~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/wireless/reg.c

Version: ~ [ linux-5.5 ] ~ [ linux-5.4.15 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.98 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.167 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.211 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.211 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.81 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright 2002-2005, Instant802 Networks, Inc.
  3  * Copyright 2005-2006, Devicescape Software, Inc.
  4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
  6  * Copyright 2013-2014  Intel Mobile Communications GmbH
  7  *
  8  * Permission to use, copy, modify, and/or distribute this software for any
  9  * purpose with or without fee is hereby granted, provided that the above
 10  * copyright notice and this permission notice appear in all copies.
 11  *
 12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 19  */
 20 
 21 
 22 /**
 23  * DOC: Wireless regulatory infrastructure
 24  *
 25  * The usual implementation is for a driver to read a device EEPROM to
 26  * determine which regulatory domain it should be operating under, then
 27  * looking up the allowable channels in a driver-local table and finally
 28  * registering those channels in the wiphy structure.
 29  *
 30  * Another set of compliance enforcement is for drivers to use their
 31  * own compliance limits which can be stored on the EEPROM. The host
 32  * driver or firmware may ensure these are used.
 33  *
 34  * In addition to all this we provide an extra layer of regulatory
 35  * conformance. For drivers which do not have any regulatory
 36  * information CRDA provides the complete regulatory solution.
 37  * For others it provides a community effort on further restrictions
 38  * to enhance compliance.
 39  *
 40  * Note: When number of rules --> infinity we will not be able to
 41  * index on alpha2 any more, instead we'll probably have to
 42  * rely on some SHA1 checksum of the regdomain for example.
 43  *
 44  */
 45 
 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 47 
 48 #include <linux/kernel.h>
 49 #include <linux/export.h>
 50 #include <linux/slab.h>
 51 #include <linux/list.h>
 52 #include <linux/ctype.h>
 53 #include <linux/nl80211.h>
 54 #include <linux/platform_device.h>
 55 #include <linux/moduleparam.h>
 56 #include <net/cfg80211.h>
 57 #include "core.h"
 58 #include "reg.h"
 59 #include "regdb.h"
 60 #include "nl80211.h"
 61 
 62 #ifdef CONFIG_CFG80211_REG_DEBUG
 63 #define REG_DBG_PRINT(format, args...)                  \
 64         printk(KERN_DEBUG pr_fmt(format), ##args)
 65 #else
 66 #define REG_DBG_PRINT(args...)
 67 #endif
 68 
 69 /**
 70  * enum reg_request_treatment - regulatory request treatment
 71  *
 72  * @REG_REQ_OK: continue processing the regulatory request
 73  * @REG_REQ_IGNORE: ignore the regulatory request
 74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
 75  *      be intersected with the current one.
 76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
 77  *      regulatory settings, and no further processing is required.
 78  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
 79  *      further processing is required, i.e., not need to update last_request
 80  *      etc. This should be used for user hints that do not provide an alpha2
 81  *      but some other type of regulatory hint, i.e., indoor operation.
 82  */
 83 enum reg_request_treatment {
 84         REG_REQ_OK,
 85         REG_REQ_IGNORE,
 86         REG_REQ_INTERSECT,
 87         REG_REQ_ALREADY_SET,
 88         REG_REQ_USER_HINT_HANDLED,
 89 };
 90 
 91 static struct regulatory_request core_request_world = {
 92         .initiator = NL80211_REGDOM_SET_BY_CORE,
 93         .alpha2[0] = '',
 94         .alpha2[1] = '',
 95         .intersect = false,
 96         .processed = true,
 97         .country_ie_env = ENVIRON_ANY,
 98 };
 99 
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105         (void __rcu *)&core_request_world;
106 
107 /* To trigger userspace events */
108 static struct platform_device *reg_pdev;
109 
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124 
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  * (protected by RTNL)
130  */
131 static bool reg_is_indoor;
132 
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135         return rtnl_dereference(cfg80211_regdomain);
136 }
137 
138 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140         return rtnl_dereference(wiphy->regd);
141 }
142 
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145         switch (dfs_region) {
146         case NL80211_DFS_UNSET:
147                 return "unset";
148         case NL80211_DFS_FCC:
149                 return "FCC";
150         case NL80211_DFS_ETSI:
151                 return "ETSI";
152         case NL80211_DFS_JP:
153                 return "JP";
154         }
155         return "Unknown";
156 }
157 
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160         const struct ieee80211_regdomain *regd = NULL;
161         const struct ieee80211_regdomain *wiphy_regd = NULL;
162 
163         regd = get_cfg80211_regdom();
164         if (!wiphy)
165                 goto out;
166 
167         wiphy_regd = get_wiphy_regdom(wiphy);
168         if (!wiphy_regd)
169                 goto out;
170 
171         if (wiphy_regd->dfs_region == regd->dfs_region)
172                 goto out;
173 
174         REG_DBG_PRINT("%s: device specific dfs_region "
175                       "(%s) disagrees with cfg80211's "
176                       "central dfs_region (%s)\n",
177                       dev_name(&wiphy->dev),
178                       reg_dfs_region_str(wiphy_regd->dfs_region),
179                       reg_dfs_region_str(regd->dfs_region));
180 
181 out:
182         return regd->dfs_region;
183 }
184 
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187         if (!r)
188                 return;
189         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191 
192 static struct regulatory_request *get_last_request(void)
193 {
194         return rcu_dereference_rtnl(last_request);
195 }
196 
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200 
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204 
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207 
208 struct reg_beacon {
209         struct list_head list;
210         struct ieee80211_channel chan;
211 };
212 
213 static void reg_todo(struct work_struct *work);
214 static DECLARE_WORK(reg_work, reg_todo);
215 
216 static void reg_timeout_work(struct work_struct *work);
217 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218 
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221         .n_reg_rules = 6,
222         .alpha2 =  "00",
223         .reg_rules = {
224                 /* IEEE 802.11b/g, channels 1..11 */
225                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226                 /* IEEE 802.11b/g, channels 12..13. */
227                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228                         NL80211_RRF_NO_IR),
229                 /* IEEE 802.11 channel 14 - Only JP enables
230                  * this and for 802.11b only */
231                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232                         NL80211_RRF_NO_IR |
233                         NL80211_RRF_NO_OFDM),
234                 /* IEEE 802.11a, channel 36..48 */
235                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
236                         NL80211_RRF_NO_IR),
237 
238                 /* IEEE 802.11a, channel 52..64 - DFS required */
239                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
240                         NL80211_RRF_NO_IR |
241                         NL80211_RRF_DFS),
242 
243                 /* IEEE 802.11a, channel 100..144 - DFS required */
244                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_DFS),
247 
248                 /* IEEE 802.11a, channel 149..165 */
249                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR),
251 
252                 /* IEEE 802.11ad (60gHz), channels 1..3 */
253                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254         }
255 };
256 
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259         &world_regdom;
260 
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263 
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266 
267 static void reg_free_request(struct regulatory_request *request)
268 {
269         if (request != get_last_request())
270                 kfree(request);
271 }
272 
273 static void reg_free_last_request(void)
274 {
275         struct regulatory_request *lr = get_last_request();
276 
277         if (lr != &core_request_world && lr)
278                 kfree_rcu(lr, rcu_head);
279 }
280 
281 static void reg_update_last_request(struct regulatory_request *request)
282 {
283         struct regulatory_request *lr;
284 
285         lr = get_last_request();
286         if (lr == request)
287                 return;
288 
289         reg_free_last_request();
290         rcu_assign_pointer(last_request, request);
291 }
292 
293 static void reset_regdomains(bool full_reset,
294                              const struct ieee80211_regdomain *new_regdom)
295 {
296         const struct ieee80211_regdomain *r;
297 
298         ASSERT_RTNL();
299 
300         r = get_cfg80211_regdom();
301 
302         /* avoid freeing static information or freeing something twice */
303         if (r == cfg80211_world_regdom)
304                 r = NULL;
305         if (cfg80211_world_regdom == &world_regdom)
306                 cfg80211_world_regdom = NULL;
307         if (r == &world_regdom)
308                 r = NULL;
309 
310         rcu_free_regdom(r);
311         rcu_free_regdom(cfg80211_world_regdom);
312 
313         cfg80211_world_regdom = &world_regdom;
314         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315 
316         if (!full_reset)
317                 return;
318 
319         reg_update_last_request(&core_request_world);
320 }
321 
322 /*
323  * Dynamic world regulatory domain requested by the wireless
324  * core upon initialization
325  */
326 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327 {
328         struct regulatory_request *lr;
329 
330         lr = get_last_request();
331 
332         WARN_ON(!lr);
333 
334         reset_regdomains(false, rd);
335 
336         cfg80211_world_regdom = rd;
337 }
338 
339 bool is_world_regdom(const char *alpha2)
340 {
341         if (!alpha2)
342                 return false;
343         return alpha2[0] == '' && alpha2[1] == '';
344 }
345 
346 static bool is_alpha2_set(const char *alpha2)
347 {
348         if (!alpha2)
349                 return false;
350         return alpha2[0] && alpha2[1];
351 }
352 
353 static bool is_unknown_alpha2(const char *alpha2)
354 {
355         if (!alpha2)
356                 return false;
357         /*
358          * Special case where regulatory domain was built by driver
359          * but a specific alpha2 cannot be determined
360          */
361         return alpha2[0] == '9' && alpha2[1] == '9';
362 }
363 
364 static bool is_intersected_alpha2(const char *alpha2)
365 {
366         if (!alpha2)
367                 return false;
368         /*
369          * Special case where regulatory domain is the
370          * result of an intersection between two regulatory domain
371          * structures
372          */
373         return alpha2[0] == '9' && alpha2[1] == '8';
374 }
375 
376 static bool is_an_alpha2(const char *alpha2)
377 {
378         if (!alpha2)
379                 return false;
380         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381 }
382 
383 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384 {
385         if (!alpha2_x || !alpha2_y)
386                 return false;
387         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388 }
389 
390 static bool regdom_changes(const char *alpha2)
391 {
392         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393 
394         if (!r)
395                 return true;
396         return !alpha2_equal(r->alpha2, alpha2);
397 }
398 
399 /*
400  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402  * has ever been issued.
