~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/socket.c

Version: ~ [ linux-5.19-rc3 ] ~ [ linux-5.18.5 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.48 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.123 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.199 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.248 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.284 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.319 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * NET          An implementation of the SOCKET network access protocol.
  3  *
  4  * Version:     @(#)socket.c    1.1.93  18/02/95
  5  *
  6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
  7  *              Ross Biro
  8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  9  *
 10  * Fixes:
 11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
 12  *                                      shutdown()
 13  *              Alan Cox        :       verify_area() fixes
 14  *              Alan Cox        :       Removed DDI
 15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
 16  *              Alan Cox        :       Moved a load of checks to the very
 17  *                                      top level.
 18  *              Alan Cox        :       Move address structures to/from user
 19  *                                      mode above the protocol layers.
 20  *              Rob Janssen     :       Allow 0 length sends.
 21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
 22  *                                      tty drivers).
 23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
 24  *              Jeff Uphoff     :       Made max number of sockets command-line
 25  *                                      configurable.
 26  *              Matti Aarnio    :       Made the number of sockets dynamic,
 27  *                                      to be allocated when needed, and mr.
 28  *                                      Uphoff's max is used as max to be
 29  *                                      allowed to allocate.
 30  *              Linus           :       Argh. removed all the socket allocation
 31  *                                      altogether: it's in the inode now.
 32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
 33  *                                      for NetROM and future kernel nfsd type
 34  *                                      stuff.
 35  *              Alan Cox        :       sendmsg/recvmsg basics.
 36  *              Tom Dyas        :       Export net symbols.
 37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
 38  *              Alan Cox        :       Added thread locking to sys_* calls
 39  *                                      for sockets. May have errors at the
 40  *                                      moment.
 41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
 42  *              Andi Kleen      :       Some small cleanups, optimizations,
 43  *                                      and fixed a copy_from_user() bug.
 44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
 45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
 46  *                                      protocol-independent
 47  *
 48  *
 49  *              This program is free software; you can redistribute it and/or
 50  *              modify it under the terms of the GNU General Public License
 51  *              as published by the Free Software Foundation; either version
 52  *              2 of the License, or (at your option) any later version.
 53  *
 54  *
 55  *      This module is effectively the top level interface to the BSD socket
 56  *      paradigm.
 57  *
 58  *      Based upon Swansea University Computer Society NET3.039
 59  */
 60 
 61 #include <linux/mm.h>
 62 #include <linux/socket.h>
 63 #include <linux/file.h>
 64 #include <linux/net.h>
 65 #include <linux/interrupt.h>
 66 #include <linux/thread_info.h>
 67 #include <linux/rcupdate.h>
 68 #include <linux/netdevice.h>
 69 #include <linux/proc_fs.h>
 70 #include <linux/seq_file.h>
 71 #include <linux/mutex.h>
 72 #include <linux/if_bridge.h>
 73 #include <linux/if_frad.h>
 74 #include <linux/if_vlan.h>
 75 #include <linux/ptp_classify.h>
 76 #include <linux/init.h>
 77 #include <linux/poll.h>
 78 #include <linux/cache.h>
 79 #include <linux/module.h>
 80 #include <linux/highmem.h>
 81 #include <linux/mount.h>
 82 #include <linux/security.h>
 83 #include <linux/syscalls.h>
 84 #include <linux/compat.h>
 85 #include <linux/kmod.h>
 86 #include <linux/audit.h>
 87 #include <linux/wireless.h>
 88 #include <linux/nsproxy.h>
 89 #include <linux/magic.h>
 90 #include <linux/slab.h>
 91 #include <linux/xattr.h>
 92 
 93 #include <asm/uaccess.h>
 94 #include <asm/unistd.h>
 95 
 96 #include <net/compat.h>
 97 #include <net/wext.h>
 98 #include <net/cls_cgroup.h>
 99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122                               struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126                               unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130                              int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132                                 struct pipe_inode_info *pipe, size_t len,
133                                 unsigned int flags);
134 
135 /*
136  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *      in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141         .owner =        THIS_MODULE,
142         .llseek =       no_llseek,
143         .read_iter =    sock_read_iter,
144         .write_iter =   sock_write_iter,
145         .poll =         sock_poll,
146         .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148         .compat_ioctl = compat_sock_ioctl,
149 #endif
150         .mmap =         sock_mmap,
151         .release =      sock_close,
152         .fasync =       sock_fasync,
153         .sendpage =     sock_sendpage,
154         .splice_write = generic_splice_sendpage,
155         .splice_read =  sock_splice_read,
156 };
157 
158 /*
159  *      The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *      Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *      move_addr_to_kernel     -       copy a socket address into kernel space
179  *      @uaddr: Address in user space
180  *      @kaddr: Address in kernel space
181  *      @ulen: Length in user space
182  *
183  *      The address is copied into kernel space. If the provided address is
184  *      too long an error code of -EINVAL is returned. If the copy gives
185  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191                 return -EINVAL;
192         if (ulen == 0)
193                 return 0;
194         if (copy_from_user(kaddr, uaddr, ulen))
195                 return -EFAULT;
196         return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *      move_addr_to_user       -       copy an address to user space
201  *      @kaddr: kernel space address
202  *      @klen: length of address in kernel
203  *      @uaddr: user space address
204  *      @ulen: pointer to user length field
205  *
206  *      The value pointed to by ulen on entry is the buffer length available.
207  *      This is overwritten with the buffer space used. -EINVAL is returned
208  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *      is returned if either the buffer or the length field are not
210  *      accessible.
211  *      After copying the data up to the limit the user specifies, the true
212  *      length of the data is written over the length limit the user
213  *      specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217                              void __user *uaddr, int __user *ulen)
218 {
219         int err;
220         int len;
221 
222         BUG_ON(klen > sizeof(struct sockaddr_storage));
223         err = get_user(len, ulen);
224         if (err)
225                 return err;
226         if (len > klen)
227                 len = klen;
228         if (len < 0)
229                 return -EINVAL;
230         if (len) {
231                 if (audit_sockaddr(klen, kaddr))
232                         return -ENOMEM;
233                 if (copy_to_user(uaddr, kaddr, len))
234                         return -EFAULT;
235         }
236         /*
237          *      "fromlen shall refer to the value before truncation.."
238          *                      1003.1g
239          */
240         return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247         struct socket_alloc *ei;
248         struct socket_wq *wq;
249 
250         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251         if (!ei)
252                 return NULL;
253         wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254         if (!wq) {
255                 kmem_cache_free(sock_inode_cachep, ei);
256                 return NULL;
257         }
258         init_waitqueue_head(&wq->wait);
259         wq->fasync_list = NULL;
260         wq->flags = 0;
261         RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263         ei->socket.state = SS_UNCONNECTED;
264         ei->socket.flags = 0;
265         ei->socket.ops = NULL;
266         ei->socket.sk = NULL;
267         ei->socket.file = NULL;
268 
269         return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274         struct socket_alloc *ei;
275         struct socket_wq *wq;
276 
277         ei = container_of(inode, struct socket_alloc, vfs_inode);
278         wq = rcu_dereference_protected(ei->socket.wq, 1);
279         kfree_rcu(wq, rcu);
280         kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285         struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287         inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293                                               sizeof(struct socket_alloc),
294                                               0,
295                                               (SLAB_HWCACHE_ALIGN |
296                                                SLAB_RECLAIM_ACCOUNT |
297                                                SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298                                               init_once);
299         if (sock_inode_cachep == NULL)
300                 return -ENOMEM;
301         return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305         .alloc_inode    = sock_alloc_inode,
306         .destroy_inode  = sock_destroy_inode,
307         .statfs         = simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316                                 d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320         .d_dname  = sockfs_dname,
321 };
322 
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324                          int flags, const char *dev_name, void *data)
325 {
326         return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327                 &sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329 
330 static struct vfsmount *sock_mnt __read_mostly;
331 
332 static struct file_system_type sock_fs_type = {
333         .name =         "sockfs",
334         .mount =        sockfs_mount,
335         .kill_sb =      kill_anon_super,
336 };
337 
338 /*
339  *      Obtains the first available file descriptor and sets it up for use.
340  *
341  *      These functions create file structures and maps them to fd space
342  *      of the current process. On success it returns file descriptor
343  *      and file struct implicitly stored in sock->file.
344  *      Note that another thread may close file descriptor before we return
345  *      from this function. We use the fact that now we do not refer
346  *      to socket after mapping. If one day we will need it, this
347  *      function will increment ref. count on file by 1.
348  *
349  *      In any case returned fd MAY BE not valid!
350  *      This race condition is unavoidable
351  *      with shared fd spaces, we cannot solve it inside kernel,
352  *      but we take care of internal coherence yet.
353  */
354 
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357         struct qstr name = { .name = "" };
358         struct path path;
359         struct file *file;
360 
361         if (dname) {
362                 name.name = dname;
363                 name.len = strlen(name.name);
364         } else if (sock->sk) {
365                 name.name = sock->sk->sk_prot_creator->name;
366                 name.len = strlen(name.name);
367         }
368         path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369         if (unlikely(!path.dentry))
370                 return ERR_PTR(-ENOMEM);
371         path.mnt = mntget(sock_mnt);
372 
373         d_instantiate(path.dentry, SOCK_INODE(sock));
374 
375         file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376                   &socket_file_ops);
377         if (IS_ERR(file)) {
378                 /* drop dentry, keep inode */
379                 ihold(d_inode(path.dentry));
380                 path_put(&path);
381                 return file;
382         }
383 
384         sock->file = file;
385         file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386         file->private_data = sock;
387         return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390 
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393         struct file *newfile;
394         int fd = get_unused_fd_flags(flags);
395         if (unlikely(fd < 0))
396                 return fd;
397 
398         newfile = sock_alloc_file(sock, flags, NULL);
399         if (likely(!IS_ERR(newfile))) {
400                 fd_install(fd, newfile);
401                 return fd;
402         }
403 
404         put_unused_fd(fd);
405         return PTR_ERR(newfile);
406 }
407 
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410         if (file->f_op == &socket_file_ops)
411                 return file->private_data;      /* set in sock_map_fd */
412 
413         *err = -ENOTSOCK;
414         return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417 
418 /**
419  *      sockfd_lookup - Go from a file number to its socket slot
420  *      @fd: file handle
421  *      @err: pointer to an error code return
422  *
423  *      The file handle passed in is locked and the socket it is bound
424  *      too is returned. If an error occurs the err pointer is overwritten
425  *      with a negative errno code and NULL is returned. The function checks
426  *      for both invalid handles and passing a handle which is not a socket.
427  *
428  *      On a success the socket object pointer is returned.
429  */
430 
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433         struct file *file;
434         struct socket *sock;
435 
436         file = fget(fd);
437         if (!file) {
438                 *err = -EBADF;
439                 return NULL;
440         }
441 
442         sock = sock_from_file(file, err);
443         if (!sock)
444                 fput(file);
445         return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448 
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451         struct fd f = fdget(fd);
452         struct socket *sock;
453 
454         *err = -EBADF;
455         if (f.file) {
456                 sock = sock_from_file(f.file, err);
457                 if (likely(sock)) {
458                         *fput_needed = f.flags;
459                         return sock;
460                 }
461                 fdput(f);
462         }
463         return NULL;
464 }
465 
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470                                const char *name, void *value, size_t size)
471 {
472         const char *proto_name;
473         size_t proto_size;
474         int error;
475 
476         error = -ENODATA;
477         if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478                 proto_name = dentry->d_name.name;
479                 proto_size = strlen(proto_name);
480 
481                 if (value) {
482                         error = -ERANGE;
483                         if (proto_size + 1 > size)
484                                 goto out;
485 
486                         strncpy(value, proto_name, proto_size + 1);
487                 }
488                 error = proto_size + 1;
489         }
490 
491 out:
492         return error;
493 }
494 
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496                                 size_t size)
497 {
498         ssize_t len;
499         ssize_t used = 0;
500 
501         len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502         if (len < 0)
503                 return len;
504         used += len;
505         if (buffer) {
506                 if (size < used)
507                         return -ERANGE;
508                 buffer += len;
509         }
510 
511         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512         used += len;
513         if (buffer) {
514                 if (size < used)
515                         return -ERANGE;
516                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517                 buffer += len;
518         }
519 
520         return used;
521 }
522 
523 static const struct inode_operations sockfs_inode_ops = {
524         .getxattr = sockfs_getxattr,
525         .listxattr = sockfs_listxattr,
526 };
527 
528 /**
529  *      sock_alloc      -       allocate a socket
530  *
531  *      Allocate a new inode and socket object. The two are bound together
532  *      and initialised. The socket is then returned. If we are out of inodes
533  *      NULL is returned.
534  */
535 
536 struct socket *sock_alloc(void)
537 {
538         struct inode *inode;
539         struct socket *sock;
540 
541         inode = new_inode_pseudo(sock_mnt->mnt_sb);
542         if (!inode)
543                 return NULL;
544 
545         sock = SOCKET_I(inode);
546 
547         kmemcheck_annotate_bitfield(sock, type);
548         inode->i_ino = get_next_ino();
549         inode->i_mode = S_IFSOCK | S_IRWXUGO;
550         inode->i_uid = current_fsuid();
551         inode->i_gid = current_fsgid();
552         inode->i_op = &sockfs_inode_ops;
553 
554         this_cpu_add(sockets_in_use, 1);
555         return sock;
556 }
557 EXPORT_SYMBOL(sock_alloc);
558 
559 /**
560  *      sock_release    -       close a socket
561  *      @sock: socket to close
562  *
563  *      The socket is released from the protocol stack if it has a release
564  *      callback, and the inode is then released if the socket is bound to
565  *      an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570         if (sock->ops) {
571                 struct module *owner = sock->ops->owner;
572 
573                 sock->ops->release(sock);
574                 sock->ops = NULL;
575                 module_put(owner);
576         }
577 
578         if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579                 pr_err("%s: fasync list not empty!\n", __func__);
580 
581         this_cpu_sub(sockets_in_use, 1);
582         if (!sock->file) {
583                 iput(SOCK_INODE(sock));
584                 return;
585         }
586         sock->file = NULL;
587 }
588 EXPORT_SYMBOL(sock_release);
589 
590 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
591 {
592         u8 flags = *tx_flags;
593 
594         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595                 flags |= SKBTX_HW_TSTAMP;
596 
597         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598                 flags |= SKBTX_SW_TSTAMP;
599 
600         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
601                 flags |= SKBTX_SCHED_TSTAMP;
602 
603         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
604                 flags |= SKBTX_ACK_TSTAMP;
605 
606         *tx_flags = flags;
607 }
608 EXPORT_SYMBOL(__sock_tx_timestamp);
609 
610 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
611 {
612         int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
613         BUG_ON(ret == -EIOCBQUEUED);
614         return ret;
615 }
616 
617 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
618 {
619         int err = security_socket_sendmsg(sock, msg,
620                                           msg_data_left(msg));
621 
622         return err ?: sock_sendmsg_nosec(sock, msg);
623 }
624 EXPORT_SYMBOL(sock_sendmsg);
625 
626 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
627                    struct kvec *vec, size_t num, size_t size)
628 {
629         iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
630         return sock_sendmsg(sock, msg);
631 }
632 EXPORT_SYMBOL(kernel_sendmsg);
633 
634 /*
635  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
636  */
637 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
638         struct sk_buff *skb)
639 {
640         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
641         struct scm_timestamping tss;
642         int empty = 1;
643         struct skb_shared_hwtstamps *shhwtstamps =
644                 skb_hwtstamps(skb);
645 
646         /* Race occurred between timestamp enabling and packet
647            receiving.  Fill in the current time for now. */
648         if (need_software_tstamp && skb->tstamp.tv64 == 0)
649                 __net_timestamp(skb);
650 
651         if (need_software_tstamp) {
652                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
653                         struct timeval tv;
654                         skb_get_timestamp(skb, &tv);
655                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
656                                  sizeof(tv), &tv);
657                 } else {
658                         struct timespec ts;
659                         skb_get_timestampns(skb, &ts);
660                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
661                                  sizeof(ts), &ts);
662                 }
663         }
664 
665         memset(&tss, 0, sizeof(tss));
666         if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
667             ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
668                 empty = 0;
669         if (shhwtstamps &&
670             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
671             ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
672                 empty = 0;
673         if (!empty)
674                 put_cmsg(msg, SOL_SOCKET,
675                          SCM_TIMESTAMPING, sizeof(tss), &tss);
676 }
677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
678 
679 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
680         struct sk_buff *skb)
681 {
682         int ack;
683 
684         if (!sock_flag(sk, SOCK_WIFI_STATUS))
685                 return;
686         if (!skb->wifi_acked_valid)
687                 return;
688 
689         ack = skb->wifi_acked;
690 
691         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
692 }
693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
694 
695 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
696                                    struct sk_buff *skb)
697 {
698         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
699                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
700                         sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
701 }
702 
703 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
704         struct sk_buff *skb)
705 {
706         sock_recv_timestamp(msg, sk, skb);
707         sock_recv_drops(msg, sk, skb);
708 }
709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
710 
711 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
712                                      size_t size, int flags)
713 {
714         return sock->ops->recvmsg(sock, msg, size, flags);
715 }
716 
717 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
718                  int flags)
719 {
720         int err = security_socket_recvmsg(sock, msg, size, flags);
721 
722         return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
723 }
724 EXPORT_SYMBOL(sock_recvmsg);
725 
726 /**
727  * kernel_recvmsg - Receive a message from a socket (kernel space)
728  * @sock:       The socket to receive the message from
729  * @msg:        Received message
730  * @vec:        Input s/g array for message data
731  * @num:        Size of input s/g array
732  * @size:       Number of bytes to read
733  * @flags:      Message flags (MSG_DONTWAIT, etc...)
734  *
735  * On return the msg structure contains the scatter/gather array passed in the
736  * vec argument. The array is modified so that it consists of the unfilled
737  * portion of the original array.
738  *
739  * The returned value is the total number of bytes received, or an error.
740  */
741 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
742                    struct kvec *vec, size_t num, size_t size, int flags)
743 {
744         mm_segment_t oldfs = get_fs();
745         int result;
746 
747         iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
748         set_fs(KERNEL_DS);
749         result = sock_recvmsg(sock, msg, size, flags);
750         set_fs(oldfs);
751         return result;
752 }
753 EXPORT_SYMBOL(kernel_recvmsg);
754 
755 static ssize_t sock_sendpage(struct file *file, struct page *page,
756                              int offset, size_t size, loff_t *ppos, int more)
757 {
758         struct socket *sock;
759         int flags;
760 
761         sock = file->private_data;
762 
763         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
764         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
765         flags |= more;
766 
767         return kernel_sendpage(sock, page, offset, size, flags);
768 }
769 
770 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
771                                 struct pipe_inode_info *pipe, size_t len,
772                                 unsigned int flags)
773 {
774         struct socket *sock = file->private_data;
775 
776         if (unlikely(!sock->ops->splice_read))
777                 return -EINVAL;
778 
779         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
780 }
781 
782 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
783 {
784         struct file *file = iocb->ki_filp;
785         struct socket *sock = file->private_data;
786         struct msghdr msg = {.msg_iter = *to,
787                              .msg_iocb = iocb};
788         ssize_t res;
789 
790         if (file->f_flags & O_NONBLOCK)
791                 msg.msg_flags = MSG_DONTWAIT;
792 
793         if (iocb->ki_pos != 0)
794                 return -ESPIPE;
795 
796         if (!iov_iter_count(to))        /* Match SYS5 behaviour */
797                 return 0;
798 
799         res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
800         *to = msg.msg_iter;
801         return res;
802 }
803 
804 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
805 {
806         struct file *file = iocb->ki_filp;
807         struct socket *sock = file->private_data;
808         struct msghdr msg = {.msg_iter = *from,
809                              .msg_iocb = iocb};
810         ssize_t res;
811 
812         if (iocb->ki_pos != 0)
813                 return -ESPIPE;
814 
815         if (file->f_flags & O_NONBLOCK)
816                 msg.msg_flags = MSG_DONTWAIT;
817 
818         if (sock->type == SOCK_SEQPACKET)
819                 msg.msg_flags |= MSG_EOR;
820 
821         res = sock_sendmsg(sock, &msg);
822         *from = msg.msg_iter;
823         return res;
824 }
825 
826 /*
827  * Atomic setting of ioctl hooks to avoid race
828  * with module unload.
829  */
830 
831 static DEFINE_MUTEX(br_ioctl_mutex);
832 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
833 
834 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
835 {
836         mutex_lock(&br_ioctl_mutex);
837         br_ioctl_hook = hook;
838         mutex_unlock(&br_ioctl_mutex);
839 }
840 EXPORT_SYMBOL(brioctl_set);
841 
842 static DEFINE_MUTEX(vlan_ioctl_mutex);
843 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
844 
845 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
846 {
847         mutex_lock(&vlan_ioctl_mutex);
848         vlan_ioctl_hook = hook;
849         mutex_unlock(&vlan_ioctl_mutex);
850 }
851 EXPORT_SYMBOL(vlan_ioctl_set);
852 
853 static DEFINE_MUTEX(dlci_ioctl_mutex);
854 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
855 
856 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
857 {
858         mutex_lock(&dlci_ioctl_mutex);
859         dlci_ioctl_hook = hook;
860         mutex_unlock(&dlci_ioctl_mutex);
861 }
862 EXPORT_SYMBOL(dlci_ioctl_set);
863 
864 static long sock_do_ioctl(struct net *net, struct socket *sock,
865                                  unsigned int cmd, unsigned long arg)
866 {
867         int err;
868         void __user *argp = (void __user *)arg;
869 
870         err = sock->ops->ioctl(sock, cmd, arg);
871 
872         /*
873          * If this ioctl is unknown try to hand it down
874          * to the NIC driver.
875          */
876         if (err == -ENOIOCTLCMD)
877                 err = dev_ioctl(net, cmd, argp);
878 
879         return err;
880 }
881 
882 /*
883  *      With an ioctl, arg may well be a user mode pointer, but we don't know
884  *      what to do with it - that's up to the protocol still.
885  */
886 
887 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
888 {
889         struct socket *sock;
890         struct sock *sk;
891         void __user *argp = (void __user *)arg;
892         int pid, err;
893         struct net *net;
894 
895         sock = file->private_data;
896         sk = sock->sk;
897         net = sock_net(sk);
898         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
899                 err = dev_ioctl(net, cmd, argp);
900         } else
901 #ifdef CONFIG_WEXT_CORE
902         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
903                 err = dev_ioctl(net, cmd, argp);
904         } else
905 #endif
906                 switch (cmd) {
907                 case FIOSETOWN:
908                 case SIOCSPGRP:
909                         err = -EFAULT;
910                         if (get_user(pid, (int __user *)argp))
911                                 break;
912                         f_setown(sock->file, pid, 1);
913                         err = 0;
914                         break;
915                 case FIOGETOWN:
916                 case SIOCGPGRP:
917                         err = put_user(f_getown(sock->file),
918                                        (int __user *)argp);
919                         break;
920                 case SIOCGIFBR:
921                 case SIOCSIFBR:
922                 case SIOCBRADDBR:
923                 case SIOCBRDELBR:
924                         err = -ENOPKG;
925                         if (!br_ioctl_hook)
926                                 request_module("bridge");
927 
928                         mutex_lock(&br_ioctl_mutex);
929                         if (br_ioctl_hook)
930                                 err = br_ioctl_hook(net, cmd, argp);
931                         mutex_unlock(&br_ioctl_mutex);
932                         break;
933                 case SIOCGIFVLAN:
934                 case SIOCSIFVLAN:
935                         err = -ENOPKG;
936                         if (!vlan_ioctl_hook)
937                                 request_module("8021q");
938 
939                         mutex_lock(&vlan_ioctl_mutex);
940                         if (vlan_ioctl_hook)
941                                 err = vlan_ioctl_hook(net, argp);
942                         mutex_unlock(&vlan_ioctl_mutex);
943                         break;
944                 case SIOCADDDLCI:
945                 case SIOCDELDLCI:
946                         err = -ENOPKG;
947                         if (!dlci_ioctl_hook)
948                                 request_module("dlci");
949 
950                         mutex_lock(&dlci_ioctl_mutex);
951                         if (dlci_ioctl_hook)
952                                 err = dlci_ioctl_hook(cmd, argp);
953                         mutex_unlock(&dlci_ioctl_mutex);
954                         break;
955                 default:
956                         err = sock_do_ioctl(net, sock, cmd, arg);
957                         break;
958                 }
959         return err;
960 }
961 
962 int sock_create_lite(int family, int type, int protocol, struct socket **res)
963 {
964         int err;
965         struct socket *sock = NULL;
966 
967         err = security_socket_create(family, type, protocol, 1);
968         if (err)
969                 goto out;
970 
971         sock = sock_alloc();
972         if (!sock) {
973                 err = -ENOMEM;
974                 goto out;
975         }
976 
977         sock->type = type;
978         err = security_socket_post_create(sock, family, type, protocol, 1);
979         if (err)
980                 goto out_release;
981 
982 out:
983         *res = sock;
984         return err;
985 out_release:
986         sock_release(sock);
987         sock = NULL;
988         goto out;
989 }
990 EXPORT_SYMBOL(sock_create_lite);
991 
992 /* No kernel lock held - perfect */
993 static unsigned int sock_poll(struct file *file, poll_table *wait)
994 {
995         unsigned int busy_flag = 0;
996         struct socket *sock;
997 
998         /*
999          *      We can't return errors to poll, so it's either yes or no.
1000          */
1001         sock = file->private_data;
1002 
1003         if (sk_can_busy_loop(sock->sk)) {
1004                 /* this socket can poll_ll so tell the system call */
1005                 busy_flag = POLL_BUSY_LOOP;
1006 
1007                 /* once, only if requested by syscall */
1008                 if (wait && (wait->_key & POLL_BUSY_LOOP))
1009                         sk_busy_loop(sock->sk, 1);
1010         }
1011 
1012         return busy_flag | sock->ops->poll(file, sock, wait);
1013 }
1014 
1015 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016 {
1017         struct socket *sock = file->private_data;
1018 
1019         return sock->ops->mmap(file, sock, vma);
1020 }
1021 
1022 static int sock_close(struct inode *inode, struct file *filp)
1023 {
1024         sock_release(SOCKET_I(inode));
1025         return 0;
1026 }
1027 
1028 /*
1029  *      Update the socket async list
1030  *
1031  *      Fasync_list locking strategy.
1032  *
1033  *      1. fasync_list is modified only under process context socket lock
1034  *         i.e. under semaphore.
1035  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036  *         or under socket lock
1037  */
1038 
1039 static int sock_fasync(int fd, struct file *filp, int on)
1040 {
1041         struct socket *sock = filp->private_data;
1042         struct sock *sk = sock->sk;
1043         struct socket_wq *wq;
1044 
1045         if (sk == NULL)
1046                 return -EINVAL;
1047 
1048         lock_sock(sk);
1049         wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050         fasync_helper(fd, filp, on, &wq->fasync_list);
1051 
1052         if (!wq->fasync_list)
1053                 sock_reset_flag(sk, SOCK_FASYNC);
1054         else
1055                 sock_set_flag(sk, SOCK_FASYNC);
1056 
1057         release_sock(sk);
1058         return 0;
1059 }
1060 
1061 /* This function may be called only under rcu_lock */
1062 
1063 int sock_wake_async(struct socket_wq *wq, int how, int band)
1064 {
1065         if (!wq || !wq->fasync_list)
1066                 return -1;
1067 
1068         switch (how) {
1069         case SOCK_WAKE_WAITD:
1070                 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071                         break;
1072                 goto call_kill;
1073         case SOCK_WAKE_SPACE:
1074                 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075                         break;
1076                 /* fall through */
1077         case SOCK_WAKE_IO:
1078 call_kill:
1079                 kill_fasync(&wq->fasync_list, SIGIO, band);
1080                 break;
1081         case SOCK_WAKE_URG:
1082                 kill_fasync(&wq->fasync_list, SIGURG, band);
1083         }
1084 
1085         return 0;
1086 }
1087 EXPORT_SYMBOL(sock_wake_async);
1088 
1089 int __sock_create(struct net *net, int family, int type, int protocol,
1090                          struct socket **res, int kern)
1091 {
1092         int err;
1093         struct socket *sock;
1094         const struct net_proto_family *pf;
1095 
1096         /*
1097          *      Check protocol is in range
1098          */
1099         if (family < 0 || family >= NPROTO)
1100                 return -EAFNOSUPPORT;
1101         if (type < 0 || type >= SOCK_MAX)
1102                 return -EINVAL;
1103 
1104         /* Compatibility.
1105 
1106            This uglymoron is moved from INET layer to here to avoid
1107            deadlock in module load.
1108          */
1109         if (family == PF_INET && type == SOCK_PACKET) {
1110                 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1111                              current->comm);
1112                 family = PF_PACKET;
1113         }
1114 
1115         err = security_socket_create(family, type, protocol, kern);
1116         if (err)
1117                 return err;
1118 
1119         /*
1120          *      Allocate the socket and allow the family to set things up. if
1121          *      the protocol is 0, the family is instructed to select an appropriate
1122          *      default.
1123          */
1124         sock = sock_alloc();
1125         if (!sock) {
1126                 net_warn_ratelimited("socket: no more sockets\n");
1127                 return -ENFILE; /* Not exactly a match, but its the
1128                                    closest posix thing */
1129         }
1130 
1131         sock->type = type;
1132 
1133 #ifdef CONFIG_MODULES
1134         /* Attempt to load a protocol module if the find failed.
1135          *
1136          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1137          * requested real, full-featured networking support upon configuration.
1138          * Otherwise module support will break!
1139          */
1140         if (rcu_access_pointer(net_families[family]) == NULL)
1141                 request_module("net-pf-%d", family);
1142 #endif
1143 
1144         rcu_read_lock();
1145         pf = rcu_dereference(net_families[family]);
1146         err = -EAFNOSUPPORT;
1147         if (!pf)
1148                 goto out_release;
1149 
1150         /*
1151          * We will call the ->create function, that possibly is in a loadable
1152          * module, so we have to bump that loadable module refcnt first.
1153          */
1154         if (!try_module_get(pf->owner))
1155                 goto out_release;
1156 
1157         /* Now protected by module ref count */
1158         rcu_read_unlock();
1159 
1160         err = pf->create(net, sock, protocol, kern);
1161         if (err < 0)
1162                 goto out_module_put;
1163 
1164         /*
1165          * Now to bump the refcnt of the [loadable] module that owns this
1166          * socket at sock_release time we decrement its refcnt.
1167          */
1168         if (!try_module_get(sock->ops->owner))
1169                 goto out_module_busy;
1170 
1171         /*
1172          * Now that we're done with the ->create function, the [loadable]
1173          * module can have its refcnt decremented
1174          */
1175         module_put(pf->owner);
1176         err = security_socket_post_create(sock, family, type, protocol, kern);
1177         if (err)
1178                 goto out_sock_release;
1179         *res = sock;
1180 
1181         return 0;
1182 
1183 out_module_busy:
1184         err = -EAFNOSUPPORT;
1185 out_module_put:
1186         sock->ops = NULL;
1187         module_put(pf->owner);
1188 out_sock_release:
1189         sock_release(sock);
1190         return err;
1191 
1192 out_release:
1193         rcu_read_unlock();
1194         goto out_sock_release;
1195 }
1196 EXPORT_SYMBOL(__sock_create);
1197 
1198 int sock_create(int family, int type, int protocol, struct socket **res)
1199 {
1200         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1201 }
1202 EXPORT_SYMBOL(sock_create);
1203 
1204 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1205 {
1206         return __sock_create(net, family, type, protocol, res, 1);
1207 }
1208 EXPORT_SYMBOL(sock_create_kern);
1209 
1210 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1211 {
1212         int retval;
1213         struct socket *sock;
1214         int flags;
1215 
1216         /* Check the SOCK_* constants for consistency.  */
1217         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1218         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1219         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1220         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1221 
1222         flags = type & ~SOCK_TYPE_MASK;
1223         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1224                 return -EINVAL;
1225         type &= SOCK_TYPE_MASK;
1226 
1227         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1228                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1229 
1230         retval = sock_create(family, type, protocol, &sock);
1231         if (retval < 0)
1232                 goto out;
1233 
1234         retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1235         if (retval < 0)
1236                 goto out_release;
1237 
1238 out:
1239         /* It may be already another descriptor 8) Not kernel problem. */
1240         return retval;
1241 
1242 out_release:
1243         sock_release(sock);
1244         return retval;
1245 }
1246 
1247 /*
1248  *      Create a pair of connected sockets.
1249  */
1250 
1251 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1252                 int __user *, usockvec)
1253 {
1254         struct socket *sock1, *sock2;
1255         int fd1, fd2, err;
1256         struct file *newfile1, *newfile2;
1257         int flags;
1258 
1259         flags = type & ~SOCK_TYPE_MASK;
1260         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261                 return -EINVAL;
1262         type &= SOCK_TYPE_MASK;
1263 
1264         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266 
1267         /*
1268          * Obtain the first socket and check if the underlying protocol
1269          * supports the socketpair call.
1270          */
1271 
1272         err = sock_create(family, type, protocol, &sock1);
1273         if (err < 0)
1274                 goto out;
1275 
1276         err = sock_create(family, type, protocol, &sock2);
1277         if (err < 0)
1278                 goto out_release_1;
1279 
1280         err = sock1->ops->socketpair(sock1, sock2);
1281         if (err < 0)
1282                 goto out_release_both;
1283 
1284         fd1 = get_unused_fd_flags(flags);
1285         if (unlikely(fd1 < 0)) {
1286                 err = fd1;
1287                 goto out_release_both;
1288         }
1289 
1290         fd2 = get_unused_fd_flags(flags);
1291         if (unlikely(fd2 < 0)) {
1292                 err = fd2;
1293                 goto out_put_unused_1;
1294         }
1295 
1296         newfile1 = sock_alloc_file(sock1, flags, NULL);
1297         if (IS_ERR(newfile1)) {
1298                 err = PTR_ERR(newfile1);
1299                 goto out_put_unused_both;
1300         }
1301 
1302         newfile2 = sock_alloc_file(sock2, flags, NULL);
1303         if (IS_ERR(newfile2)) {
1304                 err = PTR_ERR(newfile2);
1305                 goto out_fput_1;
1306         }
1307 
1308         err = put_user(fd1, &usockvec[0]);
1309         if (err)
1310                 goto out_fput_both;
1311 
1312         err = put_user(fd2, &usockvec[1]);
1313         if (err)
1314                 goto out_fput_both;
1315 
1316         audit_fd_pair(fd1, fd2);
1317 
1318         fd_install(fd1, newfile1);
1319         fd_install(fd2, newfile2);
1320         /* fd1 and fd2 may be already another descriptors.
1321          * Not kernel problem.
1322          */
1323 
1324         return 0;
1325 
1326 out_fput_both:
1327         fput(newfile2);
1328         fput(newfile1);
1329         put_unused_fd(fd2);
1330         put_unused_fd(fd1);
1331         goto out;
1332 
1333 out_fput_1:
1334         fput(newfile1);
1335         put_unused_fd(fd2);
1336         put_unused_fd(fd1);
1337         sock_release(sock2);
1338         goto out;
1339 
1340 out_put_unused_both:
1341         put_unused_fd(fd2);
1342 out_put_unused_1:
1343         put_unused_fd(fd1);
1344 out_release_both:
1345         sock_release(sock2);
1346 out_release_1:
1347         sock_release(sock1);
1348 out:
1349         return err;
1350 }
1351 
1352 /*
1353  *      Bind a name to a socket. Nothing much to do here since it's
1354  *      the protocol's responsibility to handle the local address.
1355  *
1356  *      We move the socket address to kernel space before we call
1357  *      the protocol layer (having also checked the address is ok).
1358  */
1359 
1360 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361 {
1362         struct socket *sock;
1363         struct sockaddr_storage address;
1364         int err, fput_needed;
1365 
1366         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1367         if (sock) {
1368                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1369                 if (err >= 0) {
1370                         err = security_socket_bind(sock,
1371                                                    (struct sockaddr *)&address,
1372                                                    addrlen);
1373                         if (!err)
1374                                 err = sock->ops->bind(sock,
1375                                                       (struct sockaddr *)
1376                                                       &address, addrlen);
1377                 }
1378                 fput_light(sock->file, fput_needed);
1379         }
1380         return err;
1381 }
1382 
1383 /*
1384  *      Perform a listen. Basically, we allow the protocol to do anything
1385  *      necessary for a listen, and if that works, we mark the socket as
1386  *      ready for listening.
1387  */
1388 
1389 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1390 {
1391         struct socket *sock;
1392         int err, fput_needed;
1393         int somaxconn;
1394 
1395         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396         if (sock) {
1397                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1398                 if ((unsigned int)backlog > somaxconn)
1399                         backlog = somaxconn;
1400 
1401                 err = security_socket_listen(sock, backlog);
1402                 if (!err)
1403                         err = sock->ops->listen(sock, backlog);
1404 
1405                 fput_light(sock->file, fput_needed);
1406         }
1407         return err;
1408 }
1409 
1410 /*
1411  *      For accept, we attempt to create a new socket, set up the link
1412  *      with the client, wake up the client, then return the new
1413  *      connected fd. We collect the address of the connector in kernel
1414  *      space and move it to user at the very end. This is unclean because
1415  *      we open the socket then return an error.
1416  *
1417  *      1003.1g adds the ability to recvmsg() to query connection pending
1418  *      status to recvmsg. We need to add that support in a way thats
1419  *      clean when we restucture accept also.
1420  */
1421 
1422 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1423                 int __user *, upeer_addrlen, int, flags)
1424 {
1425         struct socket *sock, *newsock;
1426         struct file *newfile;
1427         int err, len, newfd, fput_needed;
1428         struct sockaddr_storage address;
1429 
1430         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431                 return -EINVAL;
1432 
1433         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435 
1436         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1437         if (!sock)
1438                 goto out;
1439 
1440         err = -ENFILE;
1441         newsock = sock_alloc();
1442         if (!newsock)
1443                 goto out_put;
1444 
1445         newsock->type = sock->type;
1446         newsock->ops = sock->ops;
1447 
1448         /*
1449          * We don't need try_module_get here, as the listening socket (sock)
1450          * has the protocol module (sock->ops->owner) held.
1451          */
1452         __module_get(newsock->ops->owner);
1453 
1454         newfd = get_unused_fd_flags(flags);
1455         if (unlikely(newfd < 0)) {
1456                 err = newfd;
1457                 sock_release(newsock);
1458                 goto out_put;
1459         }
1460         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1461         if (IS_ERR(newfile)) {
1462                 err = PTR_ERR(newfile);
1463                 put_unused_fd(newfd);
1464                 sock_release(newsock);
1465                 goto out_put;
1466         }
1467 
1468         err = security_socket_accept(sock, newsock);
1469         if (err)
1470                 goto out_fd;
1471 
1472         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1473         if (err < 0)
1474                 goto out_fd;
1475 
1476         if (ccs_socket_post_accept_permission(sock, newsock)) {
1477                 err = -EAGAIN; /* Hope less harmful than -EPERM. */
1478                 goto out_fd;
1479         }
1480         if (upeer_sockaddr) {
1481                 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1482                                           &len, 2) < 0) {
1483                         err = -ECONNABORTED;
1484                         goto out_fd;
1485                 }
1486                 err = move_addr_to_user(&address,
1487                                         len, upeer_sockaddr, upeer_addrlen);
1488                 if (err < 0)
1489                         goto out_fd;
1490         }
1491 
1492         /* File flags are not inherited via accept() unlike another OSes. */
1493 
1494         fd_install(newfd, newfile);
1495         err = newfd;
1496 
1497 out_put:
1498         fput_light(sock->file, fput_needed);
1499 out:
1500         return err;
1501 out_fd:
1502         fput(newfile);
1503         put_unused_fd(newfd);
1504         goto out_put;
1505 }
1506 
1507 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1508                 int __user *, upeer_addrlen)
1509 {
1510         return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1511 }
1512 
1513 /*
1514  *      Attempt to connect to a socket with the server address.  The address
1515  *      is in user space so we verify it is OK and move it to kernel space.
1516  *
1517  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1518  *      break bindings
1519  *
1520  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1521  *      other SEQPACKET protocols that take time to connect() as it doesn't
1522  *      include the -EINPROGRESS status for such sockets.
1523  */
1524 
1525 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1526                 int, addrlen)
1527 {
1528         struct socket *sock;
1529         struct sockaddr_storage address;
1530         int err, fput_needed;
1531 
1532         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533         if (!sock)
1534                 goto out;
1535         err = move_addr_to_kernel(uservaddr, addrlen, &address);
1536         if (err < 0)
1537                 goto out_put;
1538 
1539         err =
1540             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1541         if (err)
1542                 goto out_put;
1543 
1544         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1545                                  sock->file->f_flags);
1546 out_put:
1547         fput_light(sock->file, fput_needed);
1548 out:
1549         return err;
1550 }
1551 
1552 /*
1553  *      Get the local address ('name') of a socket object. Move the obtained
1554  *      name to user space.
1555  */
1556 
1557 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1558                 int __user *, usockaddr_len)
1559 {
1560         struct socket *sock;
1561         struct sockaddr_storage address;
1562         int len, err, fput_needed;
1563 
1564         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565         if (!sock)
1566                 goto out;
1567 
1568         err = security_socket_getsockname(sock);
1569         if (err)
1570                 goto out_put;
1571 
1572         err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1573         if (err)
1574                 goto out_put;
1575         err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1576 
1577 out_put:
1578         fput_light(sock->file, fput_needed);
1579 out:
1580         return err;
1581 }
1582 
1583 /*
1584  *      Get the remote address ('name') of a socket object. Move the obtained
1585  *      name to user space.
1586  */
1587 
1588 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1589                 int __user *, usockaddr_len)
1590 {
1591         struct socket *sock;
1592         struct sockaddr_storage address;
1593         int len, err, fput_needed;
1594 
1595         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596         if (sock != NULL) {
1597                 err = security_socket_getpeername(sock);
1598                 if (err) {
1599                         fput_light(sock->file, fput_needed);
1600                         return err;
1601                 }
1602 
1603                 err =
1604                     sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1605                                        1);
1606                 if (!err)
1607                         err = move_addr_to_user(&address, len, usockaddr,
1608                                                 usockaddr_len);
1609                 fput_light(sock->file, fput_needed);
1610         }
1611         return err;
1612 }
1613 
1614 /*
1615  *      Send a datagram to a given address. We move the address into kernel
1616  *      space and check the user space data area is readable before invoking
1617  *      the protocol.
1618  */
1619 
1620 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1621                 unsigned int, flags, struct sockaddr __user *, addr,
1622                 int, addr_len)
1623 {
1624         struct socket *sock;
1625         struct sockaddr_storage address;
1626         int err;
1627         struct msghdr msg;
1628         struct iovec iov;
1629         int fput_needed;
1630 
1631         err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1632         if (unlikely(err))
1633                 return err;
1634         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1635         if (!sock)
1636                 goto out;
1637 
1638         msg.msg_name = NULL;
1639         msg.msg_control = NULL;
1640         msg.msg_controllen = 0;
1641         msg.msg_namelen = 0;
1642         if (addr) {
1643                 err = move_addr_to_kernel(addr, addr_len, &address);
1644                 if (err < 0)
1645                         goto out_put;
1646                 msg.msg_name = (struct sockaddr *)&address;
1647                 msg.msg_namelen = addr_len;
1648         }
1649         if (sock->file->f_flags & O_NONBLOCK)
1650                 flags |= MSG_DONTWAIT;
1651         msg.msg_flags = flags;
1652         err = sock_sendmsg(sock, &msg);
1653 
1654 out_put:
1655         fput_light(sock->file, fput_needed);
1656 out:
1657         return err;
1658 }
1659 
1660 /*
1661  *      Send a datagram down a socket.
1662  */
1663 
1664 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1665                 unsigned int, flags)
1666 {
1667         return sys_sendto(fd, buff, len, flags, NULL, 0);
1668 }
1669 
1670 /*
1671  *      Receive a frame from the socket and optionally record the address of the
1672  *      sender. We verify the buffers are writable and if needed move the
1673  *      sender address from kernel to user space.
1674  */
1675 
1676 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1677                 unsigned int, flags, struct sockaddr __user *, addr,
1678                 int __user *, addr_len)
1679 {
1680         struct socket *sock;
1681         struct iovec iov;
1682         struct msghdr msg;
1683         struct sockaddr_storage address;
1684         int err, err2;
1685         int fput_needed;
1686 
1687         err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1688         if (unlikely(err))
1689                 return err;
1690         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691         if (!sock)
1692                 goto out;
1693 
1694         msg.msg_control = NULL;
1695         msg.msg_controllen = 0;
1696         /* Save some cycles and don't copy the address if not needed */
1697         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1698         /* We assume all kernel code knows the size of sockaddr_storage */
1699         msg.msg_namelen = 0;
1700         msg.msg_iocb = NULL;
1701         if (sock->file->f_flags & O_NONBLOCK)
1702                 flags |= MSG_DONTWAIT;
1703         err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1704 
1705         if (err >= 0 && addr != NULL) {
1706                 err2 = move_addr_to_user(&address,
1707                                          msg.msg_namelen, addr, addr_len);
1708                 if (err2 < 0)
1709                         err = err2;
1710         }
1711 
1712         fput_light(sock->file, fput_needed);
1713 out:
1714         return err;
1715 }
1716 
1717 /*
1718  *      Receive a datagram from a socket.
1719  */
1720 
1721 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1722                 unsigned int, flags)
1723 {
1724         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1725 }
1726 
1727 /*
1728  *      Set a socket option. Because we don't know the option lengths we have
1729  *      to pass the user mode parameter for the protocols to sort out.
1730  */
1731 
1732 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1733                 char __user *, optval, int, optlen)
1734 {
1735         int err, fput_needed;
1736         struct socket *sock;
1737 
1738         if (optlen < 0)
1739                 return -EINVAL;
1740 
1741         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1742         if (sock != NULL) {
1743                 err = security_socket_setsockopt(sock, level, optname);
1744                 if (err)
1745                         goto out_put;
1746 
1747                 if (level == SOL_SOCKET)
1748                         err =
1749                             sock_setsockopt(sock, level, optname, optval,
1750                                             optlen);
1751                 else
1752                         err =
1753                             sock->ops->setsockopt(sock, level, optname, optval,
1754                                                   optlen);
1755 out_put:
1756                 fput_light(sock->file, fput_needed);
1757         }
1758         return err;
1759 }
1760 
1761 /*
1762  *      Get a socket option. Because we don't know the option lengths we have
1763  *      to pass a user mode parameter for the protocols to sort out.
1764  */
1765 
1766 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1767                 char __user *, optval, int __user *, optlen)
1768 {
1769         int err, fput_needed;
1770         struct socket *sock;
1771 
1772         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1773         if (sock != NULL) {
1774                 err = security_socket_getsockopt(sock, level, optname);
1775                 if (err)
1776                         goto out_put;
1777 
1778                 if (level == SOL_SOCKET)
1779                         err =
1780                             sock_getsockopt(sock, level, optname, optval,
1781                                             optlen);
1782                 else
1783                         err =
1784                             sock->ops->getsockopt(sock, level, optname, optval,
1785                                                   optlen);
1786 out_put:
1787                 fput_light(sock->file, fput_needed);
1788         }
1789         return err;
1790 }
1791 
1792 /*
1793  *      Shutdown a socket.
1794  */
1795 
1796 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1797 {
1798         int err, fput_needed;
1799         struct socket *sock;
1800 
1801         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1802         if (sock != NULL) {
1803                 err = security_socket_shutdown(sock, how);
1804                 if (!err)
1805                         err = sock->ops->shutdown(sock, how);
1806                 fput_light(sock->file, fput_needed);
1807         }
1808         return err;
1809 }
1810 
1811 /* A couple of helpful macros for getting the address of the 32/64 bit
1812  * fields which are the same type (int / unsigned) on our platforms.
1813  */
1814 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1815 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1816 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1817 
1818 struct used_address {
1819         struct sockaddr_storage name;
1820         unsigned int name_len;
1821 };
1822 
1823 static int copy_msghdr_from_user(struct msghdr *kmsg,
1824                                  struct user_msghdr __user *umsg,
1825                                  struct sockaddr __user **save_addr,
1826                                  struct iovec **iov)
1827 {
1828         struct sockaddr __user *uaddr;
1829         struct iovec __user *uiov;
1830         size_t nr_segs;
1831         ssize_t err;
1832 
1833         if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1834             __get_user(uaddr, &umsg->msg_name) ||
1835             __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1836             __get_user(uiov, &umsg->msg_iov) ||
1837             __get_user(nr_segs, &umsg->msg_iovlen) ||
1838             __get_user(kmsg->msg_control, &umsg->msg_control) ||
1839             __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1840             __get_user(kmsg->msg_flags, &umsg->msg_flags))
1841                 return -EFAULT;
1842 
1843         if (!uaddr)
1844                 kmsg->msg_namelen = 0;
1845 
1846         if (kmsg->msg_namelen < 0)
1847                 return -EINVAL;
1848 
1849         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1850                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1851 
1852         if (save_addr)
1853                 *save_addr = uaddr;
1854 
1855         if (uaddr && kmsg->msg_namelen) {
1856                 if (!save_addr) {
1857                         err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1858                                                   kmsg->msg_name);
1859                         if (err < 0)
1860                                 return err;
1861                 }
1862         } else {
1863                 kmsg->msg_name = NULL;
1864                 kmsg->msg_namelen = 0;
1865         }
1866 
1867         if (nr_segs > UIO_MAXIOV)
1868                 return -EMSGSIZE;
1869 
1870         kmsg->msg_iocb = NULL;
1871 
1872         return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1873                             UIO_FASTIOV, iov, &kmsg->msg_iter);
1874 }
1875 
1876 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1877                          struct msghdr *msg_sys, unsigned int flags,
1878                          struct used_address *used_address,
1879                          unsigned int allowed_msghdr_flags)
1880 {
1881         struct compat_msghdr __user *msg_compat =
1882             (struct compat_msghdr __user *)msg;
1883         struct sockaddr_storage address;
1884         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1885         unsigned char ctl[sizeof(struct cmsghdr) + 20]
1886             __attribute__ ((aligned(sizeof(__kernel_size_t))));
1887         /* 20 is size of ipv6_pktinfo */
1888         unsigned char *ctl_buf = ctl;
1889         int ctl_len;
1890         ssize_t err;
1891 
1892         msg_sys->msg_name = &address;
1893 
1894         if (MSG_CMSG_COMPAT & flags)
1895                 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1896         else
1897                 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1898         if (err < 0)
1899                 return err;
1900 
1901         err = -ENOBUFS;
1902 
1903         if (msg_sys->msg_controllen > INT_MAX)
1904                 goto out_freeiov;
1905         flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1906         ctl_len = msg_sys->msg_controllen;
1907         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1908                 err =
1909                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1910                                                      sizeof(ctl));
1911                 if (err)
1912                         goto out_freeiov;
1913                 ctl_buf = msg_sys->msg_control;
1914                 ctl_len = msg_sys->msg_controllen;
1915         } else if (ctl_len) {
1916                 if (ctl_len > sizeof(ctl)) {
1917                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1918                         if (ctl_buf == NULL)
1919                                 goto out_freeiov;
1920                 }
1921                 err = -EFAULT;
1922                 /*
1923                  * Careful! Before this, msg_sys->msg_control contains a user pointer.
1924                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1925                  * checking falls down on this.
1926                  */
1927                 if (copy_from_user(ctl_buf,
1928                                    (void __user __force *)msg_sys->msg_control,
1929                                    ctl_len))
1930                         goto out_freectl;
1931                 msg_sys->msg_control = ctl_buf;
1932         }
1933         msg_sys->msg_flags = flags;
1934 
1935         if (sock->file->f_flags & O_NONBLOCK)
1936                 msg_sys->msg_flags |= MSG_DONTWAIT;
1937         /*
1938          * If this is sendmmsg() and current destination address is same as
1939          * previously succeeded address, omit asking LSM's decision.
1940          * used_address->name_len is initialized to UINT_MAX so that the first
1941          * destination address never matches.
1942          */
1943         if (used_address && msg_sys->msg_name &&
1944             used_address->name_len == msg_sys->msg_namelen &&
1945             !memcmp(&used_address->name, msg_sys->msg_name,
1946                     used_address->name_len)) {
1947                 err = sock_sendmsg_nosec(sock, msg_sys);
1948                 goto out_freectl;
1949         }
1950         err = sock_sendmsg(sock, msg_sys);
1951         /*
1952          * If this is sendmmsg() and sending to current destination address was
1953          * successful, remember it.
1954          */
1955         if (used_address && err >= 0) {
1956                 used_address->name_len = msg_sys->msg_namelen;
1957                 if (msg_sys->msg_name)
1958                         memcpy(&used_address->name, msg_sys->msg_name,
1959                                used_address->name_len);
1960         }
1961 
1962 out_freectl:
1963         if (ctl_buf != ctl)
1964                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1965 out_freeiov:
1966         kfree(iov);
1967         return err;
1968 }
1969 
1970 /*
1971  *      BSD sendmsg interface
1972  */
1973 
1974 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1975 {
1976         int fput_needed, err;
1977         struct msghdr msg_sys;
1978         struct socket *sock;
1979 
1980         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1981         if (!sock)
1982                 goto out;
1983 
1984         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1985 
1986         fput_light(sock->file, fput_needed);
1987 out:
1988         return err;
1989 }
1990 
1991 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1992 {
1993         if (flags & MSG_CMSG_COMPAT)
1994                 return -EINVAL;
1995         return __sys_sendmsg(fd, msg, flags);
1996 }
1997 
1998 /*
1999  *      Linux sendmmsg interface
2000  */
2001 
2002 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2003                    unsigned int flags)
2004 {
2005         int fput_needed, err, datagrams;
2006         struct socket *sock;
2007         struct mmsghdr __user *entry;
2008         struct compat_mmsghdr __user *compat_entry;
2009         struct msghdr msg_sys;
2010         struct used_address used_address;
2011         unsigned int oflags = flags;
2012 
2013         if (vlen > UIO_MAXIOV)
2014                 vlen = UIO_MAXIOV;
2015 
2016         datagrams = 0;
2017 
2018         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019         if (!sock)
2020                 return err;
2021 
2022         used_address.name_len = UINT_MAX;
2023         entry = mmsg;
2024         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2025         err = 0;
2026         flags |= MSG_BATCH;
2027 
2028         while (datagrams < vlen) {
2029                 if (datagrams == vlen - 1)
2030                         flags = oflags;
2031 
2032                 if (MSG_CMSG_COMPAT & flags) {
2033                         err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2034                                              &msg_sys, flags, &used_address, MSG_EOR);
2035                         if (err < 0)
2036                                 break;
2037                         err = __put_user(err, &compat_entry->msg_len);
2038                         ++compat_entry;
2039                 } else {
2040                         err = ___sys_sendmsg(sock,
2041                                              (struct user_msghdr __user *)entry,
2042                                              &msg_sys, flags, &used_address, MSG_EOR);
2043                         if (err < 0)
2044                                 break;
2045                         err = put_user(err, &entry->msg_len);
2046                         ++entry;
2047                 }
2048 
2049                 if (err)
2050                         break;
2051                 ++datagrams;
2052                 cond_resched();
2053         }
2054 
2055         fput_light(sock->file, fput_needed);
2056 
2057         /* We only return an error if no datagrams were able to be sent */
2058         if (datagrams != 0)
2059                 return datagrams;
2060 
2061         return err;
2062 }
2063 
2064 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2065                 unsigned int, vlen, unsigned int, flags)
2066 {
2067         if (flags & MSG_CMSG_COMPAT)
2068                 return -EINVAL;
2069         return __sys_sendmmsg(fd, mmsg, vlen, flags);
2070 }
2071 
2072 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2073                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2074 {
2075         struct compat_msghdr __user *msg_compat =
2076             (struct compat_msghdr __user *)msg;
2077         struct iovec iovstack[UIO_FASTIOV];
2078         struct iovec *iov = iovstack;
2079         unsigned long cmsg_ptr;
2080         int total_len, len;
2081         ssize_t err;
2082 
2083         /* kernel mode address */
2084         struct sockaddr_storage addr;
2085 
2086         /* user mode address pointers */
2087         struct sockaddr __user *uaddr;
2088         int __user *uaddr_len = COMPAT_NAMELEN(msg);
2089 
2090         msg_sys->msg_name = &addr;
2091 
2092         if (MSG_CMSG_COMPAT & flags)
2093                 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2094         else
2095                 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2096         if (err < 0)
2097                 return err;
2098         total_len = iov_iter_count(&msg_sys->msg_iter);
2099 
2100         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2101         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2102 
2103         /* We assume all kernel code knows the size of sockaddr_storage */
2104         msg_sys->msg_namelen = 0;
2105 
2106         if (sock->file->f_flags & O_NONBLOCK)
2107                 flags |= MSG_DONTWAIT;
2108         err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2109                                                           total_len, flags);
2110         if (err < 0)
2111                 goto out_freeiov;
2112         len = err;
2113 
2114         if (uaddr != NULL) {
2115                 err = move_addr_to_user(&addr,
2116                                         msg_sys->msg_namelen, uaddr,
2117                                         uaddr_len);
2118                 if (err < 0)
2119                         goto out_freeiov;
2120         }
2121         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2122                          COMPAT_FLAGS(msg));
2123         if (err)
2124                 goto out_freeiov;
2125         if (MSG_CMSG_COMPAT & flags)
2126                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2127                                  &msg_compat->msg_controllen);
2128         else
2129                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2130                                  &msg->msg_controllen);
2131         if (err)
2132                 goto out_freeiov;
2133         err = len;
2134 
2135 out_freeiov:
2136         kfree(iov);
2137         return err;
2138 }
2139 
2140 /*
2141  *      BSD recvmsg interface
2142  */
2143 
2144 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2145 {
2146         int fput_needed, err;
2147         struct msghdr msg_sys;
2148         struct socket *sock;
2149 
2150         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151         if (!sock)
2152                 goto out;
2153 
2154         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2155 
2156         fput_light(sock->file, fput_needed);
2157 out:
2158         return err;
2159 }
2160 
2161 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2162                 unsigned int, flags)
2163 {
2164         if (flags & MSG_CMSG_COMPAT)
2165                 return -EINVAL;
2166         return __sys_recvmsg(fd, msg, flags);
2167 }
2168 
2169 /*
2170  *     Linux recvmmsg interface
2171  */
2172 
2173 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2174                    unsigned int flags, struct timespec *timeout)
2175 {
2176         int fput_needed, err, datagrams;
2177         struct socket *sock;
2178         struct mmsghdr __user *entry;
2179         struct compat_mmsghdr __user *compat_entry;
2180         struct msghdr msg_sys;
2181         struct timespec end_time;
2182 
2183         if (timeout &&
2184             poll_select_set_timeout(&end_time, timeout->tv_sec,
2185                                     timeout->tv_nsec))
2186                 return -EINVAL;
2187 
2188         datagrams = 0;
2189 
2190         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191         if (!sock)
2192                 return err;
2193 
2194         err = sock_error(sock->sk);
2195         if (err)
2196                 goto out_put;
2197 
2198         entry = mmsg;
2199         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2200 
2201         while (datagrams < vlen) {
2202                 /*
2203                  * No need to ask LSM for more than the first datagram.
2204                  */
2205                 if (MSG_CMSG_COMPAT & flags) {
2206                         err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2207                                              &msg_sys, flags & ~MSG_WAITFORONE,
2208                                              datagrams);
2209                         if (err < 0)
2210                                 break;
2211                         err = __put_user(err, &compat_entry->msg_len);
2212                         ++compat_entry;
2213                 } else {
2214                         err = ___sys_recvmsg(sock,
2215                                              (struct user_msghdr __user *)entry,
2216                                              &msg_sys, flags & ~MSG_WAITFORONE,
2217                                              datagrams);
2218                         if (err < 0)
2219                                 break;
2220                         err = put_user(err, &entry->msg_len);
2221                         ++entry;
2222                 }
2223 
2224                 if (err)
2225                         break;
2226                 ++datagrams;
2227 
2228                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2229                 if (flags & MSG_WAITFORONE)
2230                         flags |= MSG_DONTWAIT;
2231 
2232                 if (timeout) {
2233                         ktime_get_ts(timeout);
2234                         *timeout = timespec_sub(end_time, *timeout);
2235                         if (timeout->tv_sec < 0) {
2236                                 timeout->tv_sec = timeout->tv_nsec = 0;
2237                                 break;
2238                         }
2239 
2240                         /* Timeout, return less than vlen datagrams */
2241                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2242                                 break;
2243                 }
2244 
2245                 /* Out of band data, return right away */
2246                 if (msg_sys.msg_flags & MSG_OOB)
2247                         break;
2248                 cond_resched();
2249         }
2250 
2251         if (err == 0)
2252                 goto out_put;
2253 
2254         if (datagrams == 0) {
2255                 datagrams = err;
2256                 goto out_put;
2257         }
2258 
2259         /*
2260          * We may return less entries than requested (vlen) if the
2261          * sock is non block and there aren't enough datagrams...
2262          */
2263         if (err != -EAGAIN) {
2264                 /*
2265                  * ... or  if recvmsg returns an error after we
2266                  * received some datagrams, where we record the
2267                  * error to return on the next call or if the
2268                  * app asks about it using getsockopt(SO_ERROR).
2269                  */
2270                 sock->sk->sk_err = -err;
2271         }
2272 out_put:
2273         fput_light(sock->file, fput_needed);
2274 
2275         return datagrams;
2276 }
2277 
2278 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2279                 unsigned int, vlen, unsigned int, flags,
2280                 struct timespec __user *, timeout)
2281 {
2282         int datagrams;
2283         struct timespec timeout_sys;
2284 
2285         if (flags & MSG_CMSG_COMPAT)
2286                 return -EINVAL;
2287 
2288         if (!timeout)
2289                 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2290 
2291         if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2292                 return -EFAULT;
2293 
2294         datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2295 
2296         if (datagrams > 0 &&
2297             copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2298                 datagrams = -EFAULT;
2299 
2300         return datagrams;
2301 }
2302 
2303 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2304 /* Argument list sizes for sys_socketcall */
2305 #define AL(x) ((x) * sizeof(unsigned long))
2306 static const unsigned char nargs[21] = {
2307         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2308         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2309         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2310         AL(4), AL(5), AL(4)
2311 };
2312 
2313 #undef AL
2314 
2315 /*
2316  *      System call vectors.
2317  *
2318  *      Argument checking cleaned up. Saved 20% in size.
2319  *  This function doesn't need to set the kernel lock because
2320  *  it is set by the callees.
2321  */
2322 
2323 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2324 {
2325         unsigned long a[AUDITSC_ARGS];
2326         unsigned long a0, a1;
2327         int err;
2328         unsigned int len;
2329 
2330         if (call < 1 || call > SYS_SENDMMSG)
2331                 return -EINVAL;
2332 
2333         len = nargs[call];
2334         if (len > sizeof(a))
2335                 return -EINVAL;
2336 
2337         /* copy_from_user should be SMP safe. */
2338         if (copy_from_user(a, args, len))
2339                 return -EFAULT;
2340 
2341         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2342         if (err)
2343                 return err;
2344 
2345         a0 = a[0];
2346         a1 = a[1];
2347 
2348         switch (call) {
2349         case SYS_SOCKET:
2350                 err = sys_socket(a0, a1, a[2]);
2351                 break;
2352         case SYS_BIND:
2353                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2354                 break;
2355         case SYS_CONNECT:
2356                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2357                 break;
2358         case SYS_LISTEN:
2359                 err = sys_listen(a0, a1);
2360                 break;
2361         case SYS_ACCEPT:
2362                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2363                                   (int __user *)a[2], 0);
2364                 break;
2365         case SYS_GETSOCKNAME:
2366                 err =
2367                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2368                                     (int __user *)a[2]);
2369                 break;
2370         case SYS_GETPEERNAME:
2371                 err =
2372                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2373                                     (int __user *)a[2]);
2374                 break;
2375         case SYS_SOCKETPAIR:
2376                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2377                 break;
2378         case SYS_SEND:
2379                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2380                 break;
2381         case SYS_SENDTO:
2382                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2383                                  (struct sockaddr __user *)a[4], a[5]);
2384                 break;
2385         case SYS_RECV:
2386                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2387                 break;
2388         case SYS_RECVFROM:
2389                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2390                                    (struct sockaddr __user *)a[4],
2391                                    (int __user *)a[5]);
2392                 break;
2393         case SYS_SHUTDOWN:
2394                 err = sys_shutdown(a0, a1);
2395                 break;
2396         case SYS_SETSOCKOPT:
2397                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2398                 break;
2399         case SYS_GETSOCKOPT:
2400                 err =
2401                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2402                                    (int __user *)a[4]);
2403                 break;
2404         case SYS_SENDMSG:
2405                 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2406                 break;
2407         case SYS_SENDMMSG:
2408                 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2409                 break;
2410         case SYS_RECVMSG:
2411                 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2412                 break;
2413         case SYS_RECVMMSG:
2414                 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2415                                    (struct timespec __user *)a[4]);
2416                 break;
2417         case SYS_ACCEPT4:
2418                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2419                                   (int __user *)a[2], a[3]);
2420                 break;
2421         default:
2422                 err = -EINVAL;
2423                 break;
2424         }
2425         return err;
2426 }
2427 
2428 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2429 
2430 /**
2431  *      sock_register - add a socket protocol handler
2432  *      @ops: description of protocol
2433  *
2434  *      This function is called by a protocol handler that wants to
2435  *      advertise its address family, and have it linked into the
2436  *      socket interface. The value ops->family corresponds to the
2437  *      socket system call protocol family.
2438  */
2439 int sock_register(const struct net_proto_family *ops)
2440 {
2441         int err;
2442 
2443         if (ops->family >= NPROTO) {
2444                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2445                 return -ENOBUFS;
2446         }
2447 
2448         spin_lock(&net_family_lock);
2449         if (rcu_dereference_protected(net_families[ops->family],
2450                                       lockdep_is_held(&net_family_lock)))
2451                 err = -EEXIST;
2452         else {
2453                 rcu_assign_pointer(net_families[ops->family], ops);
2454                 err = 0;
2455         }
2456         spin_unlock(&net_family_lock);
2457 
2458         pr_info("NET: Registered protocol family %d\n", ops->family);
2459         return err;
2460 }
2461 EXPORT_SYMBOL(sock_register);
2462 
2463 /**
2464  *      sock_unregister - remove a protocol handler
2465  *      @family: protocol family to remove
2466  *
2467  *      This function is called by a protocol handler that wants to
2468  *      remove its address family, and have it unlinked from the
2469  *      new socket creation.
2470  *
2471  *      If protocol handler is a module, then it can use module reference
2472  *      counts to protect against new references. If protocol handler is not
2473  *      a module then it needs to provide its own protection in
2474  *      the ops->create routine.
2475  */
2476 void sock_unregister(int family)
2477 {
2478         BUG_ON(family < 0 || family >= NPROTO);
2479 
2480         spin_lock(&net_family_lock);
2481         RCU_INIT_POINTER(net_families[family], NULL);
2482         spin_unlock(&net_family_lock);
2483 
2484         synchronize_rcu();
2485 
2486         pr_info("NET: Unregistered protocol family %d\n", family);
2487 }
2488 EXPORT_SYMBOL(sock_unregister);
2489 
2490 static int __init sock_init(void)
2491 {
2492         int err;
2493         /*
2494          *      Initialize the network sysctl infrastructure.
2495          */
2496         err = net_sysctl_init();
2497         if (err)
2498                 goto out;
2499 
2500         /*
2501          *      Initialize skbuff SLAB cache
2502          */
2503         skb_init();
2504 
2505         /*
2506          *      Initialize the protocols module.
2507          */
2508 
2509         init_inodecache();
2510 
2511         err = register_filesystem(&sock_fs_type);
2512         if (err)
2513                 goto out_fs;
2514         sock_mnt = kern_mount(&sock_fs_type);
2515         if (IS_ERR(sock_mnt)) {
2516                 err = PTR_ERR(sock_mnt);
2517                 goto out_mount;
2518         }
2519 
2520         /* The real protocol initialization is performed in later initcalls.
2521          */
2522 
2523 #ifdef CONFIG_NETFILTER
2524         err = netfilter_init();
2525         if (err)
2526                 goto out;
2527 #endif
2528 
2529         ptp_classifier_init();
2530 
2531 out:
2532         return err;
2533 
2534 out_mount:
2535         unregister_filesystem(&sock_fs_type);
2536 out_fs:
2537         goto out;
2538 }
2539 
2540 core_initcall(sock_init);       /* early initcall */
2541 
2542 #ifdef CONFIG_PROC_FS
2543 void socket_seq_show(struct seq_file *seq)
2544 {
2545         int cpu;
2546         int counter = 0;
2547 
2548         for_each_possible_cpu(cpu)
2549             counter += per_cpu(sockets_in_use, cpu);
2550 
2551         /* It can be negative, by the way. 8) */
2552         if (counter < 0)
2553                 counter = 0;
2554 
2555         seq_printf(seq, "sockets: used %d\n", counter);
2556 }
2557 #endif                          /* CONFIG_PROC_FS */
2558 
2559 #ifdef CONFIG_COMPAT
2560 static int do_siocgstamp(struct net *net, struct socket *sock,
2561                          unsigned int cmd, void __user *up)
2562 {
2563         mm_segment_t old_fs = get_fs();
2564         struct timeval ktv;
2565         int err;
2566 
2567         set_fs(KERNEL_DS);
2568         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2569         set_fs(old_fs);
2570         if (!err)
2571                 err = compat_put_timeval(&ktv, up);
2572 
2573         return err;
2574 }
2575 
2576 static int do_siocgstampns(struct net *net, struct socket *sock,
2577                            unsigned int cmd, void __user *up)
2578 {
2579         mm_segment_t old_fs = get_fs();
2580         struct timespec kts;
2581         int err;
2582 
2583         set_fs(KERNEL_DS);
2584         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2585         set_fs(old_fs);
2586         if (!err)
2587                 err = compat_put_timespec(&kts, up);
2588 
2589         return err;
2590 }
2591 
2592 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2593 {
2594         struct ifreq __user *uifr;
2595         int err;
2596 
2597         uifr = compat_alloc_user_space(sizeof(struct ifreq));
2598         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2599                 return -EFAULT;
2600 
2601         err = dev_ioctl(net, SIOCGIFNAME, uifr);
2602         if (err)
2603                 return err;
2604 
2605         if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2606                 return -EFAULT;
2607 
2608         return 0;
2609 }
2610 
2611 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2612 {
2613         struct compat_ifconf ifc32;
2614         struct ifconf ifc;
2615         struct ifconf __user *uifc;
2616         struct compat_ifreq __user *ifr32;
2617         struct ifreq __user *ifr;
2618         unsigned int i, j;
2619         int err;
2620 
2621         if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2622                 return -EFAULT;
2623 
2624         memset(&ifc, 0, sizeof(ifc));
2625         if (ifc32.ifcbuf == 0) {
2626                 ifc32.ifc_len = 0;
2627                 ifc.ifc_len = 0;
2628                 ifc.ifc_req = NULL;
2629                 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2630         } else {
2631                 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2632                         sizeof(struct ifreq);
2633                 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2634                 ifc.ifc_len = len;
2635                 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2636                 ifr32 = compat_ptr(ifc32.ifcbuf);
2637                 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2638                         if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2639                                 return -EFAULT;
2640                         ifr++;
2641                         ifr32++;
2642                 }
2643         }
2644         if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2645                 return -EFAULT;
2646 
2647         err = dev_ioctl(net, SIOCGIFCONF, uifc);
2648         if (err)
2649                 return err;
2650 
2651         if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2652                 return -EFAULT;
2653 
2654         ifr = ifc.ifc_req;
2655         ifr32 = compat_ptr(ifc32.ifcbuf);
2656         for (i = 0, j = 0;
2657              i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2658              i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2659                 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2660                         return -EFAULT;
2661                 ifr32++;
2662                 ifr++;
2663         }
2664 
2665         if (ifc32.ifcbuf == 0) {
2666                 /* Translate from 64-bit structure multiple to
2667                  * a 32-bit one.
2668                  */
2669                 i = ifc.ifc_len;
2670                 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2671                 ifc32.ifc_len = i;
2672         } else {
2673                 ifc32.ifc_len = i;
2674         }
2675         if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2676                 return -EFAULT;
2677 
2678         return 0;
2679 }
2680 
2681 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2682 {
2683         struct compat_ethtool_rxnfc __user *compat_rxnfc;
2684         bool convert_in = false, convert_out = false;
2685         size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2686         struct ethtool_rxnfc __user *rxnfc;
2687         struct ifreq __user *ifr;
2688         u32 rule_cnt = 0, actual_rule_cnt;
2689         u32 ethcmd;
2690         u32 data;
2691         int ret;
2692 
2693         if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2694                 return -EFAULT;
2695 
2696         compat_rxnfc = compat_ptr(data);
2697 
2698         if (get_user(ethcmd, &compat_rxnfc->cmd))
2699                 return -EFAULT;
2700 
2701         /* Most ethtool structures are defined without padding.
2702          * Unfortunately struct ethtool_rxnfc is an exception.
2703          */
2704         switch (ethcmd) {
2705         default:
2706                 break;
2707         case ETHTOOL_GRXCLSRLALL:
2708                 /* Buffer size is variable */
2709                 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2710                         return -EFAULT;
2711                 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2712                         return -ENOMEM;
2713                 buf_size += rule_cnt * sizeof(u32);
2714                 /* fall through */
2715         case ETHTOOL_GRXRINGS:
2716         case ETHTOOL_GRXCLSRLCNT:
2717         case ETHTOOL_GRXCLSRULE:
2718         case ETHTOOL_SRXCLSRLINS:
2719                 convert_out = true;
2720                 /* fall through */
2721         case ETHTOOL_SRXCLSRLDEL:
2722                 buf_size += sizeof(struct ethtool_rxnfc);
2723                 convert_in = true;
2724                 break;
2725         }
2726 
2727         ifr = compat_alloc_user_space(buf_size);
2728         rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2729 
2730         if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2731                 return -EFAULT;
2732 
2733         if (put_user(convert_in ? rxnfc : compat_ptr(data),
2734                      &ifr->ifr_ifru.ifru_data))
2735                 return -EFAULT;
2736 
2737         if (convert_in) {
2738                 /* We expect there to be holes between fs.m_ext and
2739                  * fs.ring_cookie and at the end of fs, but nowhere else.
2740                  */
2741                 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2742                              sizeof(compat_rxnfc->fs.m_ext) !=
2743                              offsetof(struct ethtool_rxnfc, fs.m_ext) +
2744                              sizeof(rxnfc->fs.m_ext));
2745                 BUILD_BUG_ON(
2746                         offsetof(struct compat_ethtool_rxnfc, fs.location) -
2747                         offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2748                         offsetof(struct ethtool_rxnfc, fs.location) -
2749                         offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2750 
2751                 if (copy_in_user(rxnfc, compat_rxnfc,
2752                                  (void __user *)(&rxnfc->fs.m_ext + 1) -
2753                                  (void __user *)rxnfc) ||
2754                     copy_in_user(&rxnfc->fs.ring_cookie,
2755                                  &compat_rxnfc->fs.ring_cookie,
2756                                  (void __user *)(&rxnfc->fs.location + 1) -
2757                                  (void __user *)&rxnfc->fs.ring_cookie) ||
2758                     copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2759                                  sizeof(rxnfc->rule_cnt)))
2760                         return -EFAULT;
2761         }
2762 
2763         ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2764         if (ret)
2765                 return ret;
2766 
2767         if (convert_out) {
2768                 if (copy_in_user(compat_rxnfc, rxnfc,
2769                                  (const void __user *)(&rxnfc->fs.m_ext + 1) -
2770                                  (const void __user *)rxnfc) ||
2771                     copy_in_user(&compat_rxnfc->fs.ring_cookie,
2772                                  &rxnfc->fs.ring_cookie,
2773                                  (const void __user *)(&rxnfc->fs.location + 1) -
2774                                  (const void __user *)&rxnfc->fs.ring_cookie) ||
2775                     copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2776                                  sizeof(rxnfc->rule_cnt)))
2777                         return -EFAULT;
2778 
2779                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2780                         /* As an optimisation, we only copy the actual
2781                          * number of rules that the underlying
2782                          * function returned.  Since Mallory might
2783                          * change the rule count in user memory, we
2784                          * check that it is less than the rule count
2785                          * originally given (as the user buffer size),
2786                          * which has been range-checked.
2787                          */
2788                         if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2789                                 return -EFAULT;
2790                         if (actual_rule_cnt < rule_cnt)
2791                                 rule_cnt = actual_rule_cnt;
2792                         if (copy_in_user(&compat_rxnfc->rule_locs[0],
2793                                          &rxnfc->rule_locs[0],
2794                                          rule_cnt * sizeof(u32)))
2795                                 return -EFAULT;
2796                 }
2797         }
2798 
2799         return 0;
2800 }
2801 
2802 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2803 {
2804         void __user *uptr;
2805         compat_uptr_t uptr32;
2806         struct ifreq __user *uifr;
2807 
2808         uifr = compat_alloc_user_space(sizeof(*uifr));
2809         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2810                 return -EFAULT;
2811 
2812         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2813                 return -EFAULT;
2814 
2815         uptr = compat_ptr(uptr32);
2816 
2817         if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2818                 return -EFAULT;
2819 
2820         return dev_ioctl(net, SIOCWANDEV, uifr);
2821 }
2822 
2823 static int bond_ioctl(struct net *net, unsigned int cmd,
2824                          struct compat_ifreq __user *ifr32)
2825 {
2826         struct ifreq kifr;
2827         mm_segment_t old_fs;
2828         int err;
2829 
2830         switch (cmd) {
2831         case SIOCBONDENSLAVE:
2832         case SIOCBONDRELEASE:
2833         case SIOCBONDSETHWADDR:
2834         case SIOCBONDCHANGEACTIVE:
2835                 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2836                         return -EFAULT;
2837 
2838                 old_fs = get_fs();
2839                 set_fs(KERNEL_DS);
2840                 err = dev_ioctl(net, cmd,
2841                                 (struct ifreq __user __force *) &kifr);
2842                 set_fs(old_fs);
2843 
2844                 return err;
2845         default:
2846                 return -ENOIOCTLCMD;
2847         }
2848 }
2849 
2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2852                                  struct compat_ifreq __user *u_ifreq32)
2853 {
2854         struct ifreq __user *u_ifreq64;
2855         char tmp_buf[IFNAMSIZ];
2856         void __user *data64;
2857         u32 data32;
2858 
2859         if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2860                            IFNAMSIZ))
2861                 return -EFAULT;
2862         if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2863                 return -EFAULT;
2864         data64 = compat_ptr(data32);
2865 
2866         u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2867 
2868         if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2869                          IFNAMSIZ))
2870                 return -EFAULT;
2871         if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2872                 return -EFAULT;
2873 
2874         return dev_ioctl(net, cmd, u_ifreq64);
2875 }
2876 
2877 static int dev_ifsioc(struct net *net, struct socket *sock,
2878                          unsigned int cmd, struct compat_ifreq __user *uifr32)
2879 {
2880         struct ifreq __user *uifr;
2881         int err;
2882 
2883         uifr = compat_alloc_user_space(sizeof(*uifr));
2884         if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2885                 return -EFAULT;
2886 
2887         err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2888 
2889         if (!err) {
2890                 switch (cmd) {
2891                 case SIOCGIFFLAGS:
2892                 case SIOCGIFMETRIC:
2893                 case SIOCGIFMTU:
2894                 case SIOCGIFMEM:
2895                 case SIOCGIFHWADDR:
2896                 case SIOCGIFINDEX:
2897                 case SIOCGIFADDR:
2898                 case SIOCGIFBRDADDR:
2899                 case SIOCGIFDSTADDR:
2900                 case SIOCGIFNETMASK:
2901                 case SIOCGIFPFLAGS:
2902                 case SIOCGIFTXQLEN:
2903                 case SIOCGMIIPHY:
2904                 case SIOCGMIIREG:
2905                         if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2906                                 err = -EFAULT;
2907                         break;
2908                 }
2909         }
2910         return err;
2911 }
2912 
2913 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2914                         struct compat_ifreq __user *uifr32)
2915 {
2916         struct ifreq ifr;
2917         struct compat_ifmap __user *uifmap32;
2918         mm_segment_t old_fs;
2919         int err;
2920 
2921         uifmap32 = &uifr32->ifr_ifru.ifru_map;
2922         err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2923         err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2924         err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2925         err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2926         err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2927         err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2928         err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2929         if (err)
2930                 return -EFAULT;
2931 
2932         old_fs = get_fs();
2933         set_fs(KERNEL_DS);
2934         err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2935         set_fs(old_fs);
2936 
2937         if (cmd == SIOCGIFMAP && !err) {
2938                 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2939                 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2940                 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2941                 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2942                 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2943                 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2944                 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2945                 if (err)
2946                         err = -EFAULT;
2947         }
2948         return err;
2949 }
2950 
2951 struct rtentry32 {
2952         u32             rt_pad1;
2953         struct sockaddr rt_dst;         /* target address               */
2954         struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2955         struct sockaddr rt_genmask;     /* target network mask (IP)     */
2956         unsigned short  rt_flags;
2957         short           rt_pad2;
2958         u32             rt_pad3;
2959         unsigned char   rt_tos;
2960         unsigned char   rt_class;
2961         short           rt_pad4;
2962         short           rt_metric;      /* +1 for binary compatibility! */
2963         /* char * */ u32 rt_dev;        /* forcing the device at add    */
2964         u32             rt_mtu;         /* per route MTU/Window         */
2965         u32             rt_window;      /* Window clamping              */
2966         unsigned short  rt_irtt;        /* Initial RTT                  */
2967 };
2968 
2969 struct in6_rtmsg32 {
2970         struct in6_addr         rtmsg_dst;
2971         struct in6_addr         rtmsg_src;
2972         struct in6_addr         rtmsg_gateway;
2973         u32                     rtmsg_type;
2974         u16                     rtmsg_dst_len;
2975         u16                     rtmsg_src_len;
2976         u32                     rtmsg_metric;
2977         u32                     rtmsg_info;
2978         u32                     rtmsg_flags;
2979         s32                     rtmsg_ifindex;
2980 };
2981 
2982 static int routing_ioctl(struct net *net, struct socket *sock,
2983                          unsigned int cmd, void __user *argp)
2984 {
2985         int ret;
2986         void *r = NULL;
2987         struct in6_rtmsg r6;
2988         struct rtentry r4;
2989         char devname[16];
2990         u32 rtdev;
2991         mm_segment_t old_fs = get_fs();
2992 
2993         if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2994                 struct in6_rtmsg32 __user *ur6 = argp;
2995                 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2996                         3 * sizeof(struct in6_addr));
2997                 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2998                 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2999                 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3000                 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3001                 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3002                 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3003                 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3004 
3005                 r = (void *) &r6;
3006         } else { /* ipv4 */
3007                 struct rtentry32 __user *ur4 = argp;
3008                 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3009                                         3 * sizeof(struct sockaddr));
3010                 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3011                 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3012                 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3013                 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3014                 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3015                 ret |= get_user(rtdev, &(ur4->rt_dev));
3016                 if (rtdev) {
3017                         ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3018                         r4.rt_dev = (char __user __force *)devname;
3019                         devname[15] = 0;
3020                 } else
3021                         r4.rt_dev = NULL;
3022 
3023                 r = (void *) &r4;
3024         }
3025 
3026         if (ret) {
3027                 ret = -EFAULT;
3028                 goto out;
3029         }
3030 
3031         set_fs(KERNEL_DS);
3032         ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3033         set_fs(old_fs);
3034 
3035 out:
3036         return ret;
3037 }
3038 
3039 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3040  * for some operations; this forces use of the newer bridge-utils that
3041  * use compatible ioctls
3042  */
3043 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3044 {
3045         compat_ulong_t tmp;
3046 
3047         if (get_user(tmp, argp))
3048                 return -EFAULT;
3049         if (tmp == BRCTL_GET_VERSION)
3050                 return BRCTL_VERSION + 1;
3051         return -EINVAL;
3052 }
3053 
3054 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3055                          unsigned int cmd, unsigned long arg)
3056 {
3057         void __user *argp = compat_ptr(arg);
3058         struct sock *sk = sock->sk;
3059         struct net *net = sock_net(sk);
3060 
3061         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3062                 return compat_ifr_data_ioctl(net, cmd, argp);
3063 
3064         switch (cmd) {
3065         case SIOCSIFBR:
3066         case SIOCGIFBR:
3067                 return old_bridge_ioctl(argp);
3068         case SIOCGIFNAME:
3069                 return dev_ifname32(net, argp);
3070         case SIOCGIFCONF:
3071                 return dev_ifconf(net, argp);
3072         case SIOCETHTOOL:
3073                 return ethtool_ioctl(net, argp);
3074         case SIOCWANDEV:
3075                 return compat_siocwandev(net, argp);
3076         case SIOCGIFMAP:
3077         case SIOCSIFMAP:
3078                 return compat_sioc_ifmap(net, cmd, argp);
3079         case SIOCBONDENSLAVE:
3080         case SIOCBONDRELEASE:
3081         case SIOCBONDSETHWADDR:
3082         case SIOCBONDCHANGEACTIVE:
3083                 return bond_ioctl(net, cmd, argp);
3084         case SIOCADDRT:
3085         case SIOCDELRT:
3086                 return routing_ioctl(net, sock, cmd, argp);
3087         case SIOCGSTAMP:
3088                 return do_siocgstamp(net, sock, cmd, argp);
3089         case SIOCGSTAMPNS:
3090                 return do_siocgstampns(net, sock, cmd, argp);
3091         case SIOCBONDSLAVEINFOQUERY:
3092         case SIOCBONDINFOQUERY:
3093         case SIOCSHWTSTAMP:
3094         case SIOCGHWTSTAMP:
3095                 return compat_ifr_data_ioctl(net, cmd, argp);
3096 
3097         case FIOSETOWN:
3098         case SIOCSPGRP:
3099         case FIOGETOWN:
3100         case SIOCGPGRP:
3101         case SIOCBRADDBR:
3102         case SIOCBRDELBR:
3103         case SIOCGIFVLAN:
3104         case SIOCSIFVLAN:
3105         case SIOCADDDLCI:
3106         case SIOCDELDLCI:
3107                 return sock_ioctl(file, cmd, arg);
3108 
3109         case SIOCGIFFLAGS:
3110         case SIOCSIFFLAGS:
3111         case SIOCGIFMETRIC:
3112         case SIOCSIFMETRIC:
3113         case SIOCGIFMTU:
3114         case SIOCSIFMTU:
3115         case SIOCGIFMEM:
3116         case SIOCSIFMEM:
3117         case SIOCGIFHWADDR:
3118         case SIOCSIFHWADDR:
3119         case SIOCADDMULTI:
3120         case SIOCDELMULTI:
3121         case SIOCGIFINDEX:
3122         case SIOCGIFADDR:
3123         case SIOCSIFADDR:
3124         case SIOCSIFHWBROADCAST:
3125         case SIOCDIFADDR:
3126         case SIOCGIFBRDADDR:
3127         case SIOCSIFBRDADDR:
3128         case SIOCGIFDSTADDR:
3129         case SIOCSIFDSTADDR:
3130         case SIOCGIFNETMASK:
3131         case SIOCSIFNETMASK:
3132         case SIOCSIFPFLAGS:
3133         case SIOCGIFPFLAGS:
3134         case SIOCGIFTXQLEN:
3135         case SIOCSIFTXQLEN:
3136         case SIOCBRADDIF:
3137         case SIOCBRDELIF:
3138         case SIOCSIFNAME:
3139         case SIOCGMIIPHY:
3140         case SIOCGMIIREG:
3141         case SIOCSMIIREG:
3142                 return dev_ifsioc(net, sock, cmd, argp);
3143 
3144         case SIOCSARP:
3145         case SIOCGARP:
3146         case SIOCDARP:
3147         case SIOCATMARK:
3148                 return sock_do_ioctl(net, sock, cmd, arg);
3149         }
3150 
3151         return -ENOIOCTLCMD;
3152 }
3153 
3154 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3155                               unsigned long arg)
3156 {
3157         struct socket *sock = file->private_data;
3158         int ret = -ENOIOCTLCMD;
3159         struct sock *sk;
3160         struct net *net;
3161 
3162         sk = sock->sk;
3163         net = sock_net(sk);
3164 
3165         if (sock->ops->compat_ioctl)
3166                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3167 
3168         if (ret == -ENOIOCTLCMD &&
3169             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3170                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3171 
3172         if (ret == -ENOIOCTLCMD)
3173                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3174 
3175         return ret;
3176 }
3177 #endif
3178 
3179 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3180 {
3181         return sock->ops->bind(sock, addr, addrlen);
3182 }
3183 EXPORT_SYMBOL(kernel_bind);
3184 
3185 int kernel_listen(struct socket *sock, int backlog)
3186 {
3187         return sock->ops->listen(sock, backlog);
3188 }
3189 EXPORT_SYMBOL(kernel_listen);
3190 
3191 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3192 {
3193         struct sock *sk = sock->sk;
3194         int err;
3195 
3196         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3197                                newsock);
3198         if (err < 0)
3199                 goto done;
3200 
3201         err = sock->ops->accept(sock, *newsock, flags);
3202         if (err < 0) {
3203                 sock_release(*newsock);
3204                 *newsock = NULL;
3205                 goto done;
3206         }
3207 
3208         (*newsock)->ops = sock->ops;
3209         __module_get((*newsock)->ops->owner);
3210 
3211 done:
3212         return err;
3213 }
3214 EXPORT_SYMBOL(kernel_accept);
3215 
3216 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3217                    int flags)
3218 {
3219         return sock->ops->connect(sock, addr, addrlen, flags);
3220 }
3221 EXPORT_SYMBOL(kernel_connect);
3222 
3223 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3224                          int *addrlen)
3225 {
3226         return sock->ops->getname(sock, addr, addrlen, 0);
3227 }
3228 EXPORT_SYMBOL(kernel_getsockname);
3229 
3230 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3231                          int *addrlen)
3232 {
3233         return sock->ops->getname(sock, addr, addrlen, 1);
3234 }
3235 EXPORT_SYMBOL(kernel_getpeername);
3236 
3237 int kernel_getsockopt(struct socket *sock, int level, int optname,
3238                         char *optval, int *optlen)
3239 {
3240         mm_segment_t oldfs = get_fs();
3241         char __user *uoptval;
3242         int __user *uoptlen;
3243         int err;
3244 
3245         uoptval = (char __user __force *) optval;
3246         uoptlen = (int __user __force *) optlen;
3247 
3248         set_fs(KERNEL_DS);
3249         if (level == SOL_SOCKET)
3250                 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3251         else
3252                 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3253                                             uoptlen);
3254         set_fs(oldfs);
3255         return err;
3256 }
3257 EXPORT_SYMBOL(kernel_getsockopt);
3258 
3259 int kernel_setsockopt(struct socket *sock, int level, int optname,
3260                         char *optval, unsigned int optlen)
3261 {
3262         mm_segment_t oldfs = get_fs();
3263         char __user *uoptval;
3264         int err;
3265 
3266         uoptval = (char __user __force *) optval;
3267 
3268         set_fs(KERNEL_DS);
3269         if (level == SOL_SOCKET)
3270                 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3271         else
3272                 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3273                                             optlen);
3274         set_fs(oldfs);
3275         return err;
3276 }
3277 EXPORT_SYMBOL(kernel_setsockopt);
3278 
3279 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3280                     size_t size, int flags)
3281 {
3282         if (sock->ops->sendpage)
3283                 return sock->ops->sendpage(sock, page, offset, size, flags);
3284 
3285         return sock_no_sendpage(sock, page, offset, size, flags);
3286 }
3287 EXPORT_SYMBOL(kernel_sendpage);
3288 
3289 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3290 {
3291         mm_segment_t oldfs = get_fs();
3292         int err;
3293 
3294         set_fs(KERNEL_DS);
3295         err = sock->ops->ioctl(sock, cmd, arg);
3296         set_fs(oldfs);
3297 
3298         return err;
3299 }
3300 EXPORT_SYMBOL(kernel_sock_ioctl);
3301 
3302 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3303 {
3304         return sock->ops->shutdown(sock, how);
3305 }
3306 EXPORT_SYMBOL(kernel_sock_shutdown);
3307 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp