1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/xdr.c 4 * 5 * Generic XDR support. 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/string.h> 14 #include <linux/kernel.h> 15 #include <linux/pagemap.h> 16 #include <linux/errno.h> 17 #include <linux/sunrpc/xdr.h> 18 #include <linux/sunrpc/msg_prot.h> 19 #include <linux/bvec.h> 20 #include <trace/events/sunrpc.h> 21 22 /* 23 * XDR functions for basic NFS types 24 */ 25 __be32 * 26 xdr_encode_netobj(__be32 *p, const struct xdr_netobj *obj) 27 { 28 unsigned int quadlen = XDR_QUADLEN(obj->len); 29 30 p[quadlen] = 0; /* zero trailing bytes */ 31 *p++ = cpu_to_be32(obj->len); 32 memcpy(p, obj->data, obj->len); 33 return p + XDR_QUADLEN(obj->len); 34 } 35 EXPORT_SYMBOL_GPL(xdr_encode_netobj); 36 37 __be32 * 38 xdr_decode_netobj(__be32 *p, struct xdr_netobj *obj) 39 { 40 unsigned int len; 41 42 if ((len = be32_to_cpu(*p++)) > XDR_MAX_NETOBJ) 43 return NULL; 44 obj->len = len; 45 obj->data = (u8 *) p; 46 return p + XDR_QUADLEN(len); 47 } 48 EXPORT_SYMBOL_GPL(xdr_decode_netobj); 49 50 /** 51 * xdr_encode_opaque_fixed - Encode fixed length opaque data 52 * @p: pointer to current position in XDR buffer. 53 * @ptr: pointer to data to encode (or NULL) 54 * @nbytes: size of data. 55 * 56 * Copy the array of data of length nbytes at ptr to the XDR buffer 57 * at position p, then align to the next 32-bit boundary by padding 58 * with zero bytes (see RFC1832). 59 * Note: if ptr is NULL, only the padding is performed. 60 * 61 * Returns the updated current XDR buffer position 62 * 63 */ 64 __be32 *xdr_encode_opaque_fixed(__be32 *p, const void *ptr, unsigned int nbytes) 65 { 66 if (likely(nbytes != 0)) { 67 unsigned int quadlen = XDR_QUADLEN(nbytes); 68 unsigned int padding = (quadlen << 2) - nbytes; 69 70 if (ptr != NULL) 71 memcpy(p, ptr, nbytes); 72 if (padding != 0) 73 memset((char *)p + nbytes, 0, padding); 74 p += quadlen; 75 } 76 return p; 77 } 78 EXPORT_SYMBOL_GPL(xdr_encode_opaque_fixed); 79 80 /** 81 * xdr_encode_opaque - Encode variable length opaque data 82 * @p: pointer to current position in XDR buffer. 83 * @ptr: pointer to data to encode (or NULL) 84 * @nbytes: size of data. 85 * 86 * Returns the updated current XDR buffer position 87 */ 88 __be32 *xdr_encode_opaque(__be32 *p, const void *ptr, unsigned int nbytes) 89 { 90 *p++ = cpu_to_be32(nbytes); 91 return xdr_encode_opaque_fixed(p, ptr, nbytes); 92 } 93 EXPORT_SYMBOL_GPL(xdr_encode_opaque); 94 95 __be32 * 96 xdr_encode_string(__be32 *p, const char *string) 97 { 98 return xdr_encode_array(p, string, strlen(string)); 99 } 100 EXPORT_SYMBOL_GPL(xdr_encode_string); 101 102 __be32 * 103 xdr_decode_string_inplace(__be32 *p, char **sp, 104 unsigned int *lenp, unsigned int maxlen) 105 { 106 u32 len; 107 108 len = be32_to_cpu(*p++); 109 if (len > maxlen) 110 return NULL; 111 *lenp = len; 112 *sp = (char *) p; 113 return p + XDR_QUADLEN(len); 114 } 115 EXPORT_SYMBOL_GPL(xdr_decode_string_inplace); 116 117 /** 118 * xdr_terminate_string - '\0'-terminate a string residing in an xdr_buf 119 * @buf: XDR buffer where string resides 120 * @len: length of string, in bytes 121 * 122 */ 123 void 124 xdr_terminate_string(struct xdr_buf *buf, const u32 len) 125 { 126 char *kaddr; 127 128 kaddr = kmap_atomic(buf->pages[0]); 129 kaddr[buf->page_base + len] = '\0'; 130 kunmap_atomic(kaddr); 131 } 132 EXPORT_SYMBOL_GPL(xdr_terminate_string); 133 134 size_t 135 xdr_buf_pagecount(struct xdr_buf *buf) 136 { 137 if (!buf->page_len) 138 return 0; 139 return (buf->page_base + buf->page_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 140 } 141 142 int 143 xdr_alloc_bvec(struct xdr_buf *buf, gfp_t gfp) 144 { 145 size_t i, n = xdr_buf_pagecount(buf); 146 147 if (n != 0 && buf->bvec == NULL) { 148 buf->bvec = kmalloc_array(n, sizeof(buf->bvec[0]), gfp); 149 if (!buf->bvec) 150 return -ENOMEM; 151 for (i = 0; i < n; i++) { 152 buf->bvec[i].bv_page = buf->pages[i]; 153 buf->bvec[i].bv_len = PAGE_SIZE; 154 buf->bvec[i].bv_offset = 0; 155 } 156 } 157 return 0; 158 } 159 160 void 161 xdr_free_bvec(struct xdr_buf *buf) 162 { 163 kfree(buf->bvec); 164 buf->bvec = NULL; 165 } 166 167 /** 168 * xdr_inline_pages - Prepare receive buffer for a large reply 169 * @xdr: xdr_buf into which reply will be placed 170 * @offset: expected offset where data payload will start, in bytes 171 * @pages: vector of struct page pointers 172 * @base: offset in first page where receive should start, in bytes 173 * @len: expected size of the upper layer data payload, in bytes 174 * 175 */ 176 void 177 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset, 178 struct page **pages, unsigned int base, unsigned int len) 179 { 180 struct kvec *head = xdr->head; 181 struct kvec *tail = xdr->tail; 182 char *buf = (char *)head->iov_base; 183 unsigned int buflen = head->iov_len; 184 185 head->iov_len = offset; 186 187 xdr->pages = pages; 188 xdr->page_base = base; 189 xdr->page_len = len; 190 191 tail->iov_base = buf + offset; 192 tail->iov_len = buflen - offset; 193 if ((xdr->page_len & 3) == 0) 194 tail->iov_len -= sizeof(__be32); 195 196 xdr->buflen += len; 197 } 198 EXPORT_SYMBOL_GPL(xdr_inline_pages); 199 200 /* 201 * Helper routines for doing 'memmove' like operations on a struct xdr_buf 202 */ 203 204 /** 205 * _shift_data_right_pages 206 * @pages: vector of pages containing both the source and dest memory area. 207 * @pgto_base: page vector address of destination 208 * @pgfrom_base: page vector address of source 209 * @len: number of bytes to copy 210 * 211 * Note: the addresses pgto_base and pgfrom_base are both calculated in 212 * the same way: 213 * if a memory area starts at byte 'base' in page 'pages[i]', 214 * then its address is given as (i << PAGE_SHIFT) + base 215 * Also note: pgfrom_base must be < pgto_base, but the memory areas 216 * they point to may overlap. 217 */ 218 static void 219 _shift_data_right_pages(struct page **pages, size_t pgto_base, 220 size_t pgfrom_base, size_t len) 221 { 222 struct page **pgfrom, **pgto; 223 char *vfrom, *vto; 224 size_t copy; 225 226 BUG_ON(pgto_base <= pgfrom_base); 227 228 pgto_base += len; 229 pgfrom_base += len; 230 231 pgto = pages + (pgto_base >> PAGE_SHIFT); 232 pgfrom = pages + (pgfrom_base >> PAGE_SHIFT); 233 234 pgto_base &= ~PAGE_MASK; 235 pgfrom_base &= ~PAGE_MASK; 236 237 do { 238 /* Are any pointers crossing a page boundary? */ 239 if (pgto_base == 0) { 240 pgto_base = PAGE_SIZE; 241 pgto--; 242 } 243 if (pgfrom_base == 0) { 244 pgfrom_base = PAGE_SIZE; 245 pgfrom--; 246 } 247 248 copy = len; 249 if (copy > pgto_base) 250 copy = pgto_base; 251 if (copy > pgfrom_base) 252 copy = pgfrom_base; 253 pgto_base -= copy; 254 pgfrom_base -= copy; 255 256 vto = kmap_atomic(*pgto); 257 if (*pgto != *pgfrom) { 258 vfrom = kmap_atomic(*pgfrom); 259 memcpy(vto + pgto_base, vfrom + pgfrom_base, copy); 260 kunmap_atomic(vfrom); 261 } else 262 memmove(vto + pgto_base, vto + pgfrom_base, copy); 263 flush_dcache_page(*pgto); 264 kunmap_atomic(vto); 265 266 } while ((len -= copy) != 0); 267 } 268 269 /** 270 * _copy_to_pages 271 * @pages: array of pages 272 * @pgbase: page vector address of destination 273 * @p: pointer to source data 274 * @len: length 275 * 276 * Copies data from an arbitrary memory location into an array of pages 277 * The copy is assumed to be non-overlapping. 278 */ 279 static void 280 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len) 281 { 282 struct page **pgto; 283 char *vto; 284 size_t copy; 285 286 pgto = pages + (pgbase >> PAGE_SHIFT); 287 pgbase &= ~PAGE_MASK; 288 289 for (;;) { 290 copy = PAGE_SIZE - pgbase; 291 if (copy > len) 292 copy = len; 293 294 vto = kmap_atomic(*pgto); 295 memcpy(vto + pgbase, p, copy); 296 kunmap_atomic(vto); 297 298 len -= copy; 299 if (len == 0) 300 break; 301 302 pgbase += copy; 303 if (pgbase == PAGE_SIZE) { 304 flush_dcache_page(*pgto); 305 pgbase = 0; 306 pgto++; 307 } 308 p += copy; 309 } 310 flush_dcache_page(*pgto); 311 } 312 313 /** 314 * _copy_from_pages 315 * @p: pointer to destination 316 * @pages: array of pages 317 * @pgbase: offset of source data 318 * @len: length 319 * 320 * Copies data into an arbitrary memory location from an array of pages 321 * The copy is assumed to be non-overlapping. 322 */ 323 void 324 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len) 325 { 326 struct page **pgfrom; 327 char *vfrom; 328 size_t copy; 329 330 pgfrom = pages + (pgbase >> PAGE_SHIFT); 331 pgbase &= ~PAGE_MASK; 332 333 do { 334 copy = PAGE_SIZE - pgbase; 335 if (copy > len) 336 copy = len; 337 338 vfrom = kmap_atomic(*pgfrom); 339 memcpy(p, vfrom + pgbase, copy); 340 kunmap_atomic(vfrom); 341 342 pgbase += copy; 343 if (pgbase == PAGE_SIZE) { 344 pgbase = 0; 345 pgfrom++; 346 } 347 p += copy; 348 349 } while ((len -= copy) != 0); 350 } 351 EXPORT_SYMBOL_GPL(_copy_from_pages); 352 353 /** 354 * xdr_shrink_bufhead 355 * @buf: xdr_buf 356 * @len: bytes to remove from buf->head[0] 357 * 358 * Shrinks XDR buffer's header kvec buf->head[0] by 359 * 'len' bytes. The extra data is not lost, but is instead 360 * moved into the inlined pages and/or the tail. 361 */ 362 static unsigned int 363 xdr_shrink_bufhead(struct xdr_buf *buf, size_t len) 364 { 365 struct kvec *head, *tail; 366 size_t copy, offs; 367 unsigned int pglen = buf->page_len; 368 unsigned int result; 369 370 result = 0; 371 tail = buf->tail; 372 head = buf->head; 373 374 WARN_ON_ONCE(len > head->iov_len); 375 if (len > head->iov_len) 376 len = head->iov_len; 377 378 /* Shift the tail first */ 379 if (tail->iov_len != 0) { 380 if (tail->iov_len > len) { 381 copy = tail->iov_len - len; 382 memmove((char *)tail->iov_base + len, 383 tail->iov_base, copy); 384 result += copy; 385 } 386 /* Copy from the inlined pages into the tail */ 387 copy = len; 388 if (copy > pglen) 389 copy = pglen; 390 offs = len - copy; 391 if (offs >= tail->iov_len) 392 copy = 0; 393 else if (copy > tail->iov_len - offs) 394 copy = tail->iov_len - offs; 395 if (copy != 0) { 396 _copy_from_pages((char *)tail->iov_base + offs, 397 buf->pages, 398 buf->page_base + pglen + offs - len, 399 copy); 400 result += copy; 401 } 402 /* Do we also need to copy data from the head into the tail ? */ 403 if (len > pglen) { 404 offs = copy = len - pglen; 405 if (copy > tail->iov_len) 406 copy = tail->iov_len; 407 memcpy(tail->iov_base, 408 (char *)head->iov_base + 409 head->iov_len - offs, 410 copy); 411 result += copy; 412 } 413 } 414 /* Now handle pages */ 415 if (pglen != 0) { 416 if (pglen > len) 417 _shift_data_right_pages(buf->pages, 418 buf->page_base + len, 419 buf->page_base, 420 pglen - len); 421 copy = len; 422 if (len > pglen) 423 copy = pglen; 424 _copy_to_pages(buf->pages, buf->page_base, 425 (char *)head->iov_base + head->iov_len - len, 426 copy); 427 result += copy; 428 } 429 head->iov_len -= len; 430 buf->buflen -= len; 431 /* Have we truncated the message? */ 432 if (buf->len > buf->buflen) 433 buf->len = buf->buflen; 434 435 return result; 436 } 437 438 /** 439 * xdr_shrink_pagelen 440 * @buf: xdr_buf 441 * @len: bytes to remove from buf->pages 442 * 443 * Shrinks XDR buffer's page array buf->pages by 444 * 'len' bytes. The extra data is not lost, but is instead 445 * moved into the tail. 446 */ 447 static unsigned int 448 xdr_shrink_pagelen(struct xdr_buf *buf, size_t len) 449 { 450 struct kvec *tail; 451 size_t copy; 452 unsigned int pglen = buf->page_len; 453 unsigned int tailbuf_len; 454 unsigned int result; 455 456 result = 0; 457 tail = buf->tail; 458 BUG_ON (len > pglen); 459 460 tailbuf_len = buf->buflen - buf->head->iov_len - buf->page_len; 461 462 /* Shift the tail first */ 463 if (tailbuf_len != 0) { 464 unsigned int free_space = tailbuf_len - tail->iov_len; 465 466 if (len < free_space) 467 free_space = len; 468 tail->iov_len += free_space; 469 470 copy = len; 471 if (tail->iov_len > len) { 472 char *p = (char *)tail->iov_base + len; 473 memmove(p, tail->iov_base, tail->iov_len - len); 474 result += tail->iov_len - len; 475 } else 476 copy = tail->iov_len; 477 /* Copy from the inlined pages into the tail */ 478 _copy_from_pages((char *)tail->iov_base, 479 buf->pages, buf->page_base + pglen - len, 480 copy); 481 result += copy; 482 } 483 buf->page_len -= len; 484 buf->buflen -= len; 485 /* Have we truncated the message? */ 486 if (buf->len > buf->buflen) 487 buf->len = buf->buflen; 488 489 return result; 490 } 491 492 void 493 xdr_shift_buf(struct xdr_buf *buf, size_t len) 494 { 495 xdr_shrink_bufhead(buf, len); 496 } 497 EXPORT_SYMBOL_GPL(xdr_shift_buf); 498 499 /** 500 * xdr_stream_pos - Return the current offset from the start of the xdr_stream 501 * @xdr: pointer to struct xdr_stream 502 */ 503 unsigned int xdr_stream_pos(const struct xdr_stream *xdr) 504 { 505 return (unsigned int)(XDR_QUADLEN(xdr->buf->len) - xdr->nwords) << 2; 506 } 507 EXPORT_SYMBOL_GPL(xdr_stream_pos); 508 509 /** 510 * xdr_init_encode - Initialize a struct xdr_stream for sending data. 511 * @xdr: pointer to xdr_stream struct 512 * @buf: pointer to XDR buffer in which to encode data 513 * @p: current pointer inside XDR buffer 514 * @rqst: pointer to controlling rpc_rqst, for debugging 515 * 516 * Note: at the moment the RPC client only passes the length of our 517 * scratch buffer in the xdr_buf's header kvec. Previously this 518 * meant we needed to call xdr_adjust_iovec() after encoding the 519 * data. With the new scheme, the xdr_stream manages the details 520 * of the buffer length, and takes care of adjusting the kvec 521 * length for us. 522 */ 523 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 524 struct rpc_rqst *rqst) 525 { 526 struct kvec *iov = buf->head; 527 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len; 528 529 xdr_set_scratch_buffer(xdr, NULL, 0); 530 BUG_ON(scratch_len < 0); 531 xdr->buf = buf; 532 xdr->iov = iov; 533 xdr->p = (__be32 *)((char *)iov->iov_base + iov->iov_len); 534 xdr->end = (__be32 *)((char *)iov->iov_base + scratch_len); 535 BUG_ON(iov->iov_len > scratch_len); 536 537 if (p != xdr->p && p != NULL) { 538 size_t len; 539 540 BUG_ON(p < xdr->p || p > xdr->end); 541 len = (char *)p - (char *)xdr->p; 542 xdr->p = p; 543 buf->len += len; 544 iov->iov_len += len; 545 } 546 xdr->rqst = rqst; 547 } 548 EXPORT_SYMBOL_GPL(xdr_init_encode); 549 550 /** 551 * xdr_commit_encode - Ensure all data is written to buffer 552 * @xdr: pointer to xdr_stream 553 * 554 * We handle encoding across page boundaries by giving the caller a 555 * temporary location to write to, then later copying the data into 556 * place; xdr_commit_encode does that copying. 557 * 558 * Normally the caller doesn't need to call this directly, as the 559 * following xdr_reserve_space will do it. But an explicit call may be 560 * required at the end of encoding, or any other time when the xdr_buf 561 * data might be read. 562 */ 563 void xdr_commit_encode(struct xdr_stream *xdr) 564 { 565 int shift = xdr->scratch.iov_len; 566 void *page; 567 568 if (shift == 0) 569 return; 570 page = page_address(*xdr->page_ptr); 571 memcpy(xdr->scratch.iov_base, page, shift); 572 memmove(page, page + shift, (void *)xdr->p - page); 573 xdr->scratch.iov_len = 0; 574 } 575 EXPORT_SYMBOL_GPL(xdr_commit_encode); 576 577 static __be32 *xdr_get_next_encode_buffer(struct xdr_stream *xdr, 578 size_t nbytes) 579 { 580 __be32 *p; 581 int space_left; 582 int frag1bytes, frag2bytes; 583 584 if (nbytes > PAGE_SIZE) 585 goto out_overflow; /* Bigger buffers require special handling */ 586 if (xdr->buf->len + nbytes > xdr->buf->buflen) 587 goto out_overflow; /* Sorry, we're totally out of space */ 588 frag1bytes = (xdr->end - xdr->p) << 2; 589 frag2bytes = nbytes - frag1bytes; 590 if (xdr->iov) 591 xdr->iov->iov_len += frag1bytes; 592 else 593 xdr->buf->page_len += frag1bytes; 594 xdr->page_ptr++; 595 xdr->iov = NULL; 596 /* 597 * If the last encode didn't end exactly on a page boundary, the 598 * next one will straddle boundaries. Encode into the next 599 * page, then copy it back later in xdr_commit_encode. We use 600 * the "scratch" iov to track any temporarily unused fragment of 601 * space at the end of the previous buffer: 602 */ 603 xdr->scratch.iov_base = xdr->p; 604 xdr->scratch.iov_len = frag1bytes; 605 p = page_address(*xdr->page_ptr); 606 /* 607 * Note this is where the next encode will start after we've 608 * shifted this one back: 609 */ 610 xdr->p = (void *)p + frag2bytes; 611 space_left = xdr->buf->buflen - xdr->buf->len; 612 xdr->end = (void *)p + min_t(int, space_left, PAGE_SIZE); 613 xdr->buf->page_len += frag2bytes; 614 xdr->buf->len += nbytes; 615 return p; 616 out_overflow: 617 trace_rpc_xdr_overflow(xdr, nbytes); 618 return NULL; 619 } 620 621 /** 622 * xdr_reserve_space - Reserve buffer space for sending 623 * @xdr: pointer to xdr_stream 624 * @nbytes: number of bytes to reserve 625 * 626 * Checks that we have enough buffer space to encode 'nbytes' more 627 * bytes of data. If so, update the total xdr_buf length, and 628 * adjust the length of the current kvec. 629 */ 630 __be32 * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes) 631 { 632 __be32 *p = xdr->p; 633 __be32 *q; 634 635 xdr_commit_encode(xdr); 636 /* align nbytes on the next 32-bit boundary */ 637 nbytes += 3; 638 nbytes &= ~3; 639 q = p + (nbytes >> 2); 640 if (unlikely(q > xdr->end || q < p)) 641 return xdr_get_next_encode_buffer(xdr, nbytes); 642 xdr->p = q; 643 if (xdr->iov) 644 xdr->iov->iov_len += nbytes; 645 else 646 xdr->buf->page_len += nbytes; 647 xdr->buf->len += nbytes; 648 return p; 649 } 650 EXPORT_SYMBOL_GPL(xdr_reserve_space); 651 652 /** 653 * xdr_truncate_encode - truncate an encode buffer 654 * @xdr: pointer to xdr_stream 655 * @len: new length of buffer 656 * 657 * Truncates the xdr stream, so that xdr->buf->len == len, 658 * and xdr->p points at offset len from the start of the buffer, and 659 * head, tail, and page lengths are adjusted to correspond. 660 * 661 * If this means moving xdr->p to a different buffer, we assume that 662 * that the end pointer should be set to the end of the current page, 663 * except in the case of the head buffer when we assume the head 664 * buffer's current length represents the end of the available buffer. 665 * 666 * This is *not* safe to use on a buffer that already has inlined page 667 * cache pages (as in a zero-copy server read reply), except for the 668 * simple case of truncating from one position in the tail to another. 669 * 670 */ 671 void xdr_truncate_encode(struct xdr_stream *xdr, size_t len) 672 { 673 struct xdr_buf *buf = xdr->buf; 674 struct kvec *head = buf->head; 675 struct kvec *tail = buf->tail; 676 int fraglen; 677 int new; 678 679 if (len > buf->len) { 680 WARN_ON_ONCE(1); 681 return; 682 } 683 xdr_commit_encode(xdr); 684 685 fraglen = min_t(int, buf->len - len, tail->iov_len); 686 tail->iov_len -= fraglen; 687 buf->len -= fraglen; 688 if (tail->iov_len) { 689 xdr->p = tail->iov_base + tail->iov_len; 690 WARN_ON_ONCE(!xdr->end); 691 WARN_ON_ONCE(!xdr->iov); 692 return; 693 } 694 WARN_ON_ONCE(fraglen); 695 fraglen = min_t(int, buf->len - len, buf->page_len); 696 buf->page_len -= fraglen; 697 buf->len -= fraglen; 698 699 new = buf->page_base + buf->page_len; 700 701 xdr->page_ptr = buf->pages + (new >> PAGE_SHIFT); 702 703 if (buf->page_len) { 704 xdr->p = page_address(*xdr->page_ptr); 705 xdr->end = (void *)xdr->p + PAGE_SIZE; 706 xdr->p = (void *)xdr->p + (new % PAGE_SIZE); 707 WARN_ON_ONCE(xdr->iov); 708 return; 709 } 710 if (fraglen) 711 xdr->end = head->iov_base + head->iov_len; 712 /* (otherwise assume xdr->end is already set) */ 713 xdr->page_ptr--; 714 head->iov_len = len; 715 buf->len = len; 716 xdr->p = head->iov_base + head->iov_len; 717 xdr->iov = buf->head; 718 } 719 EXPORT_SYMBOL(xdr_truncate_encode); 720 721 /** 722 * xdr_restrict_buflen - decrease available buffer space 723 * @xdr: pointer to xdr_stream 724 * @newbuflen: new maximum number of bytes available 725 * 726 * Adjust our idea of how much space is available in the buffer. 727 * If we've already used too much space in the buffer, returns -1. 728 * If the available space is already smaller than newbuflen, returns 0 729 * and does nothing. Otherwise, adjusts xdr->buf->buflen to newbuflen 730 * and ensures xdr->end is set at most offset newbuflen from the start 731 * of the buffer. 732 */ 733 int xdr_restrict_buflen(struct xdr_stream *xdr, int newbuflen) 734 { 735 struct xdr_buf *buf = xdr->buf; 736 int left_in_this_buf = (void *)xdr->end - (void *)xdr->p; 737 int end_offset = buf->len + left_in_this_buf; 738 739 if (newbuflen < 0 || newbuflen < buf->len) 740 return -1; 741 if (newbuflen > buf->buflen) 742 return 0; 743 if (newbuflen < end_offset) 744 xdr->end = (void *)xdr->end + newbuflen - end_offset; 745 buf->buflen = newbuflen; 746 return 0; 747 } 748 EXPORT_SYMBOL(xdr_restrict_buflen); 749 750 /** 751 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending 752 * @xdr: pointer to xdr_stream 753 * @pages: list of pages 754 * @base: offset of first byte 755 * @len: length of data in bytes 756 * 757 */ 758 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base, 759 unsigned int len) 760 { 761 struct xdr_buf *buf = xdr->buf; 762 struct kvec *iov = buf->tail; 763 buf->pages = pages; 764 buf->page_base = base; 765 buf->page_len = len; 766 767 iov->iov_base = (char *)xdr->p; 768 iov->iov_len = 0; 769 xdr->iov = iov; 770 771 if (len & 3) { 772 unsigned int pad = 4 - (len & 3); 773 774 BUG_ON(xdr->p >= xdr->end); 775 iov->iov_base = (char *)xdr->p + (len & 3); 776 iov->iov_len += pad; 777 len += pad; 778 *xdr->p++ = 0; 779 } 780 buf->buflen += len; 781 buf->len += len; 782 } 783 EXPORT_SYMBOL_GPL(xdr_write_pages); 784 785 static void xdr_set_iov(struct xdr_stream *xdr, struct kvec *iov, 786 unsigned int len) 787 { 788 if (len > iov->iov_len) 789 len = iov->iov_len; 790 xdr->p = (__be32*)iov->iov_base; 791 xdr->end = (__be32*)(iov->iov_base + len); 792 xdr->iov = iov; 793 xdr->page_ptr = NULL; 794 } 795 796 static int xdr_set_page_base(struct xdr_stream *xdr, 797 unsigned int base, unsigned int len) 798 { 799 unsigned int pgnr; 800 unsigned int maxlen; 801 unsigned int pgoff; 802 unsigned int pgend; 803 void *kaddr; 804 805 maxlen = xdr->buf->page_len; 806 if (base >= maxlen) 807 return -EINVAL; 808 maxlen -= base; 809 if (len > maxlen) 810 len = maxlen; 811 812 base += xdr->buf->page_base; 813 814 pgnr = base >> PAGE_SHIFT; 815 xdr->page_ptr = &xdr->buf->pages[pgnr]; 816 kaddr = page_address(*xdr->page_ptr); 817 818 pgoff = base & ~PAGE_MASK; 819 xdr->p = (__be32*)(kaddr + pgoff); 820 821 pgend = pgoff + len; 822 if (pgend > PAGE_SIZE) 823 pgend = PAGE_SIZE; 824 xdr->end = (__be32*)(kaddr + pgend); 825 xdr->iov = NULL; 826 return 0; 827 } 828 829 static void xdr_set_next_page(struct xdr_stream *xdr) 830 { 831 unsigned int newbase; 832 833 newbase = (1 + xdr->page_ptr - xdr->buf->pages) << PAGE_SHIFT; 834 newbase -= xdr->buf->page_base; 835 836 if (xdr_set_page_base(xdr, newbase, PAGE_SIZE) < 0) 837 xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2); 838 } 839 840 static bool xdr_set_next_buffer(struct xdr_stream *xdr) 841 { 842 if (xdr->page_ptr != NULL) 843 xdr_set_next_page(xdr); 844 else if (xdr->iov == xdr->buf->head) { 845 if (xdr_set_page_base(xdr, 0, PAGE_SIZE) < 0) 846 xdr_set_iov(xdr, xdr->buf->tail, xdr->nwords << 2); 847 } 848 return xdr->p != xdr->end; 849 } 850 851 /** 852 * xdr_init_decode - Initialize an xdr_stream for decoding data. 853 * @xdr: pointer to xdr_stream struct 854 * @buf: pointer to XDR buffer from which to decode data 855 * @p: current pointer inside XDR buffer 856 * @rqst: pointer to controlling rpc_rqst, for debugging 857 */ 858 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, __be32 *p, 859 struct rpc_rqst *rqst) 860 { 861 xdr->buf = buf; 862 xdr->scratch.iov_base = NULL; 863 xdr->scratch.iov_len = 0; 864 xdr->nwords = XDR_QUADLEN(buf->len); 865 if (buf->head[0].iov_len != 0) 866 xdr_set_iov(xdr, buf->head, buf->len); 867 else if (buf->page_len != 0) 868 xdr_set_page_base(xdr, 0, buf->len); 869 else 870 xdr_set_iov(xdr, buf->head, buf->len); 871 if (p != NULL && p > xdr->p && xdr->end >= p) { 872 xdr->nwords -= p - xdr->p; 873 xdr->p = p; 874 } 875 xdr->rqst = rqst; 876 } 877 EXPORT_SYMBOL_GPL(xdr_init_decode); 878 879 /** 880 * xdr_init_decode_pages - Initialize an xdr_stream for decoding into pages 881 * @xdr: pointer to xdr_stream struct 882 * @buf: pointer to XDR buffer from which to decode data 883 * @pages: list of pages to decode into 884 * @len: length in bytes of buffer in pages 885 */ 886 void xdr_init_decode_pages(struct xdr_stream *xdr, struct xdr_buf *buf, 887 struct page **pages, unsigned int len) 888 { 889 memset(buf, 0, sizeof(*buf)); 890 buf->pages = pages; 891 buf->page_len = len; 892 buf->buflen = len; 893 buf->len = len; 894 xdr_init_decode(xdr, buf, NULL, NULL); 895 } 896 EXPORT_SYMBOL_GPL(xdr_init_decode_pages); 897 898 static __be32 * __xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 899 { 900 unsigned int nwords = XDR_QUADLEN(nbytes); 901 __be32 *p = xdr->p; 902 __be32 *q = p + nwords; 903 904 if (unlikely(nwords > xdr->nwords || q > xdr->end || q < p)) 905 return NULL; 906 xdr->p = q; 907 xdr->nwords -= nwords; 908 return p; 909 } 910 911 /** 912 * xdr_set_scratch_buffer - Attach a scratch buffer for decoding data. 913 * @xdr: pointer to xdr_stream struct 914 * @buf: pointer to an empty buffer 915 * @buflen: size of 'buf' 916 * 917 * The scratch buffer is used when decoding from an array of pages. 918 * If an xdr_inline_decode() call spans across page boundaries, then 919 * we copy the data into the scratch buffer in order to allow linear 920 * access. 921 */ 922 void xdr_set_scratch_buffer(struct xdr_stream *xdr, void *buf, size_t buflen) 923 { 924 xdr->scratch.iov_base = buf; 925 xdr->scratch.iov_len = buflen; 926 } 927 EXPORT_SYMBOL_GPL(xdr_set_scratch_buffer); 928 929 static __be32 *xdr_copy_to_scratch(struct xdr_stream *xdr, size_t nbytes) 930 { 931 __be32 *p; 932 char *cpdest = xdr->scratch.iov_base; 933 size_t cplen = (char *)xdr->end - (char *)xdr->p; 934 935 if (nbytes > xdr->scratch.iov_len) 936 goto out_overflow; 937 p = __xdr_inline_decode(xdr, cplen); 938 if (p == NULL) 939 return NULL; 940 memcpy(cpdest, p, cplen); 941 if (!xdr_set_next_buffer(xdr)) 942 goto out_overflow; 943 cpdest += cplen; 944 nbytes -= cplen; 945 p = __xdr_inline_decode(xdr, nbytes); 946 if (p == NULL) 947 return NULL; 948 memcpy(cpdest, p, nbytes); 949 return xdr->scratch.iov_base; 950 out_overflow: 951 trace_rpc_xdr_overflow(xdr, nbytes); 952 return NULL; 953 } 954 955 /** 956 * xdr_inline_decode - Retrieve XDR data to decode 957 * @xdr: pointer to xdr_stream struct 958 * @nbytes: number of bytes of data to decode 959 * 960 * Check if the input buffer is long enough to enable us to decode 961 * 'nbytes' more bytes of data starting at the current position. 962 * If so return the current pointer, then update the current 963 * pointer position. 964 */ 965 __be32 * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes) 966 { 967 __be32 *p; 968 969 if (unlikely(nbytes == 0)) 970 return xdr->p; 971 if (xdr->p == xdr->end && !xdr_set_next_buffer(xdr)) 972 goto out_overflow; 973 p = __xdr_inline_decode(xdr, nbytes); 974 if (p != NULL) 975 return p; 976 return xdr_copy_to_scratch(xdr, nbytes); 977 out_overflow: 978 trace_rpc_xdr_overflow(xdr, nbytes); 979 return NULL; 980 } 981 EXPORT_SYMBOL_GPL(xdr_inline_decode); 982 983 static unsigned int xdr_align_pages(struct xdr_stream *xdr, unsigned int len) 984 { 985 struct xdr_buf *buf = xdr->buf; 986 struct kvec *iov; 987 unsigned int nwords = XDR_QUADLEN(len); 988 unsigned int cur = xdr_stream_pos(xdr); 989 unsigned int copied, offset; 990 991 if (xdr->nwords == 0) 992 return 0; 993 994 /* Realign pages to current pointer position */ 995 iov = buf->head; 996 if (iov->iov_len > cur) { 997 offset = iov->iov_len - cur; 998 copied = xdr_shrink_bufhead(buf, offset); 999 trace_rpc_xdr_alignment(xdr, offset, copied); 1000 xdr->nwords = XDR_QUADLEN(buf->len - cur); 1001 } 1002 1003 if (nwords > xdr->nwords) { 1004 nwords = xdr->nwords; 1005 len = nwords << 2; 1006 } 1007 if (buf->page_len <= len) 1008 len = buf->page_len; 1009 else if (nwords < xdr->nwords) { 1010 /* Truncate page data and move it into the tail */ 1011 offset = buf->page_len - len; 1012 copied = xdr_shrink_pagelen(buf, offset); 1013 trace_rpc_xdr_alignment(xdr, offset, copied); 1014 xdr->nwords = XDR_QUADLEN(buf->len - cur); 1015 } 1016 return len; 1017 } 1018 1019 /** 1020 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position 1021 * @xdr: pointer to xdr_stream struct 1022 * @len: number of bytes of page data 1023 * 1024 * Moves data beyond the current pointer position from the XDR head[] buffer 1025 * into the page list. Any data that lies beyond current position + "len" 1026 * bytes is moved into the XDR tail[]. 1027 * 1028 * Returns the number of XDR encoded bytes now contained in the pages 1029 */ 1030 unsigned int xdr_read_pages(struct xdr_stream *xdr, unsigned int len) 1031 { 1032 struct xdr_buf *buf = xdr->buf; 1033 struct kvec *iov; 1034 unsigned int nwords; 1035 unsigned int end; 1036 unsigned int padding; 1037 1038 len = xdr_align_pages(xdr, len); 1039 if (len == 0) 1040 return 0; 1041 nwords = XDR_QUADLEN(len); 1042 padding = (nwords << 2) - len; 1043 xdr->iov = iov = buf->tail; 1044 /* Compute remaining message length. */ 1045 end = ((xdr->nwords - nwords) << 2) + padding; 1046 if (end > iov->iov_len) 1047 end = iov->iov_len; 1048 1049 /* 1050 * Position current pointer at beginning of tail, and 1051 * set remaining message length. 1052 */ 1053 xdr->p = (__be32 *)((char *)iov->iov_base + padding); 1054 xdr->end = (__be32 *)((char *)iov->iov_base + end); 1055 xdr->page_ptr = NULL; 1056 xdr->nwords = XDR_QUADLEN(end - padding); 1057 return len; 1058 } 1059 EXPORT_SYMBOL_GPL(xdr_read_pages); 1060 1061 /** 1062 * xdr_enter_page - decode data from the XDR page 1063 * @xdr: pointer to xdr_stream struct 1064 * @len: number of bytes of page data 1065 * 1066 * Moves data beyond the current pointer position from the XDR head[] buffer 1067 * into the page list. Any data that lies beyond current position + "len" 1068 * bytes is moved into the XDR tail[]. The current pointer is then 1069 * repositioned at the beginning of the first XDR page. 1070 */ 1071 void xdr_enter_page(struct xdr_stream *xdr, unsigned int len) 1072 { 1073 len = xdr_align_pages(xdr, len); 1074 /* 1075 * Position current pointer at beginning of tail, and 1076 * set remaining message length. 1077 */ 1078 if (len != 0) 1079 xdr_set_page_base(xdr, 0, len); 1080 } 1081 EXPORT_SYMBOL_GPL(xdr_enter_page); 1082 1083 static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0}; 1084 1085 void 1086 xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf) 1087 { 1088 buf->head[0] = *iov; 1089 buf->tail[0] = empty_iov; 1090 buf->page_len = 0; 1091 buf->buflen = buf->len = iov->iov_len; 1092 } 1093 EXPORT_SYMBOL_GPL(xdr_buf_from_iov); 1094 1095 /** 1096 * xdr_buf_subsegment - set subbuf to a portion of buf 1097 * @buf: an xdr buffer 1098 * @subbuf: the result buffer 1099 * @base: beginning of range in bytes 1100 * @len: length of range in bytes 1101 * 1102 * sets @subbuf to an xdr buffer representing the portion of @buf of 1103 * length @len starting at offset @base. 1104 * 1105 * @buf and @subbuf may be pointers to the same struct xdr_buf. 1106 * 1107 * Returns -1 if base of length are out of bounds. 1108 */ 1109 int 1110 xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf, 1111 unsigned int base, unsigned int len) 1112 { 1113 subbuf->buflen = subbuf->len = len; 1114 if (base < buf->head[0].iov_len) { 1115 subbuf->head[0].iov_base = buf->head[0].iov_base + base; 1116 subbuf->head[0].iov_len = min_t(unsigned int, len, 1117 buf->head[0].iov_len - base); 1118 len -= subbuf->head[0].iov_len; 1119 base = 0; 1120 } else { 1121 base -= buf->head[0].iov_len; 1122 subbuf->head[0].iov_len = 0; 1123 } 1124 1125 if (base < buf->page_len) { 1126 subbuf->page_len = min(buf->page_len - base, len); 1127 base += buf->page_base; 1128 subbuf->page_base = base & ~PAGE_MASK; 1129 subbuf->pages = &buf->pages[base >> PAGE_SHIFT]; 1130 len -= subbuf->page_len; 1131 base = 0; 1132 } else { 1133 base -= buf->page_len; 1134 subbuf->page_len = 0; 1135 } 1136 1137 if (base < buf->tail[0].iov_len) { 1138 subbuf->tail[0].iov_base = buf->tail[0].iov_base + base; 1139 subbuf->tail[0].iov_len = min_t(unsigned int, len, 1140 buf->tail[0].iov_len - base); 1141 len -= subbuf->tail[0].iov_len; 1142 base = 0; 1143 } else { 1144 base -= buf->tail[0].iov_len; 1145 subbuf->tail[0].iov_len = 0; 1146 } 1147 1148 if (base || len) 1149 return -1; 1150 return 0; 1151 } 1152 EXPORT_SYMBOL_GPL(xdr_buf_subsegment); 1153 1154 static void __read_bytes_from_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len) 1155 { 1156 unsigned int this_len; 1157 1158 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1159 memcpy(obj, subbuf->head[0].iov_base, this_len); 1160 len -= this_len; 1161 obj += this_len; 1162 this_len = min_t(unsigned int, len, subbuf->page_len); 1163 if (this_len) 1164 _copy_from_pages(obj, subbuf->pages, subbuf->page_base, this_len); 1165 len -= this_len; 1166 obj += this_len; 1167 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1168 memcpy(obj, subbuf->tail[0].iov_base, this_len); 1169 } 1170 1171 /* obj is assumed to point to allocated memory of size at least len: */ 1172 int read_bytes_from_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len) 1173 { 1174 struct xdr_buf subbuf; 1175 int status; 1176 1177 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1178 if (status != 0) 1179 return status; 1180 __read_bytes_from_xdr_buf(&subbuf, obj, len); 1181 return 0; 1182 } 1183 EXPORT_SYMBOL_GPL(read_bytes_from_xdr_buf); 1184 1185 static void __write_bytes_to_xdr_buf(struct xdr_buf *subbuf, void *obj, unsigned int len) 1186 { 1187 unsigned int this_len; 1188 1189 this_len = min_t(unsigned int, len, subbuf->head[0].iov_len); 1190 memcpy(subbuf->head[0].iov_base, obj, this_len); 1191 len -= this_len; 1192 obj += this_len; 1193 this_len = min_t(unsigned int, len, subbuf->page_len); 1194 if (this_len) 1195 _copy_to_pages(subbuf->pages, subbuf->page_base, obj, this_len); 1196 len -= this_len; 1197 obj += this_len; 1198 this_len = min_t(unsigned int, len, subbuf->tail[0].iov_len); 1199 memcpy(subbuf->tail[0].iov_base, obj, this_len); 1200 } 1201 1202 /* obj is assumed to point to allocated memory of size at least len: */ 1203 int write_bytes_to_xdr_buf(struct xdr_buf *buf, unsigned int base, void *obj, unsigned int len) 1204 { 1205 struct xdr_buf subbuf; 1206 int status; 1207 1208 status = xdr_buf_subsegment(buf, &subbuf, base, len); 1209 if (status != 0) 1210 return status; 1211 __write_bytes_to_xdr_buf(&subbuf, obj, len); 1212 return 0; 1213 } 1214 EXPORT_SYMBOL_GPL(write_bytes_to_xdr_buf); 1215 1216 int 1217 xdr_decode_word(struct xdr_buf *buf, unsigned int base, u32 *obj) 1218 { 1219 __be32 raw; 1220 int status; 1221 1222 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj)); 1223 if (status) 1224 return status; 1225 *obj = be32_to_cpu(raw); 1226 return 0; 1227 } 1228 EXPORT_SYMBOL_GPL(xdr_decode_word); 1229 1230 int 1231 xdr_encode_word(struct xdr_buf *buf, unsigned int base, u32 obj) 1232 { 1233 __be32 raw = cpu_to_be32(obj); 1234 1235 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj)); 1236 } 1237 EXPORT_SYMBOL_GPL(xdr_encode_word); 1238 1239 /* If the netobj starting offset bytes from the start of xdr_buf is contained 1240 * entirely in the head, pages, or tail, set object to point to it; otherwise 1241 * shift the buffer until it is contained entirely within the pages or tail. 1242 */ 1243 int xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, unsigned int offset) 1244 { 1245 struct xdr_buf subbuf; 1246 unsigned int boundary; 1247 1248 if (xdr_decode_word(buf, offset, &obj->len)) 1249 return -EFAULT; 1250 offset += 4; 1251 1252 /* Is the obj partially in the head? */ 1253 boundary = buf->head[0].iov_len; 1254 if (offset < boundary && (offset + obj->len) > boundary) 1255 xdr_shift_buf(buf, boundary - offset); 1256 1257 /* Is the obj partially in the pages? */ 1258 boundary += buf->page_len; 1259 if (offset < boundary && (offset + obj->len) > boundary) 1260 xdr_shrink_pagelen(buf, boundary - offset); 1261 1262 if (xdr_buf_subsegment(buf, &subbuf, offset, obj->len)) 1263 return -EFAULT; 1264 1265 /* Is the obj contained entirely in the head? */ 1266 obj->data = subbuf.head[0].iov_base; 1267 if (subbuf.head[0].iov_len == obj->len) 1268 return 0; 1269 /* ..or is the obj contained entirely in the tail? */ 1270 obj->data = subbuf.tail[0].iov_base; 1271 if (subbuf.tail[0].iov_len == obj->len) 1272 return 0; 1273 1274 /* Find a contiguous area in @buf to hold all of @obj */ 1275 if (obj->len > buf->buflen - buf->len) 1276 return -ENOMEM; 1277 if (buf->tail[0].iov_len != 0) 1278 obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len; 1279 else 1280 obj->data = buf->head[0].iov_base + buf->head[0].iov_len; 1281 __read_bytes_from_xdr_buf(&subbuf, obj->data, obj->len); 1282 return 0; 1283 } 1284 EXPORT_SYMBOL_GPL(xdr_buf_read_netobj); 1285 1286 /* Returns 0 on success, or else a negative error code. */ 1287 static int 1288 xdr_xcode_array2(struct xdr_buf *buf, unsigned int base, 1289 struct xdr_array2_desc *desc, int encode) 1290 { 1291 char *elem = NULL, *c; 1292 unsigned int copied = 0, todo, avail_here; 1293 struct page **ppages = NULL; 1294 int err; 1295 1296 if (encode) { 1297 if (xdr_encode_word(buf, base, desc->array_len) != 0) 1298 return -EINVAL; 1299 } else { 1300 if (xdr_decode_word(buf, base, &desc->array_len) != 0 || 1301 desc->array_len > desc->array_maxlen || 1302 (unsigned long) base + 4 + desc->array_len * 1303 desc->elem_size > buf->len) 1304 return -EINVAL; 1305 } 1306 base += 4; 1307 1308 if (!desc->xcode) 1309 return 0; 1310 1311 todo = desc->array_len * desc->elem_size; 1312 1313 /* process head */ 1314 if (todo && base < buf->head->iov_len) { 1315 c = buf->head->iov_base + base; 1316 avail_here = min_t(unsigned int, todo, 1317 buf->head->iov_len - base); 1318 todo -= avail_here; 1319 1320 while (avail_here >= desc->elem_size) { 1321 err = desc->xcode(desc, c); 1322 if (err) 1323 goto out; 1324 c += desc->elem_size; 1325 avail_here -= desc->elem_size; 1326 } 1327 if (avail_here) { 1328 if (!elem) { 1329 elem = kmalloc(desc->elem_size, GFP_KERNEL); 1330 err = -ENOMEM; 1331 if (!elem) 1332 goto out; 1333 } 1334 if (encode) { 1335 err = desc->xcode(desc, elem); 1336 if (err) 1337 goto out; 1338 memcpy(c, elem, avail_here); 1339 } else 1340 memcpy(elem, c, avail_here); 1341 copied = avail_here; 1342 } 1343 base = buf->head->iov_len; /* align to start of pages */ 1344 } 1345 1346 /* process pages array */ 1347 base -= buf->head->iov_len; 1348 if (todo && base < buf->page_len) { 1349 unsigned int avail_page; 1350 1351 avail_here = min(todo, buf->page_len - base); 1352 todo -= avail_here; 1353 1354 base += buf->page_base; 1355 ppages = buf->pages + (base >> PAGE_SHIFT); 1356 base &= ~PAGE_MASK; 1357 avail_page = min_t(unsigned int, PAGE_SIZE - base, 1358 avail_here); 1359 c = kmap(*ppages) + base; 1360 1361 while (avail_here) { 1362 avail_here -= avail_page; 1363 if (copied || avail_page < desc->elem_size) { 1364 unsigned int l = min(avail_page, 1365 desc->elem_size - copied); 1366 if (!elem) { 1367 elem = kmalloc(desc->elem_size, 1368 GFP_KERNEL); 1369 err = -ENOMEM; 1370 if (!elem) 1371 goto out; 1372 } 1373 if (encode) { 1374 if (!copied) { 1375 err = desc->xcode(desc, elem); 1376 if (err) 1377 goto out; 1378 } 1379 memcpy(c, elem + copied, l); 1380 copied += l; 1381 if (copied == desc->elem_size) 1382 copied = 0; 1383 } else { 1384 memcpy(elem + copied, c, l); 1385 copied += l; 1386 if (copied == desc->elem_size) { 1387 err = desc->xcode(desc, elem); 1388 if (err) 1389 goto out; 1390 copied = 0; 1391 } 1392 } 1393 avail_page -= l; 1394 c += l; 1395 } 1396 while (avail_page >= desc->elem_size) { 1397 err = desc->xcode(desc, c); 1398 if (err) 1399 goto out; 1400 c += desc->elem_size; 1401 avail_page -= desc->elem_size; 1402 } 1403 if (avail_page) { 1404 unsigned int l = min(avail_page, 1405 desc->elem_size - copied); 1406 if (!elem) { 1407 elem = kmalloc(desc->elem_size, 1408 GFP_KERNEL); 1409 err = -ENOMEM; 1410 if (!elem) 1411 goto out; 1412 } 1413 if (encode) { 1414 if (!copied) { 1415 err = desc->xcode(desc, elem); 1416 if (err) 1417 goto out; 1418 } 1419 memcpy(c, elem + copied, l); 1420 copied += l; 1421 if (copied == desc->elem_size) 1422 copied = 0; 1423 } else { 1424 memcpy(elem + copied, c, l); 1425 copied += l; 1426 if (copied == desc->elem_size) { 1427 err = desc->xcode(desc, elem); 1428 if (err) 1429 goto out; 1430 copied = 0; 1431 } 1432 } 1433 } 1434 if (avail_here) { 1435 kunmap(*ppages); 1436 ppages++; 1437 c = kmap(*ppages); 1438 } 1439 1440 avail_page = min(avail_here, 1441 (unsigned int) PAGE_SIZE); 1442 } 1443 base = buf->page_len; /* align to start of tail */ 1444 } 1445 1446 /* process tail */ 1447 base -= buf->page_len; 1448 if (todo) { 1449 c = buf->tail->iov_base + base; 1450 if (copied) { 1451 unsigned int l = desc->elem_size - copied; 1452 1453 if (encode) 1454 memcpy(c, elem + copied, l); 1455 else { 1456 memcpy(elem + copied, c, l); 1457 err = desc->xcode(desc, elem); 1458 if (err) 1459 goto out; 1460 } 1461 todo -= l; 1462 c += l; 1463 } 1464 while (todo) { 1465 err = desc->xcode(desc, c); 1466 if (err) 1467 goto out; 1468 c += desc->elem_size; 1469 todo -= desc->elem_size; 1470 } 1471 } 1472 err = 0; 1473 1474 out: 1475 kfree(elem); 1476 if (ppages) 1477 kunmap(*ppages); 1478 return err; 1479 } 1480 1481 int 1482 xdr_decode_array2(struct xdr_buf *buf, unsigned int base, 1483 struct xdr_array2_desc *desc) 1484 { 1485 if (base >= buf->len) 1486 return -EINVAL; 1487 1488 return xdr_xcode_array2(buf, base, desc, 0); 1489 } 1490 EXPORT_SYMBOL_GPL(xdr_decode_array2); 1491 1492 int 1493 xdr_encode_array2(struct xdr_buf *buf, unsigned int base, 1494 struct xdr_array2_desc *desc) 1495 { 1496 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size > 1497 buf->head->iov_len + buf->page_len + buf->tail->iov_len) 1498 return -EINVAL; 1499 1500 return xdr_xcode_array2(buf, base, desc, 1); 1501 } 1502 EXPORT_SYMBOL_GPL(xdr_encode_array2); 1503 1504 int 1505 xdr_process_buf(struct xdr_buf *buf, unsigned int offset, unsigned int len, 1506 int (*actor)(struct scatterlist *, void *), void *data) 1507 { 1508 int i, ret = 0; 1509 unsigned int page_len, thislen, page_offset; 1510 struct scatterlist sg[1]; 1511 1512 sg_init_table(sg, 1); 1513 1514 if (offset >= buf->head[0].iov_len) { 1515 offset -= buf->head[0].iov_len; 1516 } else { 1517 thislen = buf->head[0].iov_len - offset; 1518 if (thislen > len) 1519 thislen = len; 1520 sg_set_buf(sg, buf->head[0].iov_base + offset, thislen); 1521 ret = actor(sg, data); 1522 if (ret) 1523 goto out; 1524 offset = 0; 1525 len -= thislen; 1526 } 1527 if (len == 0) 1528 goto out; 1529 1530 if (offset >= buf->page_len) { 1531 offset -= buf->page_len; 1532 } else { 1533 page_len = buf->page_len - offset; 1534 if (page_len > len) 1535 page_len = len; 1536 len -= page_len; 1537 page_offset = (offset + buf->page_base) & (PAGE_SIZE - 1); 1538 i = (offset + buf->page_base) >> PAGE_SHIFT; 1539 thislen = PAGE_SIZE - page_offset; 1540 do { 1541 if (thislen > page_len) 1542 thislen = page_len; 1543 sg_set_page(sg, buf->pages[i], thislen, page_offset); 1544 ret = actor(sg, data); 1545 if (ret) 1546 goto out; 1547 page_len -= thislen; 1548 i++; 1549 page_offset = 0; 1550 thislen = PAGE_SIZE; 1551 } while (page_len != 0); 1552 offset = 0; 1553 } 1554 if (len == 0) 1555 goto out; 1556 if (offset < buf->tail[0].iov_len) { 1557 thislen = buf->tail[0].iov_len - offset; 1558 if (thislen > len) 1559 thislen = len; 1560 sg_set_buf(sg, buf->tail[0].iov_base + offset, thislen); 1561 ret = actor(sg, data); 1562 len -= thislen; 1563 } 1564 if (len != 0) 1565 ret = -EINVAL; 1566 out: 1567 return ret; 1568 } 1569 EXPORT_SYMBOL_GPL(xdr_process_buf); 1570 1571 /** 1572 * xdr_stream_decode_opaque - Decode variable length opaque 1573 * @xdr: pointer to xdr_stream 1574 * @ptr: location to store opaque data 1575 * @size: size of storage buffer @ptr 1576 * 1577 * Return values: 1578 * On success, returns size of object stored in *@ptr 1579 * %-EBADMSG on XDR buffer overflow 1580 * %-EMSGSIZE on overflow of storage buffer @ptr 1581 */ 1582 ssize_t xdr_stream_decode_opaque(struct xdr_stream *xdr, void *ptr, size_t size) 1583 { 1584 ssize_t ret; 1585 void *p; 1586 1587 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 1588 if (ret <= 0) 1589 return ret; 1590 memcpy(ptr, p, ret); 1591 return ret; 1592 } 1593 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque); 1594 1595 /** 1596 * xdr_stream_decode_opaque_dup - Decode and duplicate variable length opaque 1597 * @xdr: pointer to xdr_stream 1598 * @ptr: location to store pointer to opaque data 1599 * @maxlen: maximum acceptable object size 1600 * @gfp_flags: GFP mask to use 1601 * 1602 * Return values: 1603 * On success, returns size of object stored in *@ptr 1604 * %-EBADMSG on XDR buffer overflow 1605 * %-EMSGSIZE if the size of the object would exceed @maxlen 1606 * %-ENOMEM on memory allocation failure 1607 */ 1608 ssize_t xdr_stream_decode_opaque_dup(struct xdr_stream *xdr, void **ptr, 1609 size_t maxlen, gfp_t gfp_flags) 1610 { 1611 ssize_t ret; 1612 void *p; 1613 1614 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 1615 if (ret > 0) { 1616 *ptr = kmemdup(p, ret, gfp_flags); 1617 if (*ptr != NULL) 1618 return ret; 1619 ret = -ENOMEM; 1620 } 1621 *ptr = NULL; 1622 return ret; 1623 } 1624 EXPORT_SYMBOL_GPL(xdr_stream_decode_opaque_dup); 1625 1626 /** 1627 * xdr_stream_decode_string - Decode variable length string 1628 * @xdr: pointer to xdr_stream 1629 * @str: location to store string 1630 * @size: size of storage buffer @str 1631 * 1632 * Return values: 1633 * On success, returns length of NUL-terminated string stored in *@str 1634 * %-EBADMSG on XDR buffer overflow 1635 * %-EMSGSIZE on overflow of storage buffer @str 1636 */ 1637 ssize_t xdr_stream_decode_string(struct xdr_stream *xdr, char *str, size_t size) 1638 { 1639 ssize_t ret; 1640 void *p; 1641 1642 ret = xdr_stream_decode_opaque_inline(xdr, &p, size); 1643 if (ret > 0) { 1644 memcpy(str, p, ret); 1645 str[ret] = '\0'; 1646 return strlen(str); 1647 } 1648 *str = '\0'; 1649 return ret; 1650 } 1651 EXPORT_SYMBOL_GPL(xdr_stream_decode_string); 1652 1653 /** 1654 * xdr_stream_decode_string_dup - Decode and duplicate variable length string 1655 * @xdr: pointer to xdr_stream 1656 * @str: location to store pointer to string 1657 * @maxlen: maximum acceptable string length 1658 * @gfp_flags: GFP mask to use 1659 * 1660 * Return values: 1661 * On success, returns length of NUL-terminated string stored in *@ptr 1662 * %-EBADMSG on XDR buffer overflow 1663 * %-EMSGSIZE if the size of the string would exceed @maxlen 1664 * %-ENOMEM on memory allocation failure 1665 */ 1666 ssize_t xdr_stream_decode_string_dup(struct xdr_stream *xdr, char **str, 1667 size_t maxlen, gfp_t gfp_flags) 1668 { 1669 void *p; 1670 ssize_t ret; 1671 1672 ret = xdr_stream_decode_opaque_inline(xdr, &p, maxlen); 1673 if (ret > 0) { 1674 char *s = kmalloc(ret + 1, gfp_flags); 1675 if (s != NULL) { 1676 memcpy(s, p, ret); 1677 s[ret] = '\0'; 1678 *str = s; 1679 return strlen(s); 1680 } 1681 ret = -ENOMEM; 1682 } 1683 *str = NULL; 1684 return ret; 1685 } 1686 EXPORT_SYMBOL_GPL(xdr_stream_decode_string_dup); 1687
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.