~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/socket.c

Version: ~ [ linux-6.6-rc1 ] ~ [ linux-6.5.2 ] ~ [ linux-6.4.15 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.52 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.131 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.194 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.256 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.294 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.325 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * NET          An implementation of the SOCKET network access protocol.
  4  *
  5  * Version:     @(#)socket.c    1.1.93  18/02/95
  6  *
  7  * Authors:     Orest Zborowski, <obz@Kodak.COM>
  8  *              Ross Biro
  9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10  *
 11  * Fixes:
 12  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
 13  *                                      shutdown()
 14  *              Alan Cox        :       verify_area() fixes
 15  *              Alan Cox        :       Removed DDI
 16  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
 17  *              Alan Cox        :       Moved a load of checks to the very
 18  *                                      top level.
 19  *              Alan Cox        :       Move address structures to/from user
 20  *                                      mode above the protocol layers.
 21  *              Rob Janssen     :       Allow 0 length sends.
 22  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
 23  *                                      tty drivers).
 24  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
 25  *              Jeff Uphoff     :       Made max number of sockets command-line
 26  *                                      configurable.
 27  *              Matti Aarnio    :       Made the number of sockets dynamic,
 28  *                                      to be allocated when needed, and mr.
 29  *                                      Uphoff's max is used as max to be
 30  *                                      allowed to allocate.
 31  *              Linus           :       Argh. removed all the socket allocation
 32  *                                      altogether: it's in the inode now.
 33  *              Alan Cox        :       Made sock_alloc()/sock_release() public
 34  *                                      for NetROM and future kernel nfsd type
 35  *                                      stuff.
 36  *              Alan Cox        :       sendmsg/recvmsg basics.
 37  *              Tom Dyas        :       Export net symbols.
 38  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
 39  *              Alan Cox        :       Added thread locking to sys_* calls
 40  *                                      for sockets. May have errors at the
 41  *                                      moment.
 42  *              Kevin Buhr      :       Fixed the dumb errors in the above.
 43  *              Andi Kleen      :       Some small cleanups, optimizations,
 44  *                                      and fixed a copy_from_user() bug.
 45  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
 46  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
 47  *                                      protocol-independent
 48  *
 49  *      This module is effectively the top level interface to the BSD socket
 50  *      paradigm.
 51  *
 52  *      Based upon Swansea University Computer Society NET3.039
 53  */
 54 
 55 #include <linux/bpf-cgroup.h>
 56 #include <linux/ethtool.h>
 57 #include <linux/mm.h>
 58 #include <linux/socket.h>
 59 #include <linux/file.h>
 60 #include <linux/net.h>
 61 #include <linux/interrupt.h>
 62 #include <linux/thread_info.h>
 63 #include <linux/rcupdate.h>
 64 #include <linux/netdevice.h>
 65 #include <linux/proc_fs.h>
 66 #include <linux/seq_file.h>
 67 #include <linux/mutex.h>
 68 #include <linux/if_bridge.h>
 69 #include <linux/if_vlan.h>
 70 #include <linux/ptp_classify.h>
 71 #include <linux/init.h>
 72 #include <linux/poll.h>
 73 #include <linux/cache.h>
 74 #include <linux/module.h>
 75 #include <linux/highmem.h>
 76 #include <linux/mount.h>
 77 #include <linux/pseudo_fs.h>
 78 #include <linux/security.h>
 79 #include <linux/syscalls.h>
 80 #include <linux/compat.h>
 81 #include <linux/kmod.h>
 82 #include <linux/audit.h>
 83 #include <linux/wireless.h>
 84 #include <linux/nsproxy.h>
 85 #include <linux/magic.h>
 86 #include <linux/slab.h>
 87 #include <linux/xattr.h>
 88 #include <linux/nospec.h>
 89 #include <linux/indirect_call_wrapper.h>
 90 
 91 #include <linux/uaccess.h>
 92 #include <asm/unistd.h>
 93 
 94 #include <net/compat.h>
 95 #include <net/wext.h>
 96 #include <net/cls_cgroup.h>
 97 
 98 #include <net/sock.h>
 99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121                               struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125                               unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129                              int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131                                 struct pipe_inode_info *pipe, size_t len,
132                                 unsigned int flags);
133 
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137         struct socket *sock = f->private_data;
138 
139         if (sock->ops->show_fdinfo)
140                 sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145 
146 /*
147  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148  *      in the operation structures but are done directly via the socketcall() multiplexor.
149  */
150 
151 static const struct file_operations socket_file_ops = {
152         .owner =        THIS_MODULE,
153         .llseek =       no_llseek,
154         .read_iter =    sock_read_iter,
155         .write_iter =   sock_write_iter,
156         .poll =         sock_poll,
157         .unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159         .compat_ioctl = compat_sock_ioctl,
160 #endif
161         .mmap =         sock_mmap,
162         .release =      sock_close,
163         .fasync =       sock_fasync,
164         .sendpage =     sock_sendpage,
165         .splice_write = generic_splice_sendpage,
166         .splice_read =  sock_splice_read,
167         .show_fdinfo =  sock_show_fdinfo,
168 };
169 
170 static const char * const pf_family_names[] = {
171         [PF_UNSPEC]     = "PF_UNSPEC",
172         [PF_UNIX]       = "PF_UNIX/PF_LOCAL",
173         [PF_INET]       = "PF_INET",
174         [PF_AX25]       = "PF_AX25",
175         [PF_IPX]        = "PF_IPX",
176         [PF_APPLETALK]  = "PF_APPLETALK",
177         [PF_NETROM]     = "PF_NETROM",
178         [PF_BRIDGE]     = "PF_BRIDGE",
179         [PF_ATMPVC]     = "PF_ATMPVC",
180         [PF_X25]        = "PF_X25",
181         [PF_INET6]      = "PF_INET6",
182         [PF_ROSE]       = "PF_ROSE",
183         [PF_DECnet]     = "PF_DECnet",
184         [PF_NETBEUI]    = "PF_NETBEUI",
185         [PF_SECURITY]   = "PF_SECURITY",
186         [PF_KEY]        = "PF_KEY",
187         [PF_NETLINK]    = "PF_NETLINK/PF_ROUTE",
188         [PF_PACKET]     = "PF_PACKET",
189         [PF_ASH]        = "PF_ASH",
190         [PF_ECONET]     = "PF_ECONET",
191         [PF_ATMSVC]     = "PF_ATMSVC",
192         [PF_RDS]        = "PF_RDS",
193         [PF_SNA]        = "PF_SNA",
194         [PF_IRDA]       = "PF_IRDA",
195         [PF_PPPOX]      = "PF_PPPOX",
196         [PF_WANPIPE]    = "PF_WANPIPE",
197         [PF_LLC]        = "PF_LLC",
198         [PF_IB]         = "PF_IB",
199         [PF_MPLS]       = "PF_MPLS",
200         [PF_CAN]        = "PF_CAN",
201         [PF_TIPC]       = "PF_TIPC",
202         [PF_BLUETOOTH]  = "PF_BLUETOOTH",
203         [PF_IUCV]       = "PF_IUCV",
204         [PF_RXRPC]      = "PF_RXRPC",
205         [PF_ISDN]       = "PF_ISDN",
206         [PF_PHONET]     = "PF_PHONET",
207         [PF_IEEE802154] = "PF_IEEE802154",
208         [PF_CAIF]       = "PF_CAIF",
209         [PF_ALG]        = "PF_ALG",
210         [PF_NFC]        = "PF_NFC",
211         [PF_VSOCK]      = "PF_VSOCK",
212         [PF_KCM]        = "PF_KCM",
213         [PF_QIPCRTR]    = "PF_QIPCRTR",
214         [PF_SMC]        = "PF_SMC",
215         [PF_XDP]        = "PF_XDP",
216         [PF_MCTP]       = "PF_MCTP",
217 };
218 
219 /*
220  *      The protocol list. Each protocol is registered in here.
221  */
222 
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225 
226 /*
227  * Support routines.
228  * Move socket addresses back and forth across the kernel/user
229  * divide and look after the messy bits.
230  */
231 
232 /**
233  *      move_addr_to_kernel     -       copy a socket address into kernel space
234  *      @uaddr: Address in user space
235  *      @kaddr: Address in kernel space
236  *      @ulen: Length in user space
237  *
238  *      The address is copied into kernel space. If the provided address is
239  *      too long an error code of -EINVAL is returned. If the copy gives
240  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
241  */
242 
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246                 return -EINVAL;
247         if (ulen == 0)
248                 return 0;
249         if (copy_from_user(kaddr, uaddr, ulen))
250                 return -EFAULT;
251         return audit_sockaddr(ulen, kaddr);
252 }
253 
254 /**
255  *      move_addr_to_user       -       copy an address to user space
256  *      @kaddr: kernel space address
257  *      @klen: length of address in kernel
258  *      @uaddr: user space address
259  *      @ulen: pointer to user length field
260  *
261  *      The value pointed to by ulen on entry is the buffer length available.
262  *      This is overwritten with the buffer space used. -EINVAL is returned
263  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
264  *      is returned if either the buffer or the length field are not
265  *      accessible.
266  *      After copying the data up to the limit the user specifies, the true
267  *      length of the data is written over the length limit the user
268  *      specified. Zero is returned for a success.
269  */
270 
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272                              void __user *uaddr, int __user *ulen)
273 {
274         int err;
275         int len;
276 
277         BUG_ON(klen > sizeof(struct sockaddr_storage));
278         err = get_user(len, ulen);
279         if (err)
280                 return err;
281         if (len > klen)
282                 len = klen;
283         if (len < 0)
284                 return -EINVAL;
285         if (len) {
286                 if (audit_sockaddr(klen, kaddr))
287                         return -ENOMEM;
288                 if (copy_to_user(uaddr, kaddr, len))
289                         return -EFAULT;
290         }
291         /*
292          *      "fromlen shall refer to the value before truncation.."
293          *                      1003.1g
294          */
295         return __put_user(klen, ulen);
296 }
297 
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299 
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302         struct socket_alloc *ei;
303 
304         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
305         if (!ei)
306                 return NULL;
307         init_waitqueue_head(&ei->socket.wq.wait);
308         ei->socket.wq.fasync_list = NULL;
309         ei->socket.wq.flags = 0;
310 
311         ei->socket.state = SS_UNCONNECTED;
312         ei->socket.flags = 0;
313         ei->socket.ops = NULL;
314         ei->socket.sk = NULL;
315         ei->socket.file = NULL;
316 
317         return &ei->vfs_inode;
318 }
319 
320 static void sock_free_inode(struct inode *inode)
321 {
322         struct socket_alloc *ei;
323 
324         ei = container_of(inode, struct socket_alloc, vfs_inode);
325         kmem_cache_free(sock_inode_cachep, ei);
326 }
327 
328 static void init_once(void *foo)
329 {
330         struct socket_alloc *ei = (struct socket_alloc *)foo;
331 
332         inode_init_once(&ei->vfs_inode);
333 }
334 
335 static void init_inodecache(void)
336 {
337         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338                                               sizeof(struct socket_alloc),
339                                               0,
340                                               (SLAB_HWCACHE_ALIGN |
341                                                SLAB_RECLAIM_ACCOUNT |
342                                                SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343                                               init_once);
344         BUG_ON(sock_inode_cachep == NULL);
345 }
346 
347 static const struct super_operations sockfs_ops = {
348         .alloc_inode    = sock_alloc_inode,
349         .free_inode     = sock_free_inode,
350         .statfs         = simple_statfs,
351 };
352 
353 /*
354  * sockfs_dname() is called from d_path().
355  */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
359                                 d_inode(dentry)->i_ino);
360 }
361 
362 static const struct dentry_operations sockfs_dentry_operations = {
363         .d_dname  = sockfs_dname,
364 };
365 
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367                             struct dentry *dentry, struct inode *inode,
368                             const char *suffix, void *value, size_t size)
369 {
370         if (value) {
371                 if (dentry->d_name.len + 1 > size)
372                         return -ERANGE;
373                 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374         }
375         return dentry->d_name.len + 1;
376 }
377 
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381 
382 static const struct xattr_handler sockfs_xattr_handler = {
383         .name = XATTR_NAME_SOCKPROTONAME,
384         .get = sockfs_xattr_get,
385 };
386 
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388                                      struct user_namespace *mnt_userns,
389                                      struct dentry *dentry, struct inode *inode,
390                                      const char *suffix, const void *value,
391                                      size_t size, int flags)
392 {
393         /* Handled by LSM. */
394         return -EAGAIN;
395 }
396 
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398         .prefix = XATTR_SECURITY_PREFIX,
399         .set = sockfs_security_xattr_set,
400 };
401 
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403         &sockfs_xattr_handler,
404         &sockfs_security_xattr_handler,
405         NULL
406 };
407 
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410         struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411         if (!ctx)
412                 return -ENOMEM;
413         ctx->ops = &sockfs_ops;
414         ctx->dops = &sockfs_dentry_operations;
415         ctx->xattr = sockfs_xattr_handlers;
416         return 0;
417 }
418 
419 static struct vfsmount *sock_mnt __read_mostly;
420 
421 static struct file_system_type sock_fs_type = {
422         .name =         "sockfs",
423         .init_fs_context = sockfs_init_fs_context,
424         .kill_sb =      kill_anon_super,
425 };
426 
427 /*
428  *      Obtains the first available file descriptor and sets it up for use.
429  *
430  *      These functions create file structures and maps them to fd space
431  *      of the current process. On success it returns file descriptor
432  *      and file struct implicitly stored in sock->file.
433  *      Note that another thread may close file descriptor before we return
434  *      from this function. We use the fact that now we do not refer
435  *      to socket after mapping. If one day we will need it, this
436  *      function will increment ref. count on file by 1.
437  *
438  *      In any case returned fd MAY BE not valid!
439  *      This race condition is unavoidable
440  *      with shared fd spaces, we cannot solve it inside kernel,
441  *      but we take care of internal coherence yet.
442  */
443 
444 /**
445  *      sock_alloc_file - Bind a &socket to a &file
446  *      @sock: socket
447  *      @flags: file status flags
448  *      @dname: protocol name
449  *
450  *      Returns the &file bound with @sock, implicitly storing it
451  *      in sock->file. If dname is %NULL, sets to "".
452  *      On failure the return is a ERR pointer (see linux/err.h).
453  *      This function uses GFP_KERNEL internally.
454  */
455 
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458         struct file *file;
459 
460         if (!dname)
461                 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462 
463         file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464                                 O_RDWR | (flags & O_NONBLOCK),
465                                 &socket_file_ops);
466         if (IS_ERR(file)) {
467                 sock_release(sock);
468                 return file;
469         }
470 
471         sock->file = file;
472         file->private_data = sock;
473         stream_open(SOCK_INODE(sock), file);
474         return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477 
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480         struct file *newfile;
481         int fd = get_unused_fd_flags(flags);
482         if (unlikely(fd < 0)) {
483                 sock_release(sock);
484                 return fd;
485         }
486 
487         newfile = sock_alloc_file(sock, flags, NULL);
488         if (!IS_ERR(newfile)) {
489                 fd_install(fd, newfile);
490                 return fd;
491         }
492 
493         put_unused_fd(fd);
494         return PTR_ERR(newfile);
495 }
496 
497 /**
498  *      sock_from_file - Return the &socket bounded to @file.
499  *      @file: file
500  *
501  *      On failure returns %NULL.
502  */
503 
504 struct socket *sock_from_file(struct file *file)
505 {
506         if (file->f_op == &socket_file_ops)
507                 return file->private_data;      /* set in sock_map_fd */
508 
509         return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512 
513 /**
514  *      sockfd_lookup - Go from a file number to its socket slot
515  *      @fd: file handle
516  *      @err: pointer to an error code return
517  *
518  *      The file handle passed in is locked and the socket it is bound
519  *      to is returned. If an error occurs the err pointer is overwritten
520  *      with a negative errno code and NULL is returned. The function checks
521  *      for both invalid handles and passing a handle which is not a socket.
522  *
523  *      On a success the socket object pointer is returned.
524  */
525 
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528         struct file *file;
529         struct socket *sock;
530 
531         file = fget(fd);
532         if (!file) {
533                 *err = -EBADF;
534                 return NULL;
535         }
536 
537         sock = sock_from_file(file);
538         if (!sock) {
539                 *err = -ENOTSOCK;
540                 fput(file);
541         }
542         return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545 
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548         struct fd f = fdget(fd);
549         struct socket *sock;
550 
551         *err = -EBADF;
552         if (f.file) {
553                 sock = sock_from_file(f.file);
554                 if (likely(sock)) {
555                         *fput_needed = f.flags & FDPUT_FPUT;
556                         return sock;
557                 }
558                 *err = -ENOTSOCK;
559                 fdput(f);
560         }
561         return NULL;
562 }
563 
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565                                 size_t size)
566 {
567         ssize_t len;
568         ssize_t used = 0;
569 
570         len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571         if (len < 0)
572                 return len;
573         used += len;
574         if (buffer) {
575                 if (size < used)
576                         return -ERANGE;
577                 buffer += len;
578         }
579 
580         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581         used += len;
582         if (buffer) {
583                 if (size < used)
584                         return -ERANGE;
585                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586                 buffer += len;
587         }
588 
589         return used;
590 }
591 
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593                           struct dentry *dentry, struct iattr *iattr)
594 {
595         int err = simple_setattr(&init_user_ns, dentry, iattr);
596 
597         if (!err && (iattr->ia_valid & ATTR_UID)) {
598                 struct socket *sock = SOCKET_I(d_inode(dentry));
599 
600                 if (sock->sk)
601                         sock->sk->sk_uid = iattr->ia_uid;
602                 else
603                         err = -ENOENT;
604         }
605 
606         return err;
607 }
608 
609 static const struct inode_operations sockfs_inode_ops = {
610         .listxattr = sockfs_listxattr,
611         .setattr = sockfs_setattr,
612 };
613 
614 /**
615  *      sock_alloc - allocate a socket
616  *
617  *      Allocate a new inode and socket object. The two are bound together
618  *      and initialised. The socket is then returned. If we are out of inodes
619  *      NULL is returned. This functions uses GFP_KERNEL internally.
620  */
621 
622 struct socket *sock_alloc(void)
623 {
624         struct inode *inode;
625         struct socket *sock;
626 
627         inode = new_inode_pseudo(sock_mnt->mnt_sb);
628         if (!inode)
629                 return NULL;
630 
631         sock = SOCKET_I(inode);
632 
633         inode->i_ino = get_next_ino();
634         inode->i_mode = S_IFSOCK | S_IRWXUGO;
635         inode->i_uid = current_fsuid();
636         inode->i_gid = current_fsgid();
637         inode->i_op = &sockfs_inode_ops;
638 
639         return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642 
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645         if (sock->ops) {
646                 struct module *owner = sock->ops->owner;
647 
648                 if (inode)
649                         inode_lock(inode);
650                 sock->ops->release(sock);
651                 sock->sk = NULL;
652                 if (inode)
653                         inode_unlock(inode);
654                 sock->ops = NULL;
655                 module_put(owner);
656         }
657 
658         if (sock->wq.fasync_list)
659                 pr_err("%s: fasync list not empty!\n", __func__);
660 
661         if (!sock->file) {
662                 iput(SOCK_INODE(sock));
663                 return;
664         }
665         sock->file = NULL;
666 }
667 
668 /**
669  *      sock_release - close a socket
670  *      @sock: socket to close
671  *
672  *      The socket is released from the protocol stack if it has a release
673  *      callback, and the inode is then released if the socket is bound to
674  *      an inode not a file.
675  */
676 void sock_release(struct socket *sock)
677 {
678         __sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681 
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684         u8 flags = *tx_flags;
685 
686         if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
687                 flags |= SKBTX_HW_TSTAMP;
688 
689         if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
690                 flags |= SKBTX_SW_TSTAMP;
691 
692         if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
693                 flags |= SKBTX_SCHED_TSTAMP;
694 
695         *tx_flags = flags;
696 }
697 EXPORT_SYMBOL(__sock_tx_timestamp);
698 
699 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700                                            size_t));
701 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702                                             size_t));
703 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
704 {
705         int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
706                                      inet_sendmsg, sock, msg,
707                                      msg_data_left(msg));
708         BUG_ON(ret == -EIOCBQUEUED);
709         return ret;
710 }
711 
712 /**
713  *      sock_sendmsg - send a message through @sock
714  *      @sock: socket
715  *      @msg: message to send
716  *
717  *      Sends @msg through @sock, passing through LSM.
718  *      Returns the number of bytes sent, or an error code.
719  */
720 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
721 {
722         int err = security_socket_sendmsg(sock, msg,
723                                           msg_data_left(msg));
724 
725         return err ?: sock_sendmsg_nosec(sock, msg);
726 }
727 EXPORT_SYMBOL(sock_sendmsg);
728 
729 /**
730  *      kernel_sendmsg - send a message through @sock (kernel-space)
731  *      @sock: socket
732  *      @msg: message header
733  *      @vec: kernel vec
734  *      @num: vec array length
735  *      @size: total message data size
736  *
737  *      Builds the message data with @vec and sends it through @sock.
738  *      Returns the number of bytes sent, or an error code.
739  */
740 
741 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
742                    struct kvec *vec, size_t num, size_t size)
743 {
744         iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
745         return sock_sendmsg(sock, msg);
746 }
747 EXPORT_SYMBOL(kernel_sendmsg);
748 
749 /**
750  *      kernel_sendmsg_locked - send a message through @sock (kernel-space)
751  *      @sk: sock
752  *      @msg: message header
753  *      @vec: output s/g array
754  *      @num: output s/g array length
755  *      @size: total message data size
756  *
757  *      Builds the message data with @vec and sends it through @sock.
758  *      Returns the number of bytes sent, or an error code.
759  *      Caller must hold @sk.
760  */
761 
762 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
763                           struct kvec *vec, size_t num, size_t size)
764 {
765         struct socket *sock = sk->sk_socket;
766 
767         if (!sock->ops->sendmsg_locked)
768                 return sock_no_sendmsg_locked(sk, msg, size);
769 
770         iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
771 
772         return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
773 }
774 EXPORT_SYMBOL(kernel_sendmsg_locked);
775 
776 static bool skb_is_err_queue(const struct sk_buff *skb)
777 {
778         /* pkt_type of skbs enqueued on the error queue are set to
779          * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
780          * in recvmsg, since skbs received on a local socket will never
781          * have a pkt_type of PACKET_OUTGOING.
782          */
783         return skb->pkt_type == PACKET_OUTGOING;
784 }
785 
786 /* On transmit, software and hardware timestamps are returned independently.
787  * As the two skb clones share the hardware timestamp, which may be updated
788  * before the software timestamp is received, a hardware TX timestamp may be
789  * returned only if there is no software TX timestamp. Ignore false software
790  * timestamps, which may be made in the __sock_recv_timestamp() call when the
791  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
792  * hardware timestamp.
793  */
794 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
795 {
796         return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
797 }
798 
799 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
800 {
801         struct scm_ts_pktinfo ts_pktinfo;
802         struct net_device *orig_dev;
803 
804         if (!skb_mac_header_was_set(skb))
805                 return;
806 
807         memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
808 
809         rcu_read_lock();
810         orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
811         if (orig_dev)
812                 ts_pktinfo.if_index = orig_dev->ifindex;
813         rcu_read_unlock();
814 
815         ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
816         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
817                  sizeof(ts_pktinfo), &ts_pktinfo);
818 }
819 
820 /*
821  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
822  */
823 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
824         struct sk_buff *skb)
825 {
826         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
827         int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
828         struct scm_timestamping_internal tss;
829 
830         int empty = 1, false_tstamp = 0;
831         struct skb_shared_hwtstamps *shhwtstamps =
832                 skb_hwtstamps(skb);
833         ktime_t hwtstamp;
834 
835         /* Race occurred between timestamp enabling and packet
836            receiving.  Fill in the current time for now. */
837         if (need_software_tstamp && skb->tstamp == 0) {
838                 __net_timestamp(skb);
839                 false_tstamp = 1;
840         }
841 
842         if (need_software_tstamp) {
843                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
844                         if (new_tstamp) {
845                                 struct __kernel_sock_timeval tv;
846 
847                                 skb_get_new_timestamp(skb, &tv);
848                                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
849                                          sizeof(tv), &tv);
850                         } else {
851                                 struct __kernel_old_timeval tv;
852 
853                                 skb_get_timestamp(skb, &tv);
854                                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
855                                          sizeof(tv), &tv);
856                         }
857                 } else {
858                         if (new_tstamp) {
859                                 struct __kernel_timespec ts;
860 
861                                 skb_get_new_timestampns(skb, &ts);
862                                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
863                                          sizeof(ts), &ts);
864                         } else {
865                                 struct __kernel_old_timespec ts;
866 
867                                 skb_get_timestampns(skb, &ts);
868                                 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
869                                          sizeof(ts), &ts);
870                         }
871                 }
872         }
873 
874         memset(&tss, 0, sizeof(tss));
875         if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
876             ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
877                 empty = 0;
878         if (shhwtstamps &&
879             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
880             !skb_is_swtx_tstamp(skb, false_tstamp)) {
881                 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
882                         hwtstamp = ptp_convert_timestamp(shhwtstamps,
883                                                          sk->sk_bind_phc);
884                 else
885                         hwtstamp = shhwtstamps->hwtstamp;
886 
887                 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
888                         empty = 0;
889 
890                         if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
891                             !skb_is_err_queue(skb))
892                                 put_ts_pktinfo(msg, skb);
893                 }
894         }
895         if (!empty) {
896                 if (sock_flag(sk, SOCK_TSTAMP_NEW))
897                         put_cmsg_scm_timestamping64(msg, &tss);
898                 else
899                         put_cmsg_scm_timestamping(msg, &tss);
900 
901                 if (skb_is_err_queue(skb) && skb->len &&
902                     SKB_EXT_ERR(skb)->opt_stats)
903                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
904                                  skb->len, skb->data);
905         }
906 }
907 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
908 
909 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
910         struct sk_buff *skb)
911 {
912         int ack;
913 
914         if (!sock_flag(sk, SOCK_WIFI_STATUS))
915                 return;
916         if (!skb->wifi_acked_valid)
917                 return;
918 
919         ack = skb->wifi_acked;
920 
921         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
922 }
923 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
924 
925 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
926                                    struct sk_buff *skb)
927 {
928         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
929                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
930                         sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
931 }
932 
933 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
934         struct sk_buff *skb)
935 {
936         sock_recv_timestamp(msg, sk, skb);
937         sock_recv_drops(msg, sk, skb);
938 }
939 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
940 
941 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
942                                            size_t, int));
943 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
944                                             size_t, int));
945 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
946                                      int flags)
947 {
948         return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
949                                   inet_recvmsg, sock, msg, msg_data_left(msg),
950                                   flags);
951 }
952 
953 /**
954  *      sock_recvmsg - receive a message from @sock
955  *      @sock: socket
956  *      @msg: message to receive
957  *      @flags: message flags
958  *
959  *      Receives @msg from @sock, passing through LSM. Returns the total number
960  *      of bytes received, or an error.
961  */
962 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
963 {
964         int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
965 
966         return err ?: sock_recvmsg_nosec(sock, msg, flags);
967 }
968 EXPORT_SYMBOL(sock_recvmsg);
969 
970 /**
971  *      kernel_recvmsg - Receive a message from a socket (kernel space)
972  *      @sock: The socket to receive the message from
973  *      @msg: Received message
974  *      @vec: Input s/g array for message data
975  *      @num: Size of input s/g array
976  *      @size: Number of bytes to read
977  *      @flags: Message flags (MSG_DONTWAIT, etc...)
978  *
979  *      On return the msg structure contains the scatter/gather array passed in the
980  *      vec argument. The array is modified so that it consists of the unfilled
981  *      portion of the original array.
982  *
983  *      The returned value is the total number of bytes received, or an error.
984  */
985 
986 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
987                    struct kvec *vec, size_t num, size_t size, int flags)
988 {
989         msg->msg_control_is_user = false;
990         iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
991         return sock_recvmsg(sock, msg, flags);
992 }
993 EXPORT_SYMBOL(kernel_recvmsg);
994 
995 static ssize_t sock_sendpage(struct file *file, struct page *page,
996                              int offset, size_t size, loff_t *ppos, int more)
997 {
998         struct socket *sock;
999         int flags;
1000 
1001         sock = file->private_data;
1002 
1003         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1004         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1005         flags |= more;
1006 
1007         return kernel_sendpage(sock, page, offset, size, flags);
1008 }
1009 
1010 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1011                                 struct pipe_inode_info *pipe, size_t len,
1012                                 unsigned int flags)
1013 {
1014         struct socket *sock = file->private_data;
1015 
1016         if (unlikely(!sock->ops->splice_read))
1017                 return generic_file_splice_read(file, ppos, pipe, len, flags);
1018 
1019         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1020 }
1021 
1022 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1023 {
1024         struct file *file = iocb->ki_filp;
1025         struct socket *sock = file->private_data;
1026         struct msghdr msg = {.msg_iter = *to,
1027                              .msg_iocb = iocb};
1028         ssize_t res;
1029 
1030         if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1031                 msg.msg_flags = MSG_DONTWAIT;
1032 
1033         if (iocb->ki_pos != 0)
1034                 return -ESPIPE;
1035 
1036         if (!iov_iter_count(to))        /* Match SYS5 behaviour */
1037                 return 0;
1038 
1039         res = sock_recvmsg(sock, &msg, msg.msg_flags);
1040         *to = msg.msg_iter;
1041         return res;
1042 }
1043 
1044 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1045 {
1046         struct file *file = iocb->ki_filp;
1047         struct socket *sock = file->private_data;
1048         struct msghdr msg = {.msg_iter = *from,
1049                              .msg_iocb = iocb};
1050         ssize_t res;
1051 
1052         if (iocb->ki_pos != 0)
1053                 return -ESPIPE;
1054 
1055         if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1056                 msg.msg_flags = MSG_DONTWAIT;
1057 
1058         if (sock->type == SOCK_SEQPACKET)
1059                 msg.msg_flags |= MSG_EOR;
1060 
1061         res = sock_sendmsg(sock, &msg);
1062         *from = msg.msg_iter;
1063         return res;
1064 }
1065 
1066 /*
1067  * Atomic setting of ioctl hooks to avoid race
1068  * with module unload.
1069  */
1070 
1071 static DEFINE_MUTEX(br_ioctl_mutex);
1072 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1073                             unsigned int cmd, struct ifreq *ifr,
1074                             void __user *uarg);
1075 
1076 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1077                              unsigned int cmd, struct ifreq *ifr,
1078                              void __user *uarg))
1079 {
1080         mutex_lock(&br_ioctl_mutex);
1081         br_ioctl_hook = hook;
1082         mutex_unlock(&br_ioctl_mutex);
1083 }
1084 EXPORT_SYMBOL(brioctl_set);
1085 
1086 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1087                   struct ifreq *ifr, void __user *uarg)
1088 {
1089         int err = -ENOPKG;
1090 
1091         if (!br_ioctl_hook)
1092                 request_module("bridge");
1093 
1094         mutex_lock(&br_ioctl_mutex);
1095         if (br_ioctl_hook)
1096                 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1097         mutex_unlock(&br_ioctl_mutex);
1098 
1099         return err;
1100 }
1101 
1102 static DEFINE_MUTEX(vlan_ioctl_mutex);
1103 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1104 
1105 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1106 {
1107         mutex_lock(&vlan_ioctl_mutex);
1108         vlan_ioctl_hook = hook;
1109         mutex_unlock(&vlan_ioctl_mutex);
1110 }
1111 EXPORT_SYMBOL(vlan_ioctl_set);
1112 
1113 static long sock_do_ioctl(struct net *net, struct socket *sock,
1114                           unsigned int cmd, unsigned long arg)
1115 {
1116         struct ifreq ifr;
1117         bool need_copyout;
1118         int err;
1119         void __user *argp = (void __user *)arg;
1120         void __user *data;
1121 
1122         err = sock->ops->ioctl(sock, cmd, arg);
1123 
1124         /*
1125          * If this ioctl is unknown try to hand it down
1126          * to the NIC driver.
1127          */
1128         if (err != -ENOIOCTLCMD)
1129                 return err;
1130 
1131         if (!is_socket_ioctl_cmd(cmd))
1132                 return -ENOTTY;
1133 
1134         if (get_user_ifreq(&ifr, &data, argp))
1135                 return -EFAULT;
1136         err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1137         if (!err && need_copyout)
1138                 if (put_user_ifreq(&ifr, argp))
1139                         return -EFAULT;
1140 
1141         return err;
1142 }
1143 
1144 /*
1145  *      With an ioctl, arg may well be a user mode pointer, but we don't know
1146  *      what to do with it - that's up to the protocol still.
1147  */
1148 
1149 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1150 {
1151         struct socket *sock;
1152         struct sock *sk;
1153         void __user *argp = (void __user *)arg;
1154         int pid, err;
1155         struct net *net;
1156 
1157         sock = file->private_data;
1158         sk = sock->sk;
1159         net = sock_net(sk);
1160         if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1161                 struct ifreq ifr;
1162                 void __user *data;
1163                 bool need_copyout;
1164                 if (get_user_ifreq(&ifr, &data, argp))
1165                         return -EFAULT;
1166                 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1167                 if (!err && need_copyout)
1168                         if (put_user_ifreq(&ifr, argp))
1169                                 return -EFAULT;
1170         } else
1171 #ifdef CONFIG_WEXT_CORE
1172         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1173                 err = wext_handle_ioctl(net, cmd, argp);
1174         } else
1175 #endif
1176                 switch (cmd) {
1177                 case FIOSETOWN:
1178                 case SIOCSPGRP:
1179                         err = -EFAULT;
1180                         if (get_user(pid, (int __user *)argp))
1181                                 break;
1182                         err = f_setown(sock->file, pid, 1);
1183                         break;
1184                 case FIOGETOWN:
1185                 case SIOCGPGRP:
1186                         err = put_user(f_getown(sock->file),
1187                                        (int __user *)argp);
1188                         break;
1189                 case SIOCGIFBR:
1190                 case SIOCSIFBR:
1191                 case SIOCBRADDBR:
1192                 case SIOCBRDELBR:
1193                         err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1194                         break;
1195                 case SIOCGIFVLAN:
1196                 case SIOCSIFVLAN:
1197                         err = -ENOPKG;
1198                         if (!vlan_ioctl_hook)
1199                                 request_module("8021q");
1200 
1201                         mutex_lock(&vlan_ioctl_mutex);
1202                         if (vlan_ioctl_hook)
1203                                 err = vlan_ioctl_hook(net, argp);
1204                         mutex_unlock(&vlan_ioctl_mutex);
1205                         break;
1206                 case SIOCGSKNS:
1207                         err = -EPERM;
1208                         if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1209                                 break;
1210 
1211                         err = open_related_ns(&net->ns, get_net_ns);
1212                         break;
1213                 case SIOCGSTAMP_OLD:
1214                 case SIOCGSTAMPNS_OLD:
1215                         if (!sock->ops->gettstamp) {
1216                                 err = -ENOIOCTLCMD;
1217                                 break;
1218                         }
1219                         err = sock->ops->gettstamp(sock, argp,
1220                                                    cmd == SIOCGSTAMP_OLD,
1221                                                    !IS_ENABLED(CONFIG_64BIT));
1222                         break;
1223                 case SIOCGSTAMP_NEW:
1224                 case SIOCGSTAMPNS_NEW:
1225                         if (!sock->ops->gettstamp) {
1226                                 err = -ENOIOCTLCMD;
1227                                 break;
1228                         }
1229                         err = sock->ops->gettstamp(sock, argp,
1230                                                    cmd == SIOCGSTAMP_NEW,
1231                                                    false);
1232                         break;
1233 
1234                 case SIOCGIFCONF:
1235                         err = dev_ifconf(net, argp);
1236                         break;
1237 
1238                 default:
1239                         err = sock_do_ioctl(net, sock, cmd, arg);
1240                         break;
1241                 }
1242         return err;
1243 }
1244 
1245 /**
1246  *      sock_create_lite - creates a socket
1247  *      @family: protocol family (AF_INET, ...)
1248  *      @type: communication type (SOCK_STREAM, ...)
1249  *      @protocol: protocol (0, ...)
1250  *      @res: new socket
1251  *
1252  *      Creates a new socket and assigns it to @res, passing through LSM.
1253  *      The new socket initialization is not complete, see kernel_accept().
1254  *      Returns 0 or an error. On failure @res is set to %NULL.
1255  *      This function internally uses GFP_KERNEL.
1256  */
1257 
1258 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1259 {
1260         int err;
1261         struct socket *sock = NULL;
1262 
1263         err = security_socket_create(family, type, protocol, 1);
1264         if (err)
1265                 goto out;
1266 
1267         sock = sock_alloc();
1268         if (!sock) {
1269                 err = -ENOMEM;
1270                 goto out;
1271         }
1272 
1273         sock->type = type;
1274         err = security_socket_post_create(sock, family, type, protocol, 1);
1275         if (err)
1276                 goto out_release;
1277 
1278 out:
1279         *res = sock;
1280         return err;
1281 out_release:
1282         sock_release(sock);
1283         sock = NULL;
1284         goto out;
1285 }
1286 EXPORT_SYMBOL(sock_create_lite);
1287 
1288 /* No kernel lock held - perfect */
1289 static __poll_t sock_poll(struct file *file, poll_table *wait)
1290 {
1291         struct socket *sock = file->private_data;
1292         __poll_t events = poll_requested_events(wait), flag = 0;
1293 
1294         if (!sock->ops->poll)
1295                 return 0;
1296 
1297         if (sk_can_busy_loop(sock->sk)) {
1298                 /* poll once if requested by the syscall */
1299                 if (events & POLL_BUSY_LOOP)
1300                         sk_busy_loop(sock->sk, 1);
1301 
1302                 /* if this socket can poll_ll, tell the system call */
1303                 flag = POLL_BUSY_LOOP;
1304         }
1305 
1306         return sock->ops->poll(file, sock, wait) | flag;
1307 }
1308 
1309 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1310 {
1311         struct socket *sock = file->private_data;
1312 
1313         return sock->ops->mmap(file, sock, vma);
1314 }
1315 
1316 static int sock_close(struct inode *inode, struct file *filp)
1317 {
1318         __sock_release(SOCKET_I(inode), inode);
1319         return 0;
1320 }
1321 
1322 /*
1323  *      Update the socket async list
1324  *
1325  *      Fasync_list locking strategy.
1326  *
1327  *      1. fasync_list is modified only under process context socket lock
1328  *         i.e. under semaphore.
1329  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1330  *         or under socket lock
1331  */
1332 
1333 static int sock_fasync(int fd, struct file *filp, int on)
1334 {
1335         struct socket *sock = filp->private_data;
1336         struct sock *sk = sock->sk;
1337         struct socket_wq *wq = &sock->wq;
1338 
1339         if (sk == NULL)
1340                 return -EINVAL;
1341 
1342         lock_sock(sk);
1343         fasync_helper(fd, filp, on, &wq->fasync_list);
1344 
1345         if (!wq->fasync_list)
1346                 sock_reset_flag(sk, SOCK_FASYNC);
1347         else
1348                 sock_set_flag(sk, SOCK_FASYNC);
1349 
1350         release_sock(sk);
1351         return 0;
1352 }
1353 
1354 /* This function may be called only under rcu_lock */
1355 
1356 int sock_wake_async(struct socket_wq *wq, int how, int band)
1357 {
1358         if (!wq || !wq->fasync_list)
1359                 return -1;
1360 
1361         switch (how) {
1362         case SOCK_WAKE_WAITD:
1363                 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1364                         break;
1365                 goto call_kill;
1366         case SOCK_WAKE_SPACE:
1367                 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1368                         break;
1369                 fallthrough;
1370         case SOCK_WAKE_IO:
1371 call_kill:
1372                 kill_fasync(&wq->fasync_list, SIGIO, band);
1373                 break;
1374         case SOCK_WAKE_URG:
1375                 kill_fasync(&wq->fasync_list, SIGURG, band);
1376         }
1377 
1378         return 0;
1379 }
1380 EXPORT_SYMBOL(sock_wake_async);
1381 
1382 /**
1383  *      __sock_create - creates a socket
1384  *      @net: net namespace
1385  *      @family: protocol family (AF_INET, ...)
1386  *      @type: communication type (SOCK_STREAM, ...)
1387  *      @protocol: protocol (0, ...)
1388  *      @res: new socket
1389  *      @kern: boolean for kernel space sockets
1390  *
1391  *      Creates a new socket and assigns it to @res, passing through LSM.
1392  *      Returns 0 or an error. On failure @res is set to %NULL. @kern must
1393  *      be set to true if the socket resides in kernel space.
1394  *      This function internally uses GFP_KERNEL.
1395  */
1396 
1397 int __sock_create(struct net *net, int family, int type, int protocol,
1398                          struct socket **res, int kern)
1399 {
1400         int err;
1401         struct socket *sock;
1402         const struct net_proto_family *pf;
1403 
1404         /*
1405          *      Check protocol is in range
1406          */
1407         if (family < 0 || family >= NPROTO)
1408                 return -EAFNOSUPPORT;
1409         if (type < 0 || type >= SOCK_MAX)
1410                 return -EINVAL;
1411 
1412         /* Compatibility.
1413 
1414            This uglymoron is moved from INET layer to here to avoid
1415            deadlock in module load.
1416          */
1417         if (family == PF_INET && type == SOCK_PACKET) {
1418                 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1419                              current->comm);
1420                 family = PF_PACKET;
1421         }
1422 
1423         err = security_socket_create(family, type, protocol, kern);
1424         if (err)
1425                 return err;
1426 
1427         /*
1428          *      Allocate the socket and allow the family to set things up. if
1429          *      the protocol is 0, the family is instructed to select an appropriate
1430          *      default.
1431          */
1432         sock = sock_alloc();
1433         if (!sock) {
1434                 net_warn_ratelimited("socket: no more sockets\n");
1435                 return -ENFILE; /* Not exactly a match, but its the
1436                                    closest posix thing */
1437         }
1438 
1439         sock->type = type;
1440 
1441 #ifdef CONFIG_MODULES
1442         /* Attempt to load a protocol module if the find failed.
1443          *
1444          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1445          * requested real, full-featured networking support upon configuration.
1446          * Otherwise module support will break!
1447          */
1448         if (rcu_access_pointer(net_families[family]) == NULL)
1449                 request_module("net-pf-%d", family);
1450 #endif
1451 
1452         rcu_read_lock();
1453         pf = rcu_dereference(net_families[family]);
1454         err = -EAFNOSUPPORT;
1455         if (!pf)
1456                 goto out_release;
1457 
1458         /*
1459          * We will call the ->create function, that possibly is in a loadable
1460          * module, so we have to bump that loadable module refcnt first.
1461          */
1462         if (!try_module_get(pf->owner))
1463                 goto out_release;
1464 
1465         /* Now protected by module ref count */
1466         rcu_read_unlock();
1467 
1468         err = pf->create(net, sock, protocol, kern);
1469         if (err < 0)
1470                 goto out_module_put;
1471 
1472         /*
1473          * Now to bump the refcnt of the [loadable] module that owns this
1474          * socket at sock_release time we decrement its refcnt.
1475          */
1476         if (!try_module_get(sock->ops->owner))
1477                 goto out_module_busy;
1478 
1479         /*
1480          * Now that we're done with the ->create function, the [loadable]
1481          * module can have its refcnt decremented
1482          */
1483         module_put(pf->owner);
1484         err = security_socket_post_create(sock, family, type, protocol, kern);
1485         if (err)
1486                 goto out_sock_release;
1487         *res = sock;
1488 
1489         return 0;
1490 
1491 out_module_busy:
1492         err = -EAFNOSUPPORT;
1493 out_module_put:
1494         sock->ops = NULL;
1495         module_put(pf->owner);
1496 out_sock_release:
1497         sock_release(sock);
1498         return err;
1499 
1500 out_release:
1501         rcu_read_unlock();
1502         goto out_sock_release;
1503 }
1504 EXPORT_SYMBOL(__sock_create);
1505 
1506 /**
1507  *      sock_create - creates a socket
1508  *      @family: protocol family (AF_INET, ...)
1509  *      @type: communication type (SOCK_STREAM, ...)
1510  *      @protocol: protocol (0, ...)
1511  *      @res: new socket
1512  *
1513  *      A wrapper around __sock_create().
1514  *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1515  */
1516 
1517 int sock_create(int family, int type, int protocol, struct socket **res)
1518 {
1519         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1520 }
1521 EXPORT_SYMBOL(sock_create);
1522 
1523 /**
1524  *      sock_create_kern - creates a socket (kernel space)
1525  *      @net: net namespace
1526  *      @family: protocol family (AF_INET, ...)
1527  *      @type: communication type (SOCK_STREAM, ...)
1528  *      @protocol: protocol (0, ...)
1529  *      @res: new socket
1530  *
1531  *      A wrapper around __sock_create().
1532  *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1533  */
1534 
1535 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1536 {
1537         return __sock_create(net, family, type, protocol, res, 1);
1538 }
1539 EXPORT_SYMBOL(sock_create_kern);
1540 
1541 int __sys_socket(int family, int type, int protocol)
1542 {
1543         int retval;
1544         struct socket *sock;
1545         int flags;
1546 
1547         /* Check the SOCK_* constants for consistency.  */
1548         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1549         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1550         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1551         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1552 
1553         flags = type & ~SOCK_TYPE_MASK;
1554         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1555                 return -EINVAL;
1556         type &= SOCK_TYPE_MASK;
1557 
1558         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1559                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1560 
1561         retval = sock_create(family, type, protocol, &sock);
1562         if (retval < 0)
1563                 return retval;
1564 
1565         return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1566 }
1567 
1568 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1569 {
1570         return __sys_socket(family, type, protocol);
1571 }
1572 
1573 /*
1574  *      Create a pair of connected sockets.
1575  */
1576 
1577 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1578 {
1579         struct socket *sock1, *sock2;
1580         int fd1, fd2, err;
1581         struct file *newfile1, *newfile2;
1582         int flags;
1583 
1584         flags = type & ~SOCK_TYPE_MASK;
1585         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1586                 return -EINVAL;
1587         type &= SOCK_TYPE_MASK;
1588 
1589         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1590                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1591 
1592         /*
1593          * reserve descriptors and make sure we won't fail
1594          * to return them to userland.
1595          */
1596         fd1 = get_unused_fd_flags(flags);
1597         if (unlikely(fd1 < 0))
1598                 return fd1;
1599 
1600         fd2 = get_unused_fd_flags(flags);
1601         if (unlikely(fd2 < 0)) {
1602                 put_unused_fd(fd1);
1603                 return fd2;
1604         }
1605 
1606         err = put_user(fd1, &usockvec[0]);
1607         if (err)
1608                 goto out;
1609 
1610         err = put_user(fd2, &usockvec[1]);
1611         if (err)
1612                 goto out;
1613 
1614         /*
1615          * Obtain the first socket and check if the underlying protocol
1616          * supports the socketpair call.
1617          */
1618 
1619         err = sock_create(family, type, protocol, &sock1);
1620         if (unlikely(err < 0))
1621                 goto out;
1622 
1623         err = sock_create(family, type, protocol, &sock2);
1624         if (unlikely(err < 0)) {
1625                 sock_release(sock1);
1626                 goto out;
1627         }
1628 
1629         err = security_socket_socketpair(sock1, sock2);
1630         if (unlikely(err)) {
1631                 sock_release(sock2);
1632                 sock_release(sock1);
1633                 goto out;
1634         }
1635 
1636         err = sock1->ops->socketpair(sock1, sock2);
1637         if (unlikely(err < 0)) {
1638                 sock_release(sock2);
1639                 sock_release(sock1);
1640                 goto out;
1641         }
1642 
1643         newfile1 = sock_alloc_file(sock1, flags, NULL);
1644         if (IS_ERR(newfile1)) {
1645                 err = PTR_ERR(newfile1);
1646                 sock_release(sock2);
1647                 goto out;
1648         }
1649 
1650         newfile2 = sock_alloc_file(sock2, flags, NULL);
1651         if (IS_ERR(newfile2)) {
1652                 err = PTR_ERR(newfile2);
1653                 fput(newfile1);
1654                 goto out;
1655         }
1656 
1657         audit_fd_pair(fd1, fd2);
1658 
1659         fd_install(fd1, newfile1);
1660         fd_install(fd2, newfile2);
1661         return 0;
1662 
1663 out:
1664         put_unused_fd(fd2);
1665         put_unused_fd(fd1);
1666         return err;
1667 }
1668 
1669 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1670                 int __user *, usockvec)
1671 {
1672         return __sys_socketpair(family, type, protocol, usockvec);
1673 }
1674 
1675 /*
1676  *      Bind a name to a socket. Nothing much to do here since it's
1677  *      the protocol's responsibility to handle the local address.
1678  *
1679  *      We move the socket address to kernel space before we call
1680  *      the protocol layer (having also checked the address is ok).
1681  */
1682 
1683 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1684 {
1685         struct socket *sock;
1686         struct sockaddr_storage address;
1687         int err, fput_needed;
1688 
1689         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690         if (sock) {
1691                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1692                 if (!err) {
1693                         err = security_socket_bind(sock,
1694                                                    (struct sockaddr *)&address,
1695                                                    addrlen);
1696                         if (!err)
1697                                 err = sock->ops->bind(sock,
1698                                                       (struct sockaddr *)
1699                                                       &address, addrlen);
1700                 }
1701                 fput_light(sock->file, fput_needed);
1702         }
1703         return err;
1704 }
1705 
1706 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1707 {
1708         return __sys_bind(fd, umyaddr, addrlen);
1709 }
1710 
1711 /*
1712  *      Perform a listen. Basically, we allow the protocol to do anything
1713  *      necessary for a listen, and if that works, we mark the socket as
1714  *      ready for listening.
1715  */
1716 
1717 int __sys_listen(int fd, int backlog)
1718 {
1719         struct socket *sock;
1720         int err, fput_needed;
1721         int somaxconn;
1722 
1723         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724         if (sock) {
1725                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1726                 if ((unsigned int)backlog > somaxconn)
1727                         backlog = somaxconn;
1728 
1729                 err = security_socket_listen(sock, backlog);
1730                 if (!err)
1731                         err = sock->ops->listen(sock, backlog);
1732 
1733                 fput_light(sock->file, fput_needed);
1734         }
1735         return err;
1736 }
1737 
1738 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1739 {
1740         return __sys_listen(fd, backlog);
1741 }
1742 
1743 struct file *do_accept(struct file *file, unsigned file_flags,
1744                        struct sockaddr __user *upeer_sockaddr,
1745                        int __user *upeer_addrlen, int flags)
1746 {
1747         struct socket *sock, *newsock;
1748         struct file *newfile;
1749         int err, len;
1750         struct sockaddr_storage address;
1751 
1752         sock = sock_from_file(file);
1753         if (!sock)
1754                 return ERR_PTR(-ENOTSOCK);
1755 
1756         newsock = sock_alloc();
1757         if (!newsock)
1758                 return ERR_PTR(-ENFILE);
1759 
1760         newsock->type = sock->type;
1761         newsock->ops = sock->ops;
1762 
1763         /*
1764          * We don't need try_module_get here, as the listening socket (sock)
1765          * has the protocol module (sock->ops->owner) held.
1766          */
1767         __module_get(newsock->ops->owner);
1768 
1769         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770         if (IS_ERR(newfile))
1771                 return newfile;
1772 
1773         err = security_socket_accept(sock, newsock);
1774         if (err)
1775                 goto out_fd;
1776 
1777         err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1778                                         false);
1779         if (err < 0)
1780                 goto out_fd;
1781 
1782         if (ccs_socket_post_accept_permission(sock, newsock)) {
1783                 err = -EAGAIN; /* Hope less harmful than -EPERM. */
1784                 goto out_fd;
1785         }
1786         if (upeer_sockaddr) {
1787                 len = newsock->ops->getname(newsock,
1788                                         (struct sockaddr *)&address, 2);
1789                 if (len < 0) {
1790                         err = -ECONNABORTED;
1791                         goto out_fd;
1792                 }
1793                 err = move_addr_to_user(&address,
1794                                         len, upeer_sockaddr, upeer_addrlen);
1795                 if (err < 0)
1796                         goto out_fd;
1797         }
1798 
1799         /* File flags are not inherited via accept() unlike another OSes. */
1800         return newfile;
1801 out_fd:
1802         fput(newfile);
1803         return ERR_PTR(err);
1804 }
1805 
1806 int __sys_accept4_file(struct file *file, unsigned file_flags,
1807                        struct sockaddr __user *upeer_sockaddr,
1808                        int __user *upeer_addrlen, int flags,
1809                        unsigned long nofile)
1810 {
1811         struct file *newfile;
1812         int newfd;
1813 
1814         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1815                 return -EINVAL;
1816 
1817         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1818                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1819 
1820         newfd = __get_unused_fd_flags(flags, nofile);
1821         if (unlikely(newfd < 0))
1822                 return newfd;
1823 
1824         newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1825                             flags);
1826         if (IS_ERR(newfile)) {
1827                 put_unused_fd(newfd);
1828                 return PTR_ERR(newfile);
1829         }
1830         fd_install(newfd, newfile);
1831         return newfd;
1832 }
1833 
1834 /*
1835  *      For accept, we attempt to create a new socket, set up the link
1836  *      with the client, wake up the client, then return the new
1837  *      connected fd. We collect the address of the connector in kernel
1838  *      space and move it to user at the very end. This is unclean because
1839  *      we open the socket then return an error.
1840  *
1841  *      1003.1g adds the ability to recvmsg() to query connection pending
1842  *      status to recvmsg. We need to add that support in a way thats
1843  *      clean when we restructure accept also.
1844  */
1845 
1846 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1847                   int __user *upeer_addrlen, int flags)
1848 {
1849         int ret = -EBADF;
1850         struct fd f;
1851 
1852         f = fdget(fd);
1853         if (f.file) {
1854                 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1855                                                 upeer_addrlen, flags,
1856                                                 rlimit(RLIMIT_NOFILE));
1857                 fdput(f);
1858         }
1859 
1860         return ret;
1861 }
1862 
1863 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1864                 int __user *, upeer_addrlen, int, flags)
1865 {
1866         return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1867 }
1868 
1869 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1870                 int __user *, upeer_addrlen)
1871 {
1872         return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1873 }
1874 
1875 /*
1876  *      Attempt to connect to a socket with the server address.  The address
1877  *      is in user space so we verify it is OK and move it to kernel space.
1878  *
1879  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1880  *      break bindings
1881  *
1882  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1883  *      other SEQPACKET protocols that take time to connect() as it doesn't
1884  *      include the -EINPROGRESS status for such sockets.
1885  */
1886 
1887 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1888                        int addrlen, int file_flags)
1889 {
1890         struct socket *sock;
1891         int err;
1892 
1893         sock = sock_from_file(file);
1894         if (!sock) {
1895                 err = -ENOTSOCK;
1896                 goto out;
1897         }
1898 
1899         err =
1900             security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1901         if (err)
1902                 goto out;
1903 
1904         err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1905                                  sock->file->f_flags | file_flags);
1906 out:
1907         return err;
1908 }
1909 
1910 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1911 {
1912         int ret = -EBADF;
1913         struct fd f;
1914 
1915         f = fdget(fd);
1916         if (f.file) {
1917                 struct sockaddr_storage address;
1918 
1919                 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1920                 if (!ret)
1921                         ret = __sys_connect_file(f.file, &address, addrlen, 0);
1922                 fdput(f);
1923         }
1924 
1925         return ret;
1926 }
1927 
1928 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1929                 int, addrlen)
1930 {
1931         return __sys_connect(fd, uservaddr, addrlen);
1932 }
1933 
1934 /*
1935  *      Get the local address ('name') of a socket object. Move the obtained
1936  *      name to user space.
1937  */
1938 
1939 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1940                       int __user *usockaddr_len)
1941 {
1942         struct socket *sock;
1943         struct sockaddr_storage address;
1944         int err, fput_needed;
1945 
1946         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947         if (!sock)
1948                 goto out;
1949 
1950         err = security_socket_getsockname(sock);
1951         if (err)
1952                 goto out_put;
1953 
1954         err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1955         if (err < 0)
1956                 goto out_put;
1957         /* "err" is actually length in this case */
1958         err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1959 
1960 out_put:
1961         fput_light(sock->file, fput_needed);
1962 out:
1963         return err;
1964 }
1965 
1966 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1967                 int __user *, usockaddr_len)
1968 {
1969         return __sys_getsockname(fd, usockaddr, usockaddr_len);
1970 }
1971 
1972 /*
1973  *      Get the remote address ('name') of a socket object. Move the obtained
1974  *      name to user space.
1975  */
1976 
1977 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1978                       int __user *usockaddr_len)
1979 {
1980         struct socket *sock;
1981         struct sockaddr_storage address;
1982         int err, fput_needed;
1983 
1984         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1985         if (sock != NULL) {
1986                 err = security_socket_getpeername(sock);
1987                 if (err) {
1988                         fput_light(sock->file, fput_needed);
1989                         return err;
1990                 }
1991 
1992                 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1993                 if (err >= 0)
1994                         /* "err" is actually length in this case */
1995                         err = move_addr_to_user(&address, err, usockaddr,
1996                                                 usockaddr_len);
1997                 fput_light(sock->file, fput_needed);
1998         }
1999         return err;
2000 }
2001 
2002 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2003                 int __user *, usockaddr_len)
2004 {
2005         return __sys_getpeername(fd, usockaddr, usockaddr_len);
2006 }
2007 
2008 /*
2009  *      Send a datagram to a given address. We move the address into kernel
2010  *      space and check the user space data area is readable before invoking
2011  *      the protocol.
2012  */
2013 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2014                  struct sockaddr __user *addr,  int addr_len)
2015 {
2016         struct socket *sock;
2017         struct sockaddr_storage address;
2018         int err;
2019         struct msghdr msg;
2020         struct iovec iov;
2021         int fput_needed;
2022 
2023         err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2024         if (unlikely(err))
2025                 return err;
2026         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2027         if (!sock)
2028                 goto out;
2029 
2030         msg.msg_name = NULL;
2031         msg.msg_control = NULL;
2032         msg.msg_controllen = 0;
2033         msg.msg_namelen = 0;
2034         if (addr) {
2035                 err = move_addr_to_kernel(addr, addr_len, &address);
2036                 if (err < 0)
2037                         goto out_put;
2038                 msg.msg_name = (struct sockaddr *)&address;
2039                 msg.msg_namelen = addr_len;
2040         }
2041         if (sock->file->f_flags & O_NONBLOCK)
2042                 flags |= MSG_DONTWAIT;
2043         msg.msg_flags = flags;
2044         err = sock_sendmsg(sock, &msg);
2045 
2046 out_put:
2047         fput_light(sock->file, fput_needed);
2048 out:
2049         return err;
2050 }
2051 
2052 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2053                 unsigned int, flags, struct sockaddr __user *, addr,
2054                 int, addr_len)
2055 {
2056         return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2057 }
2058 
2059 /*
2060  *      Send a datagram down a socket.
2061  */
2062 
2063 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2064                 unsigned int, flags)
2065 {
2066         return __sys_sendto(fd, buff, len, flags, NULL, 0);
2067 }
2068 
2069 /*
2070  *      Receive a frame from the socket and optionally record the address of the
2071  *      sender. We verify the buffers are writable and if needed move the
2072  *      sender address from kernel to user space.
2073  */
2074 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2075                    struct sockaddr __user *addr, int __user *addr_len)
2076 {
2077         struct socket *sock;
2078         struct iovec iov;
2079         struct msghdr msg;
2080         struct sockaddr_storage address;
2081         int err, err2;
2082         int fput_needed;
2083 
2084         err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2085         if (unlikely(err))
2086                 return err;
2087         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2088         if (!sock)
2089                 goto out;
2090 
2091         msg.msg_control = NULL;
2092         msg.msg_controllen = 0;
2093         /* Save some cycles and don't copy the address if not needed */
2094         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2095         /* We assume all kernel code knows the size of sockaddr_storage */
2096         msg.msg_namelen = 0;
2097         msg.msg_iocb = NULL;
2098         msg.msg_flags = 0;
2099         if (sock->file->f_flags & O_NONBLOCK)
2100                 flags |= MSG_DONTWAIT;
2101         err = sock_recvmsg(sock, &msg, flags);
2102 
2103         if (err >= 0 && addr != NULL) {
2104                 err2 = move_addr_to_user(&address,
2105                                          msg.msg_namelen, addr, addr_len);
2106                 if (err2 < 0)
2107                         err = err2;
2108         }
2109 
2110         fput_light(sock->file, fput_needed);
2111 out:
2112         return err;
2113 }
2114 
2115 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2116                 unsigned int, flags, struct sockaddr __user *, addr,
2117                 int __user *, addr_len)
2118 {
2119         return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2120 }
2121 
2122 /*
2123  *      Receive a datagram from a socket.
2124  */
2125 
2126 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2127                 unsigned int, flags)
2128 {
2129         return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2130 }
2131 
2132 static bool sock_use_custom_sol_socket(const struct socket *sock)
2133 {
2134         const struct sock *sk = sock->sk;
2135 
2136         /* Use sock->ops->setsockopt() for MPTCP */
2137         return IS_ENABLED(CONFIG_MPTCP) &&
2138                sk->sk_protocol == IPPROTO_MPTCP &&
2139                sk->sk_type == SOCK_STREAM &&
2140                (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2141 }
2142 
2143 /*
2144  *      Set a socket option. Because we don't know the option lengths we have
2145  *      to pass the user mode parameter for the protocols to sort out.
2146  */
2147 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2148                 int optlen)
2149 {
2150         sockptr_t optval = USER_SOCKPTR(user_optval);
2151         char *kernel_optval = NULL;
2152         int err, fput_needed;
2153         struct socket *sock;
2154 
2155         if (optlen < 0)
2156                 return -EINVAL;
2157 
2158         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2159         if (!sock)
2160                 return err;
2161 
2162         err = security_socket_setsockopt(sock, level, optname);
2163         if (err)
2164                 goto out_put;
2165 
2166         if (!in_compat_syscall())
2167                 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2168                                                      user_optval, &optlen,
2169                                                      &kernel_optval);
2170         if (err < 0)
2171                 goto out_put;
2172         if (err > 0) {
2173                 err = 0;
2174                 goto out_put;
2175         }
2176 
2177         if (kernel_optval)
2178                 optval = KERNEL_SOCKPTR(kernel_optval);
2179         if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2180                 err = sock_setsockopt(sock, level, optname, optval, optlen);
2181         else if (unlikely(!sock->ops->setsockopt))
2182                 err = -EOPNOTSUPP;
2183         else
2184                 err = sock->ops->setsockopt(sock, level, optname, optval,
2185                                             optlen);
2186         kfree(kernel_optval);
2187 out_put:
2188         fput_light(sock->file, fput_needed);
2189         return err;
2190 }
2191 
2192 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2193                 char __user *, optval, int, optlen)
2194 {
2195         return __sys_setsockopt(fd, level, optname, optval, optlen);
2196 }
2197 
2198 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2199                                                          int optname));
2200 
2201 /*
2202  *      Get a socket option. Because we don't know the option lengths we have
2203  *      to pass a user mode parameter for the protocols to sort out.
2204  */
2205 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2206                 int __user *optlen)
2207 {
2208         int err, fput_needed;
2209         struct socket *sock;
2210         int max_optlen;
2211 
2212         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2213         if (!sock)
2214                 return err;
2215 
2216         err = security_socket_getsockopt(sock, level, optname);
2217         if (err)
2218                 goto out_put;
2219 
2220         if (!in_compat_syscall())
2221                 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2222 
2223         if (level == SOL_SOCKET)
2224                 err = sock_getsockopt(sock, level, optname, optval, optlen);
2225         else if (unlikely(!sock->ops->getsockopt))
2226                 err = -EOPNOTSUPP;
2227         else
2228                 err = sock->ops->getsockopt(sock, level, optname, optval,
2229                                             optlen);
2230 
2231         if (!in_compat_syscall())
2232                 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2233                                                      optval, optlen, max_optlen,
2234                                                      err);
2235 out_put:
2236         fput_light(sock->file, fput_needed);
2237         return err;
2238 }
2239 
2240 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2241                 char __user *, optval, int __user *, optlen)
2242 {
2243         return __sys_getsockopt(fd, level, optname, optval, optlen);
2244 }
2245 
2246 /*
2247  *      Shutdown a socket.
2248  */
2249 
2250 int __sys_shutdown_sock(struct socket *sock, int how)
2251 {
2252         int err;
2253 
2254         err = security_socket_shutdown(sock, how);
2255         if (!err)
2256                 err = sock->ops->shutdown(sock, how);
2257 
2258         return err;
2259 }
2260 
2261 int __sys_shutdown(int fd, int how)
2262 {
2263         int err, fput_needed;
2264         struct socket *sock;
2265 
2266         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2267         if (sock != NULL) {
2268                 err = __sys_shutdown_sock(sock, how);
2269                 fput_light(sock->file, fput_needed);
2270         }
2271         return err;
2272 }
2273 
2274 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2275 {
2276         return __sys_shutdown(fd, how);
2277 }
2278 
2279 /* A couple of helpful macros for getting the address of the 32/64 bit
2280  * fields which are the same type (int / unsigned) on our platforms.
2281  */
2282 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2283 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
2284 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
2285 
2286 struct used_address {
2287         struct sockaddr_storage name;
2288         unsigned int name_len;
2289 };
2290 
2291 int __copy_msghdr_from_user(struct msghdr *kmsg,
2292                             struct user_msghdr __user *umsg,
2293                             struct sockaddr __user **save_addr,
2294                             struct iovec __user **uiov, size_t *nsegs)
2295 {
2296         struct user_msghdr msg;
2297         ssize_t err;
2298 
2299         if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2300                 return -EFAULT;
2301 
2302         kmsg->msg_control_is_user = true;
2303         kmsg->msg_control_user = msg.msg_control;
2304         kmsg->msg_controllen = msg.msg_controllen;
2305         kmsg->msg_flags = msg.msg_flags;
2306 
2307         kmsg->msg_namelen = msg.msg_namelen;
2308         if (!msg.msg_name)
2309                 kmsg->msg_namelen = 0;
2310 
2311         if (kmsg->msg_namelen < 0)
2312                 return -EINVAL;
2313 
2314         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2315                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2316 
2317         if (save_addr)
2318                 *save_addr = msg.msg_name;
2319 
2320         if (msg.msg_name && kmsg->msg_namelen) {
2321                 if (!save_addr) {
2322                         err = move_addr_to_kernel(msg.msg_name,
2323                                                   kmsg->msg_namelen,
2324                                                   kmsg->msg_name);
2325                         if (err < 0)
2326                                 return err;
2327                 }
2328         } else {
2329                 kmsg->msg_name = NULL;
2330                 kmsg->msg_namelen = 0;
2331         }
2332 
2333         if (msg.msg_iovlen > UIO_MAXIOV)
2334                 return -EMSGSIZE;
2335 
2336         kmsg->msg_iocb = NULL;
2337         *uiov = msg.msg_iov;
2338         *nsegs = msg.msg_iovlen;
2339         return 0;
2340 }
2341 
2342 static int copy_msghdr_from_user(struct msghdr *kmsg,
2343                                  struct user_msghdr __user *umsg,
2344                                  struct sockaddr __user **save_addr,
2345                                  struct iovec **iov)
2346 {
2347         struct user_msghdr msg;
2348         ssize_t err;
2349 
2350         err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2351                                         &msg.msg_iovlen);
2352         if (err)
2353                 return err;
2354 
2355         err = import_iovec(save_addr ? READ : WRITE,
2356                             msg.msg_iov, msg.msg_iovlen,
2357                             UIO_FASTIOV, iov, &kmsg->msg_iter);
2358         return err < 0 ? err : 0;
2359 }
2360 
2361 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2362                            unsigned int flags, struct used_address *used_address,
2363                            unsigned int allowed_msghdr_flags)
2364 {
2365         unsigned char ctl[sizeof(struct cmsghdr) + 20]
2366                                 __aligned(sizeof(__kernel_size_t));
2367         /* 20 is size of ipv6_pktinfo */
2368         unsigned char *ctl_buf = ctl;
2369         int ctl_len;
2370         ssize_t err;
2371 
2372         err = -ENOBUFS;
2373 
2374         if (msg_sys->msg_controllen > INT_MAX)
2375                 goto out;
2376         flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2377         ctl_len = msg_sys->msg_controllen;
2378         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2379                 err =
2380                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2381                                                      sizeof(ctl));
2382                 if (err)
2383                         goto out;
2384                 ctl_buf = msg_sys->msg_control;
2385                 ctl_len = msg_sys->msg_controllen;
2386         } else if (ctl_len) {
2387                 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2388                              CMSG_ALIGN(sizeof(struct cmsghdr)));
2389                 if (ctl_len > sizeof(ctl)) {
2390                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2391                         if (ctl_buf == NULL)
2392                                 goto out;
2393                 }
2394                 err = -EFAULT;
2395                 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2396                         goto out_freectl;
2397                 msg_sys->msg_control = ctl_buf;
2398                 msg_sys->msg_control_is_user = false;
2399         }
2400         msg_sys->msg_flags = flags;
2401 
2402         if (sock->file->f_flags & O_NONBLOCK)
2403                 msg_sys->msg_flags |= MSG_DONTWAIT;
2404         /*
2405          * If this is sendmmsg() and current destination address is same as
2406          * previously succeeded address, omit asking LSM's decision.
2407          * used_address->name_len is initialized to UINT_MAX so that the first
2408          * destination address never matches.
2409          */
2410         if (used_address && msg_sys->msg_name &&
2411             used_address->name_len == msg_sys->msg_namelen &&
2412             !memcmp(&used_address->name, msg_sys->msg_name,
2413                     used_address->name_len)) {
2414                 err = sock_sendmsg_nosec(sock, msg_sys);
2415                 goto out_freectl;
2416         }
2417         err = sock_sendmsg(sock, msg_sys);
2418         /*
2419          * If this is sendmmsg() and sending to current destination address was
2420          * successful, remember it.
2421          */
2422         if (used_address && err >= 0) {
2423                 used_address->name_len = msg_sys->msg_namelen;
2424                 if (msg_sys->msg_name)
2425                         memcpy(&used_address->name, msg_sys->msg_name,
2426                                used_address->name_len);
2427         }
2428 
2429 out_freectl:
2430         if (ctl_buf != ctl)
2431                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2432 out:
2433         return err;
2434 }
2435 
2436 int sendmsg_copy_msghdr(struct msghdr *msg,
2437                         struct user_msghdr __user *umsg, unsigned flags,
2438                         struct iovec **iov)
2439 {
2440         int err;
2441 
2442         if (flags & MSG_CMSG_COMPAT) {
2443                 struct compat_msghdr __user *msg_compat;
2444 
2445                 msg_compat = (struct compat_msghdr __user *) umsg;
2446                 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2447         } else {
2448                 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2449         }
2450         if (err < 0)
2451                 return err;
2452 
2453         return 0;
2454 }
2455 
2456 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2457                          struct msghdr *msg_sys, unsigned int flags,
2458                          struct used_address *used_address,
2459                          unsigned int allowed_msghdr_flags)
2460 {
2461         struct sockaddr_storage address;
2462         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2463         ssize_t err;
2464 
2465         msg_sys->msg_name = &address;
2466 
2467         err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2468         if (err < 0)
2469                 return err;
2470 
2471         err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2472                                 allowed_msghdr_flags);
2473         kfree(iov);
2474         return err;
2475 }
2476 
2477 /*
2478  *      BSD sendmsg interface
2479  */
2480 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2481                         unsigned int flags)
2482 {
2483         return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2484 }
2485 
2486 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2487                    bool forbid_cmsg_compat)
2488 {
2489         int fput_needed, err;
2490         struct msghdr msg_sys;
2491         struct socket *sock;
2492 
2493         if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2494                 return -EINVAL;
2495 
2496         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2497         if (!sock)
2498                 goto out;
2499 
2500         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2501 
2502         fput_light(sock->file, fput_needed);
2503 out:
2504         return err;
2505 }
2506 
2507 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2508 {
2509         return __sys_sendmsg(fd, msg, flags, true);
2510 }
2511 
2512 /*
2513  *      Linux sendmmsg interface
2514  */
2515 
2516 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2517                    unsigned int flags, bool forbid_cmsg_compat)
2518 {
2519         int fput_needed, err, datagrams;
2520         struct socket *sock;
2521         struct mmsghdr __user *entry;
2522         struct compat_mmsghdr __user *compat_entry;
2523         struct msghdr msg_sys;
2524         struct used_address used_address;
2525         unsigned int oflags = flags;
2526 
2527         if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2528                 return -EINVAL;
2529 
2530         if (vlen > UIO_MAXIOV)
2531                 vlen = UIO_MAXIOV;
2532 
2533         datagrams = 0;
2534 
2535         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2536         if (!sock)
2537                 return err;
2538 
2539         used_address.name_len = UINT_MAX;
2540         entry = mmsg;
2541         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2542         err = 0;
2543         flags |= MSG_BATCH;
2544 
2545         while (datagrams < vlen) {
2546                 if (datagrams == vlen - 1)
2547                         flags = oflags;
2548 
2549                 if (MSG_CMSG_COMPAT & flags) {
2550                         err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2551                                              &msg_sys, flags, &used_address, MSG_EOR);
2552                         if (err < 0)
2553                                 break;
2554                         err = __put_user(err, &compat_entry->msg_len);
2555                         ++compat_entry;
2556                 } else {
2557                         err = ___sys_sendmsg(sock,
2558                                              (struct user_msghdr __user *)entry,
2559                                              &msg_sys, flags, &used_address, MSG_EOR);
2560                         if (err < 0)
2561                                 break;
2562                         err = put_user(err, &entry->msg_len);
2563                         ++entry;
2564                 }
2565 
2566                 if (err)
2567                         break;
2568                 ++datagrams;
2569                 if (msg_data_left(&msg_sys))
2570                         break;
2571                 cond_resched();
2572         }
2573 
2574         fput_light(sock->file, fput_needed);
2575 
2576         /* We only return an error if no datagrams were able to be sent */
2577         if (datagrams != 0)
2578                 return datagrams;
2579 
2580         return err;
2581 }
2582 
2583 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2584                 unsigned int, vlen, unsigned int, flags)
2585 {
2586         return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2587 }
2588 
2589 int recvmsg_copy_msghdr(struct msghdr *msg,
2590                         struct user_msghdr __user *umsg, unsigned flags,
2591                         struct sockaddr __user **uaddr,
2592                         struct iovec **iov)
2593 {
2594         ssize_t err;
2595 
2596         if (MSG_CMSG_COMPAT & flags) {
2597                 struct compat_msghdr __user *msg_compat;
2598 
2599                 msg_compat = (struct compat_msghdr __user *) umsg;
2600                 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2601         } else {
2602                 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2603         }
2604         if (err < 0)
2605                 return err;
2606 
2607         return 0;
2608 }
2609 
2610 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2611                            struct user_msghdr __user *msg,
2612                            struct sockaddr __user *uaddr,
2613                            unsigned int flags, int nosec)
2614 {
2615         struct compat_msghdr __user *msg_compat =
2616                                         (struct compat_msghdr __user *) msg;
2617         int __user *uaddr_len = COMPAT_NAMELEN(msg);
2618         struct sockaddr_storage addr;
2619         unsigned long cmsg_ptr;
2620         int len;
2621         ssize_t err;
2622 
2623         msg_sys->msg_name = &addr;
2624         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2625         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2626 
2627         /* We assume all kernel code knows the size of sockaddr_storage */
2628         msg_sys->msg_namelen = 0;
2629 
2630         if (sock->file->f_flags & O_NONBLOCK)
2631                 flags |= MSG_DONTWAIT;
2632 
2633         if (unlikely(nosec))
2634                 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2635         else
2636                 err = sock_recvmsg(sock, msg_sys, flags);
2637 
2638         if (err < 0)
2639                 goto out;
2640         len = err;
2641 
2642         if (uaddr != NULL) {
2643                 err = move_addr_to_user(&addr,
2644                                         msg_sys->msg_namelen, uaddr,
2645                                         uaddr_len);
2646                 if (err < 0)
2647                         goto out;
2648         }
2649         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2650                          COMPAT_FLAGS(msg));
2651         if (err)
2652                 goto out;
2653         if (MSG_CMSG_COMPAT & flags)
2654                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2655                                  &msg_compat->msg_controllen);
2656         else
2657                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2658                                  &msg->msg_controllen);
2659         if (err)
2660                 goto out;
2661         err = len;
2662 out:
2663         return err;
2664 }
2665 
2666 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2667                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2668 {
2669         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2670         /* user mode address pointers */
2671         struct sockaddr __user *uaddr;
2672         ssize_t err;
2673 
2674         err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2675         if (err < 0)
2676                 return err;
2677 
2678         err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2679         kfree(iov);
2680         return err;
2681 }
2682 
2683 /*
2684  *      BSD recvmsg interface
2685  */
2686 
2687 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2688                         struct user_msghdr __user *umsg,
2689                         struct sockaddr __user *uaddr, unsigned int flags)
2690 {
2691         return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2692 }
2693 
2694 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2695                    bool forbid_cmsg_compat)
2696 {
2697         int fput_needed, err;
2698         struct msghdr msg_sys;
2699         struct socket *sock;
2700 
2701         if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2702                 return -EINVAL;
2703 
2704         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2705         if (!sock)
2706                 goto out;
2707 
2708         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2709 
2710         fput_light(sock->file, fput_needed);
2711 out:
2712         return err;
2713 }
2714 
2715 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2716                 unsigned int, flags)
2717 {
2718         return __sys_recvmsg(fd, msg, flags, true);
2719 }
2720 
2721 /*
2722  *     Linux recvmmsg interface
2723  */
2724 
2725 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2726                           unsigned int vlen, unsigned int flags,
2727                           struct timespec64 *timeout)
2728 {
2729         int fput_needed, err, datagrams;
2730         struct socket *sock;
2731         struct mmsghdr __user *entry;
2732         struct compat_mmsghdr __user *compat_entry;
2733         struct msghdr msg_sys;
2734         struct timespec64 end_time;
2735         struct timespec64 timeout64;
2736 
2737         if (timeout &&
2738             poll_select_set_timeout(&end_time, timeout->tv_sec,
2739                                     timeout->tv_nsec))
2740                 return -EINVAL;
2741 
2742         datagrams = 0;
2743 
2744         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2745         if (!sock)
2746                 return err;
2747 
2748         if (likely(!(flags & MSG_ERRQUEUE))) {
2749                 err = sock_error(sock->sk);
2750                 if (err) {
2751                         datagrams = err;
2752                         goto out_put;
2753                 }
2754         }
2755 
2756         entry = mmsg;
2757         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2758 
2759         while (datagrams < vlen) {
2760                 /*
2761                  * No need to ask LSM for more than the first datagram.
2762                  */
2763                 if (MSG_CMSG_COMPAT & flags) {
2764                         err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2765                                              &msg_sys, flags & ~MSG_WAITFORONE,
2766                                              datagrams);
2767                         if (err < 0)
2768                                 break;
2769                         err = __put_user(err, &compat_entry->msg_len);
2770                         ++compat_entry;
2771                 } else {
2772                         err = ___sys_recvmsg(sock,
2773                                              (struct user_msghdr __user *)entry,
2774                                              &msg_sys, flags & ~MSG_WAITFORONE,
2775                                              datagrams);
2776                         if (err < 0)
2777                                 break;
2778                         err = put_user(err, &entry->msg_len);
2779                         ++entry;
2780                 }
2781 
2782                 if (err)
2783                         break;
2784                 ++datagrams;
2785 
2786                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2787                 if (flags & MSG_WAITFORONE)
2788                         flags |= MSG_DONTWAIT;
2789 
2790                 if (timeout) {
2791                         ktime_get_ts64(&timeout64);
2792                         *timeout = timespec64_sub(end_time, timeout64);
2793                         if (timeout->tv_sec < 0) {
2794                                 timeout->tv_sec = timeout->tv_nsec = 0;
2795                                 break;
2796                         }
2797 
2798                         /* Timeout, return less than vlen datagrams */
2799                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2800                                 break;
2801                 }
2802 
2803                 /* Out of band data, return right away */
2804                 if (msg_sys.msg_flags & MSG_OOB)
2805                         break;
2806                 cond_resched();
2807         }
2808 
2809         if (err == 0)
2810                 goto out_put;
2811 
2812         if (datagrams == 0) {
2813                 datagrams = err;
2814                 goto out_put;
2815         }
2816 
2817         /*
2818          * We may return less entries than requested (vlen) if the
2819          * sock is non block and there aren't enough datagrams...
2820          */
2821         if (err != -EAGAIN) {
2822                 /*
2823                  * ... or  if recvmsg returns an error after we
2824                  * received some datagrams, where we record the
2825                  * error to return on the next call or if the
2826                  * app asks about it using getsockopt(SO_ERROR).
2827                  */
2828                 sock->sk->sk_err = -err;
2829         }
2830 out_put:
2831         fput_light(sock->file, fput_needed);
2832 
2833         return datagrams;
2834 }
2835 
2836 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2837                    unsigned int vlen, unsigned int flags,
2838                    struct __kernel_timespec __user *timeout,
2839                    struct old_timespec32 __user *timeout32)
2840 {
2841         int datagrams;
2842         struct timespec64 timeout_sys;
2843 
2844         if (timeout && get_timespec64(&timeout_sys, timeout))
2845                 return -EFAULT;
2846 
2847         if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2848                 return -EFAULT;
2849 
2850         if (!timeout && !timeout32)
2851                 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2852 
2853         datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2854 
2855         if (datagrams <= 0)
2856                 return datagrams;
2857 
2858         if (timeout && put_timespec64(&timeout_sys, timeout))
2859                 datagrams = -EFAULT;
2860 
2861         if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2862                 datagrams = -EFAULT;
2863 
2864         return datagrams;
2865 }
2866 
2867 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2868                 unsigned int, vlen, unsigned int, flags,
2869                 struct __kernel_timespec __user *, timeout)
2870 {
2871         if (flags & MSG_CMSG_COMPAT)
2872                 return -EINVAL;
2873 
2874         return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2875 }
2876 
2877 #ifdef CONFIG_COMPAT_32BIT_TIME
2878 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2879                 unsigned int, vlen, unsigned int, flags,
2880                 struct old_timespec32 __user *, timeout)
2881 {
2882         if (flags & MSG_CMSG_COMPAT)
2883                 return -EINVAL;
2884 
2885         return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2886 }
2887 #endif
2888 
2889 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2890 /* Argument list sizes for sys_socketcall */
2891 #define AL(x) ((x) * sizeof(unsigned long))
2892 static const unsigned char nargs[21] = {
2893         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2894         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2895         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2896         AL(4), AL(5), AL(4)
2897 };
2898 
2899 #undef AL
2900 
2901 /*
2902  *      System call vectors.
2903  *
2904  *      Argument checking cleaned up. Saved 20% in size.
2905  *  This function doesn't need to set the kernel lock because
2906  *  it is set by the callees.
2907  */
2908 
2909 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2910 {
2911         unsigned long a[AUDITSC_ARGS];
2912         unsigned long a0, a1;
2913         int err;
2914         unsigned int len;
2915 
2916         if (call < 1 || call > SYS_SENDMMSG)
2917                 return -EINVAL;
2918         call = array_index_nospec(call, SYS_SENDMMSG + 1);
2919 
2920         len = nargs[call];
2921         if (len > sizeof(a))
2922                 return -EINVAL;
2923 
2924         /* copy_from_user should be SMP safe. */
2925         if (copy_from_user(a, args, len))
2926                 return -EFAULT;
2927 
2928         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2929         if (err)
2930                 return err;
2931 
2932         a0 = a[0];
2933         a1 = a[1];
2934 
2935         switch (call) {
2936         case SYS_SOCKET:
2937                 err = __sys_socket(a0, a1, a[2]);
2938                 break;
2939         case SYS_BIND:
2940                 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2941                 break;
2942         case SYS_CONNECT:
2943                 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2944                 break;
2945         case SYS_LISTEN:
2946                 err = __sys_listen(a0, a1);
2947                 break;
2948         case SYS_ACCEPT:
2949                 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2950                                     (int __user *)a[2], 0);
2951                 break;
2952         case SYS_GETSOCKNAME:
2953                 err =
2954                     __sys_getsockname(a0, (struct sockaddr __user *)a1,
2955                                       (int __user *)a[2]);
2956                 break;
2957         case SYS_GETPEERNAME:
2958                 err =
2959                     __sys_getpeername(a0, (struct sockaddr __user *)a1,
2960                                       (int __user *)a[2]);
2961                 break;
2962         case SYS_SOCKETPAIR:
2963                 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2964                 break;
2965         case SYS_SEND:
2966                 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2967                                    NULL, 0);
2968                 break;
2969         case SYS_SENDTO:
2970                 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2971                                    (struct sockaddr __user *)a[4], a[5]);
2972                 break;
2973         case SYS_RECV:
2974                 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2975                                      NULL, NULL);
2976                 break;
2977         case SYS_RECVFROM:
2978                 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2979                                      (struct sockaddr __user *)a[4],
2980                                      (int __user *)a[5]);
2981                 break;
2982         case SYS_SHUTDOWN:
2983                 err = __sys_shutdown(a0, a1);
2984                 break;
2985         case SYS_SETSOCKOPT:
2986                 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2987                                        a[4]);
2988                 break;
2989         case SYS_GETSOCKOPT:
2990                 err =
2991                     __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2992                                      (int __user *)a[4]);
2993                 break;
2994         case SYS_SENDMSG:
2995                 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2996                                     a[2], true);
2997                 break;
2998         case SYS_SENDMMSG:
2999                 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3000                                      a[3], true);
3001                 break;
3002         case SYS_RECVMSG:
3003                 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3004                                     a[2], true);
3005                 break;
3006         case SYS_RECVMMSG:
3007                 if (IS_ENABLED(CONFIG_64BIT))
3008                         err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3009                                              a[2], a[3],
3010                                              (struct __kernel_timespec __user *)a[4],
3011                                              NULL);
3012                 else
3013                         err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3014                                              a[2], a[3], NULL,
3015                                              (struct old_timespec32 __user *)a[4]);
3016                 break;
3017         case SYS_ACCEPT4:
3018                 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3019                                     (int __user *)a[2], a[3]);
3020                 break;
3021         default:
3022                 err = -EINVAL;
3023                 break;
3024         }
3025         return err;
3026 }
3027 
3028 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
3029 
3030 /**
3031  *      sock_register - add a socket protocol handler
3032  *      @ops: description of protocol
3033  *
3034  *      This function is called by a protocol handler that wants to
3035  *      advertise its address family, and have it linked into the
3036  *      socket interface. The value ops->family corresponds to the
3037  *      socket system call protocol family.
3038  */
3039 int sock_register(const struct net_proto_family *ops)
3040 {
3041         int err;
3042 
3043         if (ops->family >= NPROTO) {
3044                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3045                 return -ENOBUFS;
3046         }
3047 
3048         spin_lock(&net_family_lock);
3049         if (rcu_dereference_protected(net_families[ops->family],
3050                                       lockdep_is_held(&net_family_lock)))
3051                 err = -EEXIST;
3052         else {
3053                 rcu_assign_pointer(net_families[ops->family], ops);
3054                 err = 0;
3055         }
3056         spin_unlock(&net_family_lock);
3057 
3058         pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3059         return err;
3060 }
3061 EXPORT_SYMBOL(sock_register);
3062 
3063 /**
3064  *      sock_unregister - remove a protocol handler
3065  *      @family: protocol family to remove
3066  *
3067  *      This function is called by a protocol handler that wants to
3068  *      remove its address family, and have it unlinked from the
3069  *      new socket creation.
3070  *
3071  *      If protocol handler is a module, then it can use module reference
3072  *      counts to protect against new references. If protocol handler is not
3073  *      a module then it needs to provide its own protection in
3074  *      the ops->create routine.
3075  */
3076 void sock_unregister(int family)
3077 {
3078         BUG_ON(family < 0 || family >= NPROTO);
3079 
3080         spin_lock(&net_family_lock);
3081         RCU_INIT_POINTER(net_families[family], NULL);
3082         spin_unlock(&net_family_lock);
3083 
3084         synchronize_rcu();
3085 
3086         pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3087 }
3088 EXPORT_SYMBOL(sock_unregister);
3089 
3090 bool sock_is_registered(int family)
3091 {
3092         return family < NPROTO && rcu_access_pointer(net_families[family]);
3093 }
3094 
3095 static int __init sock_init(void)
3096 {
3097         int err;
3098         /*
3099          *      Initialize the network sysctl infrastructure.
3100          */
3101         err = net_sysctl_init();
3102         if (err)
3103                 goto out;
3104 
3105         /*
3106          *      Initialize skbuff SLAB cache
3107          */
3108         skb_init();
3109 
3110         /*
3111          *      Initialize the protocols module.
3112          */
3113 
3114         init_inodecache();
3115 
3116         err = register_filesystem(&sock_fs_type);
3117         if (err)
3118                 goto out;
3119         sock_mnt = kern_mount(&sock_fs_type);
3120         if (IS_ERR(sock_mnt)) {
3121                 err = PTR_ERR(sock_mnt);
3122                 goto out_mount;
3123         }
3124 
3125         /* The real protocol initialization is performed in later initcalls.
3126          */
3127 
3128 #ifdef CONFIG_NETFILTER
3129         err = netfilter_init();
3130         if (err)
3131                 goto out;
3132 #endif
3133 
3134         ptp_classifier_init();
3135 
3136 out:
3137         return err;
3138 
3139 out_mount:
3140         unregister_filesystem(&sock_fs_type);
3141         goto out;
3142 }
3143 
3144 core_initcall(sock_init);       /* early initcall */
3145 
3146 #ifdef CONFIG_PROC_FS
3147 void socket_seq_show(struct seq_file *seq)
3148 {
3149         seq_printf(seq, "sockets: used %d\n",
3150                    sock_inuse_get(seq->private));
3151 }
3152 #endif                          /* CONFIG_PROC_FS */
3153 
3154 /* Handle the fact that while struct ifreq has the same *layout* on
3155  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3156  * which are handled elsewhere, it still has different *size* due to
3157  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3158  * resulting in struct ifreq being 32 and 40 bytes respectively).
3159  * As a result, if the struct happens to be at the end of a page and
3160  * the next page isn't readable/writable, we get a fault. To prevent
3161  * that, copy back and forth to the full size.
3162  */
3163 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3164 {
3165         if (in_compat_syscall()) {
3166                 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3167 
3168                 memset(ifr, 0, sizeof(*ifr));
3169                 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3170                         return -EFAULT;
3171 
3172                 if (ifrdata)
3173                         *ifrdata = compat_ptr(ifr32->ifr_data);
3174 
3175                 return 0;
3176         }
3177 
3178         if (copy_from_user(ifr, arg, sizeof(*ifr)))
3179                 return -EFAULT;
3180 
3181         if (ifrdata)
3182                 *ifrdata = ifr->ifr_data;
3183 
3184         return 0;
3185 }
3186 EXPORT_SYMBOL(get_user_ifreq);
3187 
3188 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3189 {
3190         size_t size = sizeof(*ifr);
3191 
3192         if (in_compat_syscall())
3193                 size = sizeof(struct compat_ifreq);
3194 
3195         if (copy_to_user(arg, ifr, size))
3196                 return -EFAULT;
3197 
3198         return 0;
3199 }
3200 EXPORT_SYMBOL(put_user_ifreq);
3201 
3202 #ifdef CONFIG_COMPAT
3203 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3204 {
3205         compat_uptr_t uptr32;
3206         struct ifreq ifr;
3207         void __user *saved;
3208         int err;
3209 
3210         if (get_user_ifreq(&ifr, NULL, uifr32))
3211                 return -EFAULT;
3212 
3213         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3214                 return -EFAULT;
3215 
3216         saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3217         ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3218 
3219         err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3220         if (!err) {
3221                 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3222                 if (put_user_ifreq(&ifr, uifr32))
3223                         err = -EFAULT;
3224         }
3225         return err;
3226 }
3227 
3228 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3229 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3230                                  struct compat_ifreq __user *u_ifreq32)
3231 {
3232         struct ifreq ifreq;
3233         void __user *data;
3234 
3235         if (!is_socket_ioctl_cmd(cmd))
3236                 return -ENOTTY;
3237         if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3238                 return -EFAULT;
3239         ifreq.ifr_data = data;
3240 
3241         return dev_ioctl(net, cmd, &ifreq, data, NULL);
3242 }
3243 
3244 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3245                          unsigned int cmd, unsigned long arg)
3246 {
3247         void __user *argp = compat_ptr(arg);
3248         struct sock *sk = sock->sk;
3249         struct net *net = sock_net(sk);
3250 
3251         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3252                 return sock_ioctl(file, cmd, (unsigned long)argp);
3253 
3254         switch (cmd) {
3255         case SIOCWANDEV:
3256                 return compat_siocwandev(net, argp);
3257         case SIOCGSTAMP_OLD:
3258         case SIOCGSTAMPNS_OLD:
3259                 if (!sock->ops->gettstamp)
3260                         return -ENOIOCTLCMD;
3261                 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3262                                             !COMPAT_USE_64BIT_TIME);
3263 
3264         case SIOCETHTOOL:
3265         case SIOCBONDSLAVEINFOQUERY:
3266         case SIOCBONDINFOQUERY:
3267         case SIOCSHWTSTAMP:
3268         case SIOCGHWTSTAMP:
3269                 return compat_ifr_data_ioctl(net, cmd, argp);
3270 
3271         case FIOSETOWN:
3272         case SIOCSPGRP:
3273         case FIOGETOWN:
3274         case SIOCGPGRP:
3275         case SIOCBRADDBR:
3276         case SIOCBRDELBR:
3277         case SIOCGIFVLAN:
3278         case SIOCSIFVLAN:
3279         case SIOCGSKNS:
3280         case SIOCGSTAMP_NEW:
3281         case SIOCGSTAMPNS_NEW:
3282         case SIOCGIFCONF:
3283         case SIOCSIFBR:
3284         case SIOCGIFBR:
3285                 return sock_ioctl(file, cmd, arg);
3286 
3287         case SIOCGIFFLAGS:
3288         case SIOCSIFFLAGS:
3289         case SIOCGIFMAP:
3290         case SIOCSIFMAP:
3291         case SIOCGIFMETRIC:
3292         case SIOCSIFMETRIC:
3293         case SIOCGIFMTU:
3294         case SIOCSIFMTU:
3295         case SIOCGIFMEM:
3296         case SIOCSIFMEM:
3297         case SIOCGIFHWADDR:
3298         case SIOCSIFHWADDR:
3299         case SIOCADDMULTI:
3300         case SIOCDELMULTI:
3301         case SIOCGIFINDEX:
3302         case SIOCGIFADDR:
3303         case SIOCSIFADDR:
3304         case SIOCSIFHWBROADCAST:
3305         case SIOCDIFADDR:
3306         case SIOCGIFBRDADDR:
3307         case SIOCSIFBRDADDR:
3308         case SIOCGIFDSTADDR:
3309         case SIOCSIFDSTADDR:
3310         case SIOCGIFNETMASK:
3311         case SIOCSIFNETMASK:
3312         case SIOCSIFPFLAGS:
3313         case SIOCGIFPFLAGS:
3314         case SIOCGIFTXQLEN:
3315         case SIOCSIFTXQLEN:
3316         case SIOCBRADDIF:
3317         case SIOCBRDELIF:
3318         case SIOCGIFNAME:
3319         case SIOCSIFNAME:
3320         case SIOCGMIIPHY:
3321         case SIOCGMIIREG:
3322         case SIOCSMIIREG:
3323         case SIOCBONDENSLAVE:
3324         case SIOCBONDRELEASE:
3325         case SIOCBONDSETHWADDR:
3326         case SIOCBONDCHANGEACTIVE:
3327         case SIOCSARP:
3328         case SIOCGARP:
3329         case SIOCDARP:
3330         case SIOCOUTQ:
3331         case SIOCOUTQNSD:
3332         case SIOCATMARK:
3333                 return sock_do_ioctl(net, sock, cmd, arg);
3334         }
3335 
3336         return -ENOIOCTLCMD;
3337 }
3338 
3339 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3340                               unsigned long arg)
3341 {
3342         struct socket *sock = file->private_data;
3343         int ret = -ENOIOCTLCMD;
3344         struct sock *sk;
3345         struct net *net;
3346 
3347         sk = sock->sk;
3348         net = sock_net(sk);
3349 
3350         if (sock->ops->compat_ioctl)
3351                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3352 
3353         if (ret == -ENOIOCTLCMD &&
3354             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3355                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3356 
3357         if (ret == -ENOIOCTLCMD)
3358                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3359 
3360         return ret;
3361 }
3362 #endif
3363 
3364 /**
3365  *      kernel_bind - bind an address to a socket (kernel space)
3366  *      @sock: socket
3367  *      @addr: address
3368  *      @addrlen: length of address
3369  *
3370  *      Returns 0 or an error.
3371  */
3372 
3373 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3374 {
3375         return sock->ops->bind(sock, addr, addrlen);
3376 }
3377 EXPORT_SYMBOL(kernel_bind);
3378 
3379 /**
3380  *      kernel_listen - move socket to listening state (kernel space)
3381  *      @sock: socket
3382  *      @backlog: pending connections queue size
3383  *
3384  *      Returns 0 or an error.
3385  */
3386 
3387 int kernel_listen(struct socket *sock, int backlog)
3388 {
3389         return sock->ops->listen(sock, backlog);
3390 }
3391 EXPORT_SYMBOL(kernel_listen);
3392 
3393 /**
3394  *      kernel_accept - accept a connection (kernel space)
3395  *      @sock: listening socket
3396  *      @newsock: new connected socket
3397  *      @flags: flags
3398  *
3399  *      @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3400  *      If it fails, @newsock is guaranteed to be %NULL.
3401  *      Returns 0 or an error.
3402  */
3403 
3404 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3405 {
3406         struct sock *sk = sock->sk;
3407         int err;
3408 
3409         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3410                                newsock);
3411         if (err < 0)
3412                 goto done;
3413 
3414         err = sock->ops->accept(sock, *newsock, flags, true);
3415         if (err < 0) {
3416                 sock_release(*newsock);
3417                 *newsock = NULL;
3418                 goto done;
3419         }
3420 
3421         (*newsock)->ops = sock->ops;
3422         __module_get((*newsock)->ops->owner);
3423 
3424 done:
3425         return err;
3426 }
3427 EXPORT_SYMBOL(kernel_accept);
3428 
3429 /**
3430  *      kernel_connect - connect a socket (kernel space)
3431  *      @sock: socket
3432  *      @addr: address
3433  *      @addrlen: address length
3434  *      @flags: flags (O_NONBLOCK, ...)
3435  *
3436  *      For datagram sockets, @addr is the address to which datagrams are sent
3437  *      by default, and the only address from which datagrams are received.
3438  *      For stream sockets, attempts to connect to @addr.
3439  *      Returns 0 or an error code.
3440  */
3441 
3442 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3443                    int flags)
3444 {
3445         return sock->ops->connect(sock, addr, addrlen, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_connect);
3448 
3449 /**
3450  *      kernel_getsockname - get the address which the socket is bound (kernel space)
3451  *      @sock: socket
3452  *      @addr: address holder
3453  *
3454  *      Fills the @addr pointer with the address which the socket is bound.
3455  *      Returns the length of the address in bytes or an error code.
3456  */
3457 
3458 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3459 {
3460         return sock->ops->getname(sock, addr, 0);
3461 }
3462 EXPORT_SYMBOL(kernel_getsockname);
3463 
3464 /**
3465  *      kernel_getpeername - get the address which the socket is connected (kernel space)
3466  *      @sock: socket
3467  *      @addr: address holder
3468  *
3469  *      Fills the @addr pointer with the address which the socket is connected.
3470  *      Returns the length of the address in bytes or an error code.
3471  */
3472 
3473 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3474 {
3475         return sock->ops->getname(sock, addr, 1);
3476 }
3477 EXPORT_SYMBOL(kernel_getpeername);
3478 
3479 /**
3480  *      kernel_sendpage - send a &page through a socket (kernel space)
3481  *      @sock: socket
3482  *      @page: page
3483  *      @offset: page offset
3484  *      @size: total size in bytes
3485  *      @flags: flags (MSG_DONTWAIT, ...)
3486  *
3487  *      Returns the total amount sent in bytes or an error.
3488  */
3489 
3490 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3491                     size_t size, int flags)
3492 {
3493         if (sock->ops->sendpage) {
3494                 /* Warn in case the improper page to zero-copy send */
3495                 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3496                 return sock->ops->sendpage(sock, page, offset, size, flags);
3497         }
3498         return sock_no_sendpage(sock, page, offset, size, flags);
3499 }
3500 EXPORT_SYMBOL(kernel_sendpage);
3501 
3502 /**
3503  *      kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3504  *      @sk: sock
3505  *      @page: page
3506  *      @offset: page offset
3507  *      @size: total size in bytes
3508  *      @flags: flags (MSG_DONTWAIT, ...)
3509  *
3510  *      Returns the total amount sent in bytes or an error.
3511  *      Caller must hold @sk.
3512  */
3513 
3514 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3515                            size_t size, int flags)
3516 {
3517         struct socket *sock = sk->sk_socket;
3518 
3519         if (sock->ops->sendpage_locked)
3520                 return sock->ops->sendpage_locked(sk, page, offset, size,
3521                                                   flags);
3522 
3523         return sock_no_sendpage_locked(sk, page, offset, size, flags);
3524 }
3525 EXPORT_SYMBOL(kernel_sendpage_locked);
3526 
3527 /**
3528  *      kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3529  *      @sock: socket
3530  *      @how: connection part
3531  *
3532  *      Returns 0 or an error.
3533  */
3534 
3535 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3536 {
3537         return sock->ops->shutdown(sock, how);
3538 }
3539 EXPORT_SYMBOL(kernel_sock_shutdown);
3540 
3541 /**
3542  *      kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3543  *      @sk: socket
3544  *
3545  *      This routine returns the IP overhead imposed by a socket i.e.
3546  *      the length of the underlying IP header, depending on whether
3547  *      this is an IPv4 or IPv6 socket and the length from IP options turned
3548  *      on at the socket. Assumes that the caller has a lock on the socket.
3549  */
3550 
3551 u32 kernel_sock_ip_overhead(struct sock *sk)
3552 {
3553         struct inet_sock *inet;
3554         struct ip_options_rcu *opt;
3555         u32 overhead = 0;
3556 #if IS_ENABLED(CONFIG_IPV6)
3557         struct ipv6_pinfo *np;
3558         struct ipv6_txoptions *optv6 = NULL;
3559 #endif /* IS_ENABLED(CONFIG_IPV6) */
3560 
3561         if (!sk)
3562                 return overhead;
3563 
3564         switch (sk->sk_family) {
3565         case AF_INET:
3566                 inet = inet_sk(sk);
3567                 overhead += sizeof(struct iphdr);
3568                 opt = rcu_dereference_protected(inet->inet_opt,
3569                                                 sock_owned_by_user(sk));
3570                 if (opt)
3571                         overhead += opt->opt.optlen;
3572                 return overhead;
3573 #if IS_ENABLED(CONFIG_IPV6)
3574         case AF_INET6:
3575                 np = inet6_sk(sk);
3576                 overhead += sizeof(struct ipv6hdr);
3577                 if (np)
3578                         optv6 = rcu_dereference_protected(np->opt,
3579                                                           sock_owned_by_user(sk));
3580                 if (optv6)
3581                         overhead += (optv6->opt_flen + optv6->opt_nflen);
3582                 return overhead;
3583 #endif /* IS_ENABLED(CONFIG_IPV6) */
3584         default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3585                 return overhead;
3586         }
3587 }
3588 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3589 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp