~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/vmw_vsock/vmci_transport.c

Version: ~ [ linux-5.5-rc7 ] ~ [ linux-5.4.13 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.97 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.166 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.210 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.210 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.81 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * VMware vSockets Driver
  3  *
  4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
  5  *
  6  * This program is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License as published by the Free
  8  * Software Foundation version 2 and no later version.
  9  *
 10  * This program is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  * more details.
 14  */
 15 
 16 #include <linux/types.h>
 17 #include <linux/bitops.h>
 18 #include <linux/cred.h>
 19 #include <linux/init.h>
 20 #include <linux/io.h>
 21 #include <linux/kernel.h>
 22 #include <linux/kmod.h>
 23 #include <linux/list.h>
 24 #include <linux/module.h>
 25 #include <linux/mutex.h>
 26 #include <linux/net.h>
 27 #include <linux/poll.h>
 28 #include <linux/skbuff.h>
 29 #include <linux/smp.h>
 30 #include <linux/socket.h>
 31 #include <linux/stddef.h>
 32 #include <linux/unistd.h>
 33 #include <linux/wait.h>
 34 #include <linux/workqueue.h>
 35 #include <net/sock.h>
 36 #include <net/af_vsock.h>
 37 
 38 #include "vmci_transport_notify.h"
 39 
 40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
 41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
 42 static void vmci_transport_peer_detach_cb(u32 sub_id,
 43                                           const struct vmci_event_data *ed,
 44                                           void *client_data);
 45 static void vmci_transport_recv_pkt_work(struct work_struct *work);
 46 static void vmci_transport_cleanup(struct work_struct *work);
 47 static int vmci_transport_recv_listen(struct sock *sk,
 48                                       struct vmci_transport_packet *pkt);
 49 static int vmci_transport_recv_connecting_server(
 50                                         struct sock *sk,
 51                                         struct sock *pending,
 52                                         struct vmci_transport_packet *pkt);
 53 static int vmci_transport_recv_connecting_client(
 54                                         struct sock *sk,
 55                                         struct vmci_transport_packet *pkt);
 56 static int vmci_transport_recv_connecting_client_negotiate(
 57                                         struct sock *sk,
 58                                         struct vmci_transport_packet *pkt);
 59 static int vmci_transport_recv_connecting_client_invalid(
 60                                         struct sock *sk,
 61                                         struct vmci_transport_packet *pkt);
 62 static int vmci_transport_recv_connected(struct sock *sk,
 63                                          struct vmci_transport_packet *pkt);
 64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
 65 static u16 vmci_transport_new_proto_supported_versions(void);
 66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
 67                                                   bool old_pkt_proto);
 68 
 69 struct vmci_transport_recv_pkt_info {
 70         struct work_struct work;
 71         struct sock *sk;
 72         struct vmci_transport_packet pkt;
 73 };
 74 
 75 static LIST_HEAD(vmci_transport_cleanup_list);
 76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
 77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
 78 
 79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
 80                                                            VMCI_INVALID_ID };
 81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
 82 
 83 static int PROTOCOL_OVERRIDE = -1;
 84 
 85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
 86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
 87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
 88 
 89 /* The default peer timeout indicates how long we will wait for a peer response
 90  * to a control message.
 91  */
 92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 93 
 94 /* Helper function to convert from a VMCI error code to a VSock error code. */
 95 
 96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
 97 {
 98         switch (vmci_error) {
 99         case VMCI_ERROR_NO_MEM:
100                 return -ENOMEM;
101         case VMCI_ERROR_DUPLICATE_ENTRY:
102         case VMCI_ERROR_ALREADY_EXISTS:
103                 return -EADDRINUSE;
104         case VMCI_ERROR_NO_ACCESS:
105                 return -EPERM;
106         case VMCI_ERROR_NO_RESOURCES:
107                 return -ENOBUFS;
108         case VMCI_ERROR_INVALID_RESOURCE:
109                 return -EHOSTUNREACH;
110         case VMCI_ERROR_INVALID_ARGS:
111         default:
112                 break;
113         }
114         return -EINVAL;
115 }
116 
117 static u32 vmci_transport_peer_rid(u32 peer_cid)
118 {
119         if (VMADDR_CID_HYPERVISOR == peer_cid)
120                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
121 
122         return VMCI_TRANSPORT_PACKET_RID;
123 }
124 
125 static inline void
126 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
127                            struct sockaddr_vm *src,
128                            struct sockaddr_vm *dst,
129                            u8 type,
130                            u64 size,
131                            u64 mode,
132                            struct vmci_transport_waiting_info *wait,
133                            u16 proto,
134                            struct vmci_handle handle)
135 {
136         /* We register the stream control handler as an any cid handle so we
137          * must always send from a source address of VMADDR_CID_ANY
138          */
139         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
140                                        VMCI_TRANSPORT_PACKET_RID);
141         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
142                                        vmci_transport_peer_rid(dst->svm_cid));
143         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
144         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
145         pkt->type = type;
146         pkt->src_port = src->svm_port;
147         pkt->dst_port = dst->svm_port;
148         memset(&pkt->proto, 0, sizeof(pkt->proto));
149         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
150 
151         switch (pkt->type) {
152         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
153                 pkt->u.size = 0;
154                 break;
155 
156         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
157         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
158                 pkt->u.size = size;
159                 break;
160 
161         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
162         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
163                 pkt->u.handle = handle;
164                 break;
165 
166         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
167         case VMCI_TRANSPORT_PACKET_TYPE_READ:
168         case VMCI_TRANSPORT_PACKET_TYPE_RST:
169                 pkt->u.size = 0;
170                 break;
171 
172         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
173                 pkt->u.mode = mode;
174                 break;
175 
176         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
177         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
178                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
179                 break;
180 
181         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
182         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
183                 pkt->u.size = size;
184                 pkt->proto = proto;
185                 break;
186         }
187 }
188 
189 static inline void
190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
191                                     struct sockaddr_vm *local,
192                                     struct sockaddr_vm *remote)
193 {
194         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
195         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
196 }
197 
198 static int
199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
200                                   struct sockaddr_vm *src,
201                                   struct sockaddr_vm *dst,
202                                   enum vmci_transport_packet_type type,
203                                   u64 size,
204                                   u64 mode,
205                                   struct vmci_transport_waiting_info *wait,
206                                   u16 proto,
207                                   struct vmci_handle handle,
208                                   bool convert_error)
209 {
210         int err;
211 
212         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
213                                    proto, handle);
214         err = vmci_datagram_send(&pkt->dg);
215         if (convert_error && (err < 0))
216                 return vmci_transport_error_to_vsock_error(err);
217 
218         return err;
219 }
220 
221 static int
222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
223                                       enum vmci_transport_packet_type type,
224                                       u64 size,
225                                       u64 mode,
226                                       struct vmci_transport_waiting_info *wait,
227                                       struct vmci_handle handle)
228 {
229         struct vmci_transport_packet reply;
230         struct sockaddr_vm src, dst;
231 
232         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
233                 return 0;
234         } else {
235                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
236                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
237                                                          type,
238                                                          size, mode, wait,
239                                                          VSOCK_PROTO_INVALID,
240                                                          handle, true);
241         }
242 }
243 
244 static int
245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
246                                    struct sockaddr_vm *dst,
247                                    enum vmci_transport_packet_type type,
248                                    u64 size,
249                                    u64 mode,
250                                    struct vmci_transport_waiting_info *wait,
251                                    struct vmci_handle handle)
252 {
253         /* Note that it is safe to use a single packet across all CPUs since
254          * two tasklets of the same type are guaranteed to not ever run
255          * simultaneously. If that ever changes, or VMCI stops using tasklets,
256          * we can use per-cpu packets.
