1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 46 47 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 48 unsigned int recursion_level) 49 { 50 int start = skb_headlen(skb); 51 int i, chunk = start - offset; 52 struct sk_buff *frag_iter; 53 int elt = 0; 54 55 if (unlikely(recursion_level >= 24)) 56 return -EMSGSIZE; 57 58 if (chunk > 0) { 59 if (chunk > len) 60 chunk = len; 61 elt++; 62 len -= chunk; 63 if (len == 0) 64 return elt; 65 offset += chunk; 66 } 67 68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 69 int end; 70 71 WARN_ON(start > offset + len); 72 73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 74 chunk = end - offset; 75 if (chunk > 0) { 76 if (chunk > len) 77 chunk = len; 78 elt++; 79 len -= chunk; 80 if (len == 0) 81 return elt; 82 offset += chunk; 83 } 84 start = end; 85 } 86 87 if (unlikely(skb_has_frag_list(skb))) { 88 skb_walk_frags(skb, frag_iter) { 89 int end, ret; 90 91 WARN_ON(start > offset + len); 92 93 end = start + frag_iter->len; 94 chunk = end - offset; 95 if (chunk > 0) { 96 if (chunk > len) 97 chunk = len; 98 ret = __skb_nsg(frag_iter, offset - start, chunk, 99 recursion_level + 1); 100 if (unlikely(ret < 0)) 101 return ret; 102 elt += ret; 103 len -= chunk; 104 if (len == 0) 105 return elt; 106 offset += chunk; 107 } 108 start = end; 109 } 110 } 111 BUG_ON(len); 112 return elt; 113 } 114 115 /* Return the number of scatterlist elements required to completely map the 116 * skb, or -EMSGSIZE if the recursion depth is exceeded. 117 */ 118 static int skb_nsg(struct sk_buff *skb, int offset, int len) 119 { 120 return __skb_nsg(skb, offset, len, 0); 121 } 122 123 static void tls_decrypt_done(struct crypto_async_request *req, int err) 124 { 125 struct aead_request *aead_req = (struct aead_request *)req; 126 struct scatterlist *sgout = aead_req->dst; 127 struct tls_sw_context_rx *ctx; 128 struct tls_context *tls_ctx; 129 struct scatterlist *sg; 130 struct sk_buff *skb; 131 unsigned int pages; 132 int pending; 133 134 skb = (struct sk_buff *)req->data; 135 tls_ctx = tls_get_ctx(skb->sk); 136 ctx = tls_sw_ctx_rx(tls_ctx); 137 pending = atomic_dec_return(&ctx->decrypt_pending); 138 139 /* Propagate if there was an err */ 140 if (err) { 141 ctx->async_wait.err = err; 142 tls_err_abort(skb->sk, err); 143 } 144 145 /* After using skb->sk to propagate sk through crypto async callback 146 * we need to NULL it again. 147 */ 148 skb->sk = NULL; 149 150 /* Release the skb, pages and memory allocated for crypto req */ 151 kfree_skb(skb); 152 153 /* Skip the first S/G entry as it points to AAD */ 154 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 155 if (!sg) 156 break; 157 put_page(sg_page(sg)); 158 } 159 160 kfree(aead_req); 161 162 if (!pending && READ_ONCE(ctx->async_notify)) 163 complete(&ctx->async_wait.completion); 164 } 165 166 static int tls_do_decryption(struct sock *sk, 167 struct sk_buff *skb, 168 struct scatterlist *sgin, 169 struct scatterlist *sgout, 170 char *iv_recv, 171 size_t data_len, 172 struct aead_request *aead_req, 173 bool async) 174 { 175 struct tls_context *tls_ctx = tls_get_ctx(sk); 176 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 177 int ret; 178 179 aead_request_set_tfm(aead_req, ctx->aead_recv); 180 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 181 aead_request_set_crypt(aead_req, sgin, sgout, 182 data_len + tls_ctx->rx.tag_size, 183 (u8 *)iv_recv); 184 185 if (async) { 186 /* Using skb->sk to push sk through to crypto async callback 187 * handler. This allows propagating errors up to the socket 188 * if needed. It _must_ be cleared in the async handler 189 * before kfree_skb is called. We _know_ skb->sk is NULL 190 * because it is a clone from strparser. 191 */ 192 skb->sk = sk; 193 aead_request_set_callback(aead_req, 194 CRYPTO_TFM_REQ_MAY_BACKLOG, 195 tls_decrypt_done, skb); 196 atomic_inc(&ctx->decrypt_pending); 197 } else { 198 aead_request_set_callback(aead_req, 199 CRYPTO_TFM_REQ_MAY_BACKLOG, 200 crypto_req_done, &ctx->async_wait); 201 } 202 203 ret = crypto_aead_decrypt(aead_req); 204 if (ret == -EINPROGRESS) { 205 if (async) 206 return ret; 207 208 ret = crypto_wait_req(ret, &ctx->async_wait); 209 } 210 211 if (async) 212 atomic_dec(&ctx->decrypt_pending); 213 214 return ret; 215 } 216 217 static void tls_trim_both_msgs(struct sock *sk, int target_size) 218 { 219 struct tls_context *tls_ctx = tls_get_ctx(sk); 220 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 221 struct tls_rec *rec = ctx->open_rec; 222 223 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 224 if (target_size > 0) 225 target_size += tls_ctx->tx.overhead_size; 226 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 227 } 228 229 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 230 { 231 struct tls_context *tls_ctx = tls_get_ctx(sk); 232 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 233 struct tls_rec *rec = ctx->open_rec; 234 struct sk_msg *msg_en = &rec->msg_encrypted; 235 236 return sk_msg_alloc(sk, msg_en, len, 0); 237 } 238 239 static int tls_clone_plaintext_msg(struct sock *sk, int required) 240 { 241 struct tls_context *tls_ctx = tls_get_ctx(sk); 242 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 243 struct tls_rec *rec = ctx->open_rec; 244 struct sk_msg *msg_pl = &rec->msg_plaintext; 245 struct sk_msg *msg_en = &rec->msg_encrypted; 246 int skip, len; 247 248 /* We add page references worth len bytes from encrypted sg 249 * at the end of plaintext sg. It is guaranteed that msg_en 250 * has enough required room (ensured by caller). 251 */ 252 len = required - msg_pl->sg.size; 253 254 /* Skip initial bytes in msg_en's data to be able to use 255 * same offset of both plain and encrypted data. 256 */ 257 skip = tls_ctx->tx.prepend_size + msg_pl->sg.size; 258 259 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 260 } 261 262 static struct tls_rec *tls_get_rec(struct sock *sk) 263 { 264 struct tls_context *tls_ctx = tls_get_ctx(sk); 265 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 266 struct sk_msg *msg_pl, *msg_en; 267 struct tls_rec *rec; 268 int mem_size; 269 270 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 271 272 rec = kzalloc(mem_size, sk->sk_allocation); 273 if (!rec) 274 return NULL; 275 276 msg_pl = &rec->msg_plaintext; 277 msg_en = &rec->msg_encrypted; 278 279 sk_msg_init(msg_pl); 280 sk_msg_init(msg_en); 281 282 sg_init_table(rec->sg_aead_in, 2); 283 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, 284 sizeof(rec->aad_space)); 285 sg_unmark_end(&rec->sg_aead_in[1]); 286 287 sg_init_table(rec->sg_aead_out, 2); 288 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, 289 sizeof(rec->aad_space)); 290 sg_unmark_end(&rec->sg_aead_out[1]); 291 292 return rec; 293 } 294 295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 296 { 297 sk_msg_free(sk, &rec->msg_encrypted); 298 sk_msg_free(sk, &rec->msg_plaintext); 299 kfree(rec); 300 } 301 302 static void tls_free_open_rec(struct sock *sk) 303 { 304 struct tls_context *tls_ctx = tls_get_ctx(sk); 305 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 306 struct tls_rec *rec = ctx->open_rec; 307 308 if (rec) { 309 tls_free_rec(sk, rec); 310 ctx->open_rec = NULL; 311 } 312 } 313 314 int tls_tx_records(struct sock *sk, int flags) 315 { 316 struct tls_context *tls_ctx = tls_get_ctx(sk); 317 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 318 struct tls_rec *rec, *tmp; 319 struct sk_msg *msg_en; 320 int tx_flags, rc = 0; 321 322 if (tls_is_partially_sent_record(tls_ctx)) { 323 rec = list_first_entry(&ctx->tx_list, 324 struct tls_rec, list); 325 326 if (flags == -1) 327 tx_flags = rec->tx_flags; 328 else 329 tx_flags = flags; 330 331 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 332 if (rc) 333 goto tx_err; 334 335 /* Full record has been transmitted. 336 * Remove the head of tx_list 337 */ 338 list_del(&rec->list); 339 sk_msg_free(sk, &rec->msg_plaintext); 340 kfree(rec); 341 } 342 343 /* Tx all ready records */ 344 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 345 if (READ_ONCE(rec->tx_ready)) { 346 if (flags == -1) 347 tx_flags = rec->tx_flags; 348 else 349 tx_flags = flags; 350 351 msg_en = &rec->msg_encrypted; 352 rc = tls_push_sg(sk, tls_ctx, 353 &msg_en->sg.data[msg_en->sg.curr], 354 0, tx_flags); 355 if (rc) 356 goto tx_err; 357 358 list_del(&rec->list); 359 sk_msg_free(sk, &rec->msg_plaintext); 360 kfree(rec); 361 } else { 362 break; 363 } 364 } 365 366 tx_err: 367 if (rc < 0 && rc != -EAGAIN) 368 tls_err_abort(sk, EBADMSG); 369 370 return rc; 371 } 372 373 static void tls_encrypt_done(struct crypto_async_request *req, int err) 374 { 375 struct aead_request *aead_req = (struct aead_request *)req; 376 struct sock *sk = req->data; 377 struct tls_context *tls_ctx = tls_get_ctx(sk); 378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 379 struct scatterlist *sge; 380 struct sk_msg *msg_en; 381 struct tls_rec *rec; 382 bool ready = false; 383 int pending; 384 385 rec = container_of(aead_req, struct tls_rec, aead_req); 386 msg_en = &rec->msg_encrypted; 387 388 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 389 sge->offset -= tls_ctx->tx.prepend_size; 390 sge->length += tls_ctx->tx.prepend_size; 391 392 /* Check if error is previously set on socket */ 393 if (err || sk->sk_err) { 394 rec = NULL; 395 396 /* If err is already set on socket, return the same code */ 397 if (sk->sk_err) { 398 ctx->async_wait.err = sk->sk_err; 399 } else { 400 ctx->async_wait.err = err; 401 tls_err_abort(sk, err); 402 } 403 } 404 405 if (rec) { 406 struct tls_rec *first_rec; 407 408 /* Mark the record as ready for transmission */ 409 smp_store_mb(rec->tx_ready, true); 410 411 /* If received record is at head of tx_list, schedule tx */ 412 first_rec = list_first_entry(&ctx->tx_list, 413 struct tls_rec, list); 414 if (rec == first_rec) 415 ready = true; 416 } 417 418 pending = atomic_dec_return(&ctx->encrypt_pending); 419 420 if (!pending && READ_ONCE(ctx->async_notify)) 421 complete(&ctx->async_wait.completion); 422 423 if (!ready) 424 return; 425 426 /* Schedule the transmission */ 427 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 428 schedule_delayed_work(&ctx->tx_work.work, 1); 429 } 430 431 static int tls_do_encryption(struct sock *sk, 432 struct tls_context *tls_ctx, 433 struct tls_sw_context_tx *ctx, 434 struct aead_request *aead_req, 435 size_t data_len, u32 start) 436 { 437 struct tls_rec *rec = ctx->open_rec; 438 struct sk_msg *msg_en = &rec->msg_encrypted; 439 struct scatterlist *sge = sk_msg_elem(msg_en, start); 440 int rc; 441 442 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data)); 443 444 sge->offset += tls_ctx->tx.prepend_size; 445 sge->length -= tls_ctx->tx.prepend_size; 446 447 msg_en->sg.curr = start; 448 449 aead_request_set_tfm(aead_req, ctx->aead_send); 450 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 451 aead_request_set_crypt(aead_req, rec->sg_aead_in, 452 rec->sg_aead_out, 453 data_len, rec->iv_data); 454 455 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 456 tls_encrypt_done, sk); 457 458 /* Add the record in tx_list */ 459 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 460 atomic_inc(&ctx->encrypt_pending); 461 462 rc = crypto_aead_encrypt(aead_req); 463 if (!rc || rc != -EINPROGRESS) { 464 atomic_dec(&ctx->encrypt_pending); 465 sge->offset -= tls_ctx->tx.prepend_size; 466 sge->length += tls_ctx->tx.prepend_size; 467 } 468 469 if (!rc) { 470 WRITE_ONCE(rec->tx_ready, true); 471 } else if (rc != -EINPROGRESS) { 472 list_del(&rec->list); 473 return rc; 474 } 475 476 /* Unhook the record from context if encryption is not failure */ 477 ctx->open_rec = NULL; 478 tls_advance_record_sn(sk, &tls_ctx->tx); 479 return rc; 480 } 481 482 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 483 struct tls_rec **to, struct sk_msg *msg_opl, 484 struct sk_msg *msg_oen, u32 split_point, 485 u32 tx_overhead_size, u32 *orig_end) 486 { 487 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 488 struct scatterlist *sge, *osge, *nsge; 489 u32 orig_size = msg_opl->sg.size; 490 struct scatterlist tmp = { }; 491 struct sk_msg *msg_npl; 492 struct tls_rec *new; 493 int ret; 494 495 new = tls_get_rec(sk); 496 if (!new) 497 return -ENOMEM; 498 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 499 tx_overhead_size, 0); 500 if (ret < 0) { 501 tls_free_rec(sk, new); 502 return ret; 503 } 504 505 *orig_end = msg_opl->sg.end; 506 i = msg_opl->sg.start; 507 sge = sk_msg_elem(msg_opl, i); 508 while (apply && sge->length) { 509 if (sge->length > apply) { 510 u32 len = sge->length - apply; 511 512 get_page(sg_page(sge)); 513 sg_set_page(&tmp, sg_page(sge), len, 514 sge->offset + apply); 515 sge->length = apply; 516 bytes += apply; 517 apply = 0; 518 } else { 519 apply -= sge->length; 520 bytes += sge->length; 521 } 522 523 sk_msg_iter_var_next(i); 524 if (i == msg_opl->sg.end) 525 break; 526 sge = sk_msg_elem(msg_opl, i); 527 } 528 529 msg_opl->sg.end = i; 530 msg_opl->sg.curr = i; 531 msg_opl->sg.copybreak = 0; 532 msg_opl->apply_bytes = 0; 533 msg_opl->sg.size = bytes; 534 535 msg_npl = &new->msg_plaintext; 536 msg_npl->apply_bytes = apply; 537 msg_npl->sg.size = orig_size - bytes; 538 539 j = msg_npl->sg.start; 540 nsge = sk_msg_elem(msg_npl, j); 541 if (tmp.length) { 542 memcpy(nsge, &tmp, sizeof(*nsge)); 543 sk_msg_iter_var_next(j); 544 nsge = sk_msg_elem(msg_npl, j); 545 } 546 547 osge = sk_msg_elem(msg_opl, i); 548 while (osge->length) { 549 memcpy(nsge, osge, sizeof(*nsge)); 550 sg_unmark_end(nsge); 551 sk_msg_iter_var_next(i); 552 sk_msg_iter_var_next(j); 553 if (i == *orig_end) 554 break; 555 osge = sk_msg_elem(msg_opl, i); 556 nsge = sk_msg_elem(msg_npl, j); 557 } 558 559 msg_npl->sg.end = j; 560 msg_npl->sg.curr = j; 561 msg_npl->sg.copybreak = 0; 562 563 *to = new; 564 return 0; 565 } 566 567 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 568 struct tls_rec *from, u32 orig_end) 569 { 570 struct sk_msg *msg_npl = &from->msg_plaintext; 571 struct sk_msg *msg_opl = &to->msg_plaintext; 572 struct scatterlist *osge, *nsge; 573 u32 i, j; 574 575 i = msg_opl->sg.end; 576 sk_msg_iter_var_prev(i); 577 j = msg_npl->sg.start; 578 579 osge = sk_msg_elem(msg_opl, i); 580 nsge = sk_msg_elem(msg_npl, j); 581 582 if (sg_page(osge) == sg_page(nsge) && 583 osge->offset + osge->length == nsge->offset) { 584 osge->length += nsge->length; 585 put_page(sg_page(nsge)); 586 } 587 588 msg_opl->sg.end = orig_end; 589 msg_opl->sg.curr = orig_end; 590 msg_opl->sg.copybreak = 0; 591 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 592 msg_opl->sg.size += msg_npl->sg.size; 593 594 sk_msg_free(sk, &to->msg_encrypted); 595 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 596 597 kfree(from); 598 } 599 600 static int tls_push_record(struct sock *sk, int flags, 601 unsigned char record_type) 602 { 603 struct tls_context *tls_ctx = tls_get_ctx(sk); 604 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 605 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 606 u32 i, split_point, uninitialized_var(orig_end); 607 struct sk_msg *msg_pl, *msg_en; 608 struct aead_request *req; 609 bool split; 610 int rc; 611 612 if (!rec) 613 return 0; 614 615 msg_pl = &rec->msg_plaintext; 616 msg_en = &rec->msg_encrypted; 617 618 split_point = msg_pl->apply_bytes; 619 split = split_point && split_point < msg_pl->sg.size; 620 if (split) { 621 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 622 split_point, tls_ctx->tx.overhead_size, 623 &orig_end); 624 if (rc < 0) 625 return rc; 626 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 627 tls_ctx->tx.overhead_size); 628 } 629 630 rec->tx_flags = flags; 631 req = &rec->aead_req; 632 633 i = msg_pl->sg.end; 634 sk_msg_iter_var_prev(i); 635 sg_mark_end(sk_msg_elem(msg_pl, i)); 636 637 i = msg_pl->sg.start; 638 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 639 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 640 641 i = msg_en->sg.end; 642 sk_msg_iter_var_prev(i); 643 sg_mark_end(sk_msg_elem(msg_en, i)); 644 645 i = msg_en->sg.start; 646 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 647 648 tls_make_aad(rec->aad_space, msg_pl->sg.size, 649 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, 650 record_type); 651 652 tls_fill_prepend(tls_ctx, 653 page_address(sg_page(&msg_en->sg.data[i])) + 654 msg_en->sg.data[i].offset, msg_pl->sg.size, 655 record_type); 656 657 tls_ctx->pending_open_record_frags = false; 658 659 rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i); 660 if (rc < 0) { 661 if (rc != -EINPROGRESS) { 662 tls_err_abort(sk, EBADMSG); 663 if (split) { 664 tls_ctx->pending_open_record_frags = true; 665 tls_merge_open_record(sk, rec, tmp, orig_end); 666 } 667 } 668 return rc; 669 } else if (split) { 670 msg_pl = &tmp->msg_plaintext; 671 msg_en = &tmp->msg_encrypted; 672 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 673 tls_ctx->tx.overhead_size); 674 tls_ctx->pending_open_record_frags = true; 675 ctx->open_rec = tmp; 676 } 677 678 return tls_tx_records(sk, flags); 679 } 680 681 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 682 bool full_record, u8 record_type, 683 size_t *copied, int flags) 684 { 685 struct tls_context *tls_ctx = tls_get_ctx(sk); 686 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 687 struct sk_msg msg_redir = { }; 688 struct sk_psock *psock; 689 struct sock *sk_redir; 690 struct tls_rec *rec; 691 int err = 0, send; 692 bool enospc; 693 694 psock = sk_psock_get(sk); 695 if (!psock) 696 return tls_push_record(sk, flags, record_type); 697 more_data: 698 enospc = sk_msg_full(msg); 699 if (psock->eval == __SK_NONE) 700 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 701 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 702 !enospc && !full_record) { 703 err = -ENOSPC; 704 goto out_err; 705 } 706 msg->cork_bytes = 0; 707 send = msg->sg.size; 708 if (msg->apply_bytes && msg->apply_bytes < send) 709 send = msg->apply_bytes; 710 711 switch (psock->eval) { 712 case __SK_PASS: 713 err = tls_push_record(sk, flags, record_type); 714 if (err < 0) { 715 *copied -= sk_msg_free(sk, msg); 716 tls_free_open_rec(sk); 717 goto out_err; 718 } 719 break; 720 case __SK_REDIRECT: 721 sk_redir = psock->sk_redir; 722 memcpy(&msg_redir, msg, sizeof(*msg)); 723 if (msg->apply_bytes < send) 724 msg->apply_bytes = 0; 725 else 726 msg->apply_bytes -= send; 727 sk_msg_return_zero(sk, msg, send); 728 msg->sg.size -= send; 729 release_sock(sk); 730 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 731 lock_sock(sk); 732 if (err < 0) { 733 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 734 msg->sg.size = 0; 735 } 736 if (msg->sg.size == 0) 737 tls_free_open_rec(sk); 738 break; 739 case __SK_DROP: 740 default: 741 sk_msg_free_partial(sk, msg, send); 742 if (msg->apply_bytes < send) 743 msg->apply_bytes = 0; 744 else 745 msg->apply_bytes -= send; 746 if (msg->sg.size == 0) 747 tls_free_open_rec(sk); 748 *copied -= send; 749 err = -EACCES; 750 } 751 752 if (likely(!err)) { 753 bool reset_eval = !ctx->open_rec; 754 755 rec = ctx->open_rec; 756 if (rec) { 757 msg = &rec->msg_plaintext; 758 if (!msg->apply_bytes) 759 reset_eval = true; 760 } 761 if (reset_eval) { 762 psock->eval = __SK_NONE; 763 if (psock->sk_redir) { 764 sock_put(psock->sk_redir); 765 psock->sk_redir = NULL; 766 } 767 } 768 if (rec) 769 goto more_data; 770 } 771 out_err: 772 sk_psock_put(sk, psock); 773 return err; 774 } 775 776 static int tls_sw_push_pending_record(struct sock *sk, int flags) 777 { 778 struct tls_context *tls_ctx = tls_get_ctx(sk); 779 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 780 struct tls_rec *rec = ctx->open_rec; 781 struct sk_msg *msg_pl; 782 size_t copied; 783 784 if (!rec) 785 return 0; 786 787 msg_pl = &rec->msg_plaintext; 788 copied = msg_pl->sg.size; 789 if (!copied) 790 return 0; 791 792 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 793 &copied, flags); 794 } 795 796 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 797 { 798 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 799 struct tls_context *tls_ctx = tls_get_ctx(sk); 800 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 801 struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send); 802 bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 803 unsigned char record_type = TLS_RECORD_TYPE_DATA; 804 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 805 bool eor = !(msg->msg_flags & MSG_MORE); 806 size_t try_to_copy, copied = 0; 807 struct sk_msg *msg_pl, *msg_en; 808 struct tls_rec *rec; 809 int required_size; 810 int num_async = 0; 811 bool full_record; 812 int record_room; 813 int num_zc = 0; 814 int orig_size; 815 int ret = 0; 816 817 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 818 return -ENOTSUPP; 819 820 lock_sock(sk); 821 822 /* Wait till there is any pending write on socket */ 823 if (unlikely(sk->sk_write_pending)) { 824 ret = wait_on_pending_writer(sk, &timeo); 825 if (unlikely(ret)) 826 goto send_end; 827 } 828 829 if (unlikely(msg->msg_controllen)) { 830 ret = tls_proccess_cmsg(sk, msg, &record_type); 831 if (ret) { 832 if (ret == -EINPROGRESS) 833 num_async++; 834 else if (ret != -EAGAIN) 835 goto send_end; 836 } 837 } 838 839 while (msg_data_left(msg)) { 840 if (sk->sk_err) { 841 ret = -sk->sk_err; 842 goto send_end; 843 } 844 845 if (ctx->open_rec) 846 rec = ctx->open_rec; 847 else 848 rec = ctx->open_rec = tls_get_rec(sk); 849 if (!rec) { 850 ret = -ENOMEM; 851 goto send_end; 852 } 853 854 msg_pl = &rec->msg_plaintext; 855 msg_en = &rec->msg_encrypted; 856 857 orig_size = msg_pl->sg.size; 858 full_record = false; 859 try_to_copy = msg_data_left(msg); 860 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 861 if (try_to_copy >= record_room) { 862 try_to_copy = record_room; 863 full_record = true; 864 } 865 866 required_size = msg_pl->sg.size + try_to_copy + 867 tls_ctx->tx.overhead_size; 868 869 if (!sk_stream_memory_free(sk)) 870 goto wait_for_sndbuf; 871 872 alloc_encrypted: 873 ret = tls_alloc_encrypted_msg(sk, required_size); 874 if (ret) { 875 if (ret != -ENOSPC) 876 goto wait_for_memory; 877 878 /* Adjust try_to_copy according to the amount that was 879 * actually allocated. The difference is due 880 * to max sg elements limit 881 */ 882 try_to_copy -= required_size - msg_en->sg.size; 883 full_record = true; 884 } 885 886 if (!is_kvec && (full_record || eor) && !async_capable) { 887 u32 first = msg_pl->sg.end; 888 889 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 890 msg_pl, try_to_copy); 891 if (ret) 892 goto fallback_to_reg_send; 893 894 rec->inplace_crypto = 0; 895 896 num_zc++; 897 copied += try_to_copy; 898 899 sk_msg_sg_copy_set(msg_pl, first); 900 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 901 record_type, &copied, 902 msg->msg_flags); 903 if (ret) { 904 if (ret == -EINPROGRESS) 905 num_async++; 906 else if (ret == -ENOMEM) 907 goto wait_for_memory; 908 else if (ret == -ENOSPC) 909 goto rollback_iter; 910 else if (ret != -EAGAIN) 911 goto send_end; 912 } 913 continue; 914 rollback_iter: 915 copied -= try_to_copy; 916 sk_msg_sg_copy_clear(msg_pl, first); 917 iov_iter_revert(&msg->msg_iter, 918 msg_pl->sg.size - orig_size); 919 fallback_to_reg_send: 920 sk_msg_trim(sk, msg_pl, orig_size); 921 } 922 923 required_size = msg_pl->sg.size + try_to_copy; 924 925 ret = tls_clone_plaintext_msg(sk, required_size); 926 if (ret) { 927 if (ret != -ENOSPC) 928 goto send_end; 929 930 /* Adjust try_to_copy according to the amount that was 931 * actually allocated. The difference is due 932 * to max sg elements limit 933 */ 934 try_to_copy -= required_size - msg_pl->sg.size; 935 full_record = true; 936 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 937 tls_ctx->tx.overhead_size); 938 } 939 940 if (try_to_copy) { 941 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 942 msg_pl, try_to_copy); 943 if (ret < 0) 944 goto trim_sgl; 945 } 946 947 /* Open records defined only if successfully copied, otherwise 948 * we would trim the sg but not reset the open record frags. 949 */ 950 tls_ctx->pending_open_record_frags = true; 951 copied += try_to_copy; 952 if (full_record || eor) { 953 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 954 record_type, &copied, 955 msg->msg_flags); 956 if (ret) { 957 if (ret == -EINPROGRESS) 958 num_async++; 959 else if (ret == -ENOMEM) 960 goto wait_for_memory; 961 else if (ret != -EAGAIN) { 962 if (ret == -ENOSPC) 963 ret = 0; 964 goto send_end; 965 } 966 } 967 } 968 969 continue; 970 971 wait_for_sndbuf: 972 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 973 wait_for_memory: 974 ret = sk_stream_wait_memory(sk, &timeo); 975 if (ret) { 976 trim_sgl: 977 tls_trim_both_msgs(sk, orig_size); 978 goto send_end; 979 } 980 981 if (msg_en->sg.size < required_size) 982 goto alloc_encrypted; 983 } 984 985 if (!num_async) { 986 goto send_end; 987 } else if (num_zc) { 988 /* Wait for pending encryptions to get completed */ 989 smp_store_mb(ctx->async_notify, true); 990 991 if (atomic_read(&ctx->encrypt_pending)) 992 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 993 else 994 reinit_completion(&ctx->async_wait.completion); 995 996 WRITE_ONCE(ctx->async_notify, false); 997 998 if (ctx->async_wait.err) { 999 ret = ctx->async_wait.err; 1000 copied = 0; 1001 } 1002 } 1003 1004 /* Transmit if any encryptions have completed */ 1005 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1006 cancel_delayed_work(&ctx->tx_work.work); 1007 tls_tx_records(sk, msg->msg_flags); 1008 } 1009 1010 send_end: 1011 ret = sk_stream_error(sk, msg->msg_flags, ret); 1012 1013 release_sock(sk); 1014 return copied ? copied : ret; 1015 } 1016 1017 int tls_sw_sendpage(struct sock *sk, struct page *page, 1018 int offset, size_t size, int flags) 1019 { 1020 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1021 struct tls_context *tls_ctx = tls_get_ctx(sk); 1022 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1023 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1024 struct sk_msg *msg_pl; 1025 struct tls_rec *rec; 1026 int num_async = 0; 1027 size_t copied = 0; 1028 bool full_record; 1029 int record_room; 1030 int ret = 0; 1031 bool eor; 1032 1033 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1034 MSG_SENDPAGE_NOTLAST)) 1035 return -ENOTSUPP; 1036 1037 /* No MSG_EOR from splice, only look at MSG_MORE */ 1038 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1039 1040 lock_sock(sk); 1041 1042 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1043 1044 /* Wait till there is any pending write on socket */ 1045 if (unlikely(sk->sk_write_pending)) { 1046 ret = wait_on_pending_writer(sk, &timeo); 1047 if (unlikely(ret)) 1048 goto sendpage_end; 1049 } 1050 1051 /* Call the sk_stream functions to manage the sndbuf mem. */ 1052 while (size > 0) { 1053 size_t copy, required_size; 1054 1055 if (sk->sk_err) { 1056 ret = -sk->sk_err; 1057 goto sendpage_end; 1058 } 1059 1060 if (ctx->open_rec) 1061 rec = ctx->open_rec; 1062 else 1063 rec = ctx->open_rec = tls_get_rec(sk); 1064 if (!rec) { 1065 ret = -ENOMEM; 1066 goto sendpage_end; 1067 } 1068 1069 msg_pl = &rec->msg_plaintext; 1070 1071 full_record = false; 1072 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1073 copied = 0; 1074 copy = size; 1075 if (copy >= record_room) { 1076 copy = record_room; 1077 full_record = true; 1078 } 1079 1080 required_size = msg_pl->sg.size + copy + 1081 tls_ctx->tx.overhead_size; 1082 1083 if (!sk_stream_memory_free(sk)) 1084 goto wait_for_sndbuf; 1085 alloc_payload: 1086 ret = tls_alloc_encrypted_msg(sk, required_size); 1087 if (ret) { 1088 if (ret != -ENOSPC) 1089 goto wait_for_memory; 1090 1091 /* Adjust copy according to the amount that was 1092 * actually allocated. The difference is due 1093 * to max sg elements limit 1094 */ 1095 copy -= required_size - msg_pl->sg.size; 1096 full_record = true; 1097 } 1098 1099 sk_msg_page_add(msg_pl, page, copy, offset); 1100 sk_mem_charge(sk, copy); 1101 1102 offset += copy; 1103 size -= copy; 1104 copied += copy; 1105 1106 tls_ctx->pending_open_record_frags = true; 1107 if (full_record || eor || sk_msg_full(msg_pl)) { 1108 rec->inplace_crypto = 0; 1109 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1110 record_type, &copied, flags); 1111 if (ret) { 1112 if (ret == -EINPROGRESS) 1113 num_async++; 1114 else if (ret == -ENOMEM) 1115 goto wait_for_memory; 1116 else if (ret != -EAGAIN) { 1117 if (ret == -ENOSPC) 1118 ret = 0; 1119 goto sendpage_end; 1120 } 1121 } 1122 } 1123 continue; 1124 wait_for_sndbuf: 1125 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1126 wait_for_memory: 1127 ret = sk_stream_wait_memory(sk, &timeo); 1128 if (ret) { 1129 tls_trim_both_msgs(sk, msg_pl->sg.size); 1130 goto sendpage_end; 1131 } 1132 1133 goto alloc_payload; 1134 } 1135 1136 if (num_async) { 1137 /* Transmit if any encryptions have completed */ 1138 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1139 cancel_delayed_work(&ctx->tx_work.work); 1140 tls_tx_records(sk, flags); 1141 } 1142 } 1143 sendpage_end: 1144 ret = sk_stream_error(sk, flags, ret); 1145 release_sock(sk); 1146 return copied ? copied : ret; 1147 } 1148 1149 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1150 int flags, long timeo, int *err) 1151 { 1152 struct tls_context *tls_ctx = tls_get_ctx(sk); 1153 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1154 struct sk_buff *skb; 1155 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1156 1157 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1158 if (sk->sk_err) { 1159 *err = sock_error(sk); 1160 return NULL; 1161 } 1162 1163 if (sk->sk_shutdown & RCV_SHUTDOWN) 1164 return NULL; 1165 1166 if (sock_flag(sk, SOCK_DONE)) 1167 return NULL; 1168 1169 if ((flags & MSG_DONTWAIT) || !timeo) { 1170 *err = -EAGAIN; 1171 return NULL; 1172 } 1173 1174 add_wait_queue(sk_sleep(sk), &wait); 1175 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1176 sk_wait_event(sk, &timeo, 1177 ctx->recv_pkt != skb || 1178 !sk_psock_queue_empty(psock), 1179 &wait); 1180 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1181 remove_wait_queue(sk_sleep(sk), &wait); 1182 1183 /* Handle signals */ 1184 if (signal_pending(current)) { 1185 *err = sock_intr_errno(timeo); 1186 return NULL; 1187 } 1188 } 1189 1190 return skb; 1191 } 1192 1193 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1194 int length, int *pages_used, 1195 unsigned int *size_used, 1196 struct scatterlist *to, 1197 int to_max_pages) 1198 { 1199 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1200 struct page *pages[MAX_SKB_FRAGS]; 1201 unsigned int size = *size_used; 1202 ssize_t copied, use; 1203 size_t offset; 1204 1205 while (length > 0) { 1206 i = 0; 1207 maxpages = to_max_pages - num_elem; 1208 if (maxpages == 0) { 1209 rc = -EFAULT; 1210 goto out; 1211 } 1212 copied = iov_iter_get_pages(from, pages, 1213 length, 1214 maxpages, &offset); 1215 if (copied <= 0) { 1216 rc = -EFAULT; 1217 goto out; 1218 } 1219 1220 iov_iter_advance(from, copied); 1221 1222 length -= copied; 1223 size += copied; 1224 while (copied) { 1225 use = min_t(int, copied, PAGE_SIZE - offset); 1226 1227 sg_set_page(&to[num_elem], 1228 pages[i], use, offset); 1229 sg_unmark_end(&to[num_elem]); 1230 /* We do not uncharge memory from this API */ 1231 1232 offset = 0; 1233 copied -= use; 1234 1235 i++; 1236 num_elem++; 1237 } 1238 } 1239 /* Mark the end in the last sg entry if newly added */ 1240 if (num_elem > *pages_used) 1241 sg_mark_end(&to[num_elem - 1]); 1242 out: 1243 if (rc) 1244 iov_iter_revert(from, size - *size_used); 1245 *size_used = size; 1246 *pages_used = num_elem; 1247 1248 return rc; 1249 } 1250 1251 /* This function decrypts the input skb into either out_iov or in out_sg 1252 * or in skb buffers itself. The input parameter 'zc' indicates if 1253 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1254 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1255 * NULL, then the decryption happens inside skb buffers itself, i.e. 1256 * zero-copy gets disabled and 'zc' is updated. 1257 */ 1258 1259 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1260 struct iov_iter *out_iov, 1261 struct scatterlist *out_sg, 1262 int *chunk, bool *zc) 1263 { 1264 struct tls_context *tls_ctx = tls_get_ctx(sk); 1265 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1266 struct strp_msg *rxm = strp_msg(skb); 1267 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1268 struct aead_request *aead_req; 1269 struct sk_buff *unused; 1270 u8 *aad, *iv, *mem = NULL; 1271 struct scatterlist *sgin = NULL; 1272 struct scatterlist *sgout = NULL; 1273 const int data_len = rxm->full_len - tls_ctx->rx.overhead_size; 1274 1275 if (*zc && (out_iov || out_sg)) { 1276 if (out_iov) 1277 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1278 else 1279 n_sgout = sg_nents(out_sg); 1280 n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size, 1281 rxm->full_len - tls_ctx->rx.prepend_size); 1282 } else { 1283 n_sgout = 0; 1284 *zc = false; 1285 n_sgin = skb_cow_data(skb, 0, &unused); 1286 } 1287 1288 if (n_sgin < 1) 1289 return -EBADMSG; 1290 1291 /* Increment to accommodate AAD */ 1292 n_sgin = n_sgin + 1; 1293 1294 nsg = n_sgin + n_sgout; 1295 1296 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1297 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1298 mem_size = mem_size + TLS_AAD_SPACE_SIZE; 1299 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1300 1301 /* Allocate a single block of memory which contains 1302 * aead_req || sgin[] || sgout[] || aad || iv. 1303 * This order achieves correct alignment for aead_req, sgin, sgout. 1304 */ 1305 mem = kmalloc(mem_size, sk->sk_allocation); 1306 if (!mem) 1307 return -ENOMEM; 1308 1309 /* Segment the allocated memory */ 1310 aead_req = (struct aead_request *)mem; 1311 sgin = (struct scatterlist *)(mem + aead_size); 1312 sgout = sgin + n_sgin; 1313 aad = (u8 *)(sgout + n_sgout); 1314 iv = aad + TLS_AAD_SPACE_SIZE; 1315 1316 /* Prepare IV */ 1317 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1318 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1319 tls_ctx->rx.iv_size); 1320 if (err < 0) { 1321 kfree(mem); 1322 return err; 1323 } 1324 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1325 1326 /* Prepare AAD */ 1327 tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size, 1328 tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size, 1329 ctx->control); 1330 1331 /* Prepare sgin */ 1332 sg_init_table(sgin, n_sgin); 1333 sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE); 1334 err = skb_to_sgvec(skb, &sgin[1], 1335 rxm->offset + tls_ctx->rx.prepend_size, 1336 rxm->full_len - tls_ctx->rx.prepend_size); 1337 if (err < 0) { 1338 kfree(mem); 1339 return err; 1340 } 1341 1342 if (n_sgout) { 1343 if (out_iov) { 1344 sg_init_table(sgout, n_sgout); 1345 sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE); 1346 1347 *chunk = 0; 1348 err = tls_setup_from_iter(sk, out_iov, data_len, 1349 &pages, chunk, &sgout[1], 1350 (n_sgout - 1)); 1351 if (err < 0) 1352 goto fallback_to_reg_recv; 1353 } else if (out_sg) { 1354 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1355 } else { 1356 goto fallback_to_reg_recv; 1357 } 1358 } else { 1359 fallback_to_reg_recv: 1360 sgout = sgin; 1361 pages = 0; 1362 *chunk = 0; 1363 *zc = false; 1364 } 1365 1366 /* Prepare and submit AEAD request */ 1367 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1368 data_len, aead_req, *zc); 1369 if (err == -EINPROGRESS) 1370 return err; 1371 1372 /* Release the pages in case iov was mapped to pages */ 1373 for (; pages > 0; pages--) 1374 put_page(sg_page(&sgout[pages])); 1375 1376 kfree(mem); 1377 return err; 1378 } 1379 1380 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1381 struct iov_iter *dest, int *chunk, bool *zc) 1382 { 1383 struct tls_context *tls_ctx = tls_get_ctx(sk); 1384 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1385 struct strp_msg *rxm = strp_msg(skb); 1386 int err = 0; 1387 1388 #ifdef CONFIG_TLS_DEVICE 1389 err = tls_device_decrypted(sk, skb); 1390 if (err < 0) 1391 return err; 1392 #endif 1393 if (!ctx->decrypted) { 1394 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc); 1395 if (err < 0) { 1396 if (err == -EINPROGRESS) 1397 tls_advance_record_sn(sk, &tls_ctx->rx); 1398 1399 return err; 1400 } 1401 } else { 1402 *zc = false; 1403 } 1404 1405 rxm->offset += tls_ctx->rx.prepend_size; 1406 rxm->full_len -= tls_ctx->rx.overhead_size; 1407 tls_advance_record_sn(sk, &tls_ctx->rx); 1408 ctx->decrypted = true; 1409 ctx->saved_data_ready(sk); 1410 1411 return err; 1412 } 1413 1414 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1415 struct scatterlist *sgout) 1416 { 1417 bool zc = true; 1418 int chunk; 1419 1420 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc); 1421 } 1422 1423 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1424 unsigned int len) 1425 { 1426 struct tls_context *tls_ctx = tls_get_ctx(sk); 1427 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1428 1429 if (skb) { 1430 struct strp_msg *rxm = strp_msg(skb); 1431 1432 if (len < rxm->full_len) { 1433 rxm->offset += len; 1434 rxm->full_len -= len; 1435 return false; 1436 } 1437 kfree_skb(skb); 1438 } 1439 1440 /* Finished with message */ 1441 ctx->recv_pkt = NULL; 1442 __strp_unpause(&ctx->strp); 1443 1444 return true; 1445 } 1446 1447 int tls_sw_recvmsg(struct sock *sk, 1448 struct msghdr *msg, 1449 size_t len, 1450 int nonblock, 1451 int flags, 1452 int *addr_len) 1453 { 1454 struct tls_context *tls_ctx = tls_get_ctx(sk); 1455 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1456 struct sk_psock *psock; 1457 unsigned char control; 1458 struct strp_msg *rxm; 1459 struct sk_buff *skb; 1460 ssize_t copied = 0; 1461 bool cmsg = false; 1462 int target, err = 0; 1463 long timeo; 1464 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1465 int num_async = 0; 1466 1467 flags |= nonblock; 1468 1469 if (unlikely(flags & MSG_ERRQUEUE)) 1470 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1471 1472 psock = sk_psock_get(sk); 1473 lock_sock(sk); 1474 1475 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1476 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1477 do { 1478 bool zc = false; 1479 bool async = false; 1480 int chunk = 0; 1481 1482 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1483 if (!skb) { 1484 if (psock) { 1485 int ret = __tcp_bpf_recvmsg(sk, psock, 1486 msg, len, flags); 1487 1488 if (ret > 0) { 1489 copied += ret; 1490 len -= ret; 1491 continue; 1492 } 1493 } 1494 goto recv_end; 1495 } 1496 1497 rxm = strp_msg(skb); 1498 1499 if (!cmsg) { 1500 int cerr; 1501 1502 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1503 sizeof(ctx->control), &ctx->control); 1504 cmsg = true; 1505 control = ctx->control; 1506 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1507 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1508 err = -EIO; 1509 goto recv_end; 1510 } 1511 } 1512 } else if (control != ctx->control) { 1513 goto recv_end; 1514 } 1515 1516 if (!ctx->decrypted) { 1517 int to_copy = rxm->full_len - tls_ctx->rx.overhead_size; 1518 1519 if (!is_kvec && to_copy <= len && 1520 likely(!(flags & MSG_PEEK))) 1521 zc = true; 1522 1523 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1524 &chunk, &zc); 1525 if (err < 0 && err != -EINPROGRESS) { 1526 tls_err_abort(sk, EBADMSG); 1527 goto recv_end; 1528 } 1529 1530 if (err == -EINPROGRESS) { 1531 async = true; 1532 num_async++; 1533 goto pick_next_record; 1534 } 1535 1536 ctx->decrypted = true; 1537 } 1538 1539 if (!zc) { 1540 chunk = min_t(unsigned int, rxm->full_len, len); 1541 1542 err = skb_copy_datagram_msg(skb, rxm->offset, msg, 1543 chunk); 1544 if (err < 0) 1545 goto recv_end; 1546 } 1547 1548 pick_next_record: 1549 copied += chunk; 1550 len -= chunk; 1551 if (likely(!(flags & MSG_PEEK))) { 1552 u8 control = ctx->control; 1553 1554 /* For async, drop current skb reference */ 1555 if (async) 1556 skb = NULL; 1557 1558 if (tls_sw_advance_skb(sk, skb, chunk)) { 1559 /* Return full control message to 1560 * userspace before trying to parse 1561 * another message type 1562 */ 1563 msg->msg_flags |= MSG_EOR; 1564 if (control != TLS_RECORD_TYPE_DATA) 1565 goto recv_end; 1566 } else { 1567 break; 1568 } 1569 } else { 1570 /* MSG_PEEK right now cannot look beyond current skb 1571 * from strparser, meaning we cannot advance skb here 1572 * and thus unpause strparser since we'd loose original 1573 * one. 1574 */ 1575 break; 1576 } 1577 1578 /* If we have a new message from strparser, continue now. */ 1579 if (copied >= target && !ctx->recv_pkt) 1580 break; 1581 } while (len); 1582 1583 recv_end: 1584 if (num_async) { 1585 /* Wait for all previously submitted records to be decrypted */ 1586 smp_store_mb(ctx->async_notify, true); 1587 if (atomic_read(&ctx->decrypt_pending)) { 1588 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1589 if (err) { 1590 /* one of async decrypt failed */ 1591 tls_err_abort(sk, err); 1592 copied = 0; 1593 } 1594 } else { 1595 reinit_completion(&ctx->async_wait.completion); 1596 } 1597 WRITE_ONCE(ctx->async_notify, false); 1598 } 1599 1600 release_sock(sk); 1601 if (psock) 1602 sk_psock_put(sk, psock); 1603 return copied ? : err; 1604 } 1605 1606 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1607 struct pipe_inode_info *pipe, 1608 size_t len, unsigned int flags) 1609 { 1610 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1611 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1612 struct strp_msg *rxm = NULL; 1613 struct sock *sk = sock->sk; 1614 struct sk_buff *skb; 1615 ssize_t copied = 0; 1616 int err = 0; 1617 long timeo; 1618 int chunk; 1619 bool zc = false; 1620 1621 lock_sock(sk); 1622 1623 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1624 1625 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1626 if (!skb) 1627 goto splice_read_end; 1628 1629 /* splice does not support reading control messages */ 1630 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1631 err = -ENOTSUPP; 1632 goto splice_read_end; 1633 } 1634 1635 if (!ctx->decrypted) { 1636 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc); 1637 1638 if (err < 0) { 1639 tls_err_abort(sk, EBADMSG); 1640 goto splice_read_end; 1641 } 1642 ctx->decrypted = true; 1643 } 1644 rxm = strp_msg(skb); 1645 1646 chunk = min_t(unsigned int, rxm->full_len, len); 1647 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1648 if (copied < 0) 1649 goto splice_read_end; 1650 1651 if (likely(!(flags & MSG_PEEK))) 1652 tls_sw_advance_skb(sk, skb, copied); 1653 1654 splice_read_end: 1655 release_sock(sk); 1656 return copied ? : err; 1657 } 1658 1659 bool tls_sw_stream_read(const struct sock *sk) 1660 { 1661 struct tls_context *tls_ctx = tls_get_ctx(sk); 1662 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1663 bool ingress_empty = true; 1664 struct sk_psock *psock; 1665 1666 rcu_read_lock(); 1667 psock = sk_psock(sk); 1668 if (psock) 1669 ingress_empty = list_empty(&psock->ingress_msg); 1670 rcu_read_unlock(); 1671 1672 return !ingress_empty || ctx->recv_pkt; 1673 } 1674 1675 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1676 { 1677 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1678 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1679 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1680 struct strp_msg *rxm = strp_msg(skb); 1681 size_t cipher_overhead; 1682 size_t data_len = 0; 1683 int ret; 1684 1685 /* Verify that we have a full TLS header, or wait for more data */ 1686 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) 1687 return 0; 1688 1689 /* Sanity-check size of on-stack buffer. */ 1690 if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) { 1691 ret = -EINVAL; 1692 goto read_failure; 1693 } 1694 1695 /* Linearize header to local buffer */ 1696 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); 1697 1698 if (ret < 0) 1699 goto read_failure; 1700 1701 ctx->control = header[0]; 1702 1703 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1704 1705 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; 1706 1707 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { 1708 ret = -EMSGSIZE; 1709 goto read_failure; 1710 } 1711 if (data_len < cipher_overhead) { 1712 ret = -EBADMSG; 1713 goto read_failure; 1714 } 1715 1716 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) || 1717 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) { 1718 ret = -EINVAL; 1719 goto read_failure; 1720 } 1721 1722 #ifdef CONFIG_TLS_DEVICE 1723 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 1724 *(u64*)tls_ctx->rx.rec_seq); 1725 #endif 1726 return data_len + TLS_HEADER_SIZE; 1727 1728 read_failure: 1729 tls_err_abort(strp->sk, ret); 1730 1731 return ret; 1732 } 1733 1734 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 1735 { 1736 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1737 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1738 1739 ctx->decrypted = false; 1740 1741 ctx->recv_pkt = skb; 1742 strp_pause(strp); 1743 1744 ctx->saved_data_ready(strp->sk); 1745 } 1746 1747 static void tls_data_ready(struct sock *sk) 1748 { 1749 struct tls_context *tls_ctx = tls_get_ctx(sk); 1750 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1751 struct sk_psock *psock; 1752 1753 strp_data_ready(&ctx->strp); 1754 1755 psock = sk_psock_get(sk); 1756 if (psock && !list_empty(&psock->ingress_msg)) { 1757 ctx->saved_data_ready(sk); 1758 sk_psock_put(sk, psock); 1759 } 1760 } 1761 1762 void tls_sw_free_resources_tx(struct sock *sk) 1763 { 1764 struct tls_context *tls_ctx = tls_get_ctx(sk); 1765 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1766 struct tls_rec *rec, *tmp; 1767 1768 /* Wait for any pending async encryptions to complete */ 1769 smp_store_mb(ctx->async_notify, true); 1770 if (atomic_read(&ctx->encrypt_pending)) 1771 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1772 1773 release_sock(sk); 1774 cancel_delayed_work_sync(&ctx->tx_work.work); 1775 lock_sock(sk); 1776 1777 /* Tx whatever records we can transmit and abandon the rest */ 1778 tls_tx_records(sk, -1); 1779 1780 /* Free up un-sent records in tx_list. First, free 1781 * the partially sent record if any at head of tx_list. 1782 */ 1783 if (tls_ctx->partially_sent_record) { 1784 struct scatterlist *sg = tls_ctx->partially_sent_record; 1785 1786 while (1) { 1787 put_page(sg_page(sg)); 1788 sk_mem_uncharge(sk, sg->length); 1789 1790 if (sg_is_last(sg)) 1791 break; 1792 sg++; 1793 } 1794 1795 tls_ctx->partially_sent_record = NULL; 1796 1797 rec = list_first_entry(&ctx->tx_list, 1798 struct tls_rec, list); 1799 list_del(&rec->list); 1800 sk_msg_free(sk, &rec->msg_plaintext); 1801 kfree(rec); 1802 } 1803 1804 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 1805 list_del(&rec->list); 1806 sk_msg_free(sk, &rec->msg_encrypted); 1807 sk_msg_free(sk, &rec->msg_plaintext); 1808 kfree(rec); 1809 } 1810 1811 crypto_free_aead(ctx->aead_send); 1812 tls_free_open_rec(sk); 1813 1814 kfree(ctx); 1815 } 1816 1817 void tls_sw_release_resources_rx(struct sock *sk) 1818 { 1819 struct tls_context *tls_ctx = tls_get_ctx(sk); 1820 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1821 1822 if (ctx->aead_recv) { 1823 kfree_skb(ctx->recv_pkt); 1824 ctx->recv_pkt = NULL; 1825 crypto_free_aead(ctx->aead_recv); 1826 strp_stop(&ctx->strp); 1827 write_lock_bh(&sk->sk_callback_lock); 1828 sk->sk_data_ready = ctx->saved_data_ready; 1829 write_unlock_bh(&sk->sk_callback_lock); 1830 release_sock(sk); 1831 strp_done(&ctx->strp); 1832 lock_sock(sk); 1833 } 1834 } 1835 1836 void tls_sw_free_resources_rx(struct sock *sk) 1837 { 1838 struct tls_context *tls_ctx = tls_get_ctx(sk); 1839 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1840 1841 tls_sw_release_resources_rx(sk); 1842 1843 kfree(ctx); 1844 } 1845 1846 /* The work handler to transmitt the encrypted records in tx_list */ 1847 static void tx_work_handler(struct work_struct *work) 1848 { 1849 struct delayed_work *delayed_work = to_delayed_work(work); 1850 struct tx_work *tx_work = container_of(delayed_work, 1851 struct tx_work, work); 1852 struct sock *sk = tx_work->sk; 1853 struct tls_context *tls_ctx = tls_get_ctx(sk); 1854 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1855 1856 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 1857 return; 1858 1859 lock_sock(sk); 1860 tls_tx_records(sk, -1); 1861 release_sock(sk); 1862 } 1863 1864 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 1865 { 1866 struct tls_crypto_info *crypto_info; 1867 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 1868 struct tls_sw_context_tx *sw_ctx_tx = NULL; 1869 struct tls_sw_context_rx *sw_ctx_rx = NULL; 1870 struct cipher_context *cctx; 1871 struct crypto_aead **aead; 1872 struct strp_callbacks cb; 1873 u16 nonce_size, tag_size, iv_size, rec_seq_size; 1874 char *iv, *rec_seq; 1875 int rc = 0; 1876 1877 if (!ctx) { 1878 rc = -EINVAL; 1879 goto out; 1880 } 1881 1882 if (tx) { 1883 if (!ctx->priv_ctx_tx) { 1884 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 1885 if (!sw_ctx_tx) { 1886 rc = -ENOMEM; 1887 goto out; 1888 } 1889 ctx->priv_ctx_tx = sw_ctx_tx; 1890 } else { 1891 sw_ctx_tx = 1892 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 1893 } 1894 } else { 1895 if (!ctx->priv_ctx_rx) { 1896 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 1897 if (!sw_ctx_rx) { 1898 rc = -ENOMEM; 1899 goto out; 1900 } 1901 ctx->priv_ctx_rx = sw_ctx_rx; 1902 } else { 1903 sw_ctx_rx = 1904 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 1905 } 1906 } 1907 1908 if (tx) { 1909 crypto_init_wait(&sw_ctx_tx->async_wait); 1910 crypto_info = &ctx->crypto_send.info; 1911 cctx = &ctx->tx; 1912 aead = &sw_ctx_tx->aead_send; 1913 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 1914 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 1915 sw_ctx_tx->tx_work.sk = sk; 1916 } else { 1917 crypto_init_wait(&sw_ctx_rx->async_wait); 1918 crypto_info = &ctx->crypto_recv.info; 1919 cctx = &ctx->rx; 1920 aead = &sw_ctx_rx->aead_recv; 1921 } 1922 1923 switch (crypto_info->cipher_type) { 1924 case TLS_CIPHER_AES_GCM_128: { 1925 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1926 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1927 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1928 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1929 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1930 rec_seq = 1931 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1932 gcm_128_info = 1933 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 1934 break; 1935 } 1936 default: 1937 rc = -EINVAL; 1938 goto free_priv; 1939 } 1940 1941 /* Sanity-check the IV size for stack allocations. */ 1942 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 1943 rc = -EINVAL; 1944 goto free_priv; 1945 } 1946 1947 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; 1948 cctx->tag_size = tag_size; 1949 cctx->overhead_size = cctx->prepend_size + cctx->tag_size; 1950 cctx->iv_size = iv_size; 1951 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1952 GFP_KERNEL); 1953 if (!cctx->iv) { 1954 rc = -ENOMEM; 1955 goto free_priv; 1956 } 1957 memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1958 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1959 cctx->rec_seq_size = rec_seq_size; 1960 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1961 if (!cctx->rec_seq) { 1962 rc = -ENOMEM; 1963 goto free_iv; 1964 } 1965 1966 if (!*aead) { 1967 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 1968 if (IS_ERR(*aead)) { 1969 rc = PTR_ERR(*aead); 1970 *aead = NULL; 1971 goto free_rec_seq; 1972 } 1973 } 1974 1975 ctx->push_pending_record = tls_sw_push_pending_record; 1976 1977 rc = crypto_aead_setkey(*aead, gcm_128_info->key, 1978 TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1979 if (rc) 1980 goto free_aead; 1981 1982 rc = crypto_aead_setauthsize(*aead, cctx->tag_size); 1983 if (rc) 1984 goto free_aead; 1985 1986 if (sw_ctx_rx) { 1987 /* Set up strparser */ 1988 memset(&cb, 0, sizeof(cb)); 1989 cb.rcv_msg = tls_queue; 1990 cb.parse_msg = tls_read_size; 1991 1992 strp_init(&sw_ctx_rx->strp, sk, &cb); 1993 1994 write_lock_bh(&sk->sk_callback_lock); 1995 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 1996 sk->sk_data_ready = tls_data_ready; 1997 write_unlock_bh(&sk->sk_callback_lock); 1998 1999 strp_check_rcv(&sw_ctx_rx->strp); 2000 } 2001 2002 goto out; 2003 2004 free_aead: 2005 crypto_free_aead(*aead); 2006 *aead = NULL; 2007 free_rec_seq: 2008 kfree(cctx->rec_seq); 2009 cctx->rec_seq = NULL; 2010 free_iv: 2011 kfree(cctx->iv); 2012 cctx->iv = NULL; 2013 free_priv: 2014 if (tx) { 2015 kfree(ctx->priv_ctx_tx); 2016 ctx->priv_ctx_tx = NULL; 2017 } else { 2018 kfree(ctx->priv_ctx_rx); 2019 ctx->priv_ctx_rx = NULL; 2020 } 2021 out: 2022 return rc; 2023 } 2024
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.