403  */
404 static bool is_user_regdom_saved(void)
405 {
406         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407                 return false;
408 
409         /* This would indicate a mistake on the design */
410         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411                  "Unexpected user alpha2: %c%c\n",
412                  user_alpha2[0], user_alpha2[1]))
413                 return false;
414 
415         return true;
416 }
417 
418 static const struct ieee80211_regdomain *
419 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420 {
421         struct ieee80211_regdomain *regd;
422         int size_of_regd;
423         unsigned int i;
424 
425         size_of_regd =
426                 sizeof(struct ieee80211_regdomain) +
427                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428 
429         regd = kzalloc(size_of_regd, GFP_KERNEL);
430         if (!regd)
431                 return ERR_PTR(-ENOMEM);
432 
433         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434 
435         for (i = 0; i < src_regd->n_reg_rules; i++)
436                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437                        sizeof(struct ieee80211_reg_rule));
438 
439         return regd;
440 }
441 
442 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
443 struct reg_regdb_search_request {
444         char alpha2[2];
445         struct list_head list;
446 };
447 
448 static LIST_HEAD(reg_regdb_search_list);
449 static DEFINE_MUTEX(reg_regdb_search_mutex);
450 
451 static void reg_regdb_search(struct work_struct *work)
452 {
453         struct reg_regdb_search_request *request;
454         const struct ieee80211_regdomain *curdom, *regdom = NULL;
455         int i;
456 
457         rtnl_lock();
458 
459         mutex_lock(&reg_regdb_search_mutex);
460         while (!list_empty(&reg_regdb_search_list)) {
461                 request = list_first_entry(&reg_regdb_search_list,
462                                            struct reg_regdb_search_request,
463                                            list);
464                 list_del(&request->list);
465 
466                 for (i = 0; i < reg_regdb_size; i++) {
467                         curdom = reg_regdb[i];
468 
469                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470                                 regdom = reg_copy_regd(curdom);
471                                 break;
472                         }
473                 }
474 
475                 kfree(request);
476         }
477         mutex_unlock(&reg_regdb_search_mutex);
478 
479         if (!IS_ERR_OR_NULL(regdom))
480                 set_regdom(regdom);
481 
482         rtnl_unlock();
483 }
484 
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486 
487 static void reg_regdb_query(const char *alpha2)
488 {
489         struct reg_regdb_search_request *request;
490 
491         if (!alpha2)
492                 return;
493 
494         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495         if (!request)
496                 return;
497 
498         memcpy(request->alpha2, alpha2, 2);
499 
500         mutex_lock(&reg_regdb_search_mutex);
501         list_add_tail(&request->list, &reg_regdb_search_list);
502         mutex_unlock(&reg_regdb_search_mutex);
503 
504         schedule_work(&reg_regdb_work);
505 }
506 
507 /* Feel free to add any other sanity checks here */
508 static void reg_regdb_size_check(void)
509 {
510         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
511         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512 }
513 #else
514 static inline void reg_regdb_size_check(void) {}
515 static inline void reg_regdb_query(const char *alpha2) {}
516 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517 
518 /*
519  * This lets us keep regulatory code which is updated on a regulatory
520  * basis in userspace.
521  */
522 static int call_crda(const char *alpha2)
523 {
524         char country[12];
525         char *env[] = { country, NULL };
526 
527         snprintf(country, sizeof(country), "COUNTRY=%c%c",
528                  alpha2[0], alpha2[1]);
529 
530         if (!is_world_regdom((char *) alpha2))
531                 pr_info("Calling CRDA for country: %c%c\n",
532                         alpha2[0], alpha2[1]);
533         else
534                 pr_info("Calling CRDA to update world regulatory domain\n");
535 
536         /* query internal regulatory database (if it exists) */
537         reg_regdb_query(alpha2);
538 
539         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540 }
541 
542 static enum reg_request_treatment
543 reg_call_crda(struct regulatory_request *request)
544 {
545         if (call_crda(request->alpha2))
546                 return REG_REQ_IGNORE;
547         return REG_REQ_OK;
548 }
549 
550 bool reg_is_valid_request(const char *alpha2)
551 {
552         struct regulatory_request *lr = get_last_request();
553 
554         if (!lr || lr->processed)
555                 return false;
556 
557         return alpha2_equal(lr->alpha2, alpha2);
558 }
559 
560 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561 {
562         struct regulatory_request *lr = get_last_request();
563 
564         /*
565          * Follow the driver's regulatory domain, if present, unless a country
566          * IE has been processed or a user wants to help complaince further
567          */
568         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570             wiphy->regd)
571                 return get_wiphy_regdom(wiphy);
572 
573         return get_cfg80211_regdom();
574 }
575 
576 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
577                                    const struct ieee80211_reg_rule *rule)
578 {
579         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
580         const struct ieee80211_freq_range *freq_range_tmp;
581         const struct ieee80211_reg_rule *tmp;
582         u32 start_freq, end_freq, idx, no;
583 
584         for (idx = 0; idx < rd->n_reg_rules; idx++)
585                 if (rule == &rd->reg_rules[idx])
586                         break;
587 
588         if (idx == rd->n_reg_rules)
589                 return 0;
590 
591         /* get start_freq */
592         no = idx;
593 
594         while (no) {
595                 tmp = &rd->reg_rules[--no];
596                 freq_range_tmp = &tmp->freq_range;
597 
598                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
599                         break;
600 
601                 freq_range = freq_range_tmp;
602         }
603 
604         start_freq = freq_range->start_freq_khz;
605 
606         /* get end_freq */
607         freq_range = &rule->freq_range;
608         no = idx;
609 
610         while (no < rd->n_reg_rules - 1) {
611                 tmp = &rd->reg_rules[++no];
612                 freq_range_tmp = &tmp->freq_range;
613 
614                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
615                         break;
616 
617                 freq_range = freq_range_tmp;
618         }
619 
620         end_freq = freq_range->end_freq_khz;
621 
622         return end_freq - start_freq;
623 }
624 
625 /* Sanity check on a regulatory rule */
626 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
627 {
628         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
629         u32 freq_diff;
630 
631         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
632                 return false;
633 
634         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
635                 return false;
636 
637         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
638 
639         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
640             freq_range->max_bandwidth_khz > freq_diff)
641                 return false;
642 
643         return true;
644 }
645 
646 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
647 {
648         const struct ieee80211_reg_rule *reg_rule = NULL;
649         unsigned int i;
650 
651         if (!rd->n_reg_rules)
652                 return false;
653 
654         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
655                 return false;
656 
657         for (i = 0; i < rd->n_reg_rules; i++) {
658                 reg_rule = &rd->reg_rules[i];
659                 if (!is_valid_reg_rule(reg_rule))
660                         return false;
661         }
662 
663         return true;
664 }
665 
666 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
667                             u32 center_freq_khz, u32 bw_khz)
668 {
669         u32 start_freq_khz, end_freq_khz;
670 
671         start_freq_khz = center_freq_khz - (bw_khz/2);
672         end_freq_khz = center_freq_khz + (bw_khz/2);
673 
674         if (start_freq_khz >= freq_range->start_freq_khz &&
675             end_freq_khz <= freq_range->end_freq_khz)
676                 return true;
677 
678         return false;
679 }
680 
681 /**
682  * freq_in_rule_band - tells us if a frequency is in a frequency band
683  * @freq_range: frequency rule we want to query
684  * @freq_khz: frequency we are inquiring about
685  *
686  * This lets us know if a specific frequency rule is or is not relevant to
687  * a specific frequency's band. Bands are device specific and artificial
688  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
689  * however it is safe for now to assume that a frequency rule should not be
690  * part of a frequency's band if the start freq or end freq are off by more
691  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
692  * 60 GHz band.
693  * This resolution can be lowered and should be considered as we add
694  * regulatory rule support for other "bands".
695  **/
696 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
697                               u32 freq_khz)
698 {
699 #define ONE_GHZ_IN_KHZ  1000000
700         /*
701          * From 802.11ad: directional multi-gigabit (DMG):
702          * Pertaining to operation in a frequency band containing a channel
703          * with the Channel starting frequency above 45 GHz.
704          */
705         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
706                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
707         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
708                 return true;
709         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
710                 return true;
711         return false;
712 #undef ONE_GHZ_IN_KHZ
713 }
714 
715 /*
716  * Later on we can perhaps use the more restrictive DFS
717  * region but we don't have information for that yet so
718  * for now simply disallow conflicts.
719  */
720 static enum nl80211_dfs_regions
721 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
722                          const enum nl80211_dfs_regions dfs_region2)
723 {
724         if (dfs_region1 != dfs_region2)
725                 return NL80211_DFS_UNSET;
726         return dfs_region1;
727 }
728 
729 /*
730  * Helper for regdom_intersect(), this does the real
731  * mathematical intersection fun
732  */
733 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
734                                const struct ieee80211_regdomain *rd2,
735                                const struct ieee80211_reg_rule *rule1,
736                                const struct ieee80211_reg_rule *rule2,
737                                struct ieee80211_reg_rule *intersected_rule)
738 {
739         const struct ieee80211_freq_range *freq_range1, *freq_range2;
740         struct ieee80211_freq_range *freq_range;
741         const struct ieee80211_power_rule *power_rule1, *power_rule2;
742         struct ieee80211_power_rule *power_rule;
743         u32 freq_diff, max_bandwidth1, max_bandwidth2;
744 
745         freq_range1 = &rule1->freq_range;
746         freq_range2 = &rule2->freq_range;
747         freq_range = &intersected_rule->freq_range;
748 
749         power_rule1 = &rule1->power_rule;
750         power_rule2 = &rule2->power_rule;
751         power_rule = &intersected_rule->power_rule;
752 
753         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
754                                          freq_range2->start_freq_khz);
755         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
756                                        freq_range2->end_freq_khz);
757 
758         max_bandwidth1 = freq_range1->max_bandwidth_khz;
759         max_bandwidth2 = freq_range2->max_bandwidth_khz;
760 
761         if (rule1->flags & NL80211_RRF_AUTO_BW)
762                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
763         if (rule2->flags & NL80211_RRF_AUTO_BW)
764                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
765 
766         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
767 
768         intersected_rule->flags = rule1->flags | rule2->flags;
769 
770         /*
771          * In case NL80211_RRF_AUTO_BW requested for both rules
772          * set AUTO_BW in intersected rule also. Next we will
773          * calculate BW correctly in handle_channel function.
774          * In other case remove AUTO_BW flag while we calculate
775          * maximum bandwidth correctly and auto calculation is
776          * not required.
777          */
778         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
779             (rule2->flags & NL80211_RRF_AUTO_BW))
780                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
781         else
782                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
783 
784         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
785         if (freq_range->max_bandwidth_khz > freq_diff)
786                 freq_range->max_bandwidth_khz = freq_diff;
787 
788         power_rule->max_eirp = min(power_rule1->max_eirp,
789                 power_rule2->max_eirp);
790         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
791                 power_rule2->max_antenna_gain);
792 
793         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
794                                            rule2->dfs_cac_ms);
795 
796         if (!is_valid_reg_rule(intersected_rule))
797                 return -EINVAL;
798 
799         return 0;
800 }
801 
802 /* check whether old rule contains new rule */
803 static bool rule_contains(struct ieee80211_reg_rule *r1,
804                           struct ieee80211_reg_rule *r2)
805 {
806         /* for simplicity, currently consider only same flags */
807         if (r1->flags != r2->flags)
808                 return false;
809 
810         /* verify r1 is more restrictive */
811         if ((r1->power_rule.max_antenna_gain >
812              r2->power_rule.max_antenna_gain) ||
813             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
814                 return false;
815 
816         /* make sure r2's range is contained within r1 */
817         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
818             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
819                 return false;
820 
821         /* and finally verify that r1.max_bw >= r2.max_bw */
822         if (r1->freq_range.max_bandwidth_khz <
823             r2->freq_range.max_bandwidth_khz)
824                 return false;
825 
826         return true;
827 }
828 
829 /* add or extend current rules. do nothing if rule is already contained */
830 static void add_rule(struct ieee80211_reg_rule *rule,
831                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
832 {
833         struct ieee80211_reg_rule *tmp_rule;
834         int i;
835 
836         for (i = 0; i < *n_rules; i++) {
837                 tmp_rule = &reg_rules[i];
838                 /* rule is already contained - do nothing */
839                 if (rule_contains(tmp_rule, rule))
840                         return;
841 
842                 /* extend rule if possible */
843                 if (rule_contains(rule, tmp_rule)) {
844                         memcpy(tmp_rule, rule, sizeof(*rule));
845                         return;
846                 }
847         }
848 
849         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
850         (*n_rules)++;
851 }
852 
853 /**
854  * regdom_intersect - do the intersection between two regulatory domains
855  * @rd1: first regulatory domain
856  * @rd2: second regulatory domain
857  *
858  * Use this function to get the intersection between two regulatory domains.
859  * Once completed we will mark the alpha2 for the rd as intersected, "98",
860  * as no one single alpha2 can represent this regulatory domain.
861  *
862  * Returns a pointer to the regulatory domain structure which will hold the
863  * resulting intersection of rules between rd1 and rd2. We will
864  * kzalloc() this structure for you.
865  */
866 static struct ieee80211_regdomain *
867 regdom_intersect(const struct ieee80211_regdomain *rd1,
868                  const struct ieee80211_regdomain *rd2)
869 {
870         int r, size_of_regd;
871         unsigned int x, y;
872         unsigned int num_rules = 0;
873         const struct ieee80211_reg_rule *rule1, *rule2;
874         struct ieee80211_reg_rule intersected_rule;
875         struct ieee80211_regdomain *rd;
876 
877         if (!rd1 || !rd2)
878                 return NULL;
879 
880         /*
881          * First we get a count of the rules we'll need, then we actually
882          * build them. This is to so we can malloc() and free() a
883          * regdomain once. The reason we use reg_rules_intersect() here
884          * is it will return -EINVAL if the rule computed makes no sense.
885          * All rules that do check out OK are valid.
886          */
887 
888         for (x = 0; x < rd1->n_reg_rules; x++) {
889                 rule1 = &rd1->reg_rules[x];
890                 for (y = 0; y < rd2->n_reg_rules; y++) {
891                         rule2 = &rd2->reg_rules[y];
892                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
893                                                  &intersected_rule))
894                                 num_rules++;
895                 }
896         }
897 
898         if (!num_rules)
899                 return NULL;
900 
901         size_of_regd = sizeof(struct ieee80211_regdomain) +
902                        num_rules * sizeof(struct ieee80211_reg_rule);
903 
904         rd = kzalloc(size_of_regd, GFP_KERNEL);
905         if (!rd)
906                 return NULL;
907 
908         for (x = 0; x < rd1->n_reg_rules; x++) {
909                 rule1 = &rd1->reg_rules[x];
910                 for (y = 0; y < rd2->n_reg_rules; y++) {
911                         rule2 = &rd2->reg_rules[y];
912                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
913                                                 &intersected_rule);
914                         /*
915                          * No need to memset here the intersected rule here as
916                          * we're not using the stack anymore
917                          */
918                         if (r)
919                                 continue;
920 
921                         add_rule(&intersected_rule, rd->reg_rules,
922                                  &rd->n_reg_rules);
923                 }
924         }
925 
926         rd->alpha2[0] = '9';
927         rd->alpha2[1] = '8';
928         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
929                                                   rd2->dfs_region);
930 
931         return rd;
932 }
933 
934 /*
935  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
936  * want to just have the channel structure use these
937  */
938 static u32 map_regdom_flags(u32 rd_flags)
939 {
940         u32 channel_flags = 0;
941         if (rd_flags & NL80211_RRF_NO_IR_ALL)
942                 channel_flags |= IEEE80211_CHAN_NO_IR;
943         if (rd_flags & NL80211_RRF_DFS)
944                 channel_flags |= IEEE80211_CHAN_RADAR;
945         if (rd_flags & NL80211_RRF_NO_OFDM)
946                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
947         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
948                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
949         return channel_flags;
950 }
951 
952 static const struct ieee80211_reg_rule *
953 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
954                    const struct ieee80211_regdomain *regd)
955 {
956         int i;
957         bool band_rule_found = false;
958         bool bw_fits = false;
959 
960         if (!regd)
961                 return ERR_PTR(-EINVAL);
962 
963         for (i = 0; i < regd->n_reg_rules; i++) {
964                 const struct ieee80211_reg_rule *rr;
965                 const struct ieee80211_freq_range *fr = NULL;
966 
967                 rr = &regd->reg_rules[i];
968                 fr = &rr->freq_range;
969 
970                 /*
971                  * We only need to know if one frequency rule was
972                  * was in center_freq's band, that's enough, so lets
973                  * not overwrite it once found
974                  */
975                 if (!band_rule_found)
976                         band_rule_found = freq_in_rule_band(fr, center_freq);
977 
978                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
979 
980                 if (band_rule_found && bw_fits)
981                         return rr;
982         }
983 
984         if (!band_rule_found)
985                 return ERR_PTR(-ERANGE);
986 
987         return ERR_PTR(-EINVAL);
988 }
989 
990 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
991                                                u32 center_freq)
992 {
993         const struct ieee80211_regdomain *regd;
994 
995         regd = reg_get_regdomain(wiphy);
996 
997         return freq_reg_info_regd(wiphy, center_freq, regd);
998 }
999 EXPORT_SYMBOL(freq_reg_info);
1000 
1001 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1002 {
1003         switch (initiator) {
1004         case NL80211_REGDOM_SET_BY_CORE:
1005                 return "core";
1006         case NL80211_REGDOM_SET_BY_USER:
1007                 return "user";
1008         case NL80211_REGDOM_SET_BY_DRIVER:
1009                 return "driver";
1010         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1011                 return "country IE";
1012         default:
1013                 WARN_ON(1);
1014                 return "bug";
1015         }
1016 }
1017 EXPORT_SYMBOL(reg_initiator_name);
1018 
1019 #ifdef CONFIG_CFG80211_REG_DEBUG
1020 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1021                                     struct ieee80211_channel *chan,
1022                                     const struct ieee80211_reg_rule *reg_rule)
1023 {
1024         const struct ieee80211_power_rule *power_rule;
1025         const struct ieee80211_freq_range *freq_range;
1026         char max_antenna_gain[32], bw[32];
1027 
1028         power_rule = &reg_rule->power_rule;
1029         freq_range = &reg_rule->freq_range;
1030 
1031         if (!power_rule->max_antenna_gain)
1032                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1033         else
1034                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1035                          power_rule->max_antenna_gain);
1036 
1037         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1038                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1039                          freq_range->max_bandwidth_khz,
1040                          reg_get_max_bandwidth(regd, reg_rule));
1041         else
1042                 snprintf(bw, sizeof(bw), "%d KHz",
1043                          freq_range->max_bandwidth_khz);
1044 
1045         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1046                       chan->center_freq);
1047 
1048         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1049                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1050                       bw, max_antenna_gain,
1051                       power_rule->max_eirp);
1052 }
1053 #else
1054 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1055                                     struct ieee80211_channel *chan,
1056                                     const struct ieee80211_reg_rule *reg_rule)
1057 {
1058         return;
1059 }
1060 #endif
1061 
1062 /*
1063  * Note that right now we assume the desired channel bandwidth
1064  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1065  * per channel, the primary and the extension channel).
1066  */
1067 static void handle_channel(struct wiphy *wiphy,
1068                            enum nl80211_reg_initiator initiator,
1069                            struct ieee80211_channel *chan)
1070 {
1071         u32 flags, bw_flags = 0;
1072         const struct ieee80211_reg_rule *reg_rule = NULL;
1073         const struct ieee80211_power_rule *power_rule = NULL;
1074         const struct ieee80211_freq_range *freq_range = NULL;
1075         struct wiphy *request_wiphy = NULL;
1076         struct regulatory_request *lr = get_last_request();
1077         const struct ieee80211_regdomain *regd;
1078         u32 max_bandwidth_khz;
1079 
1080         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1081 
1082         flags = chan->orig_flags;
1083 
1084         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1085         if (IS_ERR(reg_rule)) {
1086                 /*
1087                  * We will disable all channels that do not match our
1088                  * received regulatory rule unless the hint is coming
1089                  * from a Country IE and the Country IE had no information
1090                  * about a band. The IEEE 802.11 spec allows for an AP
1091                  * to send only a subset of the regulatory rules allowed,
1092                  * so an AP in the US that only supports 2.4 GHz may only send
1093                  * a country IE with information for the 2.4 GHz band
1094                  * while 5 GHz is still supported.
1095                  */
1096                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1097                     PTR_ERR(reg_rule) == -ERANGE)
1098                         return;
1099 
1100                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1101                     request_wiphy && request_wiphy == wiphy &&
1102                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1103                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1104                                       chan->center_freq);
1105                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1106                         chan->flags = chan->orig_flags;
1107                 } else {
1108                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1109                                       chan->center_freq);
1110                         chan->flags |= IEEE80211_CHAN_DISABLED;
1111                 }
1112                 return;
1113         }
1114 
1115         regd = reg_get_regdomain(wiphy);
1116         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1117 
1118         power_rule = &reg_rule->power_rule;
1119         freq_range = &reg_rule->freq_range;
1120 
1121         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122         /* Check if auto calculation requested */
1123         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125 
1126         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1127                 bw_flags = IEEE80211_CHAN_NO_HT40;
1128         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1129                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1130         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1131                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1132 
1133         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1134             request_wiphy && request_wiphy == wiphy &&
1135             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1136                 /*
1137                  * This guarantees the driver's requested regulatory domain
1138                  * will always be used as a base for further regulatory
1139                  * settings
1140                  */
1141                 chan->flags = chan->orig_flags =
1142                         map_regdom_flags(reg_rule->flags) | bw_flags;
1143                 chan->max_antenna_gain = chan->orig_mag =
1144                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1145                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1146                         (int) MBM_TO_DBM(power_rule->max_eirp);
1147 
1148                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1149                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1150                         if (reg_rule->dfs_cac_ms)
1151                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1152                 }
1153 
1154                 return;
1155         }
1156 
1157         chan->dfs_state = NL80211_DFS_USABLE;
1158         chan->dfs_state_entered = jiffies;
1159 
1160         chan->beacon_found = false;
1161         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1162         chan->max_antenna_gain =
1163                 min_t(int, chan->orig_mag,
1164                       MBI_TO_DBI(power_rule->max_antenna_gain));
1165         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1166 
1167         if (chan->flags & IEEE80211_CHAN_RADAR) {
1168                 if (reg_rule->dfs_cac_ms)
1169                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1170                 else
1171                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1172         }
1173 
1174         if (chan->orig_mpwr) {
1175                 /*
1176                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1177                  * will always follow the passed country IE power settings.
1178                  */
1179                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1180                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1181                         chan->max_power = chan->max_reg_power;
1182                 else
1183                         chan->max_power = min(chan->orig_mpwr,
1184                                               chan->max_reg_power);
1185         } else
1186                 chan->max_power = chan->max_reg_power;
1187 }
1188 
1189 static void handle_band(struct wiphy *wiphy,
1190                         enum nl80211_reg_initiator initiator,
1191                         struct ieee80211_supported_band *sband)
1192 {
1193         unsigned int i;
1194 
1195         if (!sband)
1196                 return;
1197 
1198         for (i = 0; i < sband->n_channels; i++)
1199                 handle_channel(wiphy, initiator, &sband->channels[i]);
1200 }
1201 
1202 static bool reg_request_cell_base(struct regulatory_request *request)
1203 {
1204         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1205                 return false;
1206         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1207 }
1208 
1209 static bool reg_request_indoor(struct regulatory_request *request)
1210 {
1211         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1212                 return false;
1213         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1214 }
1215 
1216 bool reg_last_request_cell_base(void)
1217 {
1218         return reg_request_cell_base(get_last_request());
1219 }
1220 
1221 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1222 /* Core specific check */
1223 static enum reg_request_treatment
1224 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1225 {
1226         struct regulatory_request *lr = get_last_request();
1227 
1228         if (!reg_num_devs_support_basehint)
1229                 return REG_REQ_IGNORE;
1230 
1231         if (reg_request_cell_base(lr) &&
1232             !regdom_changes(pending_request->alpha2))
1233                 return REG_REQ_ALREADY_SET;
1234 
1235         return REG_REQ_OK;
1236 }
1237 
1238 /* Device specific check */
1239 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1240 {
1241         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1242 }
1243 #else
1244 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1245 {
1246         return REG_REQ_IGNORE;
1247 }
1248 
1249 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1250 {
1251         return true;
1252 }
1253 #endif
1254 
1255 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1256 {
1257         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1258             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1259                 return true;
1260         return false;
1261 }
1262 
1263 static bool ignore_reg_update(struct wiphy *wiphy,
1264                               enum nl80211_reg_initiator initiator)
1265 {
1266         struct regulatory_request *lr = get_last_request();
1267 
1268         if (!lr) {
1269                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1270                               "since last_request is not set\n",
1271                               reg_initiator_name(initiator));
1272                 return true;
1273         }
1274 
1275         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1276             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1277                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1278                               "since the driver uses its own custom "
1279                               "regulatory domain\n",
1280                               reg_initiator_name(initiator));
1281                 return true;
1282         }
1283 
1284         /*
1285          * wiphy->regd will be set once the device has its own
1286          * desired regulatory domain set
1287          */
1288         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1289             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1290             !is_world_regdom(lr->alpha2)) {
1291                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1292                               "since the driver requires its own regulatory "
1293                               "domain to be set first\n",
1294                               reg_initiator_name(initiator));
1295                 return true;
1296         }
1297 
1298         if (reg_request_cell_base(lr))
1299                 return reg_dev_ignore_cell_hint(wiphy);
1300 
1301         return false;
1302 }
1303 
1304 static bool reg_is_world_roaming(struct wiphy *wiphy)
1305 {
1306         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1307         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1308         struct regulatory_request *lr = get_last_request();
1309 
1310         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1311                 return true;
1312 
1313         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1314             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1315                 return true;
1316 
1317         return false;
1318 }
1319 
1320 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1321                               struct reg_beacon *reg_beacon)
1322 {
1323         struct ieee80211_supported_band *sband;
1324         struct ieee80211_channel *chan;
1325         bool channel_changed = false;
1326         struct ieee80211_channel chan_before;
1327 
1328         sband = wiphy->bands[reg_beacon->chan.band];
1329         chan = &sband->channels[chan_idx];
1330 
1331         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1332                 return;
1333 
1334         if (chan->beacon_found)
1335                 return;
1336 
1337         chan->beacon_found = true;
1338 
1339         if (!reg_is_world_roaming(wiphy))
1340                 return;
1341 
1342         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1343                 return;
1344 
1345         chan_before.center_freq = chan->center_freq;
1346         chan_before.flags = chan->flags;
1347 
1348         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1349                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1350                 channel_changed = true;
1351         }
1352 
1353         if (channel_changed)
1354                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1355 }
1356 
1357 /*
1358  * Called when a scan on a wiphy finds a beacon on
1359  * new channel
1360  */
1361 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1362                                     struct reg_beacon *reg_beacon)
1363 {
1364         unsigned int i;
1365         struct ieee80211_supported_band *sband;
1366 
1367         if (!wiphy->bands[reg_beacon->chan.band])
1368                 return;
1369 
1370         sband = wiphy->bands[reg_beacon->chan.band];
1371 
1372         for (i = 0; i < sband->n_channels; i++)
1373                 handle_reg_beacon(wiphy, i, reg_beacon);
1374 }
1375 
1376 /*
1377  * Called upon reg changes or a new wiphy is added
1378  */
1379 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1380 {
1381         unsigned int i;
1382         struct ieee80211_supported_band *sband;
1383         struct reg_beacon *reg_beacon;
1384 
1385         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1386                 if (!wiphy->bands[reg_beacon->chan.band])
1387                         continue;
1388                 sband = wiphy->bands[reg_beacon->chan.band];
1389                 for (i = 0; i < sband->n_channels; i++)
1390                         handle_reg_beacon(wiphy, i, reg_beacon);
1391         }
1392 }
1393 
1394 /* Reap the advantages of previously found beacons */
1395 static void reg_process_beacons(struct wiphy *wiphy)
1396 {
1397         /*
1398          * Means we are just firing up cfg80211, so no beacons would
1399          * have been processed yet.
1400          */
1401         if (!last_request)
1402                 return;
1403         wiphy_update_beacon_reg(wiphy);
1404 }
1405 
1406 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1407 {
1408         if (!chan)
1409                 return false;
1410         if (chan->flags & IEEE80211_CHAN_DISABLED)
1411                 return false;
1412         /* This would happen when regulatory rules disallow HT40 completely */
1413         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1414                 return false;
1415         return true;
1416 }
1417 
1418 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1419                                          struct ieee80211_channel *channel)
1420 {
1421         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1422         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1423         unsigned int i;
1424 
1425         if (!is_ht40_allowed(channel)) {
1426                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1427                 return;
1428         }
1429 
1430         /*
1431          * We need to ensure the extension channels exist to
1432          * be able to use HT40- or HT40+, this finds them (or not)
1433          */
1434         for (i = 0; i < sband->n_channels; i++) {
1435                 struct ieee80211_channel *c = &sband->channels[i];
1436 
1437                 if (c->center_freq == (channel->center_freq - 20))
1438                         channel_before = c;
1439                 if (c->center_freq == (channel->center_freq + 20))
1440                         channel_after = c;
1441         }
1442 
1443         /*
1444          * Please note that this assumes target bandwidth is 20 MHz,
1445          * if that ever changes we also need to change the below logic
1446          * to include that as well.
1447          */
1448         if (!is_ht40_allowed(channel_before))
1449                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1450         else
1451                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1452 
1453         if (!is_ht40_allowed(channel_after))
1454                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1455         else
1456                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1457 }
1458 
1459 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1460                                       struct ieee80211_supported_band *sband)
1461 {
1462         unsigned int i;
1463 
1464         if (!sband)
1465                 return;
1466 
1467         for (i = 0; i < sband->n_channels; i++)
1468                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1469 }
1470 
1471 static void reg_process_ht_flags(struct wiphy *wiphy)
1472 {
1473         enum ieee80211_band band;
1474 
1475         if (!wiphy)
1476                 return;
1477 
1478         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1479                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1480 }
1481 
1482 static void reg_call_notifier(struct wiphy *wiphy,
1483                               struct regulatory_request *request)
1484 {
1485         if (wiphy->reg_notifier)
1486                 wiphy->reg_notifier(wiphy, request);
1487 }
1488 
1489 static void wiphy_update_regulatory(struct wiphy *wiphy,
1490                                     enum nl80211_reg_initiator initiator)
1491 {
1492         enum ieee80211_band band;
1493         struct regulatory_request *lr = get_last_request();
1494 
1495         if (ignore_reg_update(wiphy, initiator)) {
1496                 /*
1497                  * Regulatory updates set by CORE are ignored for custom
1498                  * regulatory cards. Let us notify the changes to the driver,
1499                  * as some drivers used this to restore its orig_* reg domain.
1500                  */
1501                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1502                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1503                         reg_call_notifier(wiphy, lr);
1504                 return;
1505         }
1506 
1507         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1508 
1509         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1510                 handle_band(wiphy, initiator, wiphy->bands[band]);
1511 
1512         reg_process_beacons(wiphy);
1513         reg_process_ht_flags(wiphy);
1514         reg_call_notifier(wiphy, lr);
1515 }
1516 
1517 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1518 {
1519         struct cfg80211_registered_device *rdev;
1520         struct wiphy *wiphy;
1521 
1522         ASSERT_RTNL();
1523 
1524         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1525                 wiphy = &rdev->wiphy;
1526                 wiphy_update_regulatory(wiphy, initiator);
1527         }
1528 }
1529 
1530 static void handle_channel_custom(struct wiphy *wiphy,
1531                                   struct ieee80211_channel *chan,
1532                                   const struct ieee80211_regdomain *regd)
1533 {
1534         u32 bw_flags = 0;
1535         const struct ieee80211_reg_rule *reg_rule = NULL;
1536         const struct ieee80211_power_rule *power_rule = NULL;
1537         const struct ieee80211_freq_range *freq_range = NULL;
1538         u32 max_bandwidth_khz;
1539 
1540         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1541                                       regd);
1542 
1543         if (IS_ERR(reg_rule)) {
1544                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1545                               chan->center_freq);
1546                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1547                 chan->flags = chan->orig_flags;
1548                 return;
1549         }
1550 
1551         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1552 
1553         power_rule = &reg_rule->power_rule;
1554         freq_range = &reg_rule->freq_range;
1555 
1556         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1557         /* Check if auto calculation requested */
1558         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1559                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1560 
1561         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1562                 bw_flags = IEEE80211_CHAN_NO_HT40;
1563         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1564                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1565         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1566                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1567 
1568         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1569         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1570         chan->max_reg_power = chan->max_power =
1571                 (int) MBM_TO_DBM(power_rule->max_eirp);
1572 }
1573 
1574 static void handle_band_custom(struct wiphy *wiphy,
1575                                struct ieee80211_supported_band *sband,
1576                                const struct ieee80211_regdomain *regd)
1577 {
1578         unsigned int i;
1579 
1580         if (!sband)
1581                 return;
1582 
1583         for (i = 0; i < sband->n_channels; i++)
1584                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1585 }
1586 
1587 /* Used by drivers prior to wiphy registration */
1588 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1589                                    const struct ieee80211_regdomain *regd)
1590 {
1591         enum ieee80211_band band;
1592         unsigned int bands_set = 0;
1593 
1594         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1595              "wiphy should have REGULATORY_CUSTOM_REG\n");
1596         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1597 
1598         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1599                 if (!wiphy->bands[band])
1600                         continue;
1601                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1602                 bands_set++;
1603         }
1604 
1605         /*
1606          * no point in calling this if it won't have any effect
1607          * on your device's supported bands.
1608          */
1609         WARN_ON(!bands_set);
1610 }
1611 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1612 
1613 static void reg_set_request_processed(void)
1614 {
1615         bool need_more_processing = false;
1616         struct regulatory_request *lr = get_last_request();
1617 
1618         lr->processed = true;
1619 
1620         spin_lock(&reg_requests_lock);
1621         if (!list_empty(&reg_requests_list))
1622                 need_more_processing = true;
1623         spin_unlock(&reg_requests_lock);
1624 
1625         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1626                 cancel_delayed_work(&reg_timeout);
1627 
1628         if (need_more_processing)
1629                 schedule_work(&reg_work);
1630 }
1631 
1632 /**
1633  * reg_process_hint_core - process core regulatory requests
1634  * @pending_request: a pending core regulatory request
1635  *
1636  * The wireless subsystem can use this function to process
1637  * a regulatory request issued by the regulatory core.
1638  *
1639  * Returns one of the different reg request treatment values.
1640  */
1641 static enum reg_request_treatment
1642 reg_process_hint_core(struct regulatory_request *core_request)
1643 {
1644 
1645         core_request->intersect = false;
1646         core_request->processed = false;
1647 
1648         reg_update_last_request(core_request);
1649 
1650         return reg_call_crda(core_request);
1651 }
1652 
1653 static enum reg_request_treatment
1654 __reg_process_hint_user(struct regulatory_request *user_request)
1655 {
1656         struct regulatory_request *lr = get_last_request();
1657 
1658         if (reg_request_indoor(user_request)) {
1659                 reg_is_indoor = true;
1660                 return REG_REQ_USER_HINT_HANDLED;
1661         }
1662 
1663         if (reg_request_cell_base(user_request))
1664                 return reg_ignore_cell_hint(user_request);
1665 
1666         if (reg_request_cell_base(lr))
1667                 return REG_REQ_IGNORE;
1668 
1669         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1670                 return REG_REQ_INTERSECT;
1671         /*
1672          * If the user knows better the user should set the regdom
1673          * to their country before the IE is picked up
1674          */
1675         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1676             lr->intersect)
1677                 return REG_REQ_IGNORE;
1678         /*
1679          * Process user requests only after previous user/driver/core
1680          * requests have been processed
1681          */
1682         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1683              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1684              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1685             regdom_changes(lr->alpha2))
1686                 return REG_REQ_IGNORE;
1687 
1688         if (!regdom_changes(user_request->alpha2))
1689                 return REG_REQ_ALREADY_SET;
1690 
1691         return REG_REQ_OK;
1692 }
1693 
1694 /**
1695  * reg_process_hint_user - process user regulatory requests
1696  * @user_request: a pending user regulatory request
1697  *
1698  * The wireless subsystem can use this function to process
1699  * a regulatory request initiated by userspace.
1700  *
1701  * Returns one of the different reg request treatment values.
1702  */
1703 static enum reg_request_treatment
1704 reg_process_hint_user(struct regulatory_request *user_request)
1705 {
1706         enum reg_request_treatment treatment;
1707 
1708         treatment = __reg_process_hint_user(user_request);
1709         if (treatment == REG_REQ_IGNORE ||
1710             treatment == REG_REQ_ALREADY_SET ||
1711             treatment == REG_REQ_USER_HINT_HANDLED) {
1712                 reg_free_request(user_request);
1713                 return treatment;
1714         }
1715 
1716         user_request->intersect = treatment == REG_REQ_INTERSECT;
1717         user_request->processed = false;
1718 
1719         reg_update_last_request(user_request);
1720 
1721         user_alpha2[0] = user_request->alpha2[0];
1722         user_alpha2[1] = user_request->alpha2[1];
1723 
1724         return reg_call_crda(user_request);
1725 }
1726 
1727 static enum reg_request_treatment
1728 __reg_process_hint_driver(struct regulatory_request *driver_request)
1729 {
1730         struct regulatory_request *lr = get_last_request();
1731 
1732         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1733                 if (regdom_changes(driver_request->alpha2))
1734                         return REG_REQ_OK;
1735                 return REG_REQ_ALREADY_SET;
1736         }
1737 
1738         /*
1739          * This would happen if you unplug and plug your card
1740          * back in or if you add a new device for which the previously
1741          * loaded card also agrees on the regulatory domain.
1742          */
1743         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1744             !regdom_changes(driver_request->alpha2))
1745                 return REG_REQ_ALREADY_SET;
1746 
1747         return REG_REQ_INTERSECT;
1748 }
1749 
1750 /**
1751  * reg_process_hint_driver - process driver regulatory requests
1752  * @driver_request: a pending driver regulatory request
1753  *
1754  * The wireless subsystem can use this function to process
1755  * a regulatory request issued by an 802.11 driver.
1756  *
1757  * Returns one of the different reg request treatment values.
1758  */
1759 static enum reg_request_treatment
1760 reg_process_hint_driver(struct wiphy *wiphy,
1761                         struct regulatory_request *driver_request)
1762 {
1763         const struct ieee80211_regdomain *regd, *tmp;
1764         enum reg_request_treatment treatment;
1765 
1766         treatment = __reg_process_hint_driver(driver_request);
1767 
1768         switch (treatment) {
1769         case REG_REQ_OK:
1770                 break;
1771         case REG_REQ_IGNORE:
1772         case REG_REQ_USER_HINT_HANDLED:
1773                 reg_free_request(driver_request);
1774                 return treatment;
1775         case REG_REQ_INTERSECT:
1776                 /* fall through */
1777         case REG_REQ_ALREADY_SET:
1778                 regd = reg_copy_regd(get_cfg80211_regdom());
1779                 if (IS_ERR(regd)) {
1780                         reg_free_request(driver_request);
1781                         return REG_REQ_IGNORE;
1782                 }
1783 
1784                 tmp = get_wiphy_regdom(wiphy);
1785                 rcu_assign_pointer(wiphy->regd, regd);
1786                 rcu_free_regdom(tmp);
1787         }
1788 
1789 
1790         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1791         driver_request->processed = false;
1792 
1793         reg_update_last_request(driver_request);
1794 
1795         /*
1796          * Since CRDA will not be called in this case as we already
1797          * have applied the requested regulatory domain before we just
1798          * inform userspace we have processed the request
1799          */
1800         if (treatment == REG_REQ_ALREADY_SET) {
1801                 nl80211_send_reg_change_event(driver_request);
1802                 reg_set_request_processed();
1803                 return treatment;
1804         }
1805 
1806         return reg_call_crda(driver_request);
1807 }
1808 
1809 static enum reg_request_treatment
1810 __reg_process_hint_country_ie(struct wiphy *wiphy,
1811                               struct regulatory_request *country_ie_request)
1812 {
1813         struct wiphy *last_wiphy = NULL;
1814         struct regulatory_request *lr = get_last_request();
1815 
1816         if (reg_request_cell_base(lr)) {
1817                 /* Trust a Cell base station over the AP's country IE */
1818                 if (regdom_changes(country_ie_request->alpha2))
1819                         return REG_REQ_IGNORE;
1820                 return REG_REQ_ALREADY_SET;
1821         } else {
1822                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1823                         return REG_REQ_IGNORE;
1824         }
1825 
1826         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1827                 return -EINVAL;
1828 
1829         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1830                 return REG_REQ_OK;
1831 
1832         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1833 
1834         if (last_wiphy != wiphy) {
1835                 /*
1836                  * Two cards with two APs claiming different
1837                  * Country IE alpha2s. We could
1838                  * intersect them, but that seems unlikely
1839                  * to be correct. Reject second one for now.
1840                  */
1841                 if (regdom_changes(country_ie_request->alpha2))
1842                         return REG_REQ_IGNORE;
1843                 return REG_REQ_ALREADY_SET;
1844         }
1845 
1846         if (regdom_changes(country_ie_request->alpha2))
1847                 return REG_REQ_OK;
1848         return REG_REQ_ALREADY_SET;
1849 }
1850 
1851 /**
1852  * reg_process_hint_country_ie - process regulatory requests from country IEs
1853  * @country_ie_request: a regulatory request from a country IE
1854  *
1855  * The wireless subsystem can use this function to process
1856  * a regulatory request issued by a country Information Element.
1857  *
1858  * Returns one of the different reg request treatment values.
1859  */
1860 static enum reg_request_treatment
1861 reg_process_hint_country_ie(struct wiphy *wiphy,
1862                             struct regulatory_request *country_ie_request)
1863 {
1864         enum reg_request_treatment treatment;
1865 
1866         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1867 
1868         switch (treatment) {
1869         case REG_REQ_OK:
1870                 break;
1871         case REG_REQ_IGNORE:
1872         case REG_REQ_USER_HINT_HANDLED:
1873                 /* fall through */
1874         case REG_REQ_ALREADY_SET:
1875                 reg_free_request(country_ie_request);
1876                 return treatment;
1877         case REG_REQ_INTERSECT:
1878                 reg_free_request(country_ie_request);
1879                 /*
1880                  * This doesn't happen yet, not sure we
1881                  * ever want to support it for this case.
1882                  */
1883                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1884                 return REG_REQ_IGNORE;
1885         }
1886 
1887         country_ie_request->intersect = false;
1888         country_ie_request->processed = false;
1889 
1890         reg_update_last_request(country_ie_request);
1891 
1892         return reg_call_crda(country_ie_request);
1893 }
1894 
1895 /* This processes *all* regulatory hints */
1896 static void reg_process_hint(struct regulatory_request *reg_request)
1897 {
1898         struct wiphy *wiphy = NULL;
1899         enum reg_request_treatment treatment;
1900 
1901         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1902                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1903 
1904         switch (reg_request->initiator) {
1905         case NL80211_REGDOM_SET_BY_CORE:
1906                 reg_process_hint_core(reg_request);
1907                 return;
1908         case NL80211_REGDOM_SET_BY_USER:
1909                 treatment = reg_process_hint_user(reg_request);
1910                 if (treatment == REG_REQ_IGNORE ||
1911                     treatment == REG_REQ_ALREADY_SET ||
1912                     treatment == REG_REQ_USER_HINT_HANDLED)
1913                         return;
1914                 queue_delayed_work(system_power_efficient_wq,
1915                                    &reg_timeout, msecs_to_jiffies(3142));
1916                 return;
1917         case NL80211_REGDOM_SET_BY_DRIVER:
1918                 if (!wiphy)
1919                         goto out_free;
1920                 treatment = reg_process_hint_driver(wiphy, reg_request);
1921                 break;
1922         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1923                 if (!wiphy)
1924                         goto out_free;
1925                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1926                 break;
1927         default:
1928                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1929                 goto out_free;
1930         }
1931 
1932         /* This is required so that the orig_* parameters are saved */
1933         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1934             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1935                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1936 
1937         return;
1938 
1939 out_free:
1940         reg_free_request(reg_request);
1941 }
1942 
1943 /*
1944  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1945  * Regulatory hints come on a first come first serve basis and we
1946  * must process each one atomically.
1947  */
1948 static void reg_process_pending_hints(void)
1949 {
1950         struct regulatory_request *reg_request, *lr;
1951 
1952         lr = get_last_request();
1953 
1954         /* When last_request->processed becomes true this will be rescheduled */
1955         if (lr && !lr->processed) {
1956                 reg_process_hint(lr);
1957                 return;
1958         }
1959 
1960         spin_lock(&reg_requests_lock);
1961 
1962         if (list_empty(&reg_requests_list)) {
1963                 spin_unlock(&reg_requests_lock);
1964                 return;
1965         }
1966 
1967         reg_request = list_first_entry(&reg_requests_list,
1968                                        struct regulatory_request,
1969                                        list);
1970         list_del_init(&reg_request->list);
1971 
1972         spin_unlock(&reg_requests_lock);
1973 
1974         reg_process_hint(reg_request);
1975 }
1976 
1977 /* Processes beacon hints -- this has nothing to do with country IEs */
1978 static void reg_process_pending_beacon_hints(void)
1979 {
1980         struct cfg80211_registered_device *rdev;
1981         struct reg_beacon *pending_beacon, *tmp;
1982 
1983         /* This goes through the _pending_ beacon list */
1984         spin_lock_bh(&reg_pending_beacons_lock);
1985 
1986         list_for_each_entry_safe(pending_beacon, tmp,
1987                                  &reg_pending_beacons, list) {
1988                 list_del_init(&pending_beacon->list);
1989 
1990                 /* Applies the beacon hint to current wiphys */
1991                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1992                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1993 
1994                 /* Remembers the beacon hint for new wiphys or reg changes */
1995                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1996         }
1997 
1998         spin_unlock_bh(&reg_pending_beacons_lock);
1999 }
2000 
2001 static void reg_todo(struct work_struct *work)
2002 {
2003         rtnl_lock();
2004         reg_process_pending_hints();
2005         reg_process_pending_beacon_hints();
2006         rtnl_unlock();
2007 }
2008 
2009 static void queue_regulatory_request(struct regulatory_request *request)
2010 {
2011         request->alpha2[0] = toupper(request->alpha2[0]);
2012         request->alpha2[1] = toupper(request->alpha2[1]);
2013 
2014         spin_lock(&reg_requests_lock);
2015         list_add_tail(&request->list, &reg_requests_list);
2016         spin_unlock(&reg_requests_lock);
2017 
2018         schedule_work(&reg_work);
2019 }
2020 
2021 /*
2022  * Core regulatory hint -- happens during cfg80211_init()
2023  * and when we restore regulatory settings.
2024  */
2025 static int regulatory_hint_core(const char *alpha2)
2026 {
2027         struct regulatory_request *request;
2028 
2029         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2030         if (!request)
2031                 return -ENOMEM;
2032 
2033         request->alpha2[0] = alpha2[0];
2034         request->alpha2[1] = alpha2[1];
2035         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2036         request->wiphy_idx = WIPHY_IDX_INVALID;
2037 
2038         queue_regulatory_request(request);
2039 
2040         return 0;
2041 }
2042 
2043 /* User hints */
2044 int regulatory_hint_user(const char *alpha2,
2045                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2046 {
2047         struct regulatory_request *request;
2048 
2049         if (WARN_ON(!alpha2))
2050                 return -EINVAL;
2051 
2052         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2053         if (!request)
2054                 return -ENOMEM;
2055 
2056         request->wiphy_idx = WIPHY_IDX_INVALID;
2057         request->alpha2[0] = alpha2[0];
2058         request->alpha2[1] = alpha2[1];
2059         request->initiator = NL80211_REGDOM_SET_BY_USER;
2060         request->user_reg_hint_type = user_reg_hint_type;
2061 
2062         queue_regulatory_request(request);
2063 
2064         return 0;
2065 }
2066 
2067 int regulatory_hint_indoor_user(void)
2068 {
2069         struct regulatory_request *request;
2070 
2071         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2072         if (!request)
2073                 return -ENOMEM;
2074 
2075         request->wiphy_idx = WIPHY_IDX_INVALID;
2076         request->initiator = NL80211_REGDOM_SET_BY_USER;
2077         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2078         queue_regulatory_request(request);
2079 
2080         return 0;
2081 }
2082 
2083 /* Driver hints */
2084 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2085 {
2086         struct regulatory_request *request;
2087 
2088         if (WARN_ON(!alpha2 || !wiphy))
2089                 return -EINVAL;
2090 
2091         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2092 
2093         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2094         if (!request)
2095                 return -ENOMEM;
2096 
2097         request->wiphy_idx = get_wiphy_idx(wiphy);
2098 
2099         request->alpha2[0] = alpha2[0];
2100         request->alpha2[1] = alpha2[1];
2101         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2102 
2103         queue_regulatory_request(request);
2104 
2105         return 0;
2106 }
2107 EXPORT_SYMBOL(regulatory_hint);
2108 
2109 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2110                                 const u8 *country_ie, u8 country_ie_len)
2111 {
2112         char alpha2[2];
2113         enum environment_cap env = ENVIRON_ANY;
2114         struct regulatory_request *request = NULL, *lr;
2115 
2116         /* IE len must be evenly divisible by 2 */
2117         if (country_ie_len & 0x01)
2118                 return;
2119 
2120         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2121                 return;
2122 
2123         request = kzalloc(sizeof(*request), GFP_KERNEL);
2124         if (!request)
2125                 return;
2126 
2127         alpha2[0] = country_ie[0];
2128         alpha2[1] = country_ie[1];
2129 
2130         if (country_ie[2] == 'I')
2131                 env = ENVIRON_INDOOR;
2132         else if (country_ie[2] == 'O')
2133                 env = ENVIRON_OUTDOOR;
2134 
2135         rcu_read_lock();
2136         lr = get_last_request();
2137 
2138         if (unlikely(!lr))
2139                 goto out;
2140 
2141         /*
2142          * We will run this only upon a successful connection on cfg80211.
2143          * We leave conflict resolution to the workqueue, where can hold
2144          * the RTNL.
2145          */
2146         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2147             lr->wiphy_idx != WIPHY_IDX_INVALID)
2148                 goto out;
2149 
2150         request->wiphy_idx = get_wiphy_idx(wiphy);
2151         request->alpha2[0] = alpha2[0];
2152         request->alpha2[1] = alpha2[1];
2153         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2154         request->country_ie_env = env;
2155 
2156         queue_regulatory_request(request);
2157         request = NULL;
2158 out:
2159         kfree(request);
2160         rcu_read_unlock();
2161 }
2162 
2163 static void restore_alpha2(char *alpha2, bool reset_user)
2164 {
2165         /* indicates there is no alpha2 to consider for restoration */
2166         alpha2[0] = '9';
2167         alpha2[1] = '7';
2168 
2169         /* The user setting has precedence over the module parameter */
2170         if (is_user_regdom_saved()) {
2171                 /* Unless we're asked to ignore it and reset it */
2172                 if (reset_user) {
2173                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2174                         user_alpha2[0] = '9';
2175                         user_alpha2[1] = '7';
2176 
2177                         /*
2178                          * If we're ignoring user settings, we still need to
2179                          * check the module parameter to ensure we put things
2180                          * back as they were for a full restore.
2181                          */
2182                         if (!is_world_regdom(ieee80211_regdom)) {
2183                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2184                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2185                                 alpha2[0] = ieee80211_regdom[0];
2186                                 alpha2[1] = ieee80211_regdom[1];
2187                         }
2188                 } else {
2189                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2190                                       user_alpha2[0], user_alpha2[1]);
2191                         alpha2[0] = user_alpha2[0];
2192                         alpha2[1] = user_alpha2[1];
2193                 }
2194         } else if (!is_world_regdom(ieee80211_regdom)) {
2195                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2196                               ieee80211_regdom[0], ieee80211_regdom[1]);
2197                 alpha2[0] = ieee80211_regdom[0];
2198                 alpha2[1] = ieee80211_regdom[1];
2199         } else
2200                 REG_DBG_PRINT("Restoring regulatory settings\n");
2201 }
2202 
2203 static void restore_custom_reg_settings(struct wiphy *wiphy)
2204 {
2205         struct ieee80211_supported_band *sband;
2206         enum ieee80211_band band;
2207         struct ieee80211_channel *chan;
2208         int i;
2209 
2210         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2211                 sband = wiphy->bands[band];
2212                 if (!sband)
2213                         continue;
2214                 for (i = 0; i < sband->n_channels; i++) {
2215                         chan = &sband->channels[i];
2216                         chan->flags = chan->orig_flags;
2217                         chan->max_antenna_gain = chan->orig_mag;
2218                         chan->max_power = chan->orig_mpwr;
2219                         chan->beacon_found = false;
2220                 }
2221         }
2222 }
2223 
2224 /*
2225  * Restoring regulatory settings involves ingoring any
2226  * possibly stale country IE information and user regulatory
2227  * settings if so desired, this includes any beacon hints
2228  * learned as we could have traveled outside to another country
2229  * after disconnection. To restore regulatory settings we do
2230  * exactly what we did at bootup:
2231  *
2232  *   - send a core regulatory hint
2233  *   - send a user regulatory hint if applicable
2234  *
2235  * Device drivers that send a regulatory hint for a specific country
2236  * keep their own regulatory domain on wiphy->regd so that does does
2237  * not need to be remembered.
2238  */
2239 static void restore_regulatory_settings(bool reset_user)
2240 {
2241         char alpha2[2];
2242         char world_alpha2[2];
2243         struct reg_beacon *reg_beacon, *btmp;
2244         struct regulatory_request *reg_request, *tmp;
2245         LIST_HEAD(tmp_reg_req_list);
2246         struct cfg80211_registered_device *rdev;
2247 
2248         ASSERT_RTNL();
2249 
2250         reg_is_indoor = false;
2251 
2252         reset_regdomains(true, &world_regdom);
2253         restore_alpha2(alpha2, reset_user);
2254 
2255         /*
2256          * If there's any pending requests we simply
2257          * stash them to a temporary pending queue and
2258          * add then after we've restored regulatory
2259          * settings.
2260          */
2261         spin_lock(&reg_requests_lock);
2262         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2263                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2264                         continue;
2265                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2266         }
2267         spin_unlock(&reg_requests_lock);
2268 
2269         /* Clear beacon hints */
2270         spin_lock_bh(&reg_pending_beacons_lock);
2271         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2272                 list_del(&reg_beacon->list);
2273                 kfree(reg_beacon);
2274         }
2275         spin_unlock_bh(&reg_pending_beacons_lock);
2276 
2277         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2278                 list_del(&reg_beacon->list);
2279                 kfree(reg_beacon);
2280         }
2281 
2282         /* First restore to the basic regulatory settings */
2283         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2284         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2285 
2286         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2287                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2288                         restore_custom_reg_settings(&rdev->wiphy);
2289         }
2290 
2291         regulatory_hint_core(world_alpha2);
2292 
2293         /*
2294          * This restores the ieee80211_regdom module parameter
2295          * preference or the last user requested regulatory
2296          * settings, user regulatory settings takes precedence.
2297          */
2298         if (is_an_alpha2(alpha2))
2299                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2300 
2301         spin_lock(&reg_requests_lock);
2302         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2303         spin_unlock(&reg_requests_lock);
2304 
2305         REG_DBG_PRINT("Kicking the queue\n");
2306 
2307         schedule_work(&reg_work);
2308 }
2309 
2310 void regulatory_hint_disconnect(void)
2311 {
2312         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2313         restore_regulatory_settings(false);
2314 }
2315 
2316 static bool freq_is_chan_12_13_14(u16 freq)
2317 {
2318         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2319             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2320             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2321                 return true;
2322         return false;
2323 }
2324 
2325 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2326 {
2327         struct reg_beacon *pending_beacon;
2328 
2329         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2330                 if (beacon_chan->center_freq ==
2331                     pending_beacon->chan.center_freq)
2332                         return true;
2333         return false;
2334 }
2335 
2336 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2337                                  struct ieee80211_channel *beacon_chan,
2338                                  gfp_t gfp)
2339 {
2340         struct reg_beacon *reg_beacon;
2341         bool processing;
2342 
2343         if (beacon_chan->beacon_found ||
2344             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2345             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2346              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2347                 return 0;
2348 
2349         spin_lock_bh(&reg_pending_beacons_lock);
2350         processing = pending_reg_beacon(beacon_chan);
2351         spin_unlock_bh(&reg_pending_beacons_lock);
2352 
2353         if (processing)
2354                 return 0;
2355 
2356         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2357         if (!reg_beacon)
2358                 return -ENOMEM;
2359 
2360         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2361                       beacon_chan->center_freq,
2362                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2363                       wiphy_name(wiphy));
2364 
2365         memcpy(&reg_beacon->chan, beacon_chan,
2366                sizeof(struct ieee80211_channel));
2367 
2368         /*
2369          * Since we can be called from BH or and non-BH context
2370          * we must use spin_lock_bh()
2371          */
2372         spin_lock_bh(&reg_pending_beacons_lock);
2373         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2374         spin_unlock_bh(&reg_pending_beacons_lock);
2375 
2376         schedule_work(&reg_work);
2377 
2378         return 0;
2379 }
2380 
2381 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2382 {
2383         unsigned int i;
2384         const struct ieee80211_reg_rule *reg_rule = NULL;
2385         const struct ieee80211_freq_range *freq_range = NULL;
2386         const struct ieee80211_power_rule *power_rule = NULL;
2387         char bw[32], cac_time[32];
2388 
2389         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2390 
2391         for (i = 0; i < rd->n_reg_rules; i++) {
2392                 reg_rule = &rd->reg_rules[i];
2393                 freq_range = &reg_rule->freq_range;
2394                 power_rule = &reg_rule->power_rule;
2395 
2396                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2397                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2398                                  freq_range->max_bandwidth_khz,
2399                                  reg_get_max_bandwidth(rd, reg_rule));
2400                 else
2401                         snprintf(bw, sizeof(bw), "%d KHz",
2402                                  freq_range->max_bandwidth_khz);
2403 
2404                 if (reg_rule->flags & NL80211_RRF_DFS)
2405                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2406                                   reg_rule->dfs_cac_ms/1000);
2407                 else
2408                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2409 
2410 
2411                 /*
2412                  * There may not be documentation for max antenna gain
2413                  * in certain regions
2414                  */
2415                 if (power_rule->max_antenna_gain)
2416                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2417                                 freq_range->start_freq_khz,
2418                                 freq_range->end_freq_khz,
2419                                 bw,
2420                                 power_rule->max_antenna_gain,
2421                                 power_rule->max_eirp,
2422                                 cac_time);
2423                 else
2424                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2425                                 freq_range->start_freq_khz,
2426                                 freq_range->end_freq_khz,
2427                                 bw,
2428                                 power_rule->max_eirp,
2429                                 cac_time);
2430         }
2431 }
2432 
2433 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2434 {
2435         switch (dfs_region) {
2436         case NL80211_DFS_UNSET:
2437         case NL80211_DFS_FCC:
2438         case NL80211_DFS_ETSI:
2439         case NL80211_DFS_JP:
2440                 return true;
2441         default:
2442                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2443                               dfs_region);
2444                 return false;
2445         }
2446 }
2447 
2448 static void print_regdomain(const struct ieee80211_regdomain *rd)
2449 {
2450         struct regulatory_request *lr = get_last_request();
2451 
2452         if (is_intersected_alpha2(rd->alpha2)) {
2453                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2454                         struct cfg80211_registered_device *rdev;
2455                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2456                         if (rdev) {
2457                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2458                                         rdev->country_ie_alpha2[0],
2459                                         rdev->country_ie_alpha2[1]);
2460                         } else
2461                                 pr_info("Current regulatory domain intersected:\n");
2462                 } else
2463                         pr_info("Current regulatory domain intersected:\n");
2464         } else if (is_world_regdom(rd->alpha2)) {
2465                 pr_info("World regulatory domain updated:\n");
2466         } else {
2467                 if (is_unknown_alpha2(rd->alpha2))
2468                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2469                 else {
2470                         if (reg_request_cell_base(lr))
2471                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2472                                         rd->alpha2[0], rd->alpha2[1]);
2473                         else
2474                                 pr_info("Regulatory domain changed to country: %c%c\n",
2475                                         rd->alpha2[0], rd->alpha2[1]);
2476                 }
2477         }
2478 
2479         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2480         print_rd_rules(rd);
2481 }
2482 
2483 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2484 {
2485         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2486         print_rd_rules(rd);
2487 }
2488 
2489 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2490 {
2491         if (!is_world_regdom(rd->alpha2))
2492                 return -EINVAL;
2493         update_world_regdomain(rd);
2494         return 0;
2495 }
2496 
2497 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2498                            struct regulatory_request *user_request)
2499 {
2500         const struct ieee80211_regdomain *intersected_rd = NULL;
2501 
2502         if (!regdom_changes(rd->alpha2))
2503                 return -EALREADY;
2504 
2505         if (!is_valid_rd(rd)) {
2506                 pr_err("Invalid regulatory domain detected:\n");
2507                 print_regdomain_info(rd);
2508                 return -EINVAL;
2509         }
2510 
2511         if (!user_request->intersect) {
2512                 reset_regdomains(false, rd);
2513                 return 0;
2514         }
2515 
2516         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2517         if (!intersected_rd)
2518                 return -EINVAL;
2519 
2520         kfree(rd);
2521         rd = NULL;
2522         reset_regdomains(false, intersected_rd);
2523 
2524         return 0;
2525 }
2526 
2527 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2528                              struct regulatory_request *driver_request)
2529 {
2530         const struct ieee80211_regdomain *regd;
2531         const struct ieee80211_regdomain *intersected_rd = NULL;
2532         const struct ieee80211_regdomain *tmp;
2533         struct wiphy *request_wiphy;
2534 
2535         if (is_world_regdom(rd->alpha2))
2536                 return -EINVAL;
2537 
2538         if (!regdom_changes(rd->alpha2))
2539                 return -EALREADY;
2540 
2541         if (!is_valid_rd(rd)) {
2542                 pr_err("Invalid regulatory domain detected:\n");
2543                 print_regdomain_info(rd);
2544                 return -EINVAL;
2545         }
2546 
2547         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2548         if (!request_wiphy) {
2549                 queue_delayed_work(system_power_efficient_wq,
2550                                    &reg_timeout, 0);
2551                 return -ENODEV;
2552         }
2553 
2554         if (!driver_request->intersect) {
2555                 if (request_wiphy->regd)
2556                         return -EALREADY;
2557 
2558                 regd = reg_copy_regd(rd);
2559                 if (IS_ERR(regd))
2560                         return PTR_ERR(regd);
2561 
2562                 rcu_assign_pointer(request_wiphy->regd, regd);
2563                 reset_regdomains(false, rd);
2564                 return 0;
2565         }
2566 
2567         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2568         if (!intersected_rd)
2569                 return -EINVAL;
2570 
2571         /*
2572          * We can trash what CRDA provided now.
2573          * However if a driver requested this specific regulatory
2574          * domain we keep it for its private use
2575          */
2576         tmp = get_wiphy_regdom(request_wiphy);
2577         rcu_assign_pointer(request_wiphy->regd, rd);
2578         rcu_free_regdom(tmp);
2579 
2580         rd = NULL;
2581 
2582         reset_regdomains(false, intersected_rd);
2583 
2584         return 0;
2585 }
2586 
2587 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2588                                  struct regulatory_request *country_ie_request)
2589 {
2590         struct wiphy *request_wiphy;
2591 
2592         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2593             !is_unknown_alpha2(rd->alpha2))
2594                 return -EINVAL;
2595 
2596         /*
2597          * Lets only bother proceeding on the same alpha2 if the current
2598          * rd is non static (it means CRDA was present and was used last)
2599          * and the pending request came in from a country IE
2600          */
2601 
2602         if (!is_valid_rd(rd)) {
2603                 pr_err("Invalid regulatory domain detected:\n");
2604                 print_regdomain_info(rd);
2605                 return -EINVAL;
2606         }
2607 
2608         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2609         if (!request_wiphy) {
2610                 queue_delayed_work(system_power_efficient_wq,
2611                                    &reg_timeout, 0);
2612                 return -ENODEV;
2613         }
2614 
2615         if (country_ie_request->intersect)
2616                 return -EINVAL;
2617 
2618         reset_regdomains(false, rd);
2619         return 0;
2620 }
2621 
2622 /*
2623  * Use this call to set the current regulatory domain. Conflicts with
2624  * multiple drivers can be ironed out later. Caller must've already
2625  * kmalloc'd the rd structure.
2626  */
2627 int set_regdom(const struct ieee80211_regdomain *rd)
2628 {
2629         struct regulatory_request *lr;
2630         bool user_reset = false;
2631         int r;
2632 
2633         if (!reg_is_valid_request(rd->alpha2)) {
2634                 kfree(rd);
2635                 return -EINVAL;
2636         }
2637 
2638         lr = get_last_request();
2639 
2640         /* Note that this doesn't update the wiphys, this is done below */
2641         switch (lr->initiator) {
2642         case NL80211_REGDOM_SET_BY_CORE:
2643                 r = reg_set_rd_core(rd);
2644                 break;
2645         case NL80211_REGDOM_SET_BY_USER:
2646                 r = reg_set_rd_user(rd, lr);
2647                 user_reset = true;
2648                 break;
2649         case NL80211_REGDOM_SET_BY_DRIVER:
2650                 r = reg_set_rd_driver(rd, lr);
2651                 break;
2652         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2653                 r = reg_set_rd_country_ie(rd, lr);
2654                 break;
2655         default:
2656                 WARN(1, "invalid initiator %d\n", lr->initiator);
2657                 return -EINVAL;
2658         }
2659 
2660         if (r) {
2661                 switch (r) {
2662                 case -EALREADY:
2663                         reg_set_request_processed();
2664                         break;
2665                 default:
2666                         /* Back to world regulatory in case of errors */
2667                         restore_regulatory_settings(user_reset);
2668                 }
2669 
2670                 kfree(rd);
2671                 return r;
2672         }
2673 
2674         /* This would make this whole thing pointless */
2675         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2676                 return -EINVAL;
2677 
2678         /* update all wiphys now with the new established regulatory domain */
2679         update_all_wiphy_regulatory(lr->initiator);
2680 
2681         print_regdomain(get_cfg80211_regdom());
2682 
2683         nl80211_send_reg_change_event(lr);
2684 
2685         reg_set_request_processed();
2686 
2687         return 0;
2688 }
2689 
2690 void wiphy_regulatory_register(struct wiphy *wiphy)
2691 {
2692         struct regulatory_request *lr;
2693 
2694         if (!reg_dev_ignore_cell_hint(wiphy))
2695                 reg_num_devs_support_basehint++;
2696 
2697         lr = get_last_request();
2698         wiphy_update_regulatory(wiphy, lr->initiator);
2699 }
2700 
2701 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2702 {
2703         struct wiphy *request_wiphy = NULL;
2704         struct regulatory_request *lr;
2705 
2706         lr = get_last_request();
2707 
2708         if (!reg_dev_ignore_cell_hint(wiphy))
2709                 reg_num_devs_support_basehint--;
2710 
2711         rcu_free_regdom(get_wiphy_regdom(wiphy));
2712         RCU_INIT_POINTER(wiphy->regd, NULL);
2713 
2714         if (lr)
2715                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2716 
2717         if (!request_wiphy || request_wiphy != wiphy)
2718                 return;
2719 
2720         lr->wiphy_idx = WIPHY_IDX_INVALID;
2721         lr->country_ie_env = ENVIRON_ANY;
2722 }
2723 
2724 static void reg_timeout_work(struct work_struct *work)
2725 {
2726         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2727         rtnl_lock();
2728         restore_regulatory_settings(true);
2729         rtnl_unlock();
2730 }
2731 
2732 /*
2733  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2734  * UNII band definitions
2735  */
2736 int cfg80211_get_unii(int freq)
2737 {
2738         /* UNII-1 */
2739         if (freq >= 5150 && freq <= 5250)
2740                 return 0;
2741 
2742         /* UNII-2A */
2743         if (freq > 5250 && freq <= 5350)
2744                 return 1;
2745 
2746         /* UNII-2B */
2747         if (freq > 5350 && freq <= 5470)
2748                 return 2;
2749 
2750         /* UNII-2C */
2751         if (freq > 5470 && freq <= 5725)
2752                 return 3;
2753 
2754         /* UNII-3 */
2755         if (freq > 5725 && freq <= 5825)
2756                 return 4;
2757 
2758         return -EINVAL;
2759 }
2760 
2761 bool regulatory_indoor_allowed(void)
2762 {
2763         return reg_is_indoor;
2764 }
2765 
2766 int __init regulatory_init(void)
2767 {
2768         int err = 0;
2769 
2770         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2771         if (IS_ERR(reg_pdev))
2772                 return PTR_ERR(reg_pdev);
2773 
2774         spin_lock_init(&reg_requests_lock);
2775         spin_lock_init(&reg_pending_beacons_lock);
2776 
2777         reg_regdb_size_check();
2778 
2779         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2780 
2781         user_alpha2[0] = '9';
2782         user_alpha2[1] = '7';
2783 
2784         /* We always try to get an update for the static regdomain */
2785         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2786         if (err) {
2787                 if (err == -ENOMEM)
2788                         return err;
2789                 /*
2790                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2791                  * memory which is handled and propagated appropriately above
2792                  * but it can also fail during a netlink_broadcast() or during
2793                  * early boot for call_usermodehelper(). For now treat these
2794                  * errors as non-fatal.
2795                  */
2796                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2797         }
2798 
2799         /*
2800          * Finally, if the user set the module parameter treat it
2801          * as a user hint.
2802          */
2803         if (!is_world_regdom(ieee80211_regdom))
2804                 regulatory_hint_user(ieee80211_regdom,
2805                                      NL80211_USER_REG_HINT_USER);
2806 
2807         return 0;
2808 }
2809 
2810 void regulatory_exit(void)
2811 {
2812         struct regulatory_request *reg_request, *tmp;
2813         struct reg_beacon *reg_beacon, *btmp;
2814 
2815         cancel_work_sync(&reg_work);
2816         cancel_delayed_work_sync(&reg_timeout);
2817 
2818         /* Lock to suppress warnings */
2819         rtnl_lock();
2820         reset_regdomains(true, NULL);
2821         rtnl_unlock();
2822 
2823         dev_set_uevent_suppress(&reg_pdev->dev, true);
2824 
2825         platform_device_unregister(reg_pdev);
2826 
2827         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2828                 list_del(&reg_beacon->list);
2829                 kfree(reg_beacon);
2830         }
2831 
2832         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2833                 list_del(&reg_beacon->list);
2834                 kfree(reg_beacon);
2835         }
2836 
2837         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2838                 list_del(&reg_request->list);
2839                 kfree(reg_request);
2840         }
2841 }
2842 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp