)a[2], a[3]); 2420 break; 2421 default: 2422 err = -EINVAL; 2423 break; 2424 } 2425 return err; 2426 } 2427 2428 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2429 2430 /** 2431 * sock_register - add a socket protocol handler 2432 * @ops: description of protocol 2433 * 2434 * This function is called by a protocol handler that wants to 2435 * advertise its address family, and have it linked into the 2436 * socket interface. The value ops->family corresponds to the 2437 * socket system call protocol family. 2438 */ 2439 int sock_register(const struct net_proto_family *ops) 2440 { 2441 int err; 2442 2443 if (ops->family >= NPROTO) { 2444 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2445 return -ENOBUFS; 2446 } 2447 2448 spin_lock(&net_family_lock); 2449 if (rcu_dereference_protected(net_families[ops->family], 2450 lockdep_is_held(&net_family_lock))) 2451 err = -EEXIST; 2452 else { 2453 rcu_assign_pointer(net_families[ops->family], ops); 2454 err = 0; 2455 } 2456 spin_unlock(&net_family_lock); 2457 2458 pr_info("NET: Registered protocol family %d\n", ops->family); 2459 return err; 2460 } 2461 EXPORT_SYMBOL(sock_register); 2462 2463 /** 2464 * sock_unregister - remove a protocol handler 2465 * @family: protocol family to remove 2466 * 2467 * This function is called by a protocol handler that wants to 2468 * remove its address family, and have it unlinked from the 2469 * new socket creation. 2470 * 2471 * If protocol handler is a module, then it can use module reference 2472 * counts to protect against new references. If protocol handler is not 2473 * a module then it needs to provide its own protection in 2474 * the ops->create routine. 2475 */ 2476 void sock_unregister(int family) 2477 { 2478 BUG_ON(family < 0 || family >= NPROTO); 2479 2480 spin_lock(&net_family_lock); 2481 RCU_INIT_POINTER(net_families[family], NULL); 2482 spin_unlock(&net_family_lock); 2483 2484 synchronize_rcu(); 2485 2486 pr_info("NET: Unregistered protocol family %d\n", family); 2487 } 2488 EXPORT_SYMBOL(sock_unregister); 2489 2490 static int __init sock_init(void) 2491 { 2492 int err; 2493 /* 2494 * Initialize the network sysctl infrastructure. 2495 */ 2496 err = net_sysctl_init(); 2497 if (err) 2498 goto out; 2499 2500 /* 2501 * Initialize skbuff SLAB cache 2502 */ 2503 skb_init(); 2504 2505 /* 2506 * Initialize the protocols module. 2507 */ 2508 2509 init_inodecache(); 2510 2511 err = register_filesystem(&sock_fs_type); 2512 if (err) 2513 goto out_fs; 2514 sock_mnt = kern_mount(&sock_fs_type); 2515 if (IS_ERR(sock_mnt)) { 2516 err = PTR_ERR(sock_mnt); 2517 goto out_mount; 2518 } 2519 2520 /* The real protocol initialization is performed in later initcalls. 2521 */ 2522 2523 #ifdef CONFIG_NETFILTER 2524 err = netfilter_init(); 2525 if (err) 2526 goto out; 2527 #endif 2528 2529 ptp_classifier_init(); 2530 2531 out: 2532 return err; 2533 2534 out_mount: 2535 unregister_filesystem(&sock_fs_type); 2536 out_fs: 2537 goto out; 2538 } 2539 2540 core_initcall(sock_init); /* early initcall */ 2541 2542 #ifdef CONFIG_PROC_FS 2543 void socket_seq_show(struct seq_file *seq) 2544 { 2545 int cpu; 2546 int counter = 0; 2547 2548 for_each_possible_cpu(cpu) 2549 counter += per_cpu(sockets_in_use, cpu); 2550 2551 /* It can be negative, by the way. 8) */ 2552 if (counter < 0) 2553 counter = 0; 2554 2555 seq_printf(seq, "sockets: used %d\n", counter); 2556 } 2557 #endif /* CONFIG_PROC_FS */ 2558 2559 #ifdef CONFIG_COMPAT 2560 static int do_siocgstamp(struct net *net, struct socket *sock, 2561 unsigned int cmd, void __user *up) 2562 { 2563 mm_segment_t old_fs = get_fs(); 2564 struct timeval ktv; 2565 int err; 2566 2567 set_fs(KERNEL_DS); 2568 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2569 set_fs(old_fs); 2570 if (!err) 2571 err = compat_put_timeval(&ktv, up); 2572 2573 return err; 2574 } 2575 2576 static int do_siocgstampns(struct net *net, struct socket *sock, 2577 unsigned int cmd, void __user *up) 2578 { 2579 mm_segment_t old_fs = get_fs(); 2580 struct timespec kts; 2581 int err; 2582 2583 set_fs(KERNEL_DS); 2584 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2585 set_fs(old_fs); 2586 if (!err) 2587 err = compat_put_timespec(&kts, up); 2588 2589 return err; 2590 } 2591 2592 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2593 { 2594 struct ifreq __user *uifr; 2595 int err; 2596 2597 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2598 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2599 return -EFAULT; 2600 2601 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2602 if (err) 2603 return err; 2604 2605 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2606 return -EFAULT; 2607 2608 return 0; 2609 } 2610 2611 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2612 { 2613 struct compat_ifconf ifc32; 2614 struct ifconf ifc; 2615 struct ifconf __user *uifc; 2616 struct compat_ifreq __user *ifr32; 2617 struct ifreq __user *ifr; 2618 unsigned int i, j; 2619 int err; 2620 2621 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2622 return -EFAULT; 2623 2624 memset(&ifc, 0, sizeof(ifc)); 2625 if (ifc32.ifcbuf == 0) { 2626 ifc32.ifc_len = 0; 2627 ifc.ifc_len = 0; 2628 ifc.ifc_req = NULL; 2629 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2630 } else { 2631 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2632 sizeof(struct ifreq); 2633 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2634 ifc.ifc_len = len; 2635 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2636 ifr32 = compat_ptr(ifc32.ifcbuf); 2637 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2638 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2639 return -EFAULT; 2640 ifr++; 2641 ifr32++; 2642 } 2643 } 2644 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2645 return -EFAULT; 2646 2647 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2648 if (err) 2649 return err; 2650 2651 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2652 return -EFAULT; 2653 2654 ifr = ifc.ifc_req; 2655 ifr32 = compat_ptr(ifc32.ifcbuf); 2656 for (i = 0, j = 0; 2657 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2658 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2659 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2660 return -EFAULT; 2661 ifr32++; 2662 ifr++; 2663 } 2664 2665 if (ifc32.ifcbuf == 0) { 2666 /* Translate from 64-bit structure multiple to 2667 * a 32-bit one. 2668 */ 2669 i = ifc.ifc_len; 2670 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2671 ifc32.ifc_len = i; 2672 } else { 2673 ifc32.ifc_len = i; 2674 } 2675 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2676 return -EFAULT; 2677 2678 return 0; 2679 } 2680 2681 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2682 { 2683 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2684 bool convert_in = false, convert_out = false; 2685 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2686 struct ethtool_rxnfc __user *rxnfc; 2687 struct ifreq __user *ifr; 2688 u32 rule_cnt = 0, actual_rule_cnt; 2689 u32 ethcmd; 2690 u32 data; 2691 int ret; 2692 2693 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2694 return -EFAULT; 2695 2696 compat_rxnfc = compat_ptr(data); 2697 2698 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2699 return -EFAULT; 2700 2701 /* Most ethtool structures are defined without padding. 2702 * Unfortunately struct ethtool_rxnfc is an exception. 2703 */ 2704 switch (ethcmd) { 2705 default: 2706 break; 2707 case ETHTOOL_GRXCLSRLALL: 2708 /* Buffer size is variable */ 2709 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2710 return -EFAULT; 2711 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2712 return -ENOMEM; 2713 buf_size += rule_cnt * sizeof(u32); 2714 /* fall through */ 2715 case ETHTOOL_GRXRINGS: 2716 case ETHTOOL_GRXCLSRLCNT: 2717 case ETHTOOL_GRXCLSRULE: 2718 case ETHTOOL_SRXCLSRLINS: 2719 convert_out = true; 2720 /* fall through */ 2721 case ETHTOOL_SRXCLSRLDEL: 2722 buf_size += sizeof(struct ethtool_rxnfc); 2723 convert_in = true; 2724 break; 2725 } 2726 2727 ifr = compat_alloc_user_space(buf_size); 2728 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2729 2730 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2731 return -EFAULT; 2732 2733 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2734 &ifr->ifr_ifru.ifru_data)) 2735 return -EFAULT; 2736 2737 if (convert_in) { 2738 /* We expect there to be holes between fs.m_ext and 2739 * fs.ring_cookie and at the end of fs, but nowhere else. 2740 */ 2741 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2742 sizeof(compat_rxnfc->fs.m_ext) != 2743 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2744 sizeof(rxnfc->fs.m_ext)); 2745 BUILD_BUG_ON( 2746 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2747 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2748 offsetof(struct ethtool_rxnfc, fs.location) - 2749 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2750 2751 if (copy_in_user(rxnfc, compat_rxnfc, 2752 (void __user *)(&rxnfc->fs.m_ext + 1) - 2753 (void __user *)rxnfc) || 2754 copy_in_user(&rxnfc->fs.ring_cookie, 2755 &compat_rxnfc->fs.ring_cookie, 2756 (void __user *)(&rxnfc->fs.location + 1) - 2757 (void __user *)&rxnfc->fs.ring_cookie) || 2758 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2759 sizeof(rxnfc->rule_cnt))) 2760 return -EFAULT; 2761 } 2762 2763 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2764 if (ret) 2765 return ret; 2766 2767 if (convert_out) { 2768 if (copy_in_user(compat_rxnfc, rxnfc, 2769 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2770 (const void __user *)rxnfc) || 2771 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2772 &rxnfc->fs.ring_cookie, 2773 (const void __user *)(&rxnfc->fs.location + 1) - 2774 (const void __user *)&rxnfc->fs.ring_cookie) || 2775 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2776 sizeof(rxnfc->rule_cnt))) 2777 return -EFAULT; 2778 2779 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2780 /* As an optimisation, we only copy the actual 2781 * number of rules that the underlying 2782 * function returned. Since Mallory might 2783 * change the rule count in user memory, we 2784 * check that it is less than the rule count 2785 * originally given (as the user buffer size), 2786 * which has been range-checked. 2787 */ 2788 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2789 return -EFAULT; 2790 if (actual_rule_cnt < rule_cnt) 2791 rule_cnt = actual_rule_cnt; 2792 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2793 &rxnfc->rule_locs[0], 2794 rule_cnt * sizeof(u32))) 2795 return -EFAULT; 2796 } 2797 } 2798 2799 return 0; 2800 } 2801 2802 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2803 { 2804 void __user *uptr; 2805 compat_uptr_t uptr32; 2806 struct ifreq __user *uifr; 2807 2808 uifr = compat_alloc_user_space(sizeof(*uifr)); 2809 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2810 return -EFAULT; 2811 2812 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2813 return -EFAULT; 2814 2815 uptr = compat_ptr(uptr32); 2816 2817 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2818 return -EFAULT; 2819 2820 return dev_ioctl(net, SIOCWANDEV, uifr); 2821 } 2822 2823 static int bond_ioctl(struct net *net, unsigned int cmd, 2824 struct compat_ifreq __user *ifr32) 2825 { 2826 struct ifreq kifr; 2827 mm_segment_t old_fs; 2828 int err; 2829 2830 switch (cmd) { 2831 case SIOCBONDENSLAVE: 2832 case SIOCBONDRELEASE: 2833 case SIOCBONDSETHWADDR: 2834 case SIOCBONDCHANGEACTIVE: 2835 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2836 return -EFAULT; 2837 2838 old_fs = get_fs(); 2839 set_fs(KERNEL_DS); 2840 err = dev_ioctl(net, cmd, 2841 (struct ifreq __user __force *) &kifr); 2842 set_fs(old_fs); 2843 2844 return err; 2845 default: 2846 return -ENOIOCTLCMD; 2847 } 2848 } 2849 2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2852 struct compat_ifreq __user *u_ifreq32) 2853 { 2854 struct ifreq __user *u_ifreq64; 2855 char tmp_buf[IFNAMSIZ]; 2856 void __user *data64; 2857 u32 data32; 2858 2859 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2860 IFNAMSIZ)) 2861 return -EFAULT; 2862 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2863 return -EFAULT; 2864 data64 = compat_ptr(data32); 2865 2866 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2867 2868 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2869 IFNAMSIZ)) 2870 return -EFAULT; 2871 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2872 return -EFAULT; 2873 2874 return dev_ioctl(net, cmd, u_ifreq64); 2875 } 2876 2877 static int dev_ifsioc(struct net *net, struct socket *sock, 2878 unsigned int cmd, struct compat_ifreq __user *uifr32) 2879 { 2880 struct ifreq __user *uifr; 2881 int err; 2882 2883 uifr = compat_alloc_user_space(sizeof(*uifr)); 2884 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2885 return -EFAULT; 2886 2887 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2888 2889 if (!err) { 2890 switch (cmd) { 2891 case SIOCGIFFLAGS: 2892 case SIOCGIFMETRIC: 2893 case SIOCGIFMTU: 2894 case SIOCGIFMEM: 2895 case SIOCGIFHWADDR: 2896 case SIOCGIFINDEX: 2897 case SIOCGIFADDR: 2898 case SIOCGIFBRDADDR: 2899 case SIOCGIFDSTADDR: 2900 case SIOCGIFNETMASK: 2901 case SIOCGIFPFLAGS: 2902 case SIOCGIFTXQLEN: 2903 case SIOCGMIIPHY: 2904 case SIOCGMIIREG: 2905 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2906 err = -EFAULT; 2907 break; 2908 } 2909 } 2910 return err; 2911 } 2912 2913 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2914 struct compat_ifreq __user *uifr32) 2915 { 2916 struct ifreq ifr; 2917 struct compat_ifmap __user *uifmap32; 2918 mm_segment_t old_fs; 2919 int err; 2920 2921 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2922 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2923 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2924 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2925 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2926 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2927 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2928 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2929 if (err) 2930 return -EFAULT; 2931 2932 old_fs = get_fs(); 2933 set_fs(KERNEL_DS); 2934 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2935 set_fs(old_fs); 2936 2937 if (cmd == SIOCGIFMAP && !err) { 2938 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2939 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2940 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2941 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2942 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2943 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2944 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2945 if (err) 2946 err = -EFAULT; 2947 } 2948 return err; 2949 } 2950 2951 struct rtentry32 { 2952 u32 rt_pad1; 2953 struct sockaddr rt_dst; /* target address */ 2954 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2955 struct sockaddr rt_genmask; /* target network mask (IP) */ 2956 unsigned short rt_flags; 2957 short rt_pad2; 2958 u32 rt_pad3; 2959 unsigned char rt_tos; 2960 unsigned char rt_class; 2961 short rt_pad4; 2962 short rt_metric; /* +1 for binary compatibility! */ 2963 /* char * */ u32 rt_dev; /* forcing the device at add */ 2964 u32 rt_mtu; /* per route MTU/Window */ 2965 u32 rt_window; /* Window clamping */ 2966 unsigned short rt_irtt; /* Initial RTT */ 2967 }; 2968 2969 struct in6_rtmsg32 { 2970 struct in6_addr rtmsg_dst; 2971 struct in6_addr rtmsg_src; 2972 struct in6_addr rtmsg_gateway; 2973 u32 rtmsg_type; 2974 u16 rtmsg_dst_len; 2975 u16 rtmsg_src_len; 2976 u32 rtmsg_metric; 2977 u32 rtmsg_info; 2978 u32 rtmsg_flags; 2979 s32 rtmsg_ifindex; 2980 }; 2981 2982 static int routing_ioctl(struct net *net, struct socket *sock, 2983 unsigned int cmd, void __user *argp) 2984 { 2985 int ret; 2986 void *r = NULL; 2987 struct in6_rtmsg r6; 2988 struct rtentry r4; 2989 char devname[16]; 2990 u32 rtdev; 2991 mm_segment_t old_fs = get_fs(); 2992 2993 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2994 struct in6_rtmsg32 __user *ur6 = argp; 2995 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2996 3 * sizeof(struct in6_addr)); 2997 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2998 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2999 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3000 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3001 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3002 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3003 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3004 3005 r = (void *) &r6; 3006 } else { /* ipv4 */ 3007 struct rtentry32 __user *ur4 = argp; 3008 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3009 3 * sizeof(struct sockaddr)); 3010 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3011 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3012 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3013 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3014 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3015 ret |= get_user(rtdev, &(ur4->rt_dev)); 3016 if (rtdev) { 3017 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3018 r4.rt_dev = (char __user __force *)devname; 3019 devname[15] = 0; 3020 } else 3021 r4.rt_dev = NULL; 3022 3023 r = (void *) &r4; 3024 } 3025 3026 if (ret) { 3027 ret = -EFAULT; 3028 goto out; 3029 } 3030 3031 set_fs(KERNEL_DS); 3032 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3033 set_fs(old_fs); 3034 3035 out: 3036 return ret; 3037 } 3038 3039 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3040 * for some operations; this forces use of the newer bridge-utils that 3041 * use compatible ioctls 3042 */ 3043 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3044 { 3045 compat_ulong_t tmp; 3046 3047 if (get_user(tmp, argp)) 3048 return -EFAULT; 3049 if (tmp == BRCTL_GET_VERSION) 3050 return BRCTL_VERSION + 1; 3051 return -EINVAL; 3052 } 3053 3054 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3055 unsigned int cmd, unsigned long arg) 3056 { 3057 void __user *argp = compat_ptr(arg); 3058 struct sock *sk = sock->sk; 3059 struct net *net = sock_net(sk); 3060 3061 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3062 return compat_ifr_data_ioctl(net, cmd, argp); 3063 3064 switch (cmd) { 3065 case SIOCSIFBR: 3066 case SIOCGIFBR: 3067 return old_bridge_ioctl(argp); 3068 case SIOCGIFNAME: 3069 return dev_ifname32(net, argp); 3070 case SIOCGIFCONF: 3071 return dev_ifconf(net, argp); 3072 case SIOCETHTOOL: 3073 return ethtool_ioctl(net, argp); 3074 case SIOCWANDEV: 3075 return compat_siocwandev(net, argp); 3076 case SIOCGIFMAP: 3077 case SIOCSIFMAP: 3078 return compat_sioc_ifmap(net, cmd, argp); 3079 case SIOCBONDENSLAVE: 3080 case SIOCBONDRELEASE: 3081 case SIOCBONDSETHWADDR: 3082 case SIOCBONDCHANGEACTIVE: 3083 return bond_ioctl(net, cmd, argp); 3084 case SIOCADDRT: 3085 case SIOCDELRT: 3086 return routing_ioctl(net, sock, cmd, argp); 3087 case SIOCGSTAMP: 3088 return do_siocgstamp(net, sock, cmd, argp); 3089 case SIOCGSTAMPNS: 3090 return do_siocgstampns(net, sock, cmd, argp); 3091 case SIOCBONDSLAVEINFOQUERY: 3092 case SIOCBONDINFOQUERY: 3093 case SIOCSHWTSTAMP: 3094 case SIOCGHWTSTAMP: 3095 return compat_ifr_data_ioctl(net, cmd, argp); 3096 3097 case FIOSETOWN: 3098 case SIOCSPGRP: 3099 case FIOGETOWN: 3100 case SIOCGPGRP: 3101 case SIOCBRADDBR: 3102 case SIOCBRDELBR: 3103 case SIOCGIFVLAN: 3104 case SIOCSIFVLAN: 3105 case SIOCADDDLCI: 3106 case SIOCDELDLCI: 3107 return sock_ioctl(file, cmd, arg); 3108 3109 case SIOCGIFFLAGS: 3110 case SIOCSIFFLAGS: 3111 case SIOCGIFMETRIC: 3112 case SIOCSIFMETRIC: 3113 case SIOCGIFMTU: 3114 case SIOCSIFMTU: 3115 case SIOCGIFMEM: 3116 case SIOCSIFMEM: 3117 case SIOCGIFHWADDR: 3118 case SIOCSIFHWADDR: 3119 case SIOCADDMULTI: 3120 case SIOCDELMULTI: 3121 case SIOCGIFINDEX: 3122 case SIOCGIFADDR: 3123 case SIOCSIFADDR: 3124 case SIOCSIFHWBROADCAST: 3125 case SIOCDIFADDR: 3126 case SIOCGIFBRDADDR: 3127 case SIOCSIFBRDADDR: 3128 case SIOCGIFDSTADDR: 3129 case SIOCSIFDSTADDR: 3130 case SIOCGIFNETMASK: 3131 case SIOCSIFNETMASK: 3132 case SIOCSIFPFLAGS: 3133 case SIOCGIFPFLAGS: 3134 case SIOCGIFTXQLEN: 3135 case SIOCSIFTXQLEN: 3136 case SIOCBRADDIF: 3137 case SIOCBRDELIF: 3138 case SIOCSIFNAME: 3139 case SIOCGMIIPHY: 3140 case SIOCGMIIREG: 3141 case SIOCSMIIREG: 3142 return dev_ifsioc(net, sock, cmd, argp); 3143 3144 case SIOCSARP: 3145 case SIOCGARP: 3146 case SIOCDARP: 3147 case SIOCATMARK: 3148 return sock_do_ioctl(net, sock, cmd, arg); 3149 } 3150 3151 return -ENOIOCTLCMD; 3152 } 3153 3154 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3155 unsigned long arg) 3156 { 3157 struct socket *sock = file->private_data; 3158 int ret = -ENOIOCTLCMD; 3159 struct sock *sk; 3160 struct net *net; 3161 3162 sk = sock->sk; 3163 net = sock_net(sk); 3164 3165 if (sock->ops->compat_ioctl) 3166 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3167 3168 if (ret == -ENOIOCTLCMD && 3169 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3170 ret = compat_wext_handle_ioctl(net, cmd, arg); 3171 3172 if (ret == -ENOIOCTLCMD) 3173 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3174 3175 return ret; 3176 } 3177 #endif 3178 3179 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3180 { 3181 return sock->ops->bind(sock, addr, addrlen); 3182 } 3183 EXPORT_SYMBOL(kernel_bind); 3184 3185 int kernel_listen(struct socket *sock, int backlog) 3186 { 3187 return sock->ops->listen(sock, backlog); 3188 } 3189 EXPORT_SYMBOL(kernel_listen); 3190 3191 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3192 { 3193 struct sock *sk = sock->sk; 3194 int err; 3195 3196 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3197 newsock); 3198 if (err < 0) 3199 goto done; 3200 3201 err = sock->ops->accept(sock, *newsock, flags); 3202 if (err < 0) { 3203 sock_release(*newsock); 3204 *newsock = NULL; 3205 goto done; 3206 } 3207 3208 (*newsock)->ops = sock->ops; 3209 __module_get((*newsock)->ops->owner); 3210 3211 done: 3212 return err; 3213 } 3214 EXPORT_SYMBOL(kernel_accept); 3215 3216 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3217 int flags) 3218 { 3219 return sock->ops->connect(sock, addr, addrlen, flags); 3220 } 3221 EXPORT_SYMBOL(kernel_connect); 3222 3223 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3224 int *addrlen) 3225 { 3226 return sock->ops->getname(sock, addr, addrlen, 0); 3227 } 3228 EXPORT_SYMBOL(kernel_getsockname); 3229 3230 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3231 int *addrlen) 3232 { 3233 return sock->ops->getname(sock, addr, addrlen, 1); 3234 } 3235 EXPORT_SYMBOL(kernel_getpeername); 3236 3237 int kernel_getsockopt(struct socket *sock, int level, int optname, 3238 char *optval, int *optlen) 3239 { 3240 mm_segment_t oldfs = get_fs(); 3241 char __user *uoptval; 3242 int __user *uoptlen; 3243 int err; 3244 3245 uoptval = (char __user __force *) optval; 3246 uoptlen = (int __user __force *) optlen; 3247 3248 set_fs(KERNEL_DS); 3249 if (level == SOL_SOCKET) 3250 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3251 else 3252 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3253 uoptlen); 3254 set_fs(oldfs); 3255 return err; 3256 } 3257 EXPORT_SYMBOL(kernel_getsockopt); 3258 3259 int kernel_setsockopt(struct socket *sock, int level, int optname, 3260 char *optval, unsigned int optlen) 3261 { 3262 mm_segment_t oldfs = get_fs(); 3263 char __user *uoptval; 3264 int err; 3265 3266 uoptval = (char __user __force *) optval; 3267 3268 set_fs(KERNEL_DS); 3269 if (level == SOL_SOCKET) 3270 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3271 else 3272 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3273 optlen); 3274 set_fs(oldfs); 3275 return err; 3276 } 3277 EXPORT_SYMBOL(kernel_setsockopt); 3278 3279 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3280 size_t size, int flags) 3281 { 3282 if (sock->ops->sendpage) 3283 return sock->ops->sendpage(sock, page, offset, size, flags); 3284 3285 return sock_no_sendpage(sock, page, offset, size, flags); 3286 } 3287 EXPORT_SYMBOL(kernel_sendpage); 3288 3289 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3290 { 3291 mm_segment_t oldfs = get_fs(); 3292 int err; 3293 3294 set_fs(KERNEL_DS); 3295 err = sock->ops->ioctl(sock, cmd, arg); 3296 set_fs(oldfs); 3297 3298 return err; 3299 } 3300 EXPORT_SYMBOL(kernel_sock_ioctl); 3301 3302 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3303 { 3304 return sock->ops->shutdown(sock, how); 3305 } 3306 EXPORT_SYMBOL(kernel_sock_shutdown); 3307
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.