1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 static void _copy_to_pages(struct page **, size_t, const char *, size_t); 23 24 25 /* 26 * XDR functions for basic NFS types 27 */ 28 __be32 * 29 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 30 { 31 unsigned int quadlen = XDR_QUADLEN(obj->len); 32 33 p[quadlen] = 0; /* zero trailing bytes */ 34 *p++ = cpu_to_be32(obj->len); 35 memcpy(p, obj->data, obj->len); 36 return p + XDR_QUADLEN(obj->len); 37 } 38 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 39 40 __be32 * 41 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 42 { 43 unsigned int len; 44 45 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 46 return NULL; 47 obj->len = len; 48 obj->data = (u8 *) p; 49 return p + XDR_QUADLEN(len); 50 } 51 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 52 53 /** 54 * xdr_encode_opaque_fixed - Encode fixed length opaque data 55 * @p: pointer to current position in XDR buffer. 56 * @ptr: pointer to data to encode (or NULL) 57 * @nbytes: size of data. 58 * 59 * Copy the array of data of length nbytes at ptr to the XDR buffer 60 * at position p, then align to the next 32-bit boundary by padding 61 * with zero bytes (see RFC1832). 62 * Note: if ptr is NULL, only the padding is performed. 63 * 64 * Returns the updated current XDR buffer position 65 * 66 */ 67 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 68 { 69 if (likely(nbytes != 0)) { 70 unsigned int quadlen = XDR_QUADLEN(nbytes); 71 unsigned int padding = (quadlen << 2) - nbytes; 72 73 if (ptr != NULL) 74 memcpy(p, ptr, nbytes); 75 if (padding != 0) 76 memset((char *)p + nbytes, 0, padding); 77 p += quadlen; 78 } 79 return p; 80 } 81 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 82 83 /** 84 * xdr_encode_opaque - Encode variable length opaque data 85 * @p: pointer to current position in XDR buffer. 86 * @ptr: pointer to data to encode (or NULL) 87 * @nbytes: size of data. 88 * 89 * Returns the updated current XDR buffer position 90 */ 91 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 92 { 93 *p++ = cpu_to_be32(nbytes); 94 return xdr_encode_opaque_fixed(p, ptr, nbytes); 95 } 96 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 97 98 __be32 * 99 xdr_encode_string(__be32 *p, const char *string) 100 { 101 return xdr_encode_array(p, string, strlen(string)); 102 } 103 EXPORT_SYMBOL_GPL(xdr_encode_string); 104 105 __be32 * 106 xdr_decode_string_inplace(__be32 *p, char **sp, 107 unsigned int *lenp, unsigned int maxlen) 108 { 109 u32 len; 110 111 len = be32_to_cpu(*p++); 112 if (len > maxlen) 113 return NULL; 114 *lenp = len; 115 *sp = (char *) p; 116 return p + XDR_QUADLEN(len); 117 } 118 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 119 120 /** 121 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 122 * @buf: XDR buffer where string resides 123 * @len: length of string, in bytes 124 * 125 */ 126 void xdr_terminate_string(const struct xdr_buf *buf, const u32 len) 127 { 128 char *kaddr; 129 130 kaddr = kmap_atomic(buf->pages[0]); 131 kaddr[buf->page_base + len] = '\0'; 132 kunmap_atomic(kaddr); 133 } 134 EXPORT_SYMBOL_GPL(xdr_terminate_string); 135 136 size_t xdr_buf_pagecount(const struct xdr_buf *buf) 137 { 138 if (!buf->page_len) 139 return 0; 140 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 141 } 142 143 int 144 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 145 { 146 size_t i, n = xdr_buf_pagecount(buf); 147 148 if (n != 0 && buf->bvec == NULL) { 149 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 150 if (!buf->bvec) 151 return -ENOMEM; 152 for (i = 0; i < n; i++) { 153 buf->bvec[i].bv_page = buf->pages[i]; 154 buf->bvec[i].bv_len = PAGE_SIZE; 155 buf->bvec[i].bv_offset = 0; 156 } 157 } 158 return 0; 159 } 160 161 void 162 xdr_free_bvec(struct xdr_buf *buf) 163 { 164 kfree(buf->bvec); 165 buf->bvec = NULL; 166 } 167 168 /** 169 * xdr_inline_pages - Prepare receive buffer for a large reply 170 * @xdr: xdr_buf into which reply will be placed 171 * @offset: expected offset where data payload will start, in bytes 172 * @pages: vector of struct page pointers 173 * @base: offset in first page where receive should start, in bytes 174 * @len: expected size of the upper layer data payload, in bytes 175 * 176 */ 177 void 178 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 179 struct page **pages, unsigned int base, unsigned int len) 180 { 181 struct kvec *head = xdr->head; 182 struct kvec *tail = xdr->tail; 183 char *buf = (char *)head->iov_base; 184 unsigned int buflen = head->iov_len; 185 186 head->iov_len = offset; 187 188 xdr->pages = pages; 189 xdr->page_base = base; 190 xdr->page_len = len; 191 192 tail->iov_base = buf + offset; 193 tail->iov_len = buflen - offset; 194 xdr->buflen += len; 195 } 196 EXPORT_SYMBOL_GPL(xdr_inline_pages); 197 198 /* 199 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 200 */ 201 202 /** 203 * _shift_data_left_pages 204 * @pages: vector of pages containing both the source and dest memory area. 205 * @pgto_base: page vector address of destination 206 * @pgfrom_base: page vector address of source 207 * @len: number of bytes to copy 208 * 209 * Note: the addresses pgto_base and pgfrom_base are both calculated in 210 * the same way: 211 * if a memory area starts at byte 'base' in page 'pages[i]', 212 * then its address is given as (i << PAGE_CACHE_SHIFT) + base 213 * Alse note: pgto_base must be < pgfrom_base, but the memory areas 214 * they point to may overlap. 215 */ 216 static void 217 _shift_data_left_pages(struct page **pages, size_t pgto_base, 218 size_t pgfrom_base, size_t len) 219 { 220 struct page **pgfrom, **pgto; 221 char *vfrom, *vto; 222 size_t copy; 223 224 BUG_ON(pgfrom_base <= pgto_base); 225 226 if (!len) 227 return; 228 229 pgto = pages + (pgto_base >> PAGE_SHIFT); 230 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 231 232 pgto_base &= ~PAGE_MASK; 233 pgfrom_base &= ~PAGE_MASK; 234 235 do { 236 if (pgto_base >= PAGE_SIZE) { 237 pgto_base = 0; 238 pgto++; 239 } 240 if (pgfrom_base >= PAGE_SIZE){ 241 pgfrom_base = 0; 242 pgfrom++; 243 } 244 245 copy = len; 246 if (copy > (PAGE_SIZE - pgto_base)) 247 copy = PAGE_SIZE - pgto_base; 248 if (copy > (PAGE_SIZE - pgfrom_base)) 249 copy = PAGE_SIZE - pgfrom_base; 250 251 vto = kmap_atomic(*pgto); 252 if (*pgto != *pgfrom) { 253 vfrom = kmap_atomic(*pgfrom); 254 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 255 kunmap_atomic(vfrom); 256 } else 257 memmove(vto + pgto_base, vto + pgfrom_base, copy); 258 flush_dcache_page(*pgto); 259 kunmap_atomic(vto); 260 261 pgto_base += copy; 262 pgfrom_base += copy; 263 264 } while ((len -= copy) != 0); 265 } 266 267 /** 268 * _shift_data_right_pages 269 * @pages: vector of pages containing both the source and dest memory area. 270 * @pgto_base: page vector address of destination 271 * @pgfrom_base: page vector address of source 272 * @len: number of bytes to copy 273 * 274 * Note: the addresses pgto_base and pgfrom_base are both calculated in 275 * the same way: 276 * if a memory area starts at byte 'base' in page 'pages[i]', 277 * then its address is given as (i << PAGE_SHIFT) + base 278 * Also note: pgfrom_base must be < pgto_base, but the memory areas 279 * they point to may overlap. 280 */ 281 static void 282 _shift_data_right_pages(struct page **pages, size_t pgto_base, 283 size_t pgfrom_base, size_t len) 284 { 285 struct page **pgfrom, **pgto; 286 char *vfrom, *vto; 287 size_t copy; 288 289 BUG_ON(pgto_base <= pgfrom_base); 290 291 if (!len) 292 return; 293 294 pgto_base += len; 295 pgfrom_base += len; 296 297 pgto = pages + (pgto_base >> PAGE_SHIFT); 298 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 299 300 pgto_base &= ~PAGE_MASK; 301 pgfrom_base &= ~PAGE_MASK; 302 303 do { 304 /* Are any pointers crossing a page boundary? */ 305 if (pgto_base == 0) { 306 pgto_base = PAGE_SIZE; 307 pgto--; 308 } 309 if (pgfrom_base == 0) { 310 pgfrom_base = PAGE_SIZE; 311 pgfrom--; 312 } 313 314 copy = len; 315 if (copy > pgto_base) 316 copy = pgto_base; 317 if (copy > pgfrom_base) 318 copy = pgfrom_base; 319 pgto_base -= copy; 320 pgfrom_base -= copy; 321 322 vto = kmap_atomic(*pgto); 323 if (*pgto != *pgfrom) { 324 vfrom = kmap_atomic(*pgfrom); 325 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 326 kunmap_atomic(vfrom); 327 } else 328 memmove(vto + pgto_base, vto + pgfrom_base, copy); 329 flush_dcache_page(*pgto); 330 kunmap_atomic(vto); 331 332 } while ((len -= copy) != 0); 333 } 334 335 /** 336 * _copy_to_pages 337 * @pages: array of pages 338 * @pgbase: page vector address of destination 339 * @p: pointer to source data 340 * @len: length 341 * 342 * Copies data from an arbitrary memory location into an array of pages 343 * The copy is assumed to be non-overlapping. 344 */ 345 static void 346 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 347 { 348 struct page **pgto; 349 char *vto; 350 size_t copy; 351 352 if (!len) 353 return; 354 355 pgto = pages + (pgbase >> PAGE_SHIFT); 356 pgbase &= ~PAGE_MASK; 357 358 for (;;) { 359 copy = PAGE_SIZE - pgbase; 360 if (copy > len) 361 copy = len; 362 363 vto = kmap_atomic(*pgto); 364 memcpy(vto + pgbase, p, copy); 365 kunmap_atomic(vto); 366 367 len -= copy; 368 if (len == 0) 369 break; 370 371 pgbase += copy; 372 if (pgbase == PAGE_SIZE) { 373 flush_dcache_page(*pgto); 374 pgbase = 0; 375 pgto++; 376 } 377 p += copy; 378 } 379 flush_dcache_page(*pgto); 380 } 381 382 /** 383 * _copy_from_pages 384 * @p: pointer to destination 385 * @pages: array of pages 386 * @pgbase: offset of source data 387 * @len: length 388 * 389 * Copies data into an arbitrary memory location from an array of pages 390 * The copy is assumed to be non-overlapping. 391 */ 392 void 393 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 394 { 395 struct page **pgfrom; 396 char *vfrom; 397 size_t copy; 398 399 if (!len) 400 return; 401 402 pgfrom = pages + (pgbase >> PAGE_SHIFT); 403 pgbase &= ~PAGE_MASK; 404 405 do { 406 copy = PAGE_SIZE - pgbase; 407 if (copy > len) 408 copy = len; 409 410 vfrom = kmap_atomic(*pgfrom); 411 memcpy(p, vfrom + pgbase, copy); 412 kunmap_atomic(vfrom); 413 414 pgbase += copy; 415 if (pgbase == PAGE_SIZE) { 416 pgbase = 0; 417 pgfrom++; 418 } 419 p += copy; 420 421 } while ((len -= copy) != 0); 422 } 423 EXPORT_SYMBOL_GPL(_copy_from_pages); 424 425 static void xdr_buf_iov_zero(const struct kvec *iov, unsigned int base, 426 unsigned int len) 427 { 428 if (base >= iov->iov_len) 429 return; 430 if (len > iov->iov_len - base) 431 len = iov->iov_len - base; 432 memset(iov->iov_base + base, 0, len); 433 } 434 435 /** 436 * xdr_buf_pages_zero 437 * @buf: xdr_buf 438 * @pgbase: beginning offset 439 * @len: length 440 */ 441 static void xdr_buf_pages_zero(const struct xdr_buf *buf, unsigned int pgbase, 442 unsigned int len) 443 { 444 struct page **pages = buf->pages; 445 struct page **page; 446 char *vpage; 447 unsigned int zero; 448 449 if (!len) 450 return; 451 if (pgbase >= buf->page_len) { 452 xdr_buf_iov_zero(buf->tail, pgbase - buf->page_len, len); 453 return; 454 } 455 if (pgbase + len > buf->page_len) { 456 xdr_buf_iov_zero(buf->tail, 0, pgbase + len - buf->page_len); 457 len = buf->page_len - pgbase; 458 } 459 460 pgbase += buf->page_base; 461 462 page = pages + (pgbase >> PAGE_SHIFT); 463 pgbase &= ~PAGE_MASK; 464 465 do { 466 zero = PAGE_SIZE - pgbase; 467 if (zero > len) 468 zero = len; 469 470 vpage = kmap_atomic(*page); 471 memset(vpage + pgbase, 0, zero); 472 kunmap_atomic(vpage); 473 474 flush_dcache_page(*page); 475 pgbase = 0; 476 page++; 477 478 } while ((len -= zero) != 0); 479 } 480 481 static unsigned int xdr_buf_pages_fill_sparse(const struct xdr_buf *buf, 482 unsigned int buflen, gfp_t gfp) 483 { 484 unsigned int i, npages, pagelen; 485 486 if (!(buf->flags & XDRBUF_SPARSE_PAGES)) 487 return buflen; 488 if (buflen <= buf->head->iov_len) 489 return buflen; 490 pagelen = buflen - buf->head->iov_len; 491 if (pagelen > buf->page_len) 492 pagelen = buf->page_len; 493 npages = (pagelen + buf->page_base + PAGE_SIZE - 1) >> PAGE_SHIFT; 494 for (i = 0; i < npages; i++) { 495 if (!buf->pages[i]) 496 continue; 497 buf->pages[i] = alloc_page(gfp); 498 if (likely(buf->pages[i])) 499 continue; 500 buflen -= pagelen; 501 pagelen = i << PAGE_SHIFT; 502 if (pagelen > buf->page_base) 503 buflen += pagelen - buf->page_base; 504 break; 505 } 506 return buflen; 507 } 508 509 static void xdr_buf_try_expand(struct xdr_buf *buf, unsigned int len) 510 { 511 struct kvec *head = buf->head; 512 struct kvec *tail = buf->tail; 513 unsigned int sum = head->iov_len + buf->page_len + tail->iov_len; 514 unsigned int free_space, newlen; 515 516 if (sum > buf->len) { 517 free_space = min_t(unsigned int, sum - buf->len, len); 518 newlen = xdr_buf_pages_fill_sparse(buf, buf->len + free_space, 519 GFP_KERNEL); 520 free_space = newlen - buf->len; 521 buf->len = newlen; 522 len -= free_space; 523 if (!len) 524 return; 525 } 526 527 if (buf->buflen > sum) { 528 /* Expand the tail buffer */ 529 free_space = min_t(unsigned int, buf->buflen - sum, len); 530 tail->iov_len += free_space; 531 buf->len += free_space; 532 } 533 } 534 535 static void xdr_buf_tail_copy_right(const struct xdr_buf *buf, 536 unsigned int base, unsigned int len, 537 unsigned int shift) 538 { 539 const struct kvec *tail = buf->tail; 540 unsigned int to = base + shift; 541 542 if (to >= tail->iov_len) 543 return; 544 if (len + to > tail->iov_len) 545 len = tail->iov_len - to; 546 memmove(tail->iov_base + to, tail->iov_base + base, len); 547 } 548 549 static void xdr_buf_pages_copy_right(const struct xdr_buf *buf, 550 unsigned int base, unsigned int len, 551 unsigned int shift) 552 { 553 const struct kvec *tail = buf->tail; 554 unsigned int to = base + shift; 555 unsigned int pglen = 0; 556 unsigned int talen = 0, tato = 0; 557 558 if (base >= buf->page_len) 559 return; 560 if (len > buf->page_len - base) 561 len = buf->page_len - base; 562 if (to >= buf->page_len) { 563 tato = to - buf->page_len; 564 if (tail->iov_len >= len + tato) 565 talen = len; 566 else if (tail->iov_len > tato) 567 talen = tail->iov_len - tato; 568 } else if (len + to >= buf->page_len) { 569 pglen = buf->page_len - to; 570 talen = len - pglen; 571 if (talen > tail->iov_len) 572 talen = tail->iov_len; 573 } else 574 pglen = len; 575 576 _copy_from_pages(tail->iov_base + tato, buf->pages, 577 buf->page_base + base + pglen, talen); 578 _shift_data_right_pages(buf->pages, buf->page_base + to, 579 buf->page_base + base, pglen); 580 } 581 582 static void xdr_buf_head_copy_right(const struct xdr_buf *buf, 583 unsigned int base, unsigned int len, 584 unsigned int shift) 585 { 586 const struct kvec *head = buf->head; 587 const struct kvec *tail = buf->tail; 588 unsigned int to = base + shift; 589 unsigned int pglen = 0, pgto = 0; 590 unsigned int talen = 0, tato = 0; 591 592 if (base >= head->iov_len) 593 return; 594 if (len > head->iov_len - base) 595 len = head->iov_len - base; 596 if (to >= buf->page_len + head->iov_len) { 597 tato = to - buf->page_len - head->iov_len; 598 talen = len; 599 } else if (to >= head->iov_len) { 600 pgto = to - head->iov_len; 601 pglen = len; 602 if (pgto + pglen > buf->page_len) { 603 talen = pgto + pglen - buf->page_len; 604 pglen -= talen; 605 } 606 } else { 607 pglen = len - to; 608 if (pglen > buf->page_len) { 609 talen = pglen - buf->page_len; 610 pglen = buf->page_len; 611 } 612 } 613 614 len -= talen; 615 base += len; 616 if (talen + tato > tail->iov_len) 617 talen = tail->iov_len > tato ? tail->iov_len - tato : 0; 618 memcpy(tail->iov_base + tato, head->iov_base + base, talen); 619 620 len -= pglen; 621 base -= pglen; 622 _copy_to_pages(buf->pages, buf->page_base + pgto, head->iov_base + base, 623 pglen); 624 625 base -= len; 626 memmove(head->iov_base + to, head->iov_base + base, len); 627 } 628 629 static void xdr_buf_tail_shift_right(const struct xdr_buf *buf, 630 unsigned int base, unsigned int len, 631 unsigned int shift) 632 { 633 const struct kvec *tail = buf->tail; 634 635 if (base >= tail->iov_len || !shift || !len) 636 return; 637 xdr_buf_tail_copy_right(buf, base, len, shift); 638 } 639 640 static void xdr_buf_pages_shift_right(const struct xdr_buf *buf, 641 unsigned int base, unsigned int len, 642 unsigned int shift) 643 { 644 if (!shift || !len) 645 return; 646 if (base >= buf->page_len) { 647 xdr_buf_tail_shift_right(buf, base - buf->page_len, len, shift); 648 return; 649 } 650 if (base + len > buf->page_len) 651 xdr_buf_tail_shift_right(buf, 0, base + len - buf->page_len, 652 shift); 653 xdr_buf_pages_copy_right(buf, base, len, shift); 654 } 655 656 static void xdr_buf_head_shift_right(const struct xdr_buf *buf, 657 unsigned int base, unsigned int len, 658 unsigned int shift) 659 { 660 const struct kvec *head = buf->head; 661 662 if (!shift) 663 return; 664 if (base >= head->iov_len) { 665 xdr_buf_pages_shift_right(buf, head->iov_len - base, len, 666 shift); 667 return; 668 } 669 if (base + len > head->iov_len) 670 xdr_buf_pages_shift_right(buf, 0, base + len - head->iov_len, 671 shift); 672 xdr_buf_head_copy_right(buf, base, len, shift); 673 } 674 675 static void xdr_buf_tail_copy_left(const struct xdr_buf *buf, unsigned int base, 676 unsigned int len, unsigned int shift) 677 { 678 const struct kvec *tail = buf->tail; 679 680 if (base >= tail->iov_len) 681 return; 682 if (len > tail->iov_len - base) 683 len = tail->iov_len - base; 684 /* Shift data into head */ 685 if (shift > buf->page_len + base) { 686 const struct kvec *head = buf->head; 687 unsigned int hdto = 688 head->iov_len + buf->page_len + base - shift; 689 unsigned int hdlen = len; 690 691 if (WARN_ONCE(shift > head->iov_len + buf->page_len + base, 692 "SUNRPC: Misaligned data.\n")) 693 return; 694 if (hdto + hdlen > head->iov_len) 695 hdlen = head->iov_len - hdto; 696 memcpy(head->iov_base + hdto, tail->iov_base + base, hdlen); 697 base += hdlen; 698 len -= hdlen; 699 if (!len) 700 return; 701 } 702 /* Shift data into pages */ 703 if (shift > base) { 704 unsigned int pgto = buf->page_len + base - shift; 705 unsigned int pglen = len; 706 707 if (pgto + pglen > buf->page_len) 708 pglen = buf->page_len - pgto; 709 _copy_to_pages(buf->pages, buf->page_base + pgto, 710 tail->iov_base + base, pglen); 711 base += pglen; 712 len -= pglen; 713 if (!len) 714 return; 715 } 716 memmove(tail->iov_base + base - shift, tail->iov_base + base, len); 717 } 718 719 static void xdr_buf_pages_copy_left(const struct xdr_buf *buf, 720 unsigned int base, unsigned int len, 721 unsigned int shift) 722 { 723 unsigned int pgto; 724 725 if (base >= buf->page_len) 726 return; 727 if (len > buf->page_len - base) 728 len = buf->page_len - base; 729 /* Shift data into head */ 730 if (shift > base) { 731 const struct kvec *head = buf->head; 732 unsigned int hdto = head->iov_len + base - shift; 733 unsigned int hdlen = len; 734 735 if (WARN_ONCE(shift > head->iov_len + base, 736 "SUNRPC: Misaligned data.\n")) 737 return; 738 if (hdto + hdlen > head->iov_len) 739 hdlen = head->iov_len - hdto; 740 _copy_from_pages(head->iov_base + hdto, buf->pages, 741 buf->page_base + base, hdlen); 742 base += hdlen; 743 len -= hdlen; 744 if (!len) 745 return; 746 } 747 pgto = base - shift; 748 _shift_data_left_pages(buf->pages, buf->page_base + pgto, 749 buf->page_base + base, len); 750 } 751 752 static void xdr_buf_tail_shift_left(const struct xdr_buf *buf, 753 unsigned int base, unsigned int len, 754 unsigned int shift) 755 { 756 if (!shift || !len) 757 return; 758 xdr_buf_tail_copy_left(buf, base, len, shift); 759 } 760 761 static void xdr_buf_pages_shift_left(const struct xdr_buf *buf, 762 unsigned int base, unsigned int len, 763 unsigned int shift) 764 { 765 if (!shift || !len) 766 return; 767 if (base >= buf->page_len) { 768 xdr_buf_tail_shift_left(buf, base - buf->page_len, len, shift); 769 return; 770 } 771 xdr_buf_pages_copy_left(buf, base, len, shift); 772 len += base; 773 if (len <= buf->page_len) 774 return; 775 xdr_buf_tail_copy_left(buf, 0, len - buf->page_len, shift); 776 } 777 778 /** 779 * xdr_shrink_bufhead 780 * @buf: xdr_buf 781 * @len: new length of buf->head[0] 782 * 783 * Shrinks XDR buffer's header kvec buf->head[0], setting it to 784 * 'len' bytes. The extra data is not lost, but is instead 785 * moved into the inlined pages and/or the tail. 786 */ 787 static unsigned int xdr_shrink_bufhead(struct xdr_buf *buf, unsigned int len) 788 { 789 struct kvec *head = buf->head; 790 unsigned int shift, buflen = max(buf->len, len); 791 792 WARN_ON_ONCE(len > head->iov_len); 793 if (head->iov_len > buflen) { 794 buf->buflen -= head->iov_len - buflen; 795 head->iov_len = buflen; 796 } 797 if (len >= head->iov_len) 798 return 0; 799 shift = head->iov_len - len; 800 xdr_buf_try_expand(buf, shift); 801 xdr_buf_head_shift_right(buf, len, buflen - len, shift); 802 head->iov_len = len; 803 buf->buflen -= shift; 804 buf->len -= shift; 805 return shift; 806 } 807 808 /** 809 * xdr_shrink_pagelen - shrinks buf->pages to @len bytes 810 * @buf: xdr_buf 811 * @len: new page buffer length 812 * 813 * The extra data is not lost, but is instead moved into buf->tail. 814 * Returns the actual number of bytes moved. 815 */ 816 static unsigned int xdr_shrink_pagelen(struct xdr_buf *buf, unsigned int len) 817 { 818 unsigned int shift, buflen = buf->len - buf->head->iov_len; 819 820 WARN_ON_ONCE(len > buf->page_len); 821 if (buf->head->iov_len >= buf->len || len > buflen) 822 buflen = len; 823 if (buf->page_len > buflen) { 824 buf->buflen -= buf->page_len - buflen; 825 buf->page_len = buflen; 826 } 827 if (len >= buf->page_len) 828 return 0; 829 shift = buf->page_len - len; 830 xdr_buf_try_expand(buf, shift); 831 xdr_buf_pages_shift_right(buf, len, buflen - len, shift); 832 buf->page_len = len; 833 buf->len -= shift; 834 buf->buflen -= shift; 835 return shift; 836 } 837 838 void 839 xdr_shift_buf(struct xdr_buf *buf, size_t len) 840 { 841 xdr_shrink_bufhead(buf, buf->head->iov_len - len); 842 } 843 EXPORT_SYMBOL_GPL(xdr_shift_buf); 844 845 /** 846 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 847 * @xdr: pointer to struct xdr_stream 848 */ 849 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 850 { 851 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 852 } 853 EXPORT_SYMBOL_GPL(xdr_stream_pos); 854 855 static void xdr_stream_set_pos(struct xdr_stream *xdr, unsigned int pos) 856 { 857 unsigned int blen = xdr->buf->len; 858 859 xdr->nwords = blen > pos ? XDR_QUADLEN(blen) - XDR_QUADLEN(pos) : 0; 860 } 861 862 static void xdr_stream_page_set_pos(struct xdr_stream *xdr, unsigned int pos) 863 { 864 xdr_stream_set_pos(xdr, pos + xdr->buf->head[0].iov_len); 865 } 866 867 /** 868 * xdr_page_pos - Return the current offset from the start of the xdr pages 869 * @xdr: pointer to struct xdr_stream 870 */ 871 unsigned int xdr_page_pos(const struct xdr_stream *xdr) 872 { 873 unsigned int pos = xdr_stream_pos(xdr); 874 875 WARN_ON(pos < xdr->buf->head[0].iov_len); 876 return pos - xdr->buf->head[0].iov_len; 877 } 878 EXPORT_SYMBOL_GPL(xdr_page_pos); 879 880 /** 881 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 882 * @xdr: pointer to xdr_stream struct 883 * @buf: pointer to XDR buffer in which to encode data 884 * @p: current pointer inside XDR buffer 885 * @rqst: pointer to controlling rpc_rqst, for debugging 886 * 887 * Note: at the moment the RPC client only passes the length of our 888 * scratch buffer in the xdr_buf's header kvec. Previously this 889 * meant we needed to call xdr_adjust_iovec() after encoding the 890 * data. With the new scheme, the xdr_stream manages the details 891 * of the buffer length, and takes care of adjusting the kvec 892 * length for us. 893 */ 894 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 895 struct rpc_rqst *rqst) 896 { 897 struct kvec *iov = buf->head; 898 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 899 900 xdr_reset_scratch_buffer(xdr); 901 BUG_ON(scratch_len < 0); 902 xdr->buf = buf; 903 xdr->iov = iov; 904 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 905 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 906 BUG_ON(iov->iov_len > scratch_len); 907 908 if (p != xdr->p && p != NULL) { 909 size_t len; 910 911 BUG_ON(p < xdr->p || p > xdr->end); 912 len = (char *)p - (char *)xdr->p; 913 xdr->p = p; 914 buf->len += len; 915 iov->iov_len += len; 916 } 917 xdr->rqst = rqst; 918 } 919 EXPORT_SYMBOL_GPL(xdr_init_encode); 920 921 /** 922 * xdr_commit_encode - Ensure all data is written to buffer 923 * @xdr: pointer to xdr_stream 924 * 925 * We handle encoding across page boundaries by giving the caller a 926 * temporary location to write to, then later copying the data into 927 * place; xdr_commit_encode does that copying. 928 * 929 * Normally the caller doesn't need to call this directly, as the 930 * following xdr_reserve_space will do it. But an explicit call may be 931 * required at the end of encoding, or any other time when the xdr_buf 932 * data might be read. 933 */ 934 inline void xdr_commit_encode(struct xdr_stream *xdr) 935 { 936 int shift = xdr->scratch.iov_len; 937 void *page; 938 939 if (shift == 0) 940 return; 941 page = page_address(*xdr->page_ptr); 942 memcpy(xdr->scratch.iov_base, page, shift); 943 memmove(page, page + shift, (void *)xdr->p - page); 944 xdr_reset_scratch_buffer(xdr); 945 } 946 EXPORT_SYMBOL_GPL(xdr_commit_encode); 947 948 static __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 949 size_t nbytes) 950 { 951 __be32 *p; 952 int space_left; 953 int frag1bytes, frag2bytes; 954 955 if (nbytes > PAGE_SIZE) 956 goto out_overflow; /* Bigger buffers require special handling */ 957 if (xdr->buf->len + nbytes > xdr->buf->buflen) 958 goto out_overflow; /* Sorry, we're totally out of space */ 959 frag1bytes = (xdr->end - xdr->p) << 2; 960 frag2bytes = nbytes - frag1bytes; 961 if (xdr->iov) 962 xdr->iov->iov_len += frag1bytes; 963 else 964 xdr->buf->page_len += frag1bytes; 965 xdr->page_ptr++; 966 xdr->iov = NULL; 967 /* 968 * If the last encode didn't end exactly on a page boundary, the 969 * next one will straddle boundaries. Encode into the next 970 * page, then copy it back later in xdr_commit_encode. We use 971 * the "scratch" iov to track any temporarily unused fragment of 972 * space at the end of the previous buffer: 973 */ 974 xdr_set_scratch_buffer(xdr, xdr->p, frag1bytes); 975 p = page_address(*xdr->page_ptr); 976 /* 977 * Note this is where the next encode will start after we've 978 * shifted this one back: 979 */ 980 xdr->p = (void *)p + frag2bytes; 981 space_left = xdr->buf->buflen - xdr->buf->len; 982 if (space_left - frag1bytes >= PAGE_SIZE) 983 xdr->end = (void *)p + PAGE_SIZE; 984 else 985 xdr->end = (void *)p + space_left - frag1bytes; 986 987 xdr->buf->page_len += frag2bytes; 988 xdr->buf->len += nbytes; 989 return p; 990 out_overflow: 991 trace_rpc_xdr_overflow(xdr, nbytes); 992 return NULL; 993 } 994 995 /** 996 * xdr_reserve_space - Reserve buffer space for sending 997 * @xdr: pointer to xdr_stream 998 * @nbytes: number of bytes to reserve 999 * 1000 * Checks that we have enough buffer space to encode 'nbytes' more 1001 * bytes of data. If so, update the total xdr_buf length, and 1002 * adjust the length of the current kvec. 1003 */ 1004 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 1005 { 1006 __be32 *p = xdr->p; 1007 __be32 *q; 1008 1009 xdr_commit_encode(xdr); 1010 /* align nbytes on the next 32-bit boundary */ 1011 nbytes += 3; 1012 nbytes &= ~3; 1013 q = p + (nbytes >> 2); 1014 if (unlikely(q > xdr->end || q < p)) 1015 return xdr_get_next_encode_buffer(xdr, nbytes); 1016 xdr->p = q; 1017 if (xdr->iov) 1018 xdr->iov->iov_len += nbytes; 1019 else 1020 xdr->buf->page_len += nbytes; 1021 xdr->buf->len += nbytes; 1022 return p; 1023 } 1024 EXPORT_SYMBOL_GPL(xdr_reserve_space); 1025 1026 1027 /** 1028 * xdr_reserve_space_vec - Reserves a large amount of buffer space for sending 1029 * @xdr: pointer to xdr_stream 1030 * @vec: pointer to a kvec array 1031 * @nbytes: number of bytes to reserve 1032 * 1033 * Reserves enough buffer space to encode 'nbytes' of data and stores the 1034 * pointers in 'vec'. The size argument passed to xdr_reserve_space() is 1035 * determined based on the number of bytes remaining in the current page to 1036 * avoid invalidating iov_base pointers when xdr_commit_encode() is called. 1037 */ 1038 int xdr_reserve_space_vec(struct xdr_stream *xdr, struct kvec *vec, size_t nbytes) 1039 { 1040 int thislen; 1041 int v = 0; 1042 __be32 *p; 1043 1044 /* 1045 * svcrdma requires every READ payload to start somewhere 1046 * in xdr->pages. 1047 */ 1048 if (xdr->iov == xdr->buf->head) { 1049 xdr->iov = NULL; 1050 xdr->end = xdr->p; 1051 } 1052 1053 while (nbytes) { 1054 thislen = xdr->buf->page_len % PAGE_SIZE; 1055 thislen = min_t(size_t, nbytes, PAGE_SIZE - thislen); 1056 1057 p = xdr_reserve_space(xdr, thislen); 1058 if (!p) 1059 return -EIO; 1060 1061 vec[v].iov_base = p; 1062 vec[v].iov_len = thislen; 1063 v++; 1064 nbytes -= thislen; 1065 } 1066 1067 return v; 1068 } 1069 EXPORT_SYMBOL_GPL(xdr_reserve_space_vec); 1070 1071 /** 1072 * xdr_truncate_encode - truncate an encode buffer 1073 * @xdr: pointer to xdr_stream 1074 * @len: new length of buffer 1075 * 1076 * Truncates the xdr stream, so that xdr->buf->len == len, 1077 * and xdr->p points at offset len from the start of the buffer, and 1078 * head, tail, and page lengths are adjusted to correspond. 1079 * 1080 * If this means moving xdr->p to a different buffer, we assume that 1081 * the end pointer should be set to the end of the current page, 1082 * except in the case of the head buffer when we assume the head 1083 * buffer's current length represents the end of the available buffer. 1084 * 1085 * This is *not* safe to use on a buffer that already has inlined page 1086 * cache pages (as in a zero-copy server read reply), except for the 1087 * simple case of truncating from one position in the tail to another. 1088 * 1089 */ 1090 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 1091 { 1092 struct xdr_buf *buf = xdr->buf; 1093 struct kvec *head = buf->head; 1094 struct kvec *tail = buf->tail; 1095 int fraglen; 1096 int new; 1097 1098 if (len > buf->len) { 1099 WARN_ON_ONCE(1); 1100 return; 1101 } 1102 xdr_commit_encode(xdr); 1103 1104 fraglen = min_t(int, buf->len - len, tail->iov_len); 1105 tail->iov_len -= fraglen; 1106 buf->len -= fraglen; 1107 if (tail->iov_len) { 1108 xdr->p = tail->iov_base + tail->iov_len; 1109 WARN_ON_ONCE(!xdr->end); 1110 WARN_ON_ONCE(!xdr->iov); 1111 return; 1112 } 1113 WARN_ON_ONCE(fraglen); 1114 fraglen = min_t(int, buf->len - len, buf->page_len); 1115 buf->page_len -= fraglen; 1116 buf->len -= fraglen; 1117 1118 new = buf->page_base + buf->page_len; 1119 1120 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 1121 1122 if (buf->page_len) { 1123 xdr->p = page_address(*xdr->page_ptr); 1124 xdr->end = (void *)xdr->p + PAGE_SIZE; 1125 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 1126 WARN_ON_ONCE(xdr->iov); 1127 return; 1128 } 1129 if (fraglen) 1130 xdr->end = head->iov_base + head->iov_len; 1131 /* (otherwise assume xdr->end is already set) */ 1132 xdr->page_ptr--; 1133 head->iov_len = len; 1134 buf->len = len; 1135 xdr->p = head->iov_base + head->iov_len; 1136 xdr->iov = buf->head; 1137 } 1138 EXPORT_SYMBOL(xdr_truncate_encode); 1139 1140 /** 1141 * xdr_restrict_buflen - decrease available buffer space 1142 * @xdr: pointer to xdr_stream 1143 * @newbuflen: new maximum number of bytes available 1144 * 1145 * Adjust our idea of how much space is available in the buffer. 1146 * If we've already used too much space in the buffer, returns -1. 1147 * If the available space is already smaller than newbuflen, returns 0 1148 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 1149 * and ensures xdr->end is set at most offset newbuflen from the start 1150 * of the buffer. 1151 */ 1152 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 1153 { 1154 struct xdr_buf *buf = xdr->buf; 1155 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 1156 int end_offset = buf->len + left_in_this_buf; 1157 1158 if (newbuflen < 0 || newbuflen < buf->len) 1159 return -1; 1160 if (newbuflen > buf->buflen) 1161 return 0; 1162 if (newbuflen < end_offset) 1163 xdr->end = (void *)xdr->end + newbuflen - end_offset; 1164 buf->buflen = newbuflen; 1165 return 0; 1166 } 1167 EXPORT_SYMBOL(xdr_restrict_buflen); 1168 1169 /** 1170 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 1171 * @xdr: pointer to xdr_stream 1172 * @pages: list of pages 1173 * @base: offset of first byte 1174 * @len: length of data in bytes 1175 * 1176 */ 1177 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 1178 unsigned int len) 1179 { 1180 struct xdr_buf *buf = xdr->buf; 1181 struct kvec *iov = buf->tail; 1182 buf->pages = pages; 1183 buf->page_base = base; 1184 buf->page_len = len; 1185 1186 iov->iov_base = (char *)xdr->p; 1187 iov->iov_len = 0; 1188 xdr->iov = iov; 1189 1190 if (len & 3) { 1191 unsigned int pad = 4 - (len & 3); 1192 1193 BUG_ON(xdr->p >= xdr->end); 1194 iov->iov_base = (char *)xdr->p + (len & 3); 1195 iov->iov_len += pad; 1196 len += pad; 1197 *xdr->p++ = 0; 1198 } 1199 buf->buflen += len; 1200 buf->len += len; 1201 } 1202 EXPORT_SYMBOL_GPL(xdr_write_pages); 1203 1204 static unsigned int xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 1205 unsigned int base, unsigned int len) 1206 { 1207 if (len > iov->iov_len) 1208 len = iov->iov_len; 1209 if (unlikely(base > len)) 1210 base = len; 1211 xdr->p = (__be32*)(iov->iov_base + base); 1212 xdr->end = (__be32*)(iov->iov_base + len); 1213 xdr->iov = iov; 1214 xdr->page_ptr = NULL; 1215 return len - base; 1216 } 1217 1218 static unsigned int xdr_set_tail_base(struct xdr_stream *xdr, 1219 unsigned int base, unsigned int len) 1220 { 1221 struct xdr_buf *buf = xdr->buf; 1222 1223 xdr_stream_set_pos(xdr, base + buf->page_len + buf->head->iov_len); 1224 return xdr_set_iov(xdr, buf->tail, base, len); 1225 } 1226 1227 static unsigned int xdr_set_page_base(struct xdr_stream *xdr, 1228 unsigned int base, unsigned int len) 1229 { 1230 unsigned int pgnr; 1231 unsigned int maxlen; 1232 unsigned int pgoff; 1233 unsigned int pgend; 1234 void *kaddr; 1235 1236 maxlen = xdr->buf->page_len; 1237 if (base >= maxlen) 1238 return 0; 1239 else 1240 maxlen -= base; 1241 if (len > maxlen) 1242 len = maxlen; 1243 1244 xdr_stream_page_set_pos(xdr, base); 1245 base += xdr->buf->page_base; 1246 1247 pgnr = base >> PAGE_SHIFT; 1248 xdr->page_ptr = &xdr->buf->pages[pgnr]; 1249 kaddr = page_address(*xdr->page_ptr); 1250 1251 pgoff = base & ~PAGE_MASK; 1252 xdr->p = (__be32*)(kaddr + pgoff); 1253 1254 pgend = pgoff + len; 1255 if (pgend > PAGE_SIZE) 1256 pgend = PAGE_SIZE; 1257 xdr->end = (__be32*)(kaddr + pgend); 1258 xdr->iov = NULL; 1259 return len; 1260 } 1261 1262 static void xdr_set_page(struct xdr_stream *xdr, unsigned int base, 1263 unsigned int len) 1264 { 1265 if (xdr_set_page_base(xdr, base, len) == 0) { 1266 base -= xdr->buf->page_len; 1267 xdr_set_tail_base(xdr, base, len); 1268 } 1269 } 1270 1271 static void xdr_set_next_page(struct xdr_stream *xdr) 1272 { 1273 unsigned int newbase; 1274 1275 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 1276 newbase -= xdr->buf->page_base; 1277 if (newbase < xdr->buf->page_len) 1278 xdr_set_page_base(xdr, newbase, xdr_stream_remaining(xdr)); 1279 else 1280 xdr_set_tail_base(xdr, 0, xdr_stream_remaining(xdr)); 1281 } 1282 1283 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 1284 { 1285 if (xdr->page_ptr != NULL) 1286 xdr_set_next_page(xdr); 1287 else if (xdr->iov == xdr->buf->head) 1288 xdr_set_page(xdr, 0, xdr_stream_remaining(xdr)); 1289 return xdr->p != xdr->end; 1290 } 1291 1292 /** 1293 * xdr_init_decode - Initialize an xdr_stream for decoding data. 1294 * @xdr: pointer to xdr_stream struct 1295 * @buf: pointer to XDR buffer from which to decode data 1296 * @p: current pointer inside XDR buffer 1297 * @rqst: pointer to controlling rpc_rqst, for debugging 1298 */ 1299 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 1300 struct rpc_rqst *rqst) 1301 { 1302 xdr->buf = buf; 1303 xdr_reset_scratch_buffer(xdr); 1304 xdr->nwords = XDR_QUADLEN(buf->len); 1305 if (xdr_set_iov(xdr, buf->head, 0, buf->len) == 0 && 1306 xdr_set_page_base(xdr, 0, buf->len) == 0) 1307 xdr_set_iov(xdr, buf->tail, 0, buf->len); 1308 if (p != NULL && p > xdr->p && xdr->end >= p) { 1309 xdr->nwords -= p - xdr->p; 1310 xdr->p = p; 1311 } 1312 xdr->rqst = rqst; 1313 } 1314 EXPORT_SYMBOL_GPL(xdr_init_decode); 1315 1316 /** 1317 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 1318 * @xdr: pointer to xdr_stream struct 1319 * @buf: pointer to XDR buffer from which to decode data 1320 * @pages: list of pages to decode into 1321 * @len: length in bytes of buffer in pages 1322 */ 1323 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 1324 struct page **pages, unsigned int len) 1325 { 1326 memset(buf, 0, sizeof(*buf)); 1327 buf->pages = pages; 1328 buf->page_len = len; 1329 buf->buflen = len; 1330 buf->len = len; 1331 xdr_init_decode(xdr, buf, NULL, NULL); 1332 } 1333 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 1334 1335 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1336 { 1337 unsigned int nwords = XDR_QUADLEN(nbytes); 1338 __be32 *p = xdr->p; 1339 __be32 *q = p + nwords; 1340 1341 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 1342 return NULL; 1343 xdr->p = q; 1344 xdr->nwords -= nwords; 1345 return p; 1346 } 1347 1348 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 1349 { 1350 __be32 *p; 1351 char *cpdest = xdr->scratch.iov_base; 1352 size_t cplen = (char *)xdr->end - (char *)xdr->p; 1353 1354 if (nbytes > xdr->scratch.iov_len) 1355 goto out_overflow; 1356 p = __xdr_inline_decode(xdr, cplen); 1357 if (p == NULL) 1358 return NULL; 1359 memcpy(cpdest, p, cplen); 1360 if (!xdr_set_next_buffer(xdr)) 1361 goto out_overflow; 1362 cpdest += cplen; 1363 nbytes -= cplen; 1364 p = __xdr_inline_decode(xdr, nbytes); 1365 if (p == NULL) 1366 return NULL; 1367 memcpy(cpdest, p, nbytes); 1368 return xdr->scratch.iov_base; 1369 out_overflow: 1370 trace_rpc_xdr_overflow(xdr, nbytes); 1371 return NULL; 1372 } 1373 1374 /** 1375 * xdr_inline_decode - Retrieve XDR data to decode 1376 * @xdr: pointer to xdr_stream struct 1377 * @nbytes: number of bytes of data to decode 1378 * 1379 * Check if the input buffer is long enough to enable us to decode 1380 * 'nbytes' more bytes of data starting at the current position. 1381 * If so return the current pointer, then update the current 1382 * pointer position. 1383 */ 1384 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 1385 { 1386 __be32 *p; 1387 1388 if (unlikely(nbytes == 0)) 1389 return xdr->p; 1390 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1391 goto out_overflow; 1392 p = __xdr_inline_decode(xdr, nbytes); 1393 if (p != NULL) 1394 return p; 1395 return xdr_copy_to_scratch(xdr, nbytes); 1396 out_overflow: 1397 trace_rpc_xdr_overflow(xdr, nbytes); 1398 return NULL; 1399 } 1400 EXPORT_SYMBOL_GPL(xdr_inline_decode); 1401 1402 static void xdr_realign_pages(struct xdr_stream *xdr) 1403 { 1404 struct xdr_buf *buf = xdr->buf; 1405 struct kvec *iov = buf->head; 1406 unsigned int cur = xdr_stream_pos(xdr); 1407 unsigned int copied; 1408 1409 /* Realign pages to current pointer position */ 1410 if (iov->iov_len > cur) { 1411 copied = xdr_shrink_bufhead(buf, cur); 1412 trace_rpc_xdr_alignment(xdr, cur, copied); 1413 xdr_set_page(xdr, 0, buf->page_len); 1414 } 1415 } 1416 1417 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 1418 { 1419 struct xdr_buf *buf = xdr->buf; 1420 unsigned int nwords = XDR_QUADLEN(len); 1421 unsigned int copied; 1422 1423 if (xdr->nwords == 0) 1424 return 0; 1425 1426 xdr_realign_pages(xdr); 1427 if (nwords > xdr->nwords) { 1428 nwords = xdr->nwords; 1429 len = nwords << 2; 1430 } 1431 if (buf->page_len <= len) 1432 len = buf->page_len; 1433 else if (nwords < xdr->nwords) { 1434 /* Truncate page data and move it into the tail */ 1435 copied = xdr_shrink_pagelen(buf, len); 1436 trace_rpc_xdr_alignment(xdr, len, copied); 1437 } 1438 return len; 1439 } 1440 1441 /** 1442 * xdr_read_pages - align page-based XDR data to current pointer position 1443 * @xdr: pointer to xdr_stream struct 1444 * @len: number of bytes of page data 1445 * 1446 * Moves data beyond the current pointer position from the XDR head[] buffer 1447 * into the page list. Any data that lies beyond current position + @len 1448 * bytes is moved into the XDR tail[]. The xdr_stream current position is 1449 * then advanced past that data to align to the next XDR object in the tail. 1450 * 1451 * Returns the number of XDR encoded bytes now contained in the pages 1452 */ 1453 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1454 { 1455 unsigned int nwords = XDR_QUADLEN(len); 1456 unsigned int base, end, pglen; 1457 1458 pglen = xdr_align_pages(xdr, nwords << 2); 1459 if (pglen == 0) 1460 return 0; 1461 1462 base = (nwords << 2) - pglen; 1463 end = xdr_stream_remaining(xdr) - pglen; 1464 1465 xdr_set_tail_base(xdr, base, end); 1466 return len <= pglen ? len : pglen; 1467 } 1468 EXPORT_SYMBOL_GPL(xdr_read_pages); 1469 1470 unsigned int xdr_align_data(struct xdr_stream *xdr, unsigned int offset, 1471 unsigned int length) 1472 { 1473 struct xdr_buf *buf = xdr->buf; 1474 unsigned int from, bytes, len; 1475 unsigned int shift; 1476 1477 xdr_realign_pages(xdr); 1478 from = xdr_page_pos(xdr); 1479 1480 if (from >= buf->page_len + buf->tail->iov_len) 1481 return 0; 1482 if (from + buf->head->iov_len >= buf->len) 1483 return 0; 1484 1485 len = buf->len - buf->head->iov_len; 1486 1487 /* We only shift data left! */ 1488 if (WARN_ONCE(from < offset, "SUNRPC: misaligned data src=%u dst=%u\n", 1489 from, offset)) 1490 return 0; 1491 if (WARN_ONCE(offset > buf->page_len, 1492 "SUNRPC: buffer overflow. offset=%u, page_len=%u\n", 1493 offset, buf->page_len)) 1494 return 0; 1495 1496 /* Move page data to the left */ 1497 shift = from - offset; 1498 xdr_buf_pages_shift_left(buf, from, len, shift); 1499 1500 bytes = xdr_stream_remaining(xdr); 1501 if (length > bytes) 1502 length = bytes; 1503 bytes -= length; 1504 1505 xdr->buf->len -= shift; 1506 xdr_set_page(xdr, offset + length, bytes); 1507 return length; 1508 } 1509 EXPORT_SYMBOL_GPL(xdr_align_data); 1510 1511 unsigned int xdr_expand_hole(struct xdr_stream *xdr, unsigned int offset, 1512 unsigned int length) 1513 { 1514 struct xdr_buf *buf = xdr->buf; 1515 unsigned int from, to, shift; 1516 1517 xdr_realign_pages(xdr); 1518 from = xdr_page_pos(xdr); 1519 to = xdr_align_size(offset + length); 1520 1521 /* Could the hole be behind us? */ 1522 if (to > from) { 1523 unsigned int buflen = buf->len - buf->head->iov_len; 1524 shift = to - from; 1525 xdr_buf_try_expand(buf, shift); 1526 xdr_buf_pages_shift_right(buf, from, buflen, shift); 1527 xdr_set_page(xdr, to, xdr_stream_remaining(xdr)); 1528 } else if (to != from) 1529 xdr_align_data(xdr, to, 0); 1530 xdr_buf_pages_zero(buf, offset, length); 1531 1532 return length; 1533 } 1534 EXPORT_SYMBOL_GPL(xdr_expand_hole); 1535 1536 /** 1537 * xdr_enter_page - decode data from the XDR page 1538 * @xdr: pointer to xdr_stream struct 1539 * @len: number of bytes of page data 1540 * 1541 * Moves data beyond the current pointer position from the XDR head[] buffer 1542 * into the page list. Any data that lies beyond current position + "len" 1543 * bytes is moved into the XDR tail[]. The current pointer is then 1544 * repositioned at the beginning of the first XDR page. 1545 */ 1546 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1547 { 1548 len = xdr_align_pages(xdr, len); 1549 /* 1550 * Position current pointer at beginning of tail, and 1551 * set remaining message length. 1552 */ 1553 if (len != 0) 1554 xdr_set_page_base(xdr, 0, len); 1555 } 1556 EXPORT_SYMBOL_GPL(xdr_enter_page); 1557 1558 static const struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1559 1560 void xdr_buf_from_iov(const struct kvec *iov, struct xdr_buf *buf) 1561 { 1562 buf->head[0] = *iov; 1563 buf->tail[0] = empty_iov; 1564 buf->page_len = 0; 1565 buf->buflen = buf->len = iov->iov_len; 1566 } 1567 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1568 1569 /** 1570 * xdr_buf_subsegment - set subbuf to a portion of buf 1571 * @buf: an xdr buffer 1572 * @subbuf: the result buffer 1573 * @base: beginning of range in bytes 1574 * @len: length of range in bytes 1575 * 1576 * sets @subbuf to an xdr buffer representing the portion of @buf of 1577 * length @len starting at offset @base. 1578 * 1579 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1580 * 1581 * Returns -1 if base of length are out of bounds. 1582 */ 1583 int xdr_buf_subsegment(const struct xdr_buf *buf, struct xdr_buf *subbuf, 1584 unsigned int base, unsigned int len) 1585 { 1586 subbuf->buflen = subbuf->len = len; 1587 if (base < buf->head[0].iov_len) { 1588 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1589 subbuf->head[0].iov_len = min_t(unsigned int, len, 1590 buf->head[0].iov_len - base); 1591 len -= subbuf->head[0].iov_len; 1592 base = 0; 1593 } else { 1594 base -= buf->head[0].iov_len; 1595 subbuf->head[0].iov_base = buf->head[0].iov_base; 1596 subbuf->head[0].iov_len = 0; 1597 } 1598 1599 if (base < buf->page_len) { 1600 subbuf->page_len = min(buf->page_len - base, len); 1601 base += buf->page_base; 1602 subbuf->page_base = base & ~PAGE_MASK; 1603 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1604 len -= subbuf->page_len; 1605 base = 0; 1606 } else { 1607 base -= buf->page_len; 1608 subbuf->pages = buf->pages; 1609 subbuf->page_base = 0; 1610 subbuf->page_len = 0; 1611 } 1612 1613 if (base < buf->tail[0].iov_len) { 1614 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1615 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1616 buf->tail[0].iov_len - base); 1617 len -= subbuf->tail[0].iov_len; 1618 base = 0; 1619 } else { 1620 base -= buf->tail[0].iov_len; 1621 subbuf->tail[0].iov_base = buf->tail[0].iov_base; 1622 subbuf->tail[0].iov_len = 0; 1623 } 1624 1625 if (base || len) 1626 return -1; 1627 return 0; 1628 } 1629 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1630 1631 /** 1632 * xdr_stream_subsegment - set @subbuf to a portion of @xdr 1633 * @xdr: an xdr_stream set up for decoding 1634 * @subbuf: the result buffer 1635 * @nbytes: length of @xdr to extract, in bytes 1636 * 1637 * Sets up @subbuf to represent a portion of @xdr. The portion 1638 * starts at the current offset in @xdr, and extends for a length 1639 * of @nbytes. If this is successful, @xdr is advanced to the next 1640 * XDR data item following that portion. 1641 * 1642 * Return values: 1643 * %true: @subbuf has been initialized, and @xdr has been advanced. 1644 * %false: a bounds error has occurred 1645 */ 1646 bool xdr_stream_subsegment(struct xdr_stream *xdr, struct xdr_buf *subbuf, 1647 unsigned int nbytes) 1648 { 1649 unsigned int start = xdr_stream_pos(xdr); 1650 unsigned int remaining, len; 1651 1652 /* Extract @subbuf and bounds-check the fn arguments */ 1653 if (xdr_buf_subsegment(xdr->buf, subbuf, start, nbytes)) 1654 return false; 1655 1656 /* Advance @xdr by @nbytes */ 1657 for (remaining = nbytes; remaining;) { 1658 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 1659 return false; 1660 1661 len = (char *)xdr->end - (char *)xdr->p; 1662 if (remaining <= len) { 1663 xdr->p = (__be32 *)((char *)xdr->p + 1664 (remaining + xdr_pad_size(nbytes))); 1665 break; 1666 } 1667 1668 xdr->p = (__be32 *)((char *)xdr->p + len); 1669 xdr->end = xdr->p; 1670 remaining -= len; 1671 } 1672 1673 xdr_stream_set_pos(xdr, start + nbytes); 1674 return true; 1675 } 1676 EXPORT_SYMBOL_GPL(xdr_stream_subsegment); 1677 1678 /** 1679 * xdr_buf_trim - lop at most "len" bytes off the end of "buf" 1680 * @buf: buf to be trimmed 1681 * @len: number of bytes to reduce "buf" by 1682 * 1683 * Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note 1684 * that it's possible that we'll trim less than that amount if the xdr_buf is 1685 * too small, or if (for instance) it's all in the head and the parser has 1686 * already read too far into it. 1687 */ 1688 void xdr_buf_trim(struct xdr_buf *buf, unsigned int len) 1689 { 1690 size_t cur; 1691 unsigned int trim = len; 1692 1693 if (buf->tail[0].iov_len) { 1694 cur = min_t(size_t, buf->tail[0].iov_len, trim); 1695 buf->tail[0].iov_len -= cur; 1696 trim -= cur; 1697 if (!trim) 1698 goto fix_len; 1699 } 1700 1701 if (buf->page_len) { 1702 cur = min_t(unsigned int, buf->page_len, trim); 1703 buf->page_len -= cur; 1704 trim -= cur; 1705 if (!trim) 1706 goto fix_len; 1707 } 1708 1709 if (buf->head[0].iov_len) { 1710 cur = min_t(size_t, buf->head[0].iov_len, trim); 1711 buf->head[0].iov_len -= cur; 1712 trim -= cur; 1713 } 1714 fix_len: 1715 buf->len -= (len - trim); 1716 } 1717 EXPORT_SYMBOL_GPL(xdr_buf_trim); 1718 1719 static void __read_bytes_from_xdr_buf(const struct xdr_buf *subbuf, 1720 void *obj, unsigned int len) 1721 { 1722 unsigned int this_len; 1723 1724 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1725 memcpy(obj, subbuf->head[0].iov_base, this_len); 1726 len -= this_len; 1727 obj += this_len; 1728 this_len = min_t(unsigned int, len, subbuf->page_len); 1729 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1730 len -= this_len; 1731 obj += this_len; 1732 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1733 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1734 } 1735 1736 /* obj is assumed to point to allocated memory of size at least len: */ 1737 int read_bytes_from_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1738 void *obj, unsigned int len) 1739 { 1740 struct xdr_buf subbuf; 1741 int status; 1742 1743 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1744 if (status != 0) 1745 return status; 1746 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1747 return 0; 1748 } 1749 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1750 1751 static void __write_bytes_to_xdr_buf(const struct xdr_buf *subbuf, 1752 void *obj, unsigned int len) 1753 { 1754 unsigned int this_len; 1755 1756 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1757 memcpy(subbuf->head[0].iov_base, obj, this_len); 1758 len -= this_len; 1759 obj += this_len; 1760 this_len = min_t(unsigned int, len, subbuf->page_len); 1761 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1762 len -= this_len; 1763 obj += this_len; 1764 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1765 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1766 } 1767 1768 /* obj is assumed to point to allocated memory of size at least len: */ 1769 int write_bytes_to_xdr_buf(const struct xdr_buf *buf, unsigned int base, 1770 void *obj, unsigned int len) 1771 { 1772 struct xdr_buf subbuf; 1773 int status; 1774 1775 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1776 if (status != 0) 1777 return status; 1778 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1779 return 0; 1780 } 1781 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1782 1783 int xdr_decode_word(const struct xdr_buf *buf, unsigned int base, u32 *obj) 1784 { 1785 __be32 raw; 1786 int status; 1787 1788 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1789 if (status) 1790 return status; 1791 *obj = be32_to_cpu(raw); 1792 return 0; 1793 } 1794 EXPORT_SYMBOL_GPL(xdr_decode_word); 1795 1796 int xdr_encode_word(const struct xdr_buf *buf, unsigned int base, u32 obj) 1797 { 1798 __be32 raw = cpu_to_be32(obj); 1799 1800 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1801 } 1802 EXPORT_SYMBOL_GPL(xdr_encode_word); 1803 1804 /* Returns 0 on success, or else a negative error code. */ 1805 static int xdr_xcode_array2(const struct xdr_buf *buf, unsigned int base, 1806 struct xdr_array2_desc *desc, int encode) 1807 { 1808 char *elem = NULL, *c; 1809 unsigned int copied = 0, todo, avail_here; 1810 struct page **ppages = NULL; 1811 int err; 1812 1813 if (encode) { 1814 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1815 return -EINVAL; 1816 } else { 1817 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1818 desc->array_len > desc->array_maxlen || 1819 (unsigned long) base + 4 + desc->array_len * 1820 desc->elem_size > buf->len) 1821 return -EINVAL; 1822 } 1823 base += 4; 1824 1825 if (!desc->xcode) 1826 return 0; 1827 1828 todo = desc->array_len * desc->elem_size; 1829 1830 /* process head */ 1831 if (todo && base < buf->head->iov_len) { 1832 c = buf->head->iov_base + base; 1833 avail_here = min_t(unsigned int, todo, 1834 buf->head->iov_len - base); 1835 todo -= avail_here; 1836 1837 while (avail_here >= desc->elem_size) { 1838 err = desc->xcode(desc, c); 1839 if (err) 1840 goto out; 1841 c += desc->elem_size; 1842 avail_here -= desc->elem_size; 1843 } 1844 if (avail_here) { 1845 if (!elem) { 1846 elem = kmalloc(desc->elem_size, GFP_KERNEL); 1847 err = -ENOMEM; 1848 if (!elem) 1849 goto out; 1850 } 1851 if (encode) { 1852 err = desc->xcode(desc, elem); 1853 if (err) 1854 goto out; 1855 memcpy(c, elem, avail_here); 1856 } else 1857 memcpy(elem, c, avail_here); 1858 copied = avail_here; 1859 } 1860 base = buf->head->iov_len; /* align to start of pages */ 1861 } 1862 1863 /* process pages array */ 1864 base -= buf->head->iov_len; 1865 if (todo && base < buf->page_len) { 1866 unsigned int avail_page; 1867 1868 avail_here = min(todo, buf->page_len - base); 1869 todo -= avail_here; 1870 1871 base += buf->page_base; 1872 ppages = buf->pages + (base >> PAGE_SHIFT); 1873 base &= ~PAGE_MASK; 1874 avail_page = min_t(unsigned int, PAGE_SIZE - base, 1875 avail_here); 1876 c = kmap(*ppages) + base; 1877 1878 while (avail_here) { 1879 avail_here -= avail_page; 1880 if (copied || avail_page < desc->elem_size) { 1881 unsigned int l = min(avail_page, 1882 desc->elem_size - copied); 1883 if (!elem) { 1884 elem = kmalloc(desc->elem_size, 1885 GFP_KERNEL); 1886 err = -ENOMEM; 1887 if (!elem) 1888 goto out; 1889 } 1890 if (encode) { 1891 if (!copied) { 1892 err = desc->xcode(desc, elem); 1893 if (err) 1894 goto out; 1895 } 1896 memcpy(c, elem + copied, l); 1897 copied += l; 1898 if (copied == desc->elem_size) 1899 copied = 0; 1900 } else { 1901 memcpy(elem + copied, c, l); 1902 copied += l; 1903 if (copied == desc->elem_size) { 1904 err = desc->xcode(desc, elem); 1905 if (err) 1906 goto out; 1907 copied = 0; 1908 } 1909 } 1910 avail_page -= l; 1911 c += l; 1912 } 1913 while (avail_page >= desc->elem_size) { 1914 err = desc->xcode(desc, c); 1915 if (err) 1916 goto out; 1917 c += desc->elem_size; 1918 avail_page -= desc->elem_size; 1919 } 1920 if (avail_page) { 1921 unsigned int l = min(avail_page, 1922 desc->elem_size - copied); 1923 if (!elem) { 1924 elem = kmalloc(desc->elem_size, 1925 GFP_KERNEL); 1926 err = -ENOMEM; 1927 if (!elem) 1928 goto out; 1929 } 1930 if (encode) { 1931 if (!copied) { 1932 err = desc->xcode(desc, elem); 1933 if (err) 1934 goto out; 1935 } 1936 memcpy(c, elem + copied, l); 1937 copied += l; 1938 if (copied == desc->elem_size) 1939 copied = 0; 1940 } else { 1941 memcpy(elem + copied, c, l); 1942 copied += l; 1943 if (copied == desc->elem_size) { 1944 err = desc->xcode(desc, elem); 1945 if (err) 1946 goto out; 1947 copied = 0; 1948 } 1949 } 1950 } 1951 if (avail_here) { 1952 kunmap(*ppages); 1953 ppages++; 1954 c = kmap(*ppages); 1955 } 1956 1957 avail_page = min(avail_here, 1958 (unsigned int) PAGE_SIZE); 1959 } 1960 base = buf->page_len; /* align to start of tail */ 1961 } 1962 1963 /* process tail */ 1964 base -= buf->page_len; 1965 if (todo) { 1966 c = buf->tail->iov_base + base; 1967 if (copied) { 1968 unsigned int l = desc->elem_size - copied; 1969 1970 if (encode) 1971 memcpy(c, elem + copied, l); 1972 else { 1973 memcpy(elem + copied, c, l); 1974 err = desc->xcode(desc, elem); 1975 if (err) 1976 goto out; 1977 } 1978 todo -= l; 1979 c += l; 1980 } 1981 while (todo) { 1982 err = desc->xcode(desc, c); 1983 if (err) 1984 goto out; 1985 c += desc->elem_size; 1986 todo -= desc->elem_size; 1987 } 1988 } 1989 err = 0; 1990 1991 out: 1992 kfree(elem); 1993 if (ppages) 1994 kunmap(*ppages); 1995 return err; 1996 } 1997 1998 int xdr_decode_array2(const struct xdr_buf *buf, unsigned int base, 1999 struct xdr_array2_desc *desc) 2000 { 2001 if (base >= buf->len) 2002 return -EINVAL; 2003 2004 return xdr_xcode_array2(buf, base, desc, 0); 2005 } 2006 EXPORT_SYMBOL_GPL(xdr_decode_array2); 2007 2008 int xdr_encode_array2(const struct xdr_buf *buf, unsigned int base, 2009 struct xdr_array2_desc *desc) 2010 { 2011 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 2012 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 2013 return -EINVAL; 2014 2015 return xdr_xcode_array2(buf, base, desc, 1); 2016 } 2017 EXPORT_SYMBOL_GPL(xdr_encode_array2); 2018 2019 int xdr_process_buf(const struct xdr_buf *buf, unsigned int offset, 2020 unsigned int len, 2021 int (*actor)(struct scatterlist *, void *), void *data) 2022 { 2023 int i, ret = 0; 2024 unsigned int page_len, thislen, page_offset; 2025 struct scatterlist sg[1]; 2026 2027 sg_init_table(sg, 1); 2028 2029 if (offset >= buf->head[0].iov_len) { 2030 offset -= buf->head[0].iov_len; 2031 } else { 2032 thislen = buf->head[0].iov_len - offset; 2033 if (thislen > len) 2034 thislen = len; 2035 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 2036 ret = actor(sg, data); 2037 if (ret) 2038 goto out; 2039 offset = 0; 2040 len -= thislen; 2041 } 2042 if (len == 0) 2043 goto out; 2044 2045 if (offset >= buf->page_len) { 2046 offset -= buf->page_len; 2047 } else { 2048 page_len = buf->page_len - offset; 2049 if (page_len > len) 2050 page_len = len; 2051 len -= page_len; 2052 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 2053 i = (offset + buf->page_base) >> PAGE_SHIFT; 2054 thislen = PAGE_SIZE - page_offset; 2055 do { 2056 if (thislen > page_len) 2057 thislen = page_len; 2058 sg_set_page(sg, buf->pages[i], thislen, page_offset); 2059 ret = actor(sg, data); 2060 if (ret) 2061 goto out; 2062 page_len -= thislen; 2063 i++; 2064 page_offset = 0; 2065 thislen = PAGE_SIZE; 2066 } while (page_len != 0); 2067 offset = 0; 2068 } 2069 if (len == 0) 2070 goto out; 2071 if (offset < buf->tail[0].iov_len) { 2072 thislen = buf->tail[0].iov_len - offset; 2073 if (thislen > len) 2074 thislen = len; 2075 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 2076 ret = actor(sg, data); 2077 len -= thislen; 2078 } 2079 if (len != 0) 2080 ret = -EINVAL; 2081 out: 2082 return ret; 2083 } 2084 EXPORT_SYMBOL_GPL(xdr_process_buf); 2085 2086 /** 2087 * xdr_stream_decode_opaque - Decode variable length opaque 2088 * @xdr: pointer to xdr_stream 2089 * @ptr: location to store opaque data 2090 * @size: size of storage buffer @ptr 2091 * 2092 * Return values: 2093 * On success, returns size of object stored in *@ptr 2094 * %-EBADMSG on XDR buffer overflow 2095 * %-EMSGSIZE on overflow of storage buffer @ptr 2096 */ 2097 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 2098 { 2099 ssize_t ret; 2100 void *p; 2101 2102 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2103 if (ret <= 0) 2104 return ret; 2105 memcpy(ptr, p, ret); 2106 return ret; 2107 } 2108 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 2109 2110 /** 2111 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 2112 * @xdr: pointer to xdr_stream 2113 * @ptr: location to store pointer to opaque data 2114 * @maxlen: maximum acceptable object size 2115 * @gfp_flags: GFP mask to use 2116 * 2117 * Return values: 2118 * On success, returns size of object stored in *@ptr 2119 * %-EBADMSG on XDR buffer overflow 2120 * %-EMSGSIZE if the size of the object would exceed @maxlen 2121 * %-ENOMEM on memory allocation failure 2122 */ 2123 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 2124 size_t maxlen, gfp_t gfp_flags) 2125 { 2126 ssize_t ret; 2127 void *p; 2128 2129 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2130 if (ret > 0) { 2131 *ptr = kmemdup(p, ret, gfp_flags); 2132 if (*ptr != NULL) 2133 return ret; 2134 ret = -ENOMEM; 2135 } 2136 *ptr = NULL; 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 2140 2141 /** 2142 * xdr_stream_decode_string - Decode variable length string 2143 * @xdr: pointer to xdr_stream 2144 * @str: location to store string 2145 * @size: size of storage buffer @str 2146 * 2147 * Return values: 2148 * On success, returns length of NUL-terminated string stored in *@str 2149 * %-EBADMSG on XDR buffer overflow 2150 * %-EMSGSIZE on overflow of storage buffer @str 2151 */ 2152 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 2153 { 2154 ssize_t ret; 2155 void *p; 2156 2157 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 2158 if (ret > 0) { 2159 memcpy(str, p, ret); 2160 str[ret] = '\0'; 2161 return strlen(str); 2162 } 2163 *str = '\0'; 2164 return ret; 2165 } 2166 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 2167 2168 /** 2169 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 2170 * @xdr: pointer to xdr_stream 2171 * @str: location to store pointer to string 2172 * @maxlen: maximum acceptable string length 2173 * @gfp_flags: GFP mask to use 2174 * 2175 * Return values: 2176 * On success, returns length of NUL-terminated string stored in *@ptr 2177 * %-EBADMSG on XDR buffer overflow 2178 * %-EMSGSIZE if the size of the string would exceed @maxlen 2179 * %-ENOMEM on memory allocation failure 2180 */ 2181 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 2182 size_t maxlen, gfp_t gfp_flags) 2183 { 2184 void *p; 2185 ssize_t ret; 2186 2187 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 2188 if (ret > 0) { 2189 char *s = kmemdup_nul(p, ret, gfp_flags); 2190 if (s != NULL) { 2191 *str = s; 2192 return strlen(s); 2193 } 2194 ret = -ENOMEM; 2195 } 2196 *str = NULL; 2197 return ret; 2198 } 2199 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 2200
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.