257          */
258         static struct vmci_transport_packet pkt;
259 
260         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
261                                                  size, mode, wait,
262                                                  VSOCK_PROTO_INVALID, handle,
263                                                  false);
264 }
265 
266 static int
267 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
268                                       struct sockaddr_vm *dst,
269                                       enum vmci_transport_packet_type type,
270                                       u64 size,
271                                       u64 mode,
272                                       struct vmci_transport_waiting_info *wait,
273                                       u16 proto,
274                                       struct vmci_handle handle)
275 {
276         struct vmci_transport_packet *pkt;
277         int err;
278 
279         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
280         if (!pkt)
281                 return -ENOMEM;
282 
283         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
284                                                 mode, wait, proto, handle,
285                                                 true);
286         kfree(pkt);
287 
288         return err;
289 }
290 
291 static int
292 vmci_transport_send_control_pkt(struct sock *sk,
293                                 enum vmci_transport_packet_type type,
294                                 u64 size,
295                                 u64 mode,
296                                 struct vmci_transport_waiting_info *wait,
297                                 u16 proto,
298                                 struct vmci_handle handle)
299 {
300         struct vsock_sock *vsk;
301 
302         vsk = vsock_sk(sk);
303 
304         if (!vsock_addr_bound(&vsk->local_addr))
305                 return -EINVAL;
306 
307         if (!vsock_addr_bound(&vsk->remote_addr))
308                 return -EINVAL;
309 
310         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
311                                                      &vsk->remote_addr,
312                                                      type, size, mode,
313                                                      wait, proto, handle);
314 }
315 
316 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
317                                         struct sockaddr_vm *src,
318                                         struct vmci_transport_packet *pkt)
319 {
320         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
321                 return 0;
322         return vmci_transport_send_control_pkt_bh(
323                                         dst, src,
324                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
325                                         0, NULL, VMCI_INVALID_HANDLE);
326 }
327 
328 static int vmci_transport_send_reset(struct sock *sk,
329                                      struct vmci_transport_packet *pkt)
330 {
331         struct sockaddr_vm *dst_ptr;
332         struct sockaddr_vm dst;
333         struct vsock_sock *vsk;
334 
335         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
336                 return 0;
337 
338         vsk = vsock_sk(sk);
339 
340         if (!vsock_addr_bound(&vsk->local_addr))
341                 return -EINVAL;
342 
343         if (vsock_addr_bound(&vsk->remote_addr)) {
344                 dst_ptr = &vsk->remote_addr;
345         } else {
346                 vsock_addr_init(&dst, pkt->dg.src.context,
347                                 pkt->src_port);
348                 dst_ptr = &dst;
349         }
350         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
351                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
352                                              0, 0, NULL, VSOCK_PROTO_INVALID,
353                                              VMCI_INVALID_HANDLE);
354 }
355 
356 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
357 {
358         return vmci_transport_send_control_pkt(
359                                         sk,
360                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
361                                         size, 0, NULL,
362                                         VSOCK_PROTO_INVALID,
363                                         VMCI_INVALID_HANDLE);
364 }
365 
366 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
367                                           u16 version)
368 {
369         return vmci_transport_send_control_pkt(
370                                         sk,
371                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
372                                         size, 0, NULL, version,
373                                         VMCI_INVALID_HANDLE);
374 }
375 
376 static int vmci_transport_send_qp_offer(struct sock *sk,
377                                         struct vmci_handle handle)
378 {
379         return vmci_transport_send_control_pkt(
380                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
381                                         0, NULL,
382                                         VSOCK_PROTO_INVALID, handle);
383 }
384 
385 static int vmci_transport_send_attach(struct sock *sk,
386                                       struct vmci_handle handle)
387 {
388         return vmci_transport_send_control_pkt(
389                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
390                                         0, 0, NULL, VSOCK_PROTO_INVALID,
391                                         handle);
392 }
393 
394 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
395 {
396         return vmci_transport_reply_control_pkt_fast(
397                                                 pkt,
398                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
399                                                 0, 0, NULL,
400                                                 VMCI_INVALID_HANDLE);
401 }
402 
403 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
404                                           struct sockaddr_vm *src)
405 {
406         return vmci_transport_send_control_pkt_bh(
407                                         dst, src,
408                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
409                                         0, 0, NULL, VMCI_INVALID_HANDLE);
410 }
411 
412 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
413                                  struct sockaddr_vm *src)
414 {
415         return vmci_transport_send_control_pkt_bh(
416                                         dst, src,
417                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
418                                         0, NULL, VMCI_INVALID_HANDLE);
419 }
420 
421 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
422                                 struct sockaddr_vm *src)
423 {
424         return vmci_transport_send_control_pkt_bh(
425                                         dst, src,
426                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
427                                         0, NULL, VMCI_INVALID_HANDLE);
428 }
429 
430 int vmci_transport_send_wrote(struct sock *sk)
431 {
432         return vmci_transport_send_control_pkt(
433                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
434                                         0, NULL, VSOCK_PROTO_INVALID,
435                                         VMCI_INVALID_HANDLE);
436 }
437 
438 int vmci_transport_send_read(struct sock *sk)
439 {
440         return vmci_transport_send_control_pkt(
441                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
442                                         0, NULL, VSOCK_PROTO_INVALID,
443                                         VMCI_INVALID_HANDLE);
444 }
445 
446 int vmci_transport_send_waiting_write(struct sock *sk,
447                                       struct vmci_transport_waiting_info *wait)
448 {
449         return vmci_transport_send_control_pkt(
450                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
451                                 0, 0, wait, VSOCK_PROTO_INVALID,
452                                 VMCI_INVALID_HANDLE);
453 }
454 
455 int vmci_transport_send_waiting_read(struct sock *sk,
456                                      struct vmci_transport_waiting_info *wait)
457 {
458         return vmci_transport_send_control_pkt(
459                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
460                                 0, 0, wait, VSOCK_PROTO_INVALID,
461                                 VMCI_INVALID_HANDLE);
462 }
463 
464 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
465 {
466         return vmci_transport_send_control_pkt(
467                                         &vsk->sk,
468                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
469                                         0, mode, NULL,
470                                         VSOCK_PROTO_INVALID,
471                                         VMCI_INVALID_HANDLE);
472 }
473 
474 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
475 {
476         return vmci_transport_send_control_pkt(sk,
477                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
478                                         size, 0, NULL,
479                                         VSOCK_PROTO_INVALID,
480                                         VMCI_INVALID_HANDLE);
481 }
482 
483 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
484                                              u16 version)
485 {
486         return vmci_transport_send_control_pkt(
487                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
488                                         size, 0, NULL, version,
489                                         VMCI_INVALID_HANDLE);
490 }
491 
492 static struct sock *vmci_transport_get_pending(
493                                         struct sock *listener,
494                                         struct vmci_transport_packet *pkt)
495 {
496         struct vsock_sock *vlistener;
497         struct vsock_sock *vpending;
498         struct sock *pending;
499         struct sockaddr_vm src;
500 
501         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
502 
503         vlistener = vsock_sk(listener);
504 
505         list_for_each_entry(vpending, &vlistener->pending_links,
506                             pending_links) {
507                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
508                     pkt->dst_port == vpending->local_addr.svm_port) {
509                         pending = sk_vsock(vpending);
510                         sock_hold(pending);
511                         goto found;
512                 }
513         }
514 
515         pending = NULL;
516 found:
517         return pending;
518 
519 }
520 
521 static void vmci_transport_release_pending(struct sock *pending)
522 {
523         sock_put(pending);
524 }
525 
526 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
527  * trusted sockets 2) sockets from applications running as the same user as the
528  * VM (this is only true for the host side and only when using hosted products)
529  */
530 
531 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
532 {
533         return vsock->trusted ||
534                vmci_is_context_owner(peer_cid, vsock->owner->uid);
535 }
536 
537 /* We allow sending datagrams to and receiving datagrams from a restricted VM
538  * only if it is trusted as described in vmci_transport_is_trusted.
539  */
540 
541 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
542 {
543         if (VMADDR_CID_HYPERVISOR == peer_cid)
544                 return true;
545 
546         if (vsock->cached_peer != peer_cid) {
547                 vsock->cached_peer = peer_cid;
548                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
549                     (vmci_context_get_priv_flags(peer_cid) &
550                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
551                         vsock->cached_peer_allow_dgram = false;
552                 } else {
553                         vsock->cached_peer_allow_dgram = true;
554                 }
555         }
556 
557         return vsock->cached_peer_allow_dgram;
558 }
559 
560 static int
561 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
562                                 struct vmci_handle *handle,
563                                 u64 produce_size,
564                                 u64 consume_size,
565                                 u32 peer, u32 flags, bool trusted)
566 {
567         int err = 0;
568 
569         if (trusted) {
570                 /* Try to allocate our queue pair as trusted. This will only
571                  * work if vsock is running in the host.
572                  */
573 
574                 err = vmci_qpair_alloc(qpair, handle, produce_size,
575                                        consume_size,
576                                        peer, flags,
577                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
578                 if (err != VMCI_ERROR_NO_ACCESS)
579                         goto out;
580 
581         }
582 
583         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
584                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
585 out:
586         if (err < 0) {
587                 pr_err("Could not attach to queue pair with %d\n",
588                        err);
589                 err = vmci_transport_error_to_vsock_error(err);
590         }
591 
592         return err;
593 }
594 
595 static int
596 vmci_transport_datagram_create_hnd(u32 resource_id,
597                                    u32 flags,
598                                    vmci_datagram_recv_cb recv_cb,
599                                    void *client_data,
600                                    struct vmci_handle *out_handle)
601 {
602         int err = 0;
603 
604         /* Try to allocate our datagram handler as trusted. This will only work
605          * if vsock is running in the host.
606          */
607 
608         err = vmci_datagram_create_handle_priv(resource_id, flags,
609                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
610                                                recv_cb,
611                                                client_data, out_handle);
612 
613         if (err == VMCI_ERROR_NO_ACCESS)
614                 err = vmci_datagram_create_handle(resource_id, flags,
615                                                   recv_cb, client_data,
616                                                   out_handle);
617 
618         return err;
619 }
620 
621 /* This is invoked as part of a tasklet that's scheduled when the VMCI
622  * interrupt fires.  This is run in bottom-half context and if it ever needs to
623  * sleep it should defer that work to a work queue.
624  */
625 
626 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
627 {
628         struct sock *sk;
629         size_t size;
630         struct sk_buff *skb;
631         struct vsock_sock *vsk;
632 
633         sk = (struct sock *)data;
634 
635         /* This handler is privileged when this module is running on the host.
636          * We will get datagrams from all endpoints (even VMs that are in a
637          * restricted context). If we get one from a restricted context then
638          * the destination socket must be trusted.
639          *
640          * NOTE: We access the socket struct without holding the lock here.
641          * This is ok because the field we are interested is never modified
642          * outside of the create and destruct socket functions.
643          */
644         vsk = vsock_sk(sk);
645         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
646                 return VMCI_ERROR_NO_ACCESS;
647 
648         size = VMCI_DG_SIZE(dg);
649 
650         /* Attach the packet to the socket's receive queue as an sk_buff. */
651         skb = alloc_skb(size, GFP_ATOMIC);
652         if (!skb)
653                 return VMCI_ERROR_NO_MEM;
654 
655         /* sk_receive_skb() will do a sock_put(), so hold here. */
656         sock_hold(sk);
657         skb_put(skb, size);
658         memcpy(skb->data, dg, size);
659         sk_receive_skb(sk, skb, 0);
660 
661         return VMCI_SUCCESS;
662 }
663 
664 static bool vmci_transport_stream_allow(u32 cid, u32 port)
665 {
666         static const u32 non_socket_contexts[] = {
667                 VMADDR_CID_RESERVED,
668         };
669         int i;
670 
671         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
672 
673         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
674                 if (cid == non_socket_contexts[i])
675                         return false;
676         }
677 
678         return true;
679 }
680 
681 /* This is invoked as part of a tasklet that's scheduled when the VMCI
682  * interrupt fires.  This is run in bottom-half context but it defers most of
683  * its work to the packet handling work queue.
684  */
685 
686 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
687 {
688         struct sock *sk;
689         struct sockaddr_vm dst;
690         struct sockaddr_vm src;
691         struct vmci_transport_packet *pkt;
692         struct vsock_sock *vsk;
693         bool bh_process_pkt;
694         int err;
695 
696         sk = NULL;
697         err = VMCI_SUCCESS;
698         bh_process_pkt = false;
699 
700         /* Ignore incoming packets from contexts without sockets, or resources
701          * that aren't vsock implementations.
702          */
703 
704         if (!vmci_transport_stream_allow(dg->src.context, -1)
705             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
706                 return VMCI_ERROR_NO_ACCESS;
707 
708         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
709                 /* Drop datagrams that do not contain full VSock packets. */
710                 return VMCI_ERROR_INVALID_ARGS;
711 
712         pkt = (struct vmci_transport_packet *)dg;
713 
714         /* Find the socket that should handle this packet.  First we look for a
715          * connected socket and if there is none we look for a socket bound to
716          * the destintation address.
717          */
718         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
719         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
720 
721         sk = vsock_find_connected_socket(&src, &dst);
722         if (!sk) {
723                 sk = vsock_find_bound_socket(&dst);
724                 if (!sk) {
725                         /* We could not find a socket for this specified
726                          * address.  If this packet is a RST, we just drop it.
727                          * If it is another packet, we send a RST.  Note that
728                          * we do not send a RST reply to RSTs so that we do not
729                          * continually send RSTs between two endpoints.
730                          *
731                          * Note that since this is a reply, dst is src and src
732                          * is dst.
733                          */
734                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
735                                 pr_err("unable to send reset\n");
736 
737                         err = VMCI_ERROR_NOT_FOUND;
738                         goto out;
739                 }
740         }
741 
742         /* If the received packet type is beyond all types known to this
743          * implementation, reply with an invalid message.  Hopefully this will
744          * help when implementing backwards compatibility in the future.
745          */
746         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
747                 vmci_transport_send_invalid_bh(&dst, &src);
748                 err = VMCI_ERROR_INVALID_ARGS;
749                 goto out;
750         }
751 
752         /* This handler is privileged when this module is running on the host.
753          * We will get datagram connect requests from all endpoints (even VMs
754          * that are in a restricted context). If we get one from a restricted
755          * context then the destination socket must be trusted.
756          *
757          * NOTE: We access the socket struct without holding the lock here.
758          * This is ok because the field we are interested is never modified
759          * outside of the create and destruct socket functions.
760          */
761         vsk = vsock_sk(sk);
762         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
763                 err = VMCI_ERROR_NO_ACCESS;
764                 goto out;
765         }
766 
767         /* We do most everything in a work queue, but let's fast path the
768          * notification of reads and writes to help data transfer performance.
769          * We can only do this if there is no process context code executing
770          * for this socket since that may change the state.
771          */
772         bh_lock_sock(sk);
773 
774         if (!sock_owned_by_user(sk)) {
775                 /* The local context ID may be out of date, update it. */
776                 vsk->local_addr.svm_cid = dst.svm_cid;
777 
778                 if (sk->sk_state == TCP_ESTABLISHED)
779                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
780                                         sk, pkt, true, &dst, &src,
781                                         &bh_process_pkt);
782         }
783 
784         bh_unlock_sock(sk);
785 
786         if (!bh_process_pkt) {
787                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
788 
789                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
790                 if (!recv_pkt_info) {
791                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
792                                 pr_err("unable to send reset\n");
793 
794                         err = VMCI_ERROR_NO_MEM;
795                         goto out;
796                 }
797 
798                 recv_pkt_info->sk = sk;
799                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
800                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
801 
802                 schedule_work(&recv_pkt_info->work);
803                 /* Clear sk so that the reference count incremented by one of
804                  * the Find functions above is not decremented below.  We need
805                  * that reference count for the packet handler we've scheduled
806                  * to run.
807                  */
808                 sk = NULL;
809         }
810 
811 out:
812         if (sk)
813                 sock_put(sk);
814 
815         return err;
816 }
817 
818 static void vmci_transport_handle_detach(struct sock *sk)
819 {
820         struct vsock_sock *vsk;
821 
822         vsk = vsock_sk(sk);
823         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
824                 sock_set_flag(sk, SOCK_DONE);
825 
826                 /* On a detach the peer will not be sending or receiving
827                  * anymore.
828                  */
829                 vsk->peer_shutdown = SHUTDOWN_MASK;
830 
831                 /* We should not be sending anymore since the peer won't be
832                  * there to receive, but we can still receive if there is data
833                  * left in our consume queue. If the local endpoint is a host,
834                  * we can't call vsock_stream_has_data, since that may block,
835                  * but a host endpoint can't read data once the VM has
836                  * detached, so there is no available data in that case.
837                  */
838                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
839                     vsock_stream_has_data(vsk) <= 0) {
840                         if (sk->sk_state == TCP_SYN_SENT) {
841                                 /* The peer may detach from a queue pair while
842                                  * we are still in the connecting state, i.e.,
843                                  * if the peer VM is killed after attaching to
844                                  * a queue pair, but before we complete the
845                                  * handshake. In that case, we treat the detach
846                                  * event like a reset.
847                                  */
848 
849                                 sk->sk_state = TCP_CLOSE;
850                                 sk->sk_err = ECONNRESET;
851                                 sk->sk_error_report(sk);
852                                 return;
853                         }
854                         sk->sk_state = TCP_CLOSE;
855                 }
856                 sk->sk_state_change(sk);
857         }
858 }
859 
860 static void vmci_transport_peer_detach_cb(u32 sub_id,
861                                           const struct vmci_event_data *e_data,
862                                           void *client_data)
863 {
864         struct vmci_transport *trans = client_data;
865         const struct vmci_event_payload_qp *e_payload;
866 
867         e_payload = vmci_event_data_const_payload(e_data);
868 
869         /* XXX This is lame, we should provide a way to lookup sockets by
870          * qp_handle.
871          */
872         if (vmci_handle_is_invalid(e_payload->handle) ||
873             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
874                 return;
875 
876         /* We don't ask for delayed CBs when we subscribe to this event (we
877          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
878          * guarantees in that case about what context we might be running in,
879          * so it could be BH or process, blockable or non-blockable.  So we
880          * need to account for all possible contexts here.
881          */
882         spin_lock_bh(&trans->lock);
883         if (!trans->sk)
884                 goto out;
885 
886         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
887          * where trans->sk isn't locked.
888          */
889         bh_lock_sock(trans->sk);
890 
891         vmci_transport_handle_detach(trans->sk);
892 
893         bh_unlock_sock(trans->sk);
894  out:
895         spin_unlock_bh(&trans->lock);
896 }
897 
898 static void vmci_transport_qp_resumed_cb(u32 sub_id,
899                                          const struct vmci_event_data *e_data,
900                                          void *client_data)
901 {
902         vsock_for_each_connected_socket(vmci_transport_handle_detach);
903 }
904 
905 static void vmci_transport_recv_pkt_work(struct work_struct *work)
906 {
907         struct vmci_transport_recv_pkt_info *recv_pkt_info;
908         struct vmci_transport_packet *pkt;
909         struct sock *sk;
910 
911         recv_pkt_info =
912                 container_of(work, struct vmci_transport_recv_pkt_info, work);
913         sk = recv_pkt_info->sk;
914         pkt = &recv_pkt_info->pkt;
915 
916         lock_sock(sk);
917 
918         /* The local context ID may be out of date. */
919         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
920 
921         switch (sk->sk_state) {
922         case TCP_LISTEN:
923                 vmci_transport_recv_listen(sk, pkt);
924                 break;
925         case TCP_SYN_SENT:
926                 /* Processing of pending connections for servers goes through
927                  * the listening socket, so see vmci_transport_recv_listen()
928                  * for that path.
929                  */
930                 vmci_transport_recv_connecting_client(sk, pkt);
931                 break;
932         case TCP_ESTABLISHED:
933                 vmci_transport_recv_connected(sk, pkt);
934                 break;
935         default:
936                 /* Because this function does not run in the same context as
937                  * vmci_transport_recv_stream_cb it is possible that the
938                  * socket has closed. We need to let the other side know or it
939                  * could be sitting in a connect and hang forever. Send a
940                  * reset to prevent that.
941                  */
942                 vmci_transport_send_reset(sk, pkt);
943                 break;
944         }
945 
946         release_sock(sk);
947         kfree(recv_pkt_info);
948         /* Release reference obtained in the stream callback when we fetched
949          * this socket out of the bound or connected list.
950          */
951         sock_put(sk);
952 }
953 
954 static int vmci_transport_recv_listen(struct sock *sk,
955                                       struct vmci_transport_packet *pkt)
956 {
957         struct sock *pending;
958         struct vsock_sock *vpending;
959         int err;
960         u64 qp_size;
961         bool old_request = false;
962         bool old_pkt_proto = false;
963 
964         err = 0;
965 
966         /* Because we are in the listen state, we could be receiving a packet
967          * for ourself or any previous connection requests that we received.
968          * If it's the latter, we try to find a socket in our list of pending
969          * connections and, if we do, call the appropriate handler for the
970          * state that that socket is in.  Otherwise we try to service the
971          * connection request.
972          */
973         pending = vmci_transport_get_pending(sk, pkt);
974         if (pending) {
975                 lock_sock(pending);
976 
977                 /* The local context ID may be out of date. */
978                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
979 
980                 switch (pending->sk_state) {
981                 case TCP_SYN_SENT:
982                         err = vmci_transport_recv_connecting_server(sk,
983                                                                     pending,
984                                                                     pkt);
985                         break;
986                 default:
987                         vmci_transport_send_reset(pending, pkt);
988                         err = -EINVAL;
989                 }
990 
991                 if (err < 0)
992                         vsock_remove_pending(sk, pending);
993 
994                 release_sock(pending);
995                 vmci_transport_release_pending(pending);
996 
997                 return err;
998         }
999 
1000         /* The listen state only accepts connection requests.  Reply with a
1001          * reset unless we received a reset.
1002          */
1003 
1004         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1005               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1006                 vmci_transport_reply_reset(pkt);
1007                 return -EINVAL;
1008         }
1009 
1010         if (pkt->u.size == 0) {
1011                 vmci_transport_reply_reset(pkt);
1012                 return -EINVAL;
1013         }
1014 
1015         /* If this socket can't accommodate this connection request, we send a
1016          * reset.  Otherwise we create and initialize a child socket and reply
1017          * with a connection negotiation.
1018          */
1019         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1020                 vmci_transport_reply_reset(pkt);
1021                 return -ECONNREFUSED;
1022         }
1023 
1024         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1025                                  sk->sk_type, 0);
1026         if (!pending) {
1027                 vmci_transport_send_reset(sk, pkt);
1028                 return -ENOMEM;
1029         }
1030 
1031         vpending = vsock_sk(pending);
1032 
1033         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1034                         pkt->dst_port);
1035         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1036                         pkt->src_port);
1037 
1038         /* If the proposed size fits within our min/max, accept it. Otherwise
1039          * propose our own size.
1040          */
1041         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1042             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1043                 qp_size = pkt->u.size;
1044         } else {
1045                 qp_size = vmci_trans(vpending)->queue_pair_size;
1046         }
1047 
1048         /* Figure out if we are using old or new requests based on the
1049          * overrides pkt types sent by our peer.
1050          */
1051         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1052                 old_request = old_pkt_proto;
1053         } else {
1054                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1055                         old_request = true;
1056                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1057                         old_request = false;
1058 
1059         }
1060 
1061         if (old_request) {
1062                 /* Handle a REQUEST (or override) */
1063                 u16 version = VSOCK_PROTO_INVALID;
1064                 if (vmci_transport_proto_to_notify_struct(
1065                         pending, &version, true))
1066                         err = vmci_transport_send_negotiate(pending, qp_size);
1067                 else
1068                         err = -EINVAL;
1069 
1070         } else {
1071                 /* Handle a REQUEST2 (or override) */
1072                 int proto_int = pkt->proto;
1073                 int pos;
1074                 u16 active_proto_version = 0;
1075 
1076                 /* The list of possible protocols is the intersection of all
1077                  * protocols the client supports ... plus all the protocols we
1078                  * support.
1079                  */
1080                 proto_int &= vmci_transport_new_proto_supported_versions();
1081 
1082                 /* We choose the highest possible protocol version and use that
1083                  * one.
1084                  */
1085                 pos = fls(proto_int);
1086                 if (pos) {
1087                         active_proto_version = (1 << (pos - 1));
1088                         if (vmci_transport_proto_to_notify_struct(
1089                                 pending, &active_proto_version, false))
1090                                 err = vmci_transport_send_negotiate2(pending,
1091                                                         qp_size,
1092                                                         active_proto_version);
1093                         else
1094                                 err = -EINVAL;
1095 
1096                 } else {
1097                         err = -EINVAL;
1098                 }
1099         }
1100 
1101         if (err < 0) {
1102                 vmci_transport_send_reset(sk, pkt);
1103                 sock_put(pending);
1104                 err = vmci_transport_error_to_vsock_error(err);
1105                 goto out;
1106         }
1107 
1108         vsock_add_pending(sk, pending);
1109         sk->sk_ack_backlog++;
1110 
1111         pending->sk_state = TCP_SYN_SENT;
1112         vmci_trans(vpending)->produce_size =
1113                 vmci_trans(vpending)->consume_size = qp_size;
1114         vmci_trans(vpending)->queue_pair_size = qp_size;
1115 
1116         vmci_trans(vpending)->notify_ops->process_request(pending);
1117 
1118         /* We might never receive another message for this socket and it's not
1119          * connected to any process, so we have to ensure it gets cleaned up
1120          * ourself.  Our delayed work function will take care of that.  Note
1121          * that we do not ever cancel this function since we have few
1122          * guarantees about its state when calling cancel_delayed_work().
1123          * Instead we hold a reference on the socket for that function and make
1124          * it capable of handling cases where it needs to do nothing but
1125          * release that reference.
1126          */
1127         vpending->listener = sk;
1128         sock_hold(sk);
1129         sock_hold(pending);
1130         schedule_delayed_work(&vpending->pending_work, HZ);
1131 
1132 out:
1133         return err;
1134 }
1135 
1136 static int
1137 vmci_transport_recv_connecting_server(struct sock *listener,
1138                                       struct sock *pending,
1139                                       struct vmci_transport_packet *pkt)
1140 {
1141         struct vsock_sock *vpending;
1142         struct vmci_handle handle;
1143         struct vmci_qp *qpair;
1144         bool is_local;
1145         u32 flags;
1146         u32 detach_sub_id;
1147         int err;
1148         int skerr;
1149 
1150         vpending = vsock_sk(pending);
1151         detach_sub_id = VMCI_INVALID_ID;
1152 
1153         switch (pkt->type) {
1154         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1155                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1156                         vmci_transport_send_reset(pending, pkt);
1157                         skerr = EPROTO;
1158                         err = -EINVAL;
1159                         goto destroy;
1160                 }
1161                 break;
1162         default:
1163                 /* Close and cleanup the connection. */
1164                 vmci_transport_send_reset(pending, pkt);
1165                 skerr = EPROTO;
1166                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1167                 goto destroy;
1168         }
1169 
1170         /* In order to complete the connection we need to attach to the offered
1171          * queue pair and send an attach notification.  We also subscribe to the
1172          * detach event so we know when our peer goes away, and we do that
1173          * before attaching so we don't miss an event.  If all this succeeds,
1174          * we update our state and wakeup anything waiting in accept() for a
1175          * connection.
1176          */
1177 
1178         /* We don't care about attach since we ensure the other side has
1179          * attached by specifying the ATTACH_ONLY flag below.
1180          */
1181         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1182                                    vmci_transport_peer_detach_cb,
1183                                    vmci_trans(vpending), &detach_sub_id);
1184         if (err < VMCI_SUCCESS) {
1185                 vmci_transport_send_reset(pending, pkt);
1186                 err = vmci_transport_error_to_vsock_error(err);
1187                 skerr = -err;
1188                 goto destroy;
1189         }
1190 
1191         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1192 
1193         /* Now attach to the queue pair the client created. */
1194         handle = pkt->u.handle;
1195 
1196         /* vpending->local_addr always has a context id so we do not need to
1197          * worry about VMADDR_CID_ANY in this case.
1198          */
1199         is_local =
1200             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1201         flags = VMCI_QPFLAG_ATTACH_ONLY;
1202         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1203 
1204         err = vmci_transport_queue_pair_alloc(
1205                                         &qpair,
1206                                         &handle,
1207                                         vmci_trans(vpending)->produce_size,
1208                                         vmci_trans(vpending)->consume_size,
1209                                         pkt->dg.src.context,
1210                                         flags,
1211                                         vmci_transport_is_trusted(
1212                                                 vpending,
1213                                                 vpending->remote_addr.svm_cid));
1214         if (err < 0) {
1215                 vmci_transport_send_reset(pending, pkt);
1216                 skerr = -err;
1217                 goto destroy;
1218         }
1219 
1220         vmci_trans(vpending)->qp_handle = handle;
1221         vmci_trans(vpending)->qpair = qpair;
1222 
1223         /* When we send the attach message, we must be ready to handle incoming
1224          * control messages on the newly connected socket. So we move the
1225          * pending socket to the connected state before sending the attach
1226          * message. Otherwise, an incoming packet triggered by the attach being
1227          * received by the peer may be processed concurrently with what happens
1228          * below after sending the attach message, and that incoming packet
1229          * will find the listening socket instead of the (currently) pending
1230          * socket. Note that enqueueing the socket increments the reference
1231          * count, so even if a reset comes before the connection is accepted,
1232          * the socket will be valid until it is removed from the queue.
1233          *
1234          * If we fail sending the attach below, we remove the socket from the
1235          * connected list and move the socket to TCP_CLOSE before
1236          * releasing the lock, so a pending slow path processing of an incoming
1237          * packet will not see the socket in the connected state in that case.
1238          */
1239         pending->sk_state = TCP_ESTABLISHED;
1240 
1241         vsock_insert_connected(vpending);
1242 
1243         /* Notify our peer of our attach. */
1244         err = vmci_transport_send_attach(pending, handle);
1245         if (err < 0) {
1246                 vsock_remove_connected(vpending);
1247                 pr_err("Could not send attach\n");
1248                 vmci_transport_send_reset(pending, pkt);
1249                 err = vmci_transport_error_to_vsock_error(err);
1250                 skerr = -err;
1251                 goto destroy;
1252         }
1253 
1254         /* We have a connection. Move the now connected socket from the
1255          * listener's pending list to the accept queue so callers of accept()
1256          * can find it.
1257          */
1258         vsock_remove_pending(listener, pending);
1259         vsock_enqueue_accept(listener, pending);
1260 
1261         /* Callers of accept() will be be waiting on the listening socket, not
1262          * the pending socket.
1263          */
1264         listener->sk_data_ready(listener);
1265 
1266         return 0;
1267 
1268 destroy:
1269         pending->sk_err = skerr;
1270         pending->sk_state = TCP_CLOSE;
1271         /* As long as we drop our reference, all necessary cleanup will handle
1272          * when the cleanup function drops its reference and our destruct
1273          * implementation is called.  Note that since the listen handler will
1274          * remove pending from the pending list upon our failure, the cleanup
1275          * function won't drop the additional reference, which is why we do it
1276          * here.
1277          */
1278         sock_put(pending);
1279 
1280         return err;
1281 }
1282 
1283 static int
1284 vmci_transport_recv_connecting_client(struct sock *sk,
1285                                       struct vmci_transport_packet *pkt)
1286 {
1287         struct vsock_sock *vsk;
1288         int err;
1289         int skerr;
1290 
1291         vsk = vsock_sk(sk);
1292 
1293         switch (pkt->type) {
1294         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1295                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1296                     !vmci_handle_is_equal(pkt->u.handle,
1297                                           vmci_trans(vsk)->qp_handle)) {
1298                         skerr = EPROTO;
1299                         err = -EINVAL;
1300                         goto destroy;
1301                 }
1302 
1303                 /* Signify the socket is connected and wakeup the waiter in
1304                  * connect(). Also place the socket in the connected table for
1305                  * accounting (it can already be found since it's in the bound
1306                  * table).
1307                  */
1308                 sk->sk_state = TCP_ESTABLISHED;
1309                 sk->sk_socket->state = SS_CONNECTED;
1310                 vsock_insert_connected(vsk);
1311                 sk->sk_state_change(sk);
1312 
1313                 break;
1314         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1315         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1316                 if (pkt->u.size == 0
1317                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1318                     || pkt->src_port != vsk->remote_addr.svm_port
1319                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1320                     || vmci_trans(vsk)->qpair
1321                     || vmci_trans(vsk)->produce_size != 0
1322                     || vmci_trans(vsk)->consume_size != 0
1323                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1324                         skerr = EPROTO;
1325                         err = -EINVAL;
1326 
1327                         goto destroy;
1328                 }
1329 
1330                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1331                 if (err) {
1332                         skerr = -err;
1333                         goto destroy;
1334                 }
1335 
1336                 break;
1337         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1338                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1339                 if (err) {
1340                         skerr = -err;
1341                         goto destroy;
1342                 }
1343 
1344                 break;
1345         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1346                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1347                  * continue processing here after they sent an INVALID packet.
1348                  * This meant that we got a RST after the INVALID. We ignore a
1349                  * RST after an INVALID. The common code doesn't send the RST
1350                  * ... so we can hang if an old version of the common code
1351                  * fails between getting a REQUEST and sending an OFFER back.
1352                  * Not much we can do about it... except hope that it doesn't
1353                  * happen.
1354                  */
1355                 if (vsk->ignore_connecting_rst) {
1356                         vsk->ignore_connecting_rst = false;
1357                 } else {
1358                         skerr = ECONNRESET;
1359                         err = 0;
1360                         goto destroy;
1361                 }
1362 
1363                 break;
1364         default:
1365                 /* Close and cleanup the connection. */
1366                 skerr = EPROTO;
1367                 err = -EINVAL;
1368                 goto destroy;
1369         }
1370 
1371         return 0;
1372 
1373 destroy:
1374         vmci_transport_send_reset(sk, pkt);
1375 
1376         sk->sk_state = TCP_CLOSE;
1377         sk->sk_err = skerr;
1378         sk->sk_error_report(sk);
1379         return err;
1380 }
1381 
1382 static int vmci_transport_recv_connecting_client_negotiate(
1383                                         struct sock *sk,
1384                                         struct vmci_transport_packet *pkt)
1385 {
1386         int err;
1387         struct vsock_sock *vsk;
1388         struct vmci_handle handle;
1389         struct vmci_qp *qpair;
1390         u32 detach_sub_id;
1391         bool is_local;
1392         u32 flags;
1393         bool old_proto = true;
1394         bool old_pkt_proto;
1395         u16 version;
1396 
1397         vsk = vsock_sk(sk);
1398         handle = VMCI_INVALID_HANDLE;
1399         detach_sub_id = VMCI_INVALID_ID;
1400 
1401         /* If we have gotten here then we should be past the point where old
1402          * linux vsock could have sent the bogus rst.
1403          */
1404         vsk->sent_request = false;
1405         vsk->ignore_connecting_rst = false;
1406 
1407         /* Verify that we're OK with the proposed queue pair size */
1408         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1409             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1410                 err = -EINVAL;
1411                 goto destroy;
1412         }
1413 
1414         /* At this point we know the CID the peer is using to talk to us. */
1415 
1416         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1417                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1418 
1419         /* Setup the notify ops to be the highest supported version that both
1420          * the server and the client support.
1421          */
1422 
1423         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1424                 old_proto = old_pkt_proto;
1425         } else {
1426                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1427                         old_proto = true;
1428                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1429                         old_proto = false;
1430 
1431         }
1432 
1433         if (old_proto)
1434                 version = VSOCK_PROTO_INVALID;
1435         else
1436                 version = pkt->proto;
1437 
1438         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1439                 err = -EINVAL;
1440                 goto destroy;
1441         }
1442 
1443         /* Subscribe to detach events first.
1444          *
1445          * XXX We attach once for each queue pair created for now so it is easy
1446          * to find the socket (it's provided), but later we should only
1447          * subscribe once and add a way to lookup sockets by queue pair handle.
1448          */
1449         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1450                                    vmci_transport_peer_detach_cb,
1451                                    vmci_trans(vsk), &detach_sub_id);
1452         if (err < VMCI_SUCCESS) {
1453                 err = vmci_transport_error_to_vsock_error(err);
1454                 goto destroy;
1455         }
1456 
1457         /* Make VMCI select the handle for us. */
1458         handle = VMCI_INVALID_HANDLE;
1459         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1460         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1461 
1462         err = vmci_transport_queue_pair_alloc(&qpair,
1463                                               &handle,
1464                                               pkt->u.size,
1465                                               pkt->u.size,
1466                                               vsk->remote_addr.svm_cid,
1467                                               flags,
1468                                               vmci_transport_is_trusted(
1469                                                   vsk,
1470                                                   vsk->
1471                                                   remote_addr.svm_cid));
1472         if (err < 0)
1473                 goto destroy;
1474 
1475         err = vmci_transport_send_qp_offer(sk, handle);
1476         if (err < 0) {
1477                 err = vmci_transport_error_to_vsock_error(err);
1478                 goto destroy;
1479         }
1480 
1481         vmci_trans(vsk)->qp_handle = handle;
1482         vmci_trans(vsk)->qpair = qpair;
1483 
1484         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1485                 pkt->u.size;
1486 
1487         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1488 
1489         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1490 
1491         return 0;
1492 
1493 destroy:
1494         if (detach_sub_id != VMCI_INVALID_ID)
1495                 vmci_event_unsubscribe(detach_sub_id);
1496 
1497         if (!vmci_handle_is_invalid(handle))
1498                 vmci_qpair_detach(&qpair);
1499 
1500         return err;
1501 }
1502 
1503 static int
1504 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1505                                               struct vmci_transport_packet *pkt)
1506 {
1507         int err = 0;
1508         struct vsock_sock *vsk = vsock_sk(sk);
1509 
1510         if (vsk->sent_request) {
1511                 vsk->sent_request = false;
1512                 vsk->ignore_connecting_rst = true;
1513 
1514                 err = vmci_transport_send_conn_request(
1515                         sk, vmci_trans(vsk)->queue_pair_size);
1516                 if (err < 0)
1517                         err = vmci_transport_error_to_vsock_error(err);
1518                 else
1519                         err = 0;
1520 
1521         }
1522 
1523         return err;
1524 }
1525 
1526 static int vmci_transport_recv_connected(struct sock *sk,
1527                                          struct vmci_transport_packet *pkt)
1528 {
1529         struct vsock_sock *vsk;
1530         bool pkt_processed = false;
1531 
1532         /* In cases where we are closing the connection, it's sufficient to
1533          * mark the state change (and maybe error) and wake up any waiting
1534          * threads. Since this is a connected socket, it's owned by a user
1535          * process and will be cleaned up when the failure is passed back on
1536          * the current or next system call.  Our system call implementations
1537          * must therefore check for error and state changes on entry and when
1538          * being awoken.
1539          */
1540         switch (pkt->type) {
1541         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1542                 if (pkt->u.mode) {
1543                         vsk = vsock_sk(sk);
1544 
1545                         vsk->peer_shutdown |= pkt->u.mode;
1546                         sk->sk_state_change(sk);
1547                 }
1548                 break;
1549 
1550         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1551                 vsk = vsock_sk(sk);
1552                 /* It is possible that we sent our peer a message (e.g a
1553                  * WAITING_READ) right before we got notified that the peer had
1554                  * detached. If that happens then we can get a RST pkt back
1555                  * from our peer even though there is data available for us to
1556                  * read. In that case, don't shutdown the socket completely but
1557                  * instead allow the local client to finish reading data off
1558                  * the queuepair. Always treat a RST pkt in connected mode like
1559                  * a clean shutdown.
1560                  */
1561                 sock_set_flag(sk, SOCK_DONE);
1562                 vsk->peer_shutdown = SHUTDOWN_MASK;
1563                 if (vsock_stream_has_data(vsk) <= 0)
1564                         sk->sk_state = TCP_CLOSING;
1565 
1566                 sk->sk_state_change(sk);
1567                 break;
1568 
1569         default:
1570                 vsk = vsock_sk(sk);
1571                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1572                                 sk, pkt, false, NULL, NULL,
1573                                 &pkt_processed);
1574                 if (!pkt_processed)
1575                         return -EINVAL;
1576 
1577                 break;
1578         }
1579 
1580         return 0;
1581 }
1582 
1583 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1584                                       struct vsock_sock *psk)
1585 {
1586         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1587         if (!vsk->trans)
1588                 return -ENOMEM;
1589 
1590         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1591         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1592         vmci_trans(vsk)->qpair = NULL;
1593         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1594         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1595         vmci_trans(vsk)->notify_ops = NULL;
1596         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1597         vmci_trans(vsk)->sk = &vsk->sk;
1598         spin_lock_init(&vmci_trans(vsk)->lock);
1599         if (psk) {
1600                 vmci_trans(vsk)->queue_pair_size =
1601                         vmci_trans(psk)->queue_pair_size;
1602                 vmci_trans(vsk)->queue_pair_min_size =
1603                         vmci_trans(psk)->queue_pair_min_size;
1604                 vmci_trans(vsk)->queue_pair_max_size =
1605                         vmci_trans(psk)->queue_pair_max_size;
1606         } else {
1607                 vmci_trans(vsk)->queue_pair_size =
1608                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1609                 vmci_trans(vsk)->queue_pair_min_size =
1610                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1611                 vmci_trans(vsk)->queue_pair_max_size =
1612                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1613         }
1614 
1615         return 0;
1616 }
1617 
1618 static void vmci_transport_free_resources(struct list_head *transport_list)
1619 {
1620         while (!list_empty(transport_list)) {
1621                 struct vmci_transport *transport =
1622                     list_first_entry(transport_list, struct vmci_transport,
1623                                      elem);
1624                 list_del(&transport->elem);
1625 
1626                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1627                         vmci_event_unsubscribe(transport->detach_sub_id);
1628                         transport->detach_sub_id = VMCI_INVALID_ID;
1629                 }
1630 
1631                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1632                         vmci_qpair_detach(&transport->qpair);
1633                         transport->qp_handle = VMCI_INVALID_HANDLE;
1634                         transport->produce_size = 0;
1635                         transport->consume_size = 0;
1636                 }
1637 
1638                 kfree(transport);
1639         }
1640 }
1641 
1642 static void vmci_transport_cleanup(struct work_struct *work)
1643 {
1644         LIST_HEAD(pending);
1645 
1646         spin_lock_bh(&vmci_transport_cleanup_lock);
1647         list_replace_init(&vmci_transport_cleanup_list, &pending);
1648         spin_unlock_bh(&vmci_transport_cleanup_lock);
1649         vmci_transport_free_resources(&pending);
1650 }
1651 
1652 static void vmci_transport_destruct(struct vsock_sock *vsk)
1653 {
1654         /* transport can be NULL if we hit a failure at init() time */
1655         if (!vmci_trans(vsk))
1656                 return;
1657 
1658         /* Ensure that the detach callback doesn't use the sk/vsk
1659          * we are about to destruct.
1660          */
1661         spin_lock_bh(&vmci_trans(vsk)->lock);
1662         vmci_trans(vsk)->sk = NULL;
1663         spin_unlock_bh(&vmci_trans(vsk)->lock);
1664 
1665         if (vmci_trans(vsk)->notify_ops)
1666                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1667 
1668         spin_lock_bh(&vmci_transport_cleanup_lock);
1669         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1670         spin_unlock_bh(&vmci_transport_cleanup_lock);
1671         schedule_work(&vmci_transport_cleanup_work);
1672 
1673         vsk->trans = NULL;
1674 }
1675 
1676 static void vmci_transport_release(struct vsock_sock *vsk)
1677 {
1678         vsock_remove_sock(vsk);
1679 
1680         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1681                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1682                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1683         }
1684 }
1685 
1686 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1687                                      struct sockaddr_vm *addr)
1688 {
1689         u32 port;
1690         u32 flags;
1691         int err;
1692 
1693         /* VMCI will select a resource ID for us if we provide
1694          * VMCI_INVALID_ID.
1695          */
1696         port = addr->svm_port == VMADDR_PORT_ANY ?
1697                         VMCI_INVALID_ID : addr->svm_port;
1698 
1699         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1700                 return -EACCES;
1701 
1702         flags = addr->svm_cid == VMADDR_CID_ANY ?
1703                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1704 
1705         err = vmci_transport_datagram_create_hnd(port, flags,
1706                                                  vmci_transport_recv_dgram_cb,
1707                                                  &vsk->sk,
1708                                                  &vmci_trans(vsk)->dg_handle);
1709         if (err < VMCI_SUCCESS)
1710                 return vmci_transport_error_to_vsock_error(err);
1711         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1712                         vmci_trans(vsk)->dg_handle.resource);
1713 
1714         return 0;
1715 }
1716 
1717 static int vmci_transport_dgram_enqueue(
1718         struct vsock_sock *vsk,
1719         struct sockaddr_vm *remote_addr,
1720         struct msghdr *msg,
1721         size_t len)
1722 {
1723         int err;
1724         struct vmci_datagram *dg;
1725 
1726         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1727                 return -EMSGSIZE;
1728 
1729         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1730                 return -EPERM;
1731 
1732         /* Allocate a buffer for the user's message and our packet header. */
1733         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1734         if (!dg)
1735                 return -ENOMEM;
1736 
1737         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1738 
1739         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1740                                    remote_addr->svm_port);
1741         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1742                                    vsk->local_addr.svm_port);
1743         dg->payload_size = len;
1744 
1745         err = vmci_datagram_send(dg);
1746         kfree(dg);
1747         if (err < 0)
1748                 return vmci_transport_error_to_vsock_error(err);
1749 
1750         return err - sizeof(*dg);
1751 }
1752 
1753 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1754                                         struct msghdr *msg, size_t len,
1755                                         int flags)
1756 {
1757         int err;
1758         int noblock;
1759         struct vmci_datagram *dg;
1760         size_t payload_len;
1761         struct sk_buff *skb;
1762 
1763         noblock = flags & MSG_DONTWAIT;
1764 
1765         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1766                 return -EOPNOTSUPP;
1767 
1768         /* Retrieve the head sk_buff from the socket's receive queue. */
1769         err = 0;
1770         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1771         if (!skb)
1772                 return err;
1773 
1774         dg = (struct vmci_datagram *)skb->data;
1775         if (!dg)
1776                 /* err is 0, meaning we read zero bytes. */
1777                 goto out;
1778 
1779         payload_len = dg->payload_size;
1780         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1781         if (payload_len != skb->len - sizeof(*dg)) {
1782                 err = -EINVAL;
1783                 goto out;
1784         }
1785 
1786         if (payload_len > len) {
1787                 payload_len = len;
1788                 msg->msg_flags |= MSG_TRUNC;
1789         }
1790 
1791         /* Place the datagram payload in the user's iovec. */
1792         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1793         if (err)
1794                 goto out;
1795 
1796         if (msg->msg_name) {
1797                 /* Provide the address of the sender. */
1798                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1799                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1800                 msg->msg_namelen = sizeof(*vm_addr);
1801         }
1802         err = payload_len;
1803 
1804 out:
1805         skb_free_datagram(&vsk->sk, skb);
1806         return err;
1807 }
1808 
1809 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1810 {
1811         if (cid == VMADDR_CID_HYPERVISOR) {
1812                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1813                  * state and are allowed.
1814                  */
1815                 return port == VMCI_UNITY_PBRPC_REGISTER;
1816         }
1817 
1818         return true;
1819 }
1820 
1821 static int vmci_transport_connect(struct vsock_sock *vsk)
1822 {
1823         int err;
1824         bool old_pkt_proto = false;
1825         struct sock *sk = &vsk->sk;
1826 
1827         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1828                 old_pkt_proto) {
1829                 err = vmci_transport_send_conn_request(
1830                         sk, vmci_trans(vsk)->queue_pair_size);
1831                 if (err < 0) {
1832                         sk->sk_state = TCP_CLOSE;
1833                         return err;
1834                 }
1835         } else {
1836                 int supported_proto_versions =
1837                         vmci_transport_new_proto_supported_versions();
1838                 err = vmci_transport_send_conn_request2(
1839                                 sk, vmci_trans(vsk)->queue_pair_size,
1840                                 supported_proto_versions);
1841                 if (err < 0) {
1842                         sk->sk_state = TCP_CLOSE;
1843                         return err;
1844                 }
1845 
1846                 vsk->sent_request = true;
1847         }
1848 
1849         return err;
1850 }
1851 
1852 static ssize_t vmci_transport_stream_dequeue(
1853         struct vsock_sock *vsk,
1854         struct msghdr *msg,
1855         size_t len,
1856         int flags)
1857 {
1858         if (flags & MSG_PEEK)
1859                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1860         else
1861                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1862 }
1863 
1864 static ssize_t vmci_transport_stream_enqueue(
1865         struct vsock_sock *vsk,
1866         struct msghdr *msg,
1867         size_t len)
1868 {
1869         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1870 }
1871 
1872 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1873 {
1874         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1875 }
1876 
1877 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1878 {
1879         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1880 }
1881 
1882 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1883 {
1884         return vmci_trans(vsk)->consume_size;
1885 }
1886 
1887 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1888 {
1889         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1890 }
1891 
1892 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1893 {
1894         return vmci_trans(vsk)->queue_pair_size;
1895 }
1896 
1897 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1898 {
1899         return vmci_trans(vsk)->queue_pair_min_size;
1900 }
1901 
1902 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1903 {
1904         return vmci_trans(vsk)->queue_pair_max_size;
1905 }
1906 
1907 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1908 {
1909         if (val < vmci_trans(vsk)->queue_pair_min_size)
1910                 vmci_trans(vsk)->queue_pair_min_size = val;
1911         if (val > vmci_trans(vsk)->queue_pair_max_size)
1912                 vmci_trans(vsk)->queue_pair_max_size = val;
1913         vmci_trans(vsk)->queue_pair_size = val;
1914 }
1915 
1916 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1917                                                u64 val)
1918 {
1919         if (val > vmci_trans(vsk)->queue_pair_size)
1920                 vmci_trans(vsk)->queue_pair_size = val;
1921         vmci_trans(vsk)->queue_pair_min_size = val;
1922 }
1923 
1924 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1925                                                u64 val)
1926 {
1927         if (val < vmci_trans(vsk)->queue_pair_size)
1928                 vmci_trans(vsk)->queue_pair_size = val;
1929         vmci_trans(vsk)->queue_pair_max_size = val;
1930 }
1931 
1932 static int vmci_transport_notify_poll_in(
1933         struct vsock_sock *vsk,
1934         size_t target,
1935         bool *data_ready_now)
1936 {
1937         return vmci_trans(vsk)->notify_ops->poll_in(
1938                         &vsk->sk, target, data_ready_now);
1939 }
1940 
1941 static int vmci_transport_notify_poll_out(
1942         struct vsock_sock *vsk,
1943         size_t target,
1944         bool *space_available_now)
1945 {
1946         return vmci_trans(vsk)->notify_ops->poll_out(
1947                         &vsk->sk, target, space_available_now);
1948 }
1949 
1950 static int vmci_transport_notify_recv_init(
1951         struct vsock_sock *vsk,
1952         size_t target,
1953         struct vsock_transport_recv_notify_data *data)
1954 {
1955         return vmci_trans(vsk)->notify_ops->recv_init(
1956                         &vsk->sk, target,
1957                         (struct vmci_transport_recv_notify_data *)data);
1958 }
1959 
1960 static int vmci_transport_notify_recv_pre_block(
1961         struct vsock_sock *vsk,
1962         size_t target,
1963         struct vsock_transport_recv_notify_data *data)
1964 {
1965         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1966                         &vsk->sk, target,
1967                         (struct vmci_transport_recv_notify_data *)data);
1968 }
1969 
1970 static int vmci_transport_notify_recv_pre_dequeue(
1971         struct vsock_sock *vsk,
1972         size_t target,
1973         struct vsock_transport_recv_notify_data *data)
1974 {
1975         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1976                         &vsk->sk, target,
1977                         (struct vmci_transport_recv_notify_data *)data);
1978 }
1979 
1980 static int vmci_transport_notify_recv_post_dequeue(
1981         struct vsock_sock *vsk,
1982         size_t target,
1983         ssize_t copied,
1984         bool data_read,
1985         struct vsock_transport_recv_notify_data *data)
1986 {
1987         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1988                         &vsk->sk, target, copied, data_read,
1989                         (struct vmci_transport_recv_notify_data *)data);
1990 }
1991 
1992 static int vmci_transport_notify_send_init(
1993         struct vsock_sock *vsk,
1994         struct vsock_transport_send_notify_data *data)
1995 {
1996         return vmci_trans(vsk)->notify_ops->send_init(
1997                         &vsk->sk,
1998                         (struct vmci_transport_send_notify_data *)data);
1999 }
2000 
2001 static int vmci_transport_notify_send_pre_block(
2002         struct vsock_sock *vsk,
2003         struct vsock_transport_send_notify_data *data)
2004 {
2005         return vmci_trans(vsk)->notify_ops->send_pre_block(
2006                         &vsk->sk,
2007                         (struct vmci_transport_send_notify_data *)data);
2008 }
2009 
2010 static int vmci_transport_notify_send_pre_enqueue(
2011         struct vsock_sock *vsk,
2012         struct vsock_transport_send_notify_data *data)
2013 {
2014         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2015                         &vsk->sk,
2016                         (struct vmci_transport_send_notify_data *)data);
2017 }
2018 
2019 static int vmci_transport_notify_send_post_enqueue(
2020         struct vsock_sock *vsk,
2021         ssize_t written,
2022         struct vsock_transport_send_notify_data *data)
2023 {
2024         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2025                         &vsk->sk, written,
2026                         (struct vmci_transport_send_notify_data *)data);
2027 }
2028 
2029 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2030 {
2031         if (PROTOCOL_OVERRIDE != -1) {
2032                 if (PROTOCOL_OVERRIDE == 0)
2033                         *old_pkt_proto = true;
2034                 else
2035                         *old_pkt_proto = false;
2036 
2037                 pr_info("Proto override in use\n");
2038                 return true;
2039         }
2040 
2041         return false;
2042 }
2043 
2044 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2045                                                   u16 *proto,
2046                                                   bool old_pkt_proto)
2047 {
2048         struct vsock_sock *vsk = vsock_sk(sk);
2049 
2050         if (old_pkt_proto) {
2051                 if (*proto != VSOCK_PROTO_INVALID) {
2052                         pr_err("Can't set both an old and new protocol\n");
2053                         return false;
2054                 }
2055                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2056                 goto exit;
2057         }
2058 
2059         switch (*proto) {
2060         case VSOCK_PROTO_PKT_ON_NOTIFY:
2061                 vmci_trans(vsk)->notify_ops =
2062                         &vmci_transport_notify_pkt_q_state_ops;
2063                 break;
2064         default:
2065                 pr_err("Unknown notify protocol version\n");
2066                 return false;
2067         }
2068 
2069 exit:
2070         vmci_trans(vsk)->notify_ops->socket_init(sk);
2071         return true;
2072 }
2073 
2074 static u16 vmci_transport_new_proto_supported_versions(void)
2075 {
2076         if (PROTOCOL_OVERRIDE != -1)
2077                 return PROTOCOL_OVERRIDE;
2078 
2079         return VSOCK_PROTO_ALL_SUPPORTED;
2080 }
2081 
2082 static u32 vmci_transport_get_local_cid(void)
2083 {
2084         return vmci_get_context_id();
2085 }
2086 
2087 static const struct vsock_transport vmci_transport = {
2088         .init = vmci_transport_socket_init,
2089         .destruct = vmci_transport_destruct,
2090         .release = vmci_transport_release,
2091         .connect = vmci_transport_connect,
2092         .dgram_bind = vmci_transport_dgram_bind,
2093         .dgram_dequeue = vmci_transport_dgram_dequeue,
2094         .dgram_enqueue = vmci_transport_dgram_enqueue,
2095         .dgram_allow = vmci_transport_dgram_allow,
2096         .stream_dequeue = vmci_transport_stream_dequeue,
2097         .stream_enqueue = vmci_transport_stream_enqueue,
2098         .stream_has_data = vmci_transport_stream_has_data,
2099         .stream_has_space = vmci_transport_stream_has_space,
2100         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2101         .stream_is_active = vmci_transport_stream_is_active,
2102         .stream_allow = vmci_transport_stream_allow,
2103         .notify_poll_in = vmci_transport_notify_poll_in,
2104         .notify_poll_out = vmci_transport_notify_poll_out,
2105         .notify_recv_init = vmci_transport_notify_recv_init,
2106         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2107         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2108         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2109         .notify_send_init = vmci_transport_notify_send_init,
2110         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2111         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2112         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2113         .shutdown = vmci_transport_shutdown,
2114         .set_buffer_size = vmci_transport_set_buffer_size,
2115         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2116         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2117         .get_buffer_size = vmci_transport_get_buffer_size,
2118         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2119         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2120         .get_local_cid = vmci_transport_get_local_cid,
2121 };
2122 
2123 static int __init vmci_transport_init(void)
2124 {
2125         int err;
2126 
2127         /* Create the datagram handle that we will use to send and receive all
2128          * VSocket control messages for this context.
2129          */
2130         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2131                                                  VMCI_FLAG_ANYCID_DG_HND,
2132                                                  vmci_transport_recv_stream_cb,
2133                                                  NULL,
2134                                                  &vmci_transport_stream_handle);
2135         if (err < VMCI_SUCCESS) {
2136                 pr_err("Unable to create datagram handle. (%d)\n", err);
2137                 return vmci_transport_error_to_vsock_error(err);
2138         }
2139 
2140         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2141                                    vmci_transport_qp_resumed_cb,
2142                                    NULL, &vmci_transport_qp_resumed_sub_id);
2143         if (err < VMCI_SUCCESS) {
2144                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2145                 err = vmci_transport_error_to_vsock_error(err);
2146                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2147                 goto err_destroy_stream_handle;
2148         }
2149 
2150         err = vsock_core_init(&vmci_transport);
2151         if (err < 0)
2152                 goto err_unsubscribe;
2153 
2154         return 0;
2155 
2156 err_unsubscribe:
2157         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2158 err_destroy_stream_handle:
2159         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2160         return err;
2161 }
2162 module_init(vmci_transport_init);
2163 
2164 static void __exit vmci_transport_exit(void)
2165 {
2166         cancel_work_sync(&vmci_transport_cleanup_work);
2167         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2168 
2169         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2170                 if (vmci_datagram_destroy_handle(
2171                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2172                         pr_err("Couldn't destroy datagram handle\n");
2173                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2174         }
2175 
2176         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2177                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2178                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2179         }
2180 
2181         vsock_core_exit();
2182 }
2183 module_exit(vmci_transport_exit);
2184 
2185 MODULE_AUTHOR("VMware, Inc.");
2186 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2187 MODULE_VERSION("1.0.5.0-k");
2188 MODULE_LICENSE("GPL v2");
2189 MODULE_ALIAS("vmware_vsock");
2190 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2191 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp