~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/vmw_vsock/vmci_transport.c

Version: ~ [ linux-5.10-rc6 ] ~ [ linux-5.9.12 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.81 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.161 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.210 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.247 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.247 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * VMware vSockets Driver
  4  *
  5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
  6  */
  7 
  8 #include <linux/types.h>
  9 #include <linux/bitops.h>
 10 #include <linux/cred.h>
 11 #include <linux/init.h>
 12 #include <linux/io.h>
 13 #include <linux/kernel.h>
 14 #include <linux/kmod.h>
 15 #include <linux/list.h>
 16 #include <linux/module.h>
 17 #include <linux/mutex.h>
 18 #include <linux/net.h>
 19 #include <linux/poll.h>
 20 #include <linux/skbuff.h>
 21 #include <linux/smp.h>
 22 #include <linux/socket.h>
 23 #include <linux/stddef.h>
 24 #include <linux/unistd.h>
 25 #include <linux/wait.h>
 26 #include <linux/workqueue.h>
 27 #include <net/sock.h>
 28 #include <net/af_vsock.h>
 29 
 30 #include "vmci_transport_notify.h"
 31 
 32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
 33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
 34 static void vmci_transport_peer_detach_cb(u32 sub_id,
 35                                           const struct vmci_event_data *ed,
 36                                           void *client_data);
 37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
 38 static void vmci_transport_cleanup(struct work_struct *work);
 39 static int vmci_transport_recv_listen(struct sock *sk,
 40                                       struct vmci_transport_packet *pkt);
 41 static int vmci_transport_recv_connecting_server(
 42                                         struct sock *sk,
 43                                         struct sock *pending,
 44                                         struct vmci_transport_packet *pkt);
 45 static int vmci_transport_recv_connecting_client(
 46                                         struct sock *sk,
 47                                         struct vmci_transport_packet *pkt);
 48 static int vmci_transport_recv_connecting_client_negotiate(
 49                                         struct sock *sk,
 50                                         struct vmci_transport_packet *pkt);
 51 static int vmci_transport_recv_connecting_client_invalid(
 52                                         struct sock *sk,
 53                                         struct vmci_transport_packet *pkt);
 54 static int vmci_transport_recv_connected(struct sock *sk,
 55                                          struct vmci_transport_packet *pkt);
 56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
 57 static u16 vmci_transport_new_proto_supported_versions(void);
 58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
 59                                                   bool old_pkt_proto);
 60 static bool vmci_check_transport(struct vsock_sock *vsk);
 61 
 62 struct vmci_transport_recv_pkt_info {
 63         struct work_struct work;
 64         struct sock *sk;
 65         struct vmci_transport_packet pkt;
 66 };
 67 
 68 static LIST_HEAD(vmci_transport_cleanup_list);
 69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
 70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
 71 
 72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
 73                                                            VMCI_INVALID_ID };
 74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
 75 
 76 static int PROTOCOL_OVERRIDE = -1;
 77 
 78 /* Helper function to convert from a VMCI error code to a VSock error code. */
 79 
 80 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
 81 {
 82         switch (vmci_error) {
 83         case VMCI_ERROR_NO_MEM:
 84                 return -ENOMEM;
 85         case VMCI_ERROR_DUPLICATE_ENTRY:
 86         case VMCI_ERROR_ALREADY_EXISTS:
 87                 return -EADDRINUSE;
 88         case VMCI_ERROR_NO_ACCESS:
 89                 return -EPERM;
 90         case VMCI_ERROR_NO_RESOURCES:
 91                 return -ENOBUFS;
 92         case VMCI_ERROR_INVALID_RESOURCE:
 93                 return -EHOSTUNREACH;
 94         case VMCI_ERROR_INVALID_ARGS:
 95         default:
 96                 break;
 97         }
 98         return -EINVAL;
 99 }
100 
101 static u32 vmci_transport_peer_rid(u32 peer_cid)
102 {
103         if (VMADDR_CID_HYPERVISOR == peer_cid)
104                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
105 
106         return VMCI_TRANSPORT_PACKET_RID;
107 }
108 
109 static inline void
110 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
111                            struct sockaddr_vm *src,
112                            struct sockaddr_vm *dst,
113                            u8 type,
114                            u64 size,
115                            u64 mode,
116                            struct vmci_transport_waiting_info *wait,
117                            u16 proto,
118                            struct vmci_handle handle)
119 {
120         /* We register the stream control handler as an any cid handle so we
121          * must always send from a source address of VMADDR_CID_ANY
122          */
123         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
124                                        VMCI_TRANSPORT_PACKET_RID);
125         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
126                                        vmci_transport_peer_rid(dst->svm_cid));
127         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
128         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
129         pkt->type = type;
130         pkt->src_port = src->svm_port;
131         pkt->dst_port = dst->svm_port;
132         memset(&pkt->proto, 0, sizeof(pkt->proto));
133         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
134 
135         switch (pkt->type) {
136         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
137                 pkt->u.size = 0;
138                 break;
139 
140         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
141         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
142                 pkt->u.size = size;
143                 break;
144 
145         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
146         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
147                 pkt->u.handle = handle;
148                 break;
149 
150         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
151         case VMCI_TRANSPORT_PACKET_TYPE_READ:
152         case VMCI_TRANSPORT_PACKET_TYPE_RST:
153                 pkt->u.size = 0;
154                 break;
155 
156         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
157                 pkt->u.mode = mode;
158                 break;
159 
160         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
161         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
162                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
163                 break;
164 
165         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
166         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
167                 pkt->u.size = size;
168                 pkt->proto = proto;
169                 break;
170         }
171 }
172 
173 static inline void
174 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
175                                     struct sockaddr_vm *local,
176                                     struct sockaddr_vm *remote)
177 {
178         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
179         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
180 }
181 
182 static int
183 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
184                                   struct sockaddr_vm *src,
185                                   struct sockaddr_vm *dst,
186                                   enum vmci_transport_packet_type type,
187                                   u64 size,
188                                   u64 mode,
189                                   struct vmci_transport_waiting_info *wait,
190                                   u16 proto,
191                                   struct vmci_handle handle,
192                                   bool convert_error)
193 {
194         int err;
195 
196         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
197                                    proto, handle);
198         err = vmci_datagram_send(&pkt->dg);
199         if (convert_error && (err < 0))
200                 return vmci_transport_error_to_vsock_error(err);
201 
202         return err;
203 }
204 
205 static int
206 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
207                                       enum vmci_transport_packet_type type,
208                                       u64 size,
209                                       u64 mode,
210                                       struct vmci_transport_waiting_info *wait,
211                                       struct vmci_handle handle)
212 {
213         struct vmci_transport_packet reply;
214         struct sockaddr_vm src, dst;
215 
216         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
217                 return 0;
218         } else {
219                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
220                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
221                                                          type,
222                                                          size, mode, wait,
223                                                          VSOCK_PROTO_INVALID,
224                                                          handle, true);
225         }
226 }
227 
228 static int
229 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
230                                    struct sockaddr_vm *dst,
231                                    enum vmci_transport_packet_type type,
232                                    u64 size,
233                                    u64 mode,
234                                    struct vmci_transport_waiting_info *wait,
235                                    struct vmci_handle handle)
236 {
237         /* Note that it is safe to use a single packet across all CPUs since
238          * two tasklets of the same type are guaranteed to not ever run
239          * simultaneously. If that ever changes, or VMCI stops using tasklets,
240          * we can use per-cpu packets.
241          */
242         static struct vmci_transport_packet pkt;
243 
244         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
245                                                  size, mode, wait,
246                                                  VSOCK_PROTO_INVALID, handle,
247                                                  false);
248 }
249 
250 static int
251 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
252                                       struct sockaddr_vm *dst,
253                                       enum vmci_transport_packet_type type,
254                                       u64 size,
255                                       u64 mode,
256                                       struct vmci_transport_waiting_info *wait,
257                                       u16 proto,
258                                       struct vmci_handle handle)
259 {
260         struct vmci_transport_packet *pkt;
261         int err;
262 
263         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
264         if (!pkt)
265                 return -ENOMEM;
266 
267         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
268                                                 mode, wait, proto, handle,
269                                                 true);
270         kfree(pkt);
271 
272         return err;
273 }
274 
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277                                 enum vmci_transport_packet_type type,
278                                 u64 size,
279                                 u64 mode,
280                                 struct vmci_transport_waiting_info *wait,
281                                 u16 proto,
282                                 struct vmci_handle handle)
283 {
284         struct vsock_sock *vsk;
285 
286         vsk = vsock_sk(sk);
287 
288         if (!vsock_addr_bound(&vsk->local_addr))
289                 return -EINVAL;
290 
291         if (!vsock_addr_bound(&vsk->remote_addr))
292                 return -EINVAL;
293 
294         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
295                                                      &vsk->remote_addr,
296                                                      type, size, mode,
297                                                      wait, proto, handle);
298 }
299 
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301                                         struct sockaddr_vm *src,
302                                         struct vmci_transport_packet *pkt)
303 {
304         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305                 return 0;
306         return vmci_transport_send_control_pkt_bh(
307                                         dst, src,
308                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309                                         0, NULL, VMCI_INVALID_HANDLE);
310 }
311 
312 static int vmci_transport_send_reset(struct sock *sk,
313                                      struct vmci_transport_packet *pkt)
314 {
315         struct sockaddr_vm *dst_ptr;
316         struct sockaddr_vm dst;
317         struct vsock_sock *vsk;
318 
319         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
320                 return 0;
321 
322         vsk = vsock_sk(sk);
323 
324         if (!vsock_addr_bound(&vsk->local_addr))
325                 return -EINVAL;
326 
327         if (vsock_addr_bound(&vsk->remote_addr)) {
328                 dst_ptr = &vsk->remote_addr;
329         } else {
330                 vsock_addr_init(&dst, pkt->dg.src.context,
331                                 pkt->src_port);
332                 dst_ptr = &dst;
333         }
334         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
335                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
336                                              0, 0, NULL, VSOCK_PROTO_INVALID,
337                                              VMCI_INVALID_HANDLE);
338 }
339 
340 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
341 {
342         return vmci_transport_send_control_pkt(
343                                         sk,
344                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
345                                         size, 0, NULL,
346                                         VSOCK_PROTO_INVALID,
347                                         VMCI_INVALID_HANDLE);
348 }
349 
350 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
351                                           u16 version)
352 {
353         return vmci_transport_send_control_pkt(
354                                         sk,
355                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
356                                         size, 0, NULL, version,
357                                         VMCI_INVALID_HANDLE);
358 }
359 
360 static int vmci_transport_send_qp_offer(struct sock *sk,
361                                         struct vmci_handle handle)
362 {
363         return vmci_transport_send_control_pkt(
364                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
365                                         0, NULL,
366                                         VSOCK_PROTO_INVALID, handle);
367 }
368 
369 static int vmci_transport_send_attach(struct sock *sk,
370                                       struct vmci_handle handle)
371 {
372         return vmci_transport_send_control_pkt(
373                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
374                                         0, 0, NULL, VSOCK_PROTO_INVALID,
375                                         handle);
376 }
377 
378 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
379 {
380         return vmci_transport_reply_control_pkt_fast(
381                                                 pkt,
382                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
383                                                 0, 0, NULL,
384                                                 VMCI_INVALID_HANDLE);
385 }
386 
387 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
388                                           struct sockaddr_vm *src)
389 {
390         return vmci_transport_send_control_pkt_bh(
391                                         dst, src,
392                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
393                                         0, 0, NULL, VMCI_INVALID_HANDLE);
394 }
395 
396 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
397                                  struct sockaddr_vm *src)
398 {
399         return vmci_transport_send_control_pkt_bh(
400                                         dst, src,
401                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
402                                         0, NULL, VMCI_INVALID_HANDLE);
403 }
404 
405 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
406                                 struct sockaddr_vm *src)
407 {
408         return vmci_transport_send_control_pkt_bh(
409                                         dst, src,
410                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
411                                         0, NULL, VMCI_INVALID_HANDLE);
412 }
413 
414 int vmci_transport_send_wrote(struct sock *sk)
415 {
416         return vmci_transport_send_control_pkt(
417                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
418                                         0, NULL, VSOCK_PROTO_INVALID,
419                                         VMCI_INVALID_HANDLE);
420 }
421 
422 int vmci_transport_send_read(struct sock *sk)
423 {
424         return vmci_transport_send_control_pkt(
425                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
426                                         0, NULL, VSOCK_PROTO_INVALID,
427                                         VMCI_INVALID_HANDLE);
428 }
429 
430 int vmci_transport_send_waiting_write(struct sock *sk,
431                                       struct vmci_transport_waiting_info *wait)
432 {
433         return vmci_transport_send_control_pkt(
434                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
435                                 0, 0, wait, VSOCK_PROTO_INVALID,
436                                 VMCI_INVALID_HANDLE);
437 }
438 
439 int vmci_transport_send_waiting_read(struct sock *sk,
440                                      struct vmci_transport_waiting_info *wait)
441 {
442         return vmci_transport_send_control_pkt(
443                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
444                                 0, 0, wait, VSOCK_PROTO_INVALID,
445                                 VMCI_INVALID_HANDLE);
446 }
447 
448 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
449 {
450         return vmci_transport_send_control_pkt(
451                                         &vsk->sk,
452                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
453                                         0, mode, NULL,
454                                         VSOCK_PROTO_INVALID,
455                                         VMCI_INVALID_HANDLE);
456 }
457 
458 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
459 {
460         return vmci_transport_send_control_pkt(sk,
461                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
462                                         size, 0, NULL,
463                                         VSOCK_PROTO_INVALID,
464                                         VMCI_INVALID_HANDLE);
465 }
466 
467 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
468                                              u16 version)
469 {
470         return vmci_transport_send_control_pkt(
471                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
472                                         size, 0, NULL, version,
473                                         VMCI_INVALID_HANDLE);
474 }
475 
476 static struct sock *vmci_transport_get_pending(
477                                         struct sock *listener,
478                                         struct vmci_transport_packet *pkt)
479 {
480         struct vsock_sock *vlistener;
481         struct vsock_sock *vpending;
482         struct sock *pending;
483         struct sockaddr_vm src;
484 
485         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
486 
487         vlistener = vsock_sk(listener);
488 
489         list_for_each_entry(vpending, &vlistener->pending_links,
490                             pending_links) {
491                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
492                     pkt->dst_port == vpending->local_addr.svm_port) {
493                         pending = sk_vsock(vpending);
494                         sock_hold(pending);
495                         goto found;
496                 }
497         }
498 
499         pending = NULL;
500 found:
501         return pending;
502 
503 }
504 
505 static void vmci_transport_release_pending(struct sock *pending)
506 {
507         sock_put(pending);
508 }
509 
510 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
511  * trusted sockets 2) sockets from applications running as the same user as the
512  * VM (this is only true for the host side and only when using hosted products)
513  */
514 
515 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
516 {
517         return vsock->trusted ||
518                vmci_is_context_owner(peer_cid, vsock->owner->uid);
519 }
520 
521 /* We allow sending datagrams to and receiving datagrams from a restricted VM
522  * only if it is trusted as described in vmci_transport_is_trusted.
523  */
524 
525 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
526 {
527         if (VMADDR_CID_HYPERVISOR == peer_cid)
528                 return true;
529 
530         if (vsock->cached_peer != peer_cid) {
531                 vsock->cached_peer = peer_cid;
532                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
533                     (vmci_context_get_priv_flags(peer_cid) &
534                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
535                         vsock->cached_peer_allow_dgram = false;
536                 } else {
537                         vsock->cached_peer_allow_dgram = true;
538                 }
539         }
540 
541         return vsock->cached_peer_allow_dgram;
542 }
543 
544 static int
545 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
546                                 struct vmci_handle *handle,
547                                 u64 produce_size,
548                                 u64 consume_size,
549                                 u32 peer, u32 flags, bool trusted)
550 {
551         int err = 0;
552 
553         if (trusted) {
554                 /* Try to allocate our queue pair as trusted. This will only
555                  * work if vsock is running in the host.
556                  */
557 
558                 err = vmci_qpair_alloc(qpair, handle, produce_size,
559                                        consume_size,
560                                        peer, flags,
561                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
562                 if (err != VMCI_ERROR_NO_ACCESS)
563                         goto out;
564 
565         }
566 
567         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
568                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
569 out:
570         if (err < 0) {
571                 pr_err("Could not attach to queue pair with %d\n",
572                        err);
573                 err = vmci_transport_error_to_vsock_error(err);
574         }
575 
576         return err;
577 }
578 
579 static int
580 vmci_transport_datagram_create_hnd(u32 resource_id,
581                                    u32 flags,
582                                    vmci_datagram_recv_cb recv_cb,
583                                    void *client_data,
584                                    struct vmci_handle *out_handle)
585 {
586         int err = 0;
587 
588         /* Try to allocate our datagram handler as trusted. This will only work
589          * if vsock is running in the host.
590          */
591 
592         err = vmci_datagram_create_handle_priv(resource_id, flags,
593                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
594                                                recv_cb,
595                                                client_data, out_handle);
596 
597         if (err == VMCI_ERROR_NO_ACCESS)
598                 err = vmci_datagram_create_handle(resource_id, flags,
599                                                   recv_cb, client_data,
600                                                   out_handle);
601 
602         return err;
603 }
604 
605 /* This is invoked as part of a tasklet that's scheduled when the VMCI
606  * interrupt fires.  This is run in bottom-half context and if it ever needs to
607  * sleep it should defer that work to a work queue.
608  */
609 
610 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
611 {
612         struct sock *sk;
613         size_t size;
614         struct sk_buff *skb;
615         struct vsock_sock *vsk;
616 
617         sk = (struct sock *)data;
618 
619         /* This handler is privileged when this module is running on the host.
620          * We will get datagrams from all endpoints (even VMs that are in a
621          * restricted context). If we get one from a restricted context then
622          * the destination socket must be trusted.
623          *
624          * NOTE: We access the socket struct without holding the lock here.
625          * This is ok because the field we are interested is never modified
626          * outside of the create and destruct socket functions.
627          */
628         vsk = vsock_sk(sk);
629         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
630                 return VMCI_ERROR_NO_ACCESS;
631 
632         size = VMCI_DG_SIZE(dg);
633 
634         /* Attach the packet to the socket's receive queue as an sk_buff. */
635         skb = alloc_skb(size, GFP_ATOMIC);
636         if (!skb)
637                 return VMCI_ERROR_NO_MEM;
638 
639         /* sk_receive_skb() will do a sock_put(), so hold here. */
640         sock_hold(sk);
641         skb_put(skb, size);
642         memcpy(skb->data, dg, size);
643         sk_receive_skb(sk, skb, 0);
644 
645         return VMCI_SUCCESS;
646 }
647 
648 static bool vmci_transport_stream_allow(u32 cid, u32 port)
649 {
650         static const u32 non_socket_contexts[] = {
651                 VMADDR_CID_LOCAL,
652         };
653         int i;
654 
655         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
656 
657         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
658                 if (cid == non_socket_contexts[i])
659                         return false;
660         }
661 
662         return true;
663 }
664 
665 /* This is invoked as part of a tasklet that's scheduled when the VMCI
666  * interrupt fires.  This is run in bottom-half context but it defers most of
667  * its work to the packet handling work queue.
668  */
669 
670 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
671 {
672         struct sock *sk;
673         struct sockaddr_vm dst;
674         struct sockaddr_vm src;
675         struct vmci_transport_packet *pkt;
676         struct vsock_sock *vsk;
677         bool bh_process_pkt;
678         int err;
679 
680         sk = NULL;
681         err = VMCI_SUCCESS;
682         bh_process_pkt = false;
683 
684         /* Ignore incoming packets from contexts without sockets, or resources
685          * that aren't vsock implementations.
686          */
687 
688         if (!vmci_transport_stream_allow(dg->src.context, -1)
689             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
690                 return VMCI_ERROR_NO_ACCESS;
691 
692         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
693                 /* Drop datagrams that do not contain full VSock packets. */
694                 return VMCI_ERROR_INVALID_ARGS;
695 
696         pkt = (struct vmci_transport_packet *)dg;
697 
698         /* Find the socket that should handle this packet.  First we look for a
699          * connected socket and if there is none we look for a socket bound to
700          * the destintation address.
701          */
702         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
703         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
704 
705         sk = vsock_find_connected_socket(&src, &dst);
706         if (!sk) {
707                 sk = vsock_find_bound_socket(&dst);
708                 if (!sk) {
709                         /* We could not find a socket for this specified
710                          * address.  If this packet is a RST, we just drop it.
711                          * If it is another packet, we send a RST.  Note that
712                          * we do not send a RST reply to RSTs so that we do not
713                          * continually send RSTs between two endpoints.
714                          *
715                          * Note that since this is a reply, dst is src and src
716                          * is dst.
717                          */
718                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
719                                 pr_err("unable to send reset\n");
720 
721                         err = VMCI_ERROR_NOT_FOUND;
722                         goto out;
723                 }
724         }
725 
726         /* If the received packet type is beyond all types known to this
727          * implementation, reply with an invalid message.  Hopefully this will
728          * help when implementing backwards compatibility in the future.
729          */
730         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
731                 vmci_transport_send_invalid_bh(&dst, &src);
732                 err = VMCI_ERROR_INVALID_ARGS;
733                 goto out;
734         }
735 
736         /* This handler is privileged when this module is running on the host.
737          * We will get datagram connect requests from all endpoints (even VMs
738          * that are in a restricted context). If we get one from a restricted
739          * context then the destination socket must be trusted.
740          *
741          * NOTE: We access the socket struct without holding the lock here.
742          * This is ok because the field we are interested is never modified
743          * outside of the create and destruct socket functions.
744          */
745         vsk = vsock_sk(sk);
746         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
747                 err = VMCI_ERROR_NO_ACCESS;
748                 goto out;
749         }
750 
751         /* We do most everything in a work queue, but let's fast path the
752          * notification of reads and writes to help data transfer performance.
753          * We can only do this if there is no process context code executing
754          * for this socket since that may change the state.
755          */
756         bh_lock_sock(sk);
757 
758         if (!sock_owned_by_user(sk)) {
759                 /* The local context ID may be out of date, update it. */
760                 vsk->local_addr.svm_cid = dst.svm_cid;
761 
762                 if (sk->sk_state == TCP_ESTABLISHED)
763                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
764                                         sk, pkt, true, &dst, &src,
765                                         &bh_process_pkt);
766         }
767 
768         bh_unlock_sock(sk);
769 
770         if (!bh_process_pkt) {
771                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
772 
773                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
774                 if (!recv_pkt_info) {
775                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
776                                 pr_err("unable to send reset\n");
777 
778                         err = VMCI_ERROR_NO_MEM;
779                         goto out;
780                 }
781 
782                 recv_pkt_info->sk = sk;
783                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
784                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
785 
786                 schedule_work(&recv_pkt_info->work);
787                 /* Clear sk so that the reference count incremented by one of
788                  * the Find functions above is not decremented below.  We need
789                  * that reference count for the packet handler we've scheduled
790                  * to run.
791                  */
792                 sk = NULL;
793         }
794 
795 out:
796         if (sk)
797                 sock_put(sk);
798 
799         return err;
800 }
801 
802 static void vmci_transport_handle_detach(struct sock *sk)
803 {
804         struct vsock_sock *vsk;
805 
806         vsk = vsock_sk(sk);
807         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
808                 sock_set_flag(sk, SOCK_DONE);
809 
810                 /* On a detach the peer will not be sending or receiving
811                  * anymore.
812                  */
813                 vsk->peer_shutdown = SHUTDOWN_MASK;
814 
815                 /* We should not be sending anymore since the peer won't be
816                  * there to receive, but we can still receive if there is data
817                  * left in our consume queue. If the local endpoint is a host,
818                  * we can't call vsock_stream_has_data, since that may block,
819                  * but a host endpoint can't read data once the VM has
820                  * detached, so there is no available data in that case.
821                  */
822                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
823                     vsock_stream_has_data(vsk) <= 0) {
824                         if (sk->sk_state == TCP_SYN_SENT) {
825                                 /* The peer may detach from a queue pair while
826                                  * we are still in the connecting state, i.e.,
827                                  * if the peer VM is killed after attaching to
828                                  * a queue pair, but before we complete the
829                                  * handshake. In that case, we treat the detach
830                                  * event like a reset.
831                                  */
832 
833                                 sk->sk_state = TCP_CLOSE;
834                                 sk->sk_err = ECONNRESET;
835                                 sk->sk_error_report(sk);
836                                 return;
837                         }
838                         sk->sk_state = TCP_CLOSE;
839                 }
840                 sk->sk_state_change(sk);
841         }
842 }
843 
844 static void vmci_transport_peer_detach_cb(u32 sub_id,
845                                           const struct vmci_event_data *e_data,
846                                           void *client_data)
847 {
848         struct vmci_transport *trans = client_data;
849         const struct vmci_event_payload_qp *e_payload;
850 
851         e_payload = vmci_event_data_const_payload(e_data);
852 
853         /* XXX This is lame, we should provide a way to lookup sockets by
854          * qp_handle.
855          */
856         if (vmci_handle_is_invalid(e_payload->handle) ||
857             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
858                 return;
859 
860         /* We don't ask for delayed CBs when we subscribe to this event (we
861          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
862          * guarantees in that case about what context we might be running in,
863          * so it could be BH or process, blockable or non-blockable.  So we
864          * need to account for all possible contexts here.
865          */
866         spin_lock_bh(&trans->lock);
867         if (!trans->sk)
868                 goto out;
869 
870         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
871          * where trans->sk isn't locked.
872          */
873         bh_lock_sock(trans->sk);
874 
875         vmci_transport_handle_detach(trans->sk);
876 
877         bh_unlock_sock(trans->sk);
878  out:
879         spin_unlock_bh(&trans->lock);
880 }
881 
882 static void vmci_transport_qp_resumed_cb(u32 sub_id,
883                                          const struct vmci_event_data *e_data,
884                                          void *client_data)
885 {
886         vsock_for_each_connected_socket(vmci_transport_handle_detach);
887 }
888 
889 static void vmci_transport_recv_pkt_work(struct work_struct *work)
890 {
891         struct vmci_transport_recv_pkt_info *recv_pkt_info;
892         struct vmci_transport_packet *pkt;
893         struct sock *sk;
894 
895         recv_pkt_info =
896                 container_of(work, struct vmci_transport_recv_pkt_info, work);
897         sk = recv_pkt_info->sk;
898         pkt = &recv_pkt_info->pkt;
899 
900         lock_sock(sk);
901 
902         /* The local context ID may be out of date. */
903         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
904 
905         switch (sk->sk_state) {
906         case TCP_LISTEN:
907                 vmci_transport_recv_listen(sk, pkt);
908                 break;
909         case TCP_SYN_SENT:
910                 /* Processing of pending connections for servers goes through
911                  * the listening socket, so see vmci_transport_recv_listen()
912                  * for that path.
913                  */
914                 vmci_transport_recv_connecting_client(sk, pkt);
915                 break;
916         case TCP_ESTABLISHED:
917                 vmci_transport_recv_connected(sk, pkt);
918                 break;
919         default:
920                 /* Because this function does not run in the same context as
921                  * vmci_transport_recv_stream_cb it is possible that the
922                  * socket has closed. We need to let the other side know or it
923                  * could be sitting in a connect and hang forever. Send a
924                  * reset to prevent that.
925                  */
926                 vmci_transport_send_reset(sk, pkt);
927                 break;
928         }
929 
930         release_sock(sk);
931         kfree(recv_pkt_info);
932         /* Release reference obtained in the stream callback when we fetched
933          * this socket out of the bound or connected list.
934          */
935         sock_put(sk);
936 }
937 
938 static int vmci_transport_recv_listen(struct sock *sk,
939                                       struct vmci_transport_packet *pkt)
940 {
941         struct sock *pending;
942         struct vsock_sock *vpending;
943         int err;
944         u64 qp_size;
945         bool old_request = false;
946         bool old_pkt_proto = false;
947 
948         err = 0;
949 
950         /* Because we are in the listen state, we could be receiving a packet
951          * for ourself or any previous connection requests that we received.
952          * If it's the latter, we try to find a socket in our list of pending
953          * connections and, if we do, call the appropriate handler for the
954          * state that that socket is in.  Otherwise we try to service the
955          * connection request.
956          */
957         pending = vmci_transport_get_pending(sk, pkt);
958         if (pending) {
959                 lock_sock(pending);
960 
961                 /* The local context ID may be out of date. */
962                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
963 
964                 switch (pending->sk_state) {
965                 case TCP_SYN_SENT:
966                         err = vmci_transport_recv_connecting_server(sk,
967                                                                     pending,
968                                                                     pkt);
969                         break;
970                 default:
971                         vmci_transport_send_reset(pending, pkt);
972                         err = -EINVAL;
973                 }
974 
975                 if (err < 0)
976                         vsock_remove_pending(sk, pending);
977 
978                 release_sock(pending);
979                 vmci_transport_release_pending(pending);
980 
981                 return err;
982         }
983 
984         /* The listen state only accepts connection requests.  Reply with a
985          * reset unless we received a reset.
986          */
987 
988         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990                 vmci_transport_reply_reset(pkt);
991                 return -EINVAL;
992         }
993 
994         if (pkt->u.size == 0) {
995                 vmci_transport_reply_reset(pkt);
996                 return -EINVAL;
997         }
998 
999         /* If this socket can't accommodate this connection request, we send a
1000          * reset.  Otherwise we create and initialize a child socket and reply
1001          * with a connection negotiation.
1002          */
1003         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004                 vmci_transport_reply_reset(pkt);
1005                 return -ECONNREFUSED;
1006         }
1007 
1008         pending = vsock_create_connected(sk);
1009         if (!pending) {
1010                 vmci_transport_send_reset(sk, pkt);
1011                 return -ENOMEM;
1012         }
1013 
1014         vpending = vsock_sk(pending);
1015 
1016         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017                         pkt->dst_port);
1018         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019                         pkt->src_port);
1020 
1021         err = vsock_assign_transport(vpending, vsock_sk(sk));
1022         /* Transport assigned (looking at remote_addr) must be the same
1023          * where we received the request.
1024          */
1025         if (err || !vmci_check_transport(vpending)) {
1026                 vmci_transport_send_reset(sk, pkt);
1027                 sock_put(pending);
1028                 return err;
1029         }
1030 
1031         /* If the proposed size fits within our min/max, accept it. Otherwise
1032          * propose our own size.
1033          */
1034         if (pkt->u.size >= vpending->buffer_min_size &&
1035             pkt->u.size <= vpending->buffer_max_size) {
1036                 qp_size = pkt->u.size;
1037         } else {
1038                 qp_size = vpending->buffer_size;
1039         }
1040 
1041         /* Figure out if we are using old or new requests based on the
1042          * overrides pkt types sent by our peer.
1043          */
1044         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045                 old_request = old_pkt_proto;
1046         } else {
1047                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048                         old_request = true;
1049                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050                         old_request = false;
1051 
1052         }
1053 
1054         if (old_request) {
1055                 /* Handle a REQUEST (or override) */
1056                 u16 version = VSOCK_PROTO_INVALID;
1057                 if (vmci_transport_proto_to_notify_struct(
1058                         pending, &version, true))
1059                         err = vmci_transport_send_negotiate(pending, qp_size);
1060                 else
1061                         err = -EINVAL;
1062 
1063         } else {
1064                 /* Handle a REQUEST2 (or override) */
1065                 int proto_int = pkt->proto;
1066                 int pos;
1067                 u16 active_proto_version = 0;
1068 
1069                 /* The list of possible protocols is the intersection of all
1070                  * protocols the client supports ... plus all the protocols we
1071                  * support.
1072                  */
1073                 proto_int &= vmci_transport_new_proto_supported_versions();
1074 
1075                 /* We choose the highest possible protocol version and use that
1076                  * one.
1077                  */
1078                 pos = fls(proto_int);
1079                 if (pos) {
1080                         active_proto_version = (1 << (pos - 1));
1081                         if (vmci_transport_proto_to_notify_struct(
1082                                 pending, &active_proto_version, false))
1083                                 err = vmci_transport_send_negotiate2(pending,
1084                                                         qp_size,
1085                                                         active_proto_version);
1086                         else
1087                                 err = -EINVAL;
1088 
1089                 } else {
1090                         err = -EINVAL;
1091                 }
1092         }
1093 
1094         if (err < 0) {
1095                 vmci_transport_send_reset(sk, pkt);
1096                 sock_put(pending);
1097                 err = vmci_transport_error_to_vsock_error(err);
1098                 goto out;
1099         }
1100 
1101         vsock_add_pending(sk, pending);
1102         sk_acceptq_added(sk);
1103 
1104         pending->sk_state = TCP_SYN_SENT;
1105         vmci_trans(vpending)->produce_size =
1106                 vmci_trans(vpending)->consume_size = qp_size;
1107         vpending->buffer_size = qp_size;
1108 
1109         vmci_trans(vpending)->notify_ops->process_request(pending);
1110 
1111         /* We might never receive another message for this socket and it's not
1112          * connected to any process, so we have to ensure it gets cleaned up
1113          * ourself.  Our delayed work function will take care of that.  Note
1114          * that we do not ever cancel this function since we have few
1115          * guarantees about its state when calling cancel_delayed_work().
1116          * Instead we hold a reference on the socket for that function and make
1117          * it capable of handling cases where it needs to do nothing but
1118          * release that reference.
1119          */
1120         vpending->listener = sk;
1121         sock_hold(sk);
1122         sock_hold(pending);
1123         schedule_delayed_work(&vpending->pending_work, HZ);
1124 
1125 out:
1126         return err;
1127 }
1128 
1129 static int
1130 vmci_transport_recv_connecting_server(struct sock *listener,
1131                                       struct sock *pending,
1132                                       struct vmci_transport_packet *pkt)
1133 {
1134         struct vsock_sock *vpending;
1135         struct vmci_handle handle;
1136         struct vmci_qp *qpair;
1137         bool is_local;
1138         u32 flags;
1139         u32 detach_sub_id;
1140         int err;
1141         int skerr;
1142 
1143         vpending = vsock_sk(pending);
1144         detach_sub_id = VMCI_INVALID_ID;
1145 
1146         switch (pkt->type) {
1147         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1149                         vmci_transport_send_reset(pending, pkt);
1150                         skerr = EPROTO;
1151                         err = -EINVAL;
1152                         goto destroy;
1153                 }
1154                 break;
1155         default:
1156                 /* Close and cleanup the connection. */
1157                 vmci_transport_send_reset(pending, pkt);
1158                 skerr = EPROTO;
1159                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160                 goto destroy;
1161         }
1162 
1163         /* In order to complete the connection we need to attach to the offered
1164          * queue pair and send an attach notification.  We also subscribe to the
1165          * detach event so we know when our peer goes away, and we do that
1166          * before attaching so we don't miss an event.  If all this succeeds,
1167          * we update our state and wakeup anything waiting in accept() for a
1168          * connection.
1169          */
1170 
1171         /* We don't care about attach since we ensure the other side has
1172          * attached by specifying the ATTACH_ONLY flag below.
1173          */
1174         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175                                    vmci_transport_peer_detach_cb,
1176                                    vmci_trans(vpending), &detach_sub_id);
1177         if (err < VMCI_SUCCESS) {
1178                 vmci_transport_send_reset(pending, pkt);
1179                 err = vmci_transport_error_to_vsock_error(err);
1180                 skerr = -err;
1181                 goto destroy;
1182         }
1183 
1184         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1185 
1186         /* Now attach to the queue pair the client created. */
1187         handle = pkt->u.handle;
1188 
1189         /* vpending->local_addr always has a context id so we do not need to
1190          * worry about VMADDR_CID_ANY in this case.
1191          */
1192         is_local =
1193             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194         flags = VMCI_QPFLAG_ATTACH_ONLY;
1195         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1196 
1197         err = vmci_transport_queue_pair_alloc(
1198                                         &qpair,
1199                                         &handle,
1200                                         vmci_trans(vpending)->produce_size,
1201                                         vmci_trans(vpending)->consume_size,
1202                                         pkt->dg.src.context,
1203                                         flags,
1204                                         vmci_transport_is_trusted(
1205                                                 vpending,
1206                                                 vpending->remote_addr.svm_cid));
1207         if (err < 0) {
1208                 vmci_transport_send_reset(pending, pkt);
1209                 skerr = -err;
1210                 goto destroy;
1211         }
1212 
1213         vmci_trans(vpending)->qp_handle = handle;
1214         vmci_trans(vpending)->qpair = qpair;
1215 
1216         /* When we send the attach message, we must be ready to handle incoming
1217          * control messages on the newly connected socket. So we move the
1218          * pending socket to the connected state before sending the attach
1219          * message. Otherwise, an incoming packet triggered by the attach being
1220          * received by the peer may be processed concurrently with what happens
1221          * below after sending the attach message, and that incoming packet
1222          * will find the listening socket instead of the (currently) pending
1223          * socket. Note that enqueueing the socket increments the reference
1224          * count, so even if a reset comes before the connection is accepted,
1225          * the socket will be valid until it is removed from the queue.
1226          *
1227          * If we fail sending the attach below, we remove the socket from the
1228          * connected list and move the socket to TCP_CLOSE before
1229          * releasing the lock, so a pending slow path processing of an incoming
1230          * packet will not see the socket in the connected state in that case.
1231          */
1232         pending->sk_state = TCP_ESTABLISHED;
1233 
1234         vsock_insert_connected(vpending);
1235 
1236         /* Notify our peer of our attach. */
1237         err = vmci_transport_send_attach(pending, handle);
1238         if (err < 0) {
1239                 vsock_remove_connected(vpending);
1240                 pr_err("Could not send attach\n");
1241                 vmci_transport_send_reset(pending, pkt);
1242                 err = vmci_transport_error_to_vsock_error(err);
1243                 skerr = -err;
1244                 goto destroy;
1245         }
1246 
1247         /* We have a connection. Move the now connected socket from the
1248          * listener's pending list to the accept queue so callers of accept()
1249          * can find it.
1250          */
1251         vsock_remove_pending(listener, pending);
1252         vsock_enqueue_accept(listener, pending);
1253 
1254         /* Callers of accept() will be be waiting on the listening socket, not
1255          * the pending socket.
1256          */
1257         listener->sk_data_ready(listener);
1258 
1259         return 0;
1260 
1261 destroy:
1262         pending->sk_err = skerr;
1263         pending->sk_state = TCP_CLOSE;
1264         /* As long as we drop our reference, all necessary cleanup will handle
1265          * when the cleanup function drops its reference and our destruct
1266          * implementation is called.  Note that since the listen handler will
1267          * remove pending from the pending list upon our failure, the cleanup
1268          * function won't drop the additional reference, which is why we do it
1269          * here.
1270          */
1271         sock_put(pending);
1272 
1273         return err;
1274 }
1275 
1276 static int
1277 vmci_transport_recv_connecting_client(struct sock *sk,
1278                                       struct vmci_transport_packet *pkt)
1279 {
1280         struct vsock_sock *vsk;
1281         int err;
1282         int skerr;
1283 
1284         vsk = vsock_sk(sk);
1285 
1286         switch (pkt->type) {
1287         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1289                     !vmci_handle_is_equal(pkt->u.handle,
1290                                           vmci_trans(vsk)->qp_handle)) {
1291                         skerr = EPROTO;
1292                         err = -EINVAL;
1293                         goto destroy;
1294                 }
1295 
1296                 /* Signify the socket is connected and wakeup the waiter in
1297                  * connect(). Also place the socket in the connected table for
1298                  * accounting (it can already be found since it's in the bound
1299                  * table).
1300                  */
1301                 sk->sk_state = TCP_ESTABLISHED;
1302                 sk->sk_socket->state = SS_CONNECTED;
1303                 vsock_insert_connected(vsk);
1304                 sk->sk_state_change(sk);
1305 
1306                 break;
1307         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309                 if (pkt->u.size == 0
1310                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311                     || pkt->src_port != vsk->remote_addr.svm_port
1312                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313                     || vmci_trans(vsk)->qpair
1314                     || vmci_trans(vsk)->produce_size != 0
1315                     || vmci_trans(vsk)->consume_size != 0
1316                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317                         skerr = EPROTO;
1318                         err = -EINVAL;
1319 
1320                         goto destroy;
1321                 }
1322 
1323                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324                 if (err) {
1325                         skerr = -err;
1326                         goto destroy;
1327                 }
1328 
1329                 break;
1330         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332                 if (err) {
1333                         skerr = -err;
1334                         goto destroy;
1335                 }
1336 
1337                 break;
1338         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340                  * continue processing here after they sent an INVALID packet.
1341                  * This meant that we got a RST after the INVALID. We ignore a
1342                  * RST after an INVALID. The common code doesn't send the RST
1343                  * ... so we can hang if an old version of the common code
1344                  * fails between getting a REQUEST and sending an OFFER back.
1345                  * Not much we can do about it... except hope that it doesn't
1346                  * happen.
1347                  */
1348                 if (vsk->ignore_connecting_rst) {
1349                         vsk->ignore_connecting_rst = false;
1350                 } else {
1351                         skerr = ECONNRESET;
1352                         err = 0;
1353                         goto destroy;
1354                 }
1355 
1356                 break;
1357         default:
1358                 /* Close and cleanup the connection. */
1359                 skerr = EPROTO;
1360                 err = -EINVAL;
1361                 goto destroy;
1362         }
1363 
1364         return 0;
1365 
1366 destroy:
1367         vmci_transport_send_reset(sk, pkt);
1368 
1369         sk->sk_state = TCP_CLOSE;
1370         sk->sk_err = skerr;
1371         sk->sk_error_report(sk);
1372         return err;
1373 }
1374 
1375 static int vmci_transport_recv_connecting_client_negotiate(
1376                                         struct sock *sk,
1377                                         struct vmci_transport_packet *pkt)
1378 {
1379         int err;
1380         struct vsock_sock *vsk;
1381         struct vmci_handle handle;
1382         struct vmci_qp *qpair;
1383         u32 detach_sub_id;
1384         bool is_local;
1385         u32 flags;
1386         bool old_proto = true;
1387         bool old_pkt_proto;
1388         u16 version;
1389 
1390         vsk = vsock_sk(sk);
1391         handle = VMCI_INVALID_HANDLE;
1392         detach_sub_id = VMCI_INVALID_ID;
1393 
1394         /* If we have gotten here then we should be past the point where old
1395          * linux vsock could have sent the bogus rst.
1396          */
1397         vsk->sent_request = false;
1398         vsk->ignore_connecting_rst = false;
1399 
1400         /* Verify that we're OK with the proposed queue pair size */
1401         if (pkt->u.size < vsk->buffer_min_size ||
1402             pkt->u.size > vsk->buffer_max_size) {
1403                 err = -EINVAL;
1404                 goto destroy;
1405         }
1406 
1407         /* At this point we know the CID the peer is using to talk to us. */
1408 
1409         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1411 
1412         /* Setup the notify ops to be the highest supported version that both
1413          * the server and the client support.
1414          */
1415 
1416         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417                 old_proto = old_pkt_proto;
1418         } else {
1419                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420                         old_proto = true;
1421                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422                         old_proto = false;
1423 
1424         }
1425 
1426         if (old_proto)
1427                 version = VSOCK_PROTO_INVALID;
1428         else
1429                 version = pkt->proto;
1430 
1431         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432                 err = -EINVAL;
1433                 goto destroy;
1434         }
1435 
1436         /* Subscribe to detach events first.
1437          *
1438          * XXX We attach once for each queue pair created for now so it is easy
1439          * to find the socket (it's provided), but later we should only
1440          * subscribe once and add a way to lookup sockets by queue pair handle.
1441          */
1442         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443                                    vmci_transport_peer_detach_cb,
1444                                    vmci_trans(vsk), &detach_sub_id);
1445         if (err < VMCI_SUCCESS) {
1446                 err = vmci_transport_error_to_vsock_error(err);
1447                 goto destroy;
1448         }
1449 
1450         /* Make VMCI select the handle for us. */
1451         handle = VMCI_INVALID_HANDLE;
1452         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1454 
1455         err = vmci_transport_queue_pair_alloc(&qpair,
1456                                               &handle,
1457                                               pkt->u.size,
1458                                               pkt->u.size,
1459                                               vsk->remote_addr.svm_cid,
1460                                               flags,
1461                                               vmci_transport_is_trusted(
1462                                                   vsk,
1463                                                   vsk->
1464                                                   remote_addr.svm_cid));
1465         if (err < 0)
1466                 goto destroy;
1467 
1468         err = vmci_transport_send_qp_offer(sk, handle);
1469         if (err < 0) {
1470                 err = vmci_transport_error_to_vsock_error(err);
1471                 goto destroy;
1472         }
1473 
1474         vmci_trans(vsk)->qp_handle = handle;
1475         vmci_trans(vsk)->qpair = qpair;
1476 
1477         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478                 pkt->u.size;
1479 
1480         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1481 
1482         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1483 
1484         return 0;
1485 
1486 destroy:
1487         if (detach_sub_id != VMCI_INVALID_ID)
1488                 vmci_event_unsubscribe(detach_sub_id);
1489 
1490         if (!vmci_handle_is_invalid(handle))
1491                 vmci_qpair_detach(&qpair);
1492 
1493         return err;
1494 }
1495 
1496 static int
1497 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498                                               struct vmci_transport_packet *pkt)
1499 {
1500         int err = 0;
1501         struct vsock_sock *vsk = vsock_sk(sk);
1502 
1503         if (vsk->sent_request) {
1504                 vsk->sent_request = false;
1505                 vsk->ignore_connecting_rst = true;
1506 
1507                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508                 if (err < 0)
1509                         err = vmci_transport_error_to_vsock_error(err);
1510                 else
1511                         err = 0;
1512 
1513         }
1514 
1515         return err;
1516 }
1517 
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519                                          struct vmci_transport_packet *pkt)
1520 {
1521         struct vsock_sock *vsk;
1522         bool pkt_processed = false;
1523 
1524         /* In cases where we are closing the connection, it's sufficient to
1525          * mark the state change (and maybe error) and wake up any waiting
1526          * threads. Since this is a connected socket, it's owned by a user
1527          * process and will be cleaned up when the failure is passed back on
1528          * the current or next system call.  Our system call implementations
1529          * must therefore check for error and state changes on entry and when
1530          * being awoken.
1531          */
1532         switch (pkt->type) {
1533         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534                 if (pkt->u.mode) {
1535                         vsk = vsock_sk(sk);
1536 
1537                         vsk->peer_shutdown |= pkt->u.mode;
1538                         sk->sk_state_change(sk);
1539                 }
1540                 break;
1541 
1542         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543                 vsk = vsock_sk(sk);
1544                 /* It is possible that we sent our peer a message (e.g a
1545                  * WAITING_READ) right before we got notified that the peer had
1546                  * detached. If that happens then we can get a RST pkt back
1547                  * from our peer even though there is data available for us to
1548                  * read. In that case, don't shutdown the socket completely but
1549                  * instead allow the local client to finish reading data off
1550                  * the queuepair. Always treat a RST pkt in connected mode like
1551                  * a clean shutdown.
1552                  */
1553                 sock_set_flag(sk, SOCK_DONE);
1554                 vsk->peer_shutdown = SHUTDOWN_MASK;
1555                 if (vsock_stream_has_data(vsk) <= 0)
1556                         sk->sk_state = TCP_CLOSING;
1557 
1558                 sk->sk_state_change(sk);
1559                 break;
1560 
1561         default:
1562                 vsk = vsock_sk(sk);
1563                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564                                 sk, pkt, false, NULL, NULL,
1565                                 &pkt_processed);
1566                 if (!pkt_processed)
1567                         return -EINVAL;
1568 
1569                 break;
1570         }
1571 
1572         return 0;
1573 }
1574 
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576                                       struct vsock_sock *psk)
1577 {
1578         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579         if (!vsk->trans)
1580                 return -ENOMEM;
1581 
1582         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584         vmci_trans(vsk)->qpair = NULL;
1585         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587         vmci_trans(vsk)->notify_ops = NULL;
1588         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589         vmci_trans(vsk)->sk = &vsk->sk;
1590         spin_lock_init(&vmci_trans(vsk)->lock);
1591 
1592         return 0;
1593 }
1594 
1595 static void vmci_transport_free_resources(struct list_head *transport_list)
1596 {
1597         while (!list_empty(transport_list)) {
1598                 struct vmci_transport *transport =
1599                     list_first_entry(transport_list, struct vmci_transport,
1600                                      elem);
1601                 list_del(&transport->elem);
1602 
1603                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604                         vmci_event_unsubscribe(transport->detach_sub_id);
1605                         transport->detach_sub_id = VMCI_INVALID_ID;
1606                 }
1607 
1608                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609                         vmci_qpair_detach(&transport->qpair);
1610                         transport->qp_handle = VMCI_INVALID_HANDLE;
1611                         transport->produce_size = 0;
1612                         transport->consume_size = 0;
1613                 }
1614 
1615                 kfree(transport);
1616         }
1617 }
1618 
1619 static void vmci_transport_cleanup(struct work_struct *work)
1620 {
1621         LIST_HEAD(pending);
1622 
1623         spin_lock_bh(&vmci_transport_cleanup_lock);
1624         list_replace_init(&vmci_transport_cleanup_list, &pending);
1625         spin_unlock_bh(&vmci_transport_cleanup_lock);
1626         vmci_transport_free_resources(&pending);
1627 }
1628 
1629 static void vmci_transport_destruct(struct vsock_sock *vsk)
1630 {
1631         /* transport can be NULL if we hit a failure at init() time */
1632         if (!vmci_trans(vsk))
1633                 return;
1634 
1635         /* Ensure that the detach callback doesn't use the sk/vsk
1636          * we are about to destruct.
1637          */
1638         spin_lock_bh(&vmci_trans(vsk)->lock);
1639         vmci_trans(vsk)->sk = NULL;
1640         spin_unlock_bh(&vmci_trans(vsk)->lock);
1641 
1642         if (vmci_trans(vsk)->notify_ops)
1643                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644 
1645         spin_lock_bh(&vmci_transport_cleanup_lock);
1646         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647         spin_unlock_bh(&vmci_transport_cleanup_lock);
1648         schedule_work(&vmci_transport_cleanup_work);
1649 
1650         vsk->trans = NULL;
1651 }
1652 
1653 static void vmci_transport_release(struct vsock_sock *vsk)
1654 {
1655         vsock_remove_sock(vsk);
1656 
1657         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1660         }
1661 }
1662 
1663 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664                                      struct sockaddr_vm *addr)
1665 {
1666         u32 port;
1667         u32 flags;
1668         int err;
1669 
1670         /* VMCI will select a resource ID for us if we provide
1671          * VMCI_INVALID_ID.
1672          */
1673         port = addr->svm_port == VMADDR_PORT_ANY ?
1674                         VMCI_INVALID_ID : addr->svm_port;
1675 
1676         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677                 return -EACCES;
1678 
1679         flags = addr->svm_cid == VMADDR_CID_ANY ?
1680                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1681 
1682         err = vmci_transport_datagram_create_hnd(port, flags,
1683                                                  vmci_transport_recv_dgram_cb,
1684                                                  &vsk->sk,
1685                                                  &vmci_trans(vsk)->dg_handle);
1686         if (err < VMCI_SUCCESS)
1687                 return vmci_transport_error_to_vsock_error(err);
1688         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689                         vmci_trans(vsk)->dg_handle.resource);
1690 
1691         return 0;
1692 }
1693 
1694 static int vmci_transport_dgram_enqueue(
1695         struct vsock_sock *vsk,
1696         struct sockaddr_vm *remote_addr,
1697         struct msghdr *msg,
1698         size_t len)
1699 {
1700         int err;
1701         struct vmci_datagram *dg;
1702 
1703         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704                 return -EMSGSIZE;
1705 
1706         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707                 return -EPERM;
1708 
1709         /* Allocate a buffer for the user's message and our packet header. */
1710         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711         if (!dg)
1712                 return -ENOMEM;
1713 
1714         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715 
1716         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1717                                    remote_addr->svm_port);
1718         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1719                                    vsk->local_addr.svm_port);
1720         dg->payload_size = len;
1721 
1722         err = vmci_datagram_send(dg);
1723         kfree(dg);
1724         if (err < 0)
1725                 return vmci_transport_error_to_vsock_error(err);
1726 
1727         return err - sizeof(*dg);
1728 }
1729 
1730 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1731                                         struct msghdr *msg, size_t len,
1732                                         int flags)
1733 {
1734         int err;
1735         int noblock;
1736         struct vmci_datagram *dg;
1737         size_t payload_len;
1738         struct sk_buff *skb;
1739 
1740         noblock = flags & MSG_DONTWAIT;
1741 
1742         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1743                 return -EOPNOTSUPP;
1744 
1745         /* Retrieve the head sk_buff from the socket's receive queue. */
1746         err = 0;
1747         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1748         if (!skb)
1749                 return err;
1750 
1751         dg = (struct vmci_datagram *)skb->data;
1752         if (!dg)
1753                 /* err is 0, meaning we read zero bytes. */
1754                 goto out;
1755 
1756         payload_len = dg->payload_size;
1757         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1758         if (payload_len != skb->len - sizeof(*dg)) {
1759                 err = -EINVAL;
1760                 goto out;
1761         }
1762 
1763         if (payload_len > len) {
1764                 payload_len = len;
1765                 msg->msg_flags |= MSG_TRUNC;
1766         }
1767 
1768         /* Place the datagram payload in the user's iovec. */
1769         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1770         if (err)
1771                 goto out;
1772 
1773         if (msg->msg_name) {
1774                 /* Provide the address of the sender. */
1775                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1776                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1777                 msg->msg_namelen = sizeof(*vm_addr);
1778         }
1779         err = payload_len;
1780 
1781 out:
1782         skb_free_datagram(&vsk->sk, skb);
1783         return err;
1784 }
1785 
1786 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1787 {
1788         if (cid == VMADDR_CID_HYPERVISOR) {
1789                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1790                  * state and are allowed.
1791                  */
1792                 return port == VMCI_UNITY_PBRPC_REGISTER;
1793         }
1794 
1795         return true;
1796 }
1797 
1798 static int vmci_transport_connect(struct vsock_sock *vsk)
1799 {
1800         int err;
1801         bool old_pkt_proto = false;
1802         struct sock *sk = &vsk->sk;
1803 
1804         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1805                 old_pkt_proto) {
1806                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1807                 if (err < 0) {
1808                         sk->sk_state = TCP_CLOSE;
1809                         return err;
1810                 }
1811         } else {
1812                 int supported_proto_versions =
1813                         vmci_transport_new_proto_supported_versions();
1814                 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1815                                 supported_proto_versions);
1816                 if (err < 0) {
1817                         sk->sk_state = TCP_CLOSE;
1818                         return err;
1819                 }
1820 
1821                 vsk->sent_request = true;
1822         }
1823 
1824         return err;
1825 }
1826 
1827 static ssize_t vmci_transport_stream_dequeue(
1828         struct vsock_sock *vsk,
1829         struct msghdr *msg,
1830         size_t len,
1831         int flags)
1832 {
1833         if (flags & MSG_PEEK)
1834                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1835         else
1836                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1837 }
1838 
1839 static ssize_t vmci_transport_stream_enqueue(
1840         struct vsock_sock *vsk,
1841         struct msghdr *msg,
1842         size_t len)
1843 {
1844         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1845 }
1846 
1847 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1848 {
1849         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1850 }
1851 
1852 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1853 {
1854         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1855 }
1856 
1857 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1858 {
1859         return vmci_trans(vsk)->consume_size;
1860 }
1861 
1862 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1863 {
1864         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1865 }
1866 
1867 static int vmci_transport_notify_poll_in(
1868         struct vsock_sock *vsk,
1869         size_t target,
1870         bool *data_ready_now)
1871 {
1872         return vmci_trans(vsk)->notify_ops->poll_in(
1873                         &vsk->sk, target, data_ready_now);
1874 }
1875 
1876 static int vmci_transport_notify_poll_out(
1877         struct vsock_sock *vsk,
1878         size_t target,
1879         bool *space_available_now)
1880 {
1881         return vmci_trans(vsk)->notify_ops->poll_out(
1882                         &vsk->sk, target, space_available_now);
1883 }
1884 
1885 static int vmci_transport_notify_recv_init(
1886         struct vsock_sock *vsk,
1887         size_t target,
1888         struct vsock_transport_recv_notify_data *data)
1889 {
1890         return vmci_trans(vsk)->notify_ops->recv_init(
1891                         &vsk->sk, target,
1892                         (struct vmci_transport_recv_notify_data *)data);
1893 }
1894 
1895 static int vmci_transport_notify_recv_pre_block(
1896         struct vsock_sock *vsk,
1897         size_t target,
1898         struct vsock_transport_recv_notify_data *data)
1899 {
1900         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1901                         &vsk->sk, target,
1902                         (struct vmci_transport_recv_notify_data *)data);
1903 }
1904 
1905 static int vmci_transport_notify_recv_pre_dequeue(
1906         struct vsock_sock *vsk,
1907         size_t target,
1908         struct vsock_transport_recv_notify_data *data)
1909 {
1910         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1911                         &vsk->sk, target,
1912                         (struct vmci_transport_recv_notify_data *)data);
1913 }
1914 
1915 static int vmci_transport_notify_recv_post_dequeue(
1916         struct vsock_sock *vsk,
1917         size_t target,
1918         ssize_t copied,
1919         bool data_read,
1920         struct vsock_transport_recv_notify_data *data)
1921 {
1922         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1923                         &vsk->sk, target, copied, data_read,
1924                         (struct vmci_transport_recv_notify_data *)data);
1925 }
1926 
1927 static int vmci_transport_notify_send_init(
1928         struct vsock_sock *vsk,
1929         struct vsock_transport_send_notify_data *data)
1930 {
1931         return vmci_trans(vsk)->notify_ops->send_init(
1932                         &vsk->sk,
1933                         (struct vmci_transport_send_notify_data *)data);
1934 }
1935 
1936 static int vmci_transport_notify_send_pre_block(
1937         struct vsock_sock *vsk,
1938         struct vsock_transport_send_notify_data *data)
1939 {
1940         return vmci_trans(vsk)->notify_ops->send_pre_block(
1941                         &vsk->sk,
1942                         (struct vmci_transport_send_notify_data *)data);
1943 }
1944 
1945 static int vmci_transport_notify_send_pre_enqueue(
1946         struct vsock_sock *vsk,
1947         struct vsock_transport_send_notify_data *data)
1948 {
1949         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1950                         &vsk->sk,
1951                         (struct vmci_transport_send_notify_data *)data);
1952 }
1953 
1954 static int vmci_transport_notify_send_post_enqueue(
1955         struct vsock_sock *vsk,
1956         ssize_t written,
1957         struct vsock_transport_send_notify_data *data)
1958 {
1959         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1960                         &vsk->sk, written,
1961                         (struct vmci_transport_send_notify_data *)data);
1962 }
1963 
1964 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1965 {
1966         if (PROTOCOL_OVERRIDE != -1) {
1967                 if (PROTOCOL_OVERRIDE == 0)
1968                         *old_pkt_proto = true;
1969                 else
1970                         *old_pkt_proto = false;
1971 
1972                 pr_info("Proto override in use\n");
1973                 return true;
1974         }
1975 
1976         return false;
1977 }
1978 
1979 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1980                                                   u16 *proto,
1981                                                   bool old_pkt_proto)
1982 {
1983         struct vsock_sock *vsk = vsock_sk(sk);
1984 
1985         if (old_pkt_proto) {
1986                 if (*proto != VSOCK_PROTO_INVALID) {
1987                         pr_err("Can't set both an old and new protocol\n");
1988                         return false;
1989                 }
1990                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1991                 goto exit;
1992         }
1993 
1994         switch (*proto) {
1995         case VSOCK_PROTO_PKT_ON_NOTIFY:
1996                 vmci_trans(vsk)->notify_ops =
1997                         &vmci_transport_notify_pkt_q_state_ops;
1998                 break;
1999         default:
2000                 pr_err("Unknown notify protocol version\n");
2001                 return false;
2002         }
2003 
2004 exit:
2005         vmci_trans(vsk)->notify_ops->socket_init(sk);
2006         return true;
2007 }
2008 
2009 static u16 vmci_transport_new_proto_supported_versions(void)
2010 {
2011         if (PROTOCOL_OVERRIDE != -1)
2012                 return PROTOCOL_OVERRIDE;
2013 
2014         return VSOCK_PROTO_ALL_SUPPORTED;
2015 }
2016 
2017 static u32 vmci_transport_get_local_cid(void)
2018 {
2019         return vmci_get_context_id();
2020 }
2021 
2022 static struct vsock_transport vmci_transport = {
2023         .module = THIS_MODULE,
2024         .init = vmci_transport_socket_init,
2025         .destruct = vmci_transport_destruct,
2026         .release = vmci_transport_release,
2027         .connect = vmci_transport_connect,
2028         .dgram_bind = vmci_transport_dgram_bind,
2029         .dgram_dequeue = vmci_transport_dgram_dequeue,
2030         .dgram_enqueue = vmci_transport_dgram_enqueue,
2031         .dgram_allow = vmci_transport_dgram_allow,
2032         .stream_dequeue = vmci_transport_stream_dequeue,
2033         .stream_enqueue = vmci_transport_stream_enqueue,
2034         .stream_has_data = vmci_transport_stream_has_data,
2035         .stream_has_space = vmci_transport_stream_has_space,
2036         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2037         .stream_is_active = vmci_transport_stream_is_active,
2038         .stream_allow = vmci_transport_stream_allow,
2039         .notify_poll_in = vmci_transport_notify_poll_in,
2040         .notify_poll_out = vmci_transport_notify_poll_out,
2041         .notify_recv_init = vmci_transport_notify_recv_init,
2042         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2043         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2044         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2045         .notify_send_init = vmci_transport_notify_send_init,
2046         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2047         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2048         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2049         .shutdown = vmci_transport_shutdown,
2050         .get_local_cid = vmci_transport_get_local_cid,
2051 };
2052 
2053 static bool vmci_check_transport(struct vsock_sock *vsk)
2054 {
2055         return vsk->transport == &vmci_transport;
2056 }
2057 
2058 static void vmci_vsock_transport_cb(bool is_host)
2059 {
2060         int features;
2061 
2062         if (is_host)
2063                 features = VSOCK_TRANSPORT_F_H2G;
2064         else
2065                 features = VSOCK_TRANSPORT_F_G2H;
2066 
2067         vsock_core_register(&vmci_transport, features);
2068 }
2069 
2070 static int __init vmci_transport_init(void)
2071 {
2072         int err;
2073 
2074         /* Create the datagram handle that we will use to send and receive all
2075          * VSocket control messages for this context.
2076          */
2077         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2078                                                  VMCI_FLAG_ANYCID_DG_HND,
2079                                                  vmci_transport_recv_stream_cb,
2080                                                  NULL,
2081                                                  &vmci_transport_stream_handle);
2082         if (err < VMCI_SUCCESS) {
2083                 pr_err("Unable to create datagram handle. (%d)\n", err);
2084                 return vmci_transport_error_to_vsock_error(err);
2085         }
2086         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2087                                    vmci_transport_qp_resumed_cb,
2088                                    NULL, &vmci_transport_qp_resumed_sub_id);
2089         if (err < VMCI_SUCCESS) {
2090                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2091                 err = vmci_transport_error_to_vsock_error(err);
2092                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2093                 goto err_destroy_stream_handle;
2094         }
2095 
2096         /* Register only with dgram feature, other features (H2G, G2H) will be
2097          * registered when the first host or guest becomes active.
2098          */
2099         err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2100         if (err < 0)
2101                 goto err_unsubscribe;
2102 
2103         err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2104         if (err < 0)
2105                 goto err_unregister;
2106 
2107         return 0;
2108 
2109 err_unregister:
2110         vsock_core_unregister(&vmci_transport);
2111 err_unsubscribe:
2112         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2113 err_destroy_stream_handle:
2114         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2115         return err;
2116 }
2117 module_init(vmci_transport_init);
2118 
2119 static void __exit vmci_transport_exit(void)
2120 {
2121         cancel_work_sync(&vmci_transport_cleanup_work);
2122         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2123 
2124         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2125                 if (vmci_datagram_destroy_handle(
2126                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2127                         pr_err("Couldn't destroy datagram handle\n");
2128                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2129         }
2130 
2131         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2132                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2133                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2134         }
2135 
2136         vmci_register_vsock_callback(NULL);
2137         vsock_core_unregister(&vmci_transport);
2138 }
2139 module_exit(vmci_transport_exit);
2140 
2141 MODULE_AUTHOR("VMware, Inc.");
2142 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2143 MODULE_VERSION("1.0.5.0-k");
2144 MODULE_LICENSE("GPL v2");
2145 MODULE_ALIAS("vmware_vsock");
2146 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2147 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp