~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/wireless/reg.c

Version: ~ [ linux-5.3-rc5 ] ~ [ linux-5.2.9 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.67 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.139 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.189 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.189 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.72 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright 2002-2005, Instant802 Networks, Inc.
  3  * Copyright 2005-2006, Devicescape Software, Inc.
  4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
  6  * Copyright 2013-2014  Intel Mobile Communications GmbH
  7  *
  8  * Permission to use, copy, modify, and/or distribute this software for any
  9  * purpose with or without fee is hereby granted, provided that the above
 10  * copyright notice and this permission notice appear in all copies.
 11  *
 12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 19  */
 20 
 21 
 22 /**
 23  * DOC: Wireless regulatory infrastructure
 24  *
 25  * The usual implementation is for a driver to read a device EEPROM to
 26  * determine which regulatory domain it should be operating under, then
 27  * looking up the allowable channels in a driver-local table and finally
 28  * registering those channels in the wiphy structure.
 29  *
 30  * Another set of compliance enforcement is for drivers to use their
 31  * own compliance limits which can be stored on the EEPROM. The host
 32  * driver or firmware may ensure these are used.
 33  *
 34  * In addition to all this we provide an extra layer of regulatory
 35  * conformance. For drivers which do not have any regulatory
 36  * information CRDA provides the complete regulatory solution.
 37  * For others it provides a community effort on further restrictions
 38  * to enhance compliance.
 39  *
 40  * Note: When number of rules --> infinity we will not be able to
 41  * index on alpha2 any more, instead we'll probably have to
 42  * rely on some SHA1 checksum of the regdomain for example.
 43  *
 44  */
 45 
 46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 47 
 48 #include <linux/kernel.h>
 49 #include <linux/export.h>
 50 #include <linux/slab.h>
 51 #include <linux/list.h>
 52 #include <linux/ctype.h>
 53 #include <linux/nl80211.h>
 54 #include <linux/platform_device.h>
 55 #include <linux/moduleparam.h>
 56 #include <net/cfg80211.h>
 57 #include "core.h"
 58 #include "reg.h"
 59 #include "rdev-ops.h"
 60 #include "regdb.h"
 61 #include "nl80211.h"
 62 
 63 /*
 64  * Grace period we give before making sure all current interfaces reside on
 65  * channels allowed by the current regulatory domain.
 66  */
 67 #define REG_ENFORCE_GRACE_MS 60000
 68 
 69 /**
 70  * enum reg_request_treatment - regulatory request treatment
 71  *
 72  * @REG_REQ_OK: continue processing the regulatory request
 73  * @REG_REQ_IGNORE: ignore the regulatory request
 74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
 75  *      be intersected with the current one.
 76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
 77  *      regulatory settings, and no further processing is required.
 78  */
 79 enum reg_request_treatment {
 80         REG_REQ_OK,
 81         REG_REQ_IGNORE,
 82         REG_REQ_INTERSECT,
 83         REG_REQ_ALREADY_SET,
 84 };
 85 
 86 static struct regulatory_request core_request_world = {
 87         .initiator = NL80211_REGDOM_SET_BY_CORE,
 88         .alpha2[0] = '',
 89         .alpha2[1] = '',
 90         .intersect = false,
 91         .processed = true,
 92         .country_ie_env = ENVIRON_ANY,
 93 };
 94 
 95 /*
 96  * Receipt of information from last regulatory request,
 97  * protected by RTNL (and can be accessed with RCU protection)
 98  */
 99 static struct regulatory_request __rcu *last_request =
100         (void __force __rcu *)&core_request_world;
101 
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104 
105 /*
106  * Central wireless core regulatory domains, we only need two,
107  * the current one and a world regulatory domain in case we have no
108  * information to give us an alpha2.
109  * (protected by RTNL, can be read under RCU)
110  */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112 
113 /*
114  * Number of devices that registered to the core
115  * that support cellular base station regulatory hints
116  * (protected by RTNL)
117  */
118 static int reg_num_devs_support_basehint;
119 
120 /*
121  * State variable indicating if the platform on which the devices
122  * are attached is operating in an indoor environment. The state variable
123  * is relevant for all registered devices.
124  */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127 
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130 
131 static void restore_regulatory_settings(bool reset_user);
132 
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135         return rtnl_dereference(cfg80211_regdomain);
136 }
137 
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140         return rtnl_dereference(wiphy->regd);
141 }
142 
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145         switch (dfs_region) {
146         case NL80211_DFS_UNSET:
147                 return "unset";
148         case NL80211_DFS_FCC:
149                 return "FCC";
150         case NL80211_DFS_ETSI:
151                 return "ETSI";
152         case NL80211_DFS_JP:
153                 return "JP";
154         }
155         return "Unknown";
156 }
157 
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160         const struct ieee80211_regdomain *regd = NULL;
161         const struct ieee80211_regdomain *wiphy_regd = NULL;
162 
163         regd = get_cfg80211_regdom();
164         if (!wiphy)
165                 goto out;
166 
167         wiphy_regd = get_wiphy_regdom(wiphy);
168         if (!wiphy_regd)
169                 goto out;
170 
171         if (wiphy_regd->dfs_region == regd->dfs_region)
172                 goto out;
173 
174         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175                  dev_name(&wiphy->dev),
176                  reg_dfs_region_str(wiphy_regd->dfs_region),
177                  reg_dfs_region_str(regd->dfs_region));
178 
179 out:
180         return regd->dfs_region;
181 }
182 
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185         if (!r)
186                 return;
187         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189 
190 static struct regulatory_request *get_last_request(void)
191 {
192         return rcu_dereference_rtnl(last_request);
193 }
194 
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198 
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202 
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205 
206 struct reg_beacon {
207         struct list_head list;
208         struct ieee80211_channel chan;
209 };
210 
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213 
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216 
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219         .n_reg_rules = 8,
220         .alpha2 =  "00",
221         .reg_rules = {
222                 /* IEEE 802.11b/g, channels 1..11 */
223                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224                 /* IEEE 802.11b/g, channels 12..13. */
225                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227                 /* IEEE 802.11 channel 14 - Only JP enables
228                  * this and for 802.11b only */
229                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR |
231                         NL80211_RRF_NO_OFDM),
232                 /* IEEE 802.11a, channel 36..48 */
233                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_AUTO_BW),
236 
237                 /* IEEE 802.11a, channel 52..64 - DFS required */
238                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_AUTO_BW |
241                         NL80211_RRF_DFS),
242 
243                 /* IEEE 802.11a, channel 100..144 - DFS required */
244                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_DFS),
247 
248                 /* IEEE 802.11a, channel 149..165 */
249                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR),
251 
252                 /* IEEE 802.11ad (60GHz), channels 1..3 */
253                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254         }
255 };
256 
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259         &world_regdom;
260 
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263 
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266 
267 static void reg_free_request(struct regulatory_request *request)
268 {
269         if (request == &core_request_world)
270                 return;
271 
272         if (request != get_last_request())
273                 kfree(request);
274 }
275 
276 static void reg_free_last_request(void)
277 {
278         struct regulatory_request *lr = get_last_request();
279 
280         if (lr != &core_request_world && lr)
281                 kfree_rcu(lr, rcu_head);
282 }
283 
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286         struct regulatory_request *lr;
287 
288         lr = get_last_request();
289         if (lr == request)
290                 return;
291 
292         reg_free_last_request();
293         rcu_assign_pointer(last_request, request);
294 }
295 
296 static void reset_regdomains(bool full_reset,
297                              const struct ieee80211_regdomain *new_regdom)
298 {
299         const struct ieee80211_regdomain *r;
300 
301         ASSERT_RTNL();
302 
303         r = get_cfg80211_regdom();
304 
305         /* avoid freeing static information or freeing something twice */
306         if (r == cfg80211_world_regdom)
307                 r = NULL;
308         if (cfg80211_world_regdom == &world_regdom)
309                 cfg80211_world_regdom = NULL;
310         if (r == &world_regdom)
311                 r = NULL;
312 
313         rcu_free_regdom(r);
314         rcu_free_regdom(cfg80211_world_regdom);
315 
316         cfg80211_world_regdom = &world_regdom;
317         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318 
319         if (!full_reset)
320                 return;
321 
322         reg_update_last_request(&core_request_world);
323 }
324 
325 /*
326  * Dynamic world regulatory domain requested by the wireless
327  * core upon initialization
328  */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331         struct regulatory_request *lr;
332 
333         lr = get_last_request();
334 
335         WARN_ON(!lr);
336 
337         reset_regdomains(false, rd);
338 
339         cfg80211_world_regdom = rd;
340 }
341 
342 bool is_world_regdom(const char *alpha2)
343 {
344         if (!alpha2)
345                 return false;
346         return alpha2[0] == '' && alpha2[1] == '';
347 }
348 
349 static bool is_alpha2_set(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] && alpha2[1];
354 }
355 
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         /*
361          * Special case where regulatory domain was built by driver
362          * but a specific alpha2 cannot be determined
363          */
364         return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366 
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         /*
372          * Special case where regulatory domain is the
373          * result of an intersection between two regulatory domain
374          * structures
375          */
376         return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378 
379 static bool is_an_alpha2(const char *alpha2)
380 {
381         if (!alpha2)
382                 return false;
383         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385 
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388         if (!alpha2_x || !alpha2_y)
389                 return false;
390         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392 
393 static bool regdom_changes(const char *alpha2)
394 {
395         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396 
397         if (!r)
398                 return true;
399         return !alpha2_equal(r->alpha2, alpha2);
400 }
401 
402 /*
403  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405  * has ever been issued.
406  */
407 static bool is_user_regdom_saved(void)
408 {
409         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410                 return false;
411 
412         /* This would indicate a mistake on the design */
413         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414                  "Unexpected user alpha2: %c%c\n",
415                  user_alpha2[0], user_alpha2[1]))
416                 return false;
417 
418         return true;
419 }
420 
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424         struct ieee80211_regdomain *regd;
425         int size_of_regd;
426         unsigned int i;
427 
428         size_of_regd =
429                 sizeof(struct ieee80211_regdomain) +
430                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431 
432         regd = kzalloc(size_of_regd, GFP_KERNEL);
433         if (!regd)
434                 return ERR_PTR(-ENOMEM);
435 
436         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437 
438         for (i = 0; i < src_regd->n_reg_rules; i++)
439                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440                        sizeof(struct ieee80211_reg_rule));
441 
442         return regd;
443 }
444 
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447         struct list_head list;
448         const struct ieee80211_regdomain *regdom;
449 };
450 
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453 
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456         struct reg_regdb_apply_request *request;
457 
458         rtnl_lock();
459 
460         mutex_lock(&reg_regdb_apply_mutex);
461         while (!list_empty(&reg_regdb_apply_list)) {
462                 request = list_first_entry(&reg_regdb_apply_list,
463                                            struct reg_regdb_apply_request,
464                                            list);
465                 list_del(&request->list);
466 
467                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468                 kfree(request);
469         }
470         mutex_unlock(&reg_regdb_apply_mutex);
471 
472         rtnl_unlock();
473 }
474 
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476 
477 static int reg_query_builtin(const char *alpha2)
478 {
479         const struct ieee80211_regdomain *regdom = NULL;
480         struct reg_regdb_apply_request *request;
481         unsigned int i;
482 
483         for (i = 0; i < reg_regdb_size; i++) {
484                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485                         regdom = reg_regdb[i];
486                         break;
487                 }
488         }
489 
490         if (!regdom)
491                 return -ENODATA;
492 
493         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494         if (!request)
495                 return -ENOMEM;
496 
497         request->regdom = reg_copy_regd(regdom);
498         if (IS_ERR_OR_NULL(request->regdom)) {
499                 kfree(request);
500                 return -ENOMEM;
501         }
502 
503         mutex_lock(&reg_regdb_apply_mutex);
504         list_add_tail(&request->list, &reg_regdb_apply_list);
505         mutex_unlock(&reg_regdb_apply_mutex);
506 
507         schedule_work(&reg_regdb_work);
508 
509         return 0;
510 }
511 
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522         return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true);
541         rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568 
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571 
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576 
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586 
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603         /* query internal regulatory database (if it exists) */
604         if (reg_query_builtin(request->alpha2) == 0)
605                 return true;
606 
607         if (call_crda(request->alpha2) == 0)
608                 return true;
609 
610         return false;
611 }
612 
613 bool reg_is_valid_request(const char *alpha2)
614 {
615         struct regulatory_request *lr = get_last_request();
616 
617         if (!lr || lr->processed)
618                 return false;
619 
620         return alpha2_equal(lr->alpha2, alpha2);
621 }
622 
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625         struct regulatory_request *lr = get_last_request();
626 
627         /*
628          * Follow the driver's regulatory domain, if present, unless a country
629          * IE has been processed or a user wants to help complaince further
630          */
631         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633             wiphy->regd)
634                 return get_wiphy_regdom(wiphy);
635 
636         return get_cfg80211_regdom();
637 }
638 
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641                                  const struct ieee80211_reg_rule *rule)
642 {
643         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644         const struct ieee80211_freq_range *freq_range_tmp;
645         const struct ieee80211_reg_rule *tmp;
646         u32 start_freq, end_freq, idx, no;
647 
648         for (idx = 0; idx < rd->n_reg_rules; idx++)
649                 if (rule == &rd->reg_rules[idx])
650                         break;
651 
652         if (idx == rd->n_reg_rules)
653                 return 0;
654 
655         /* get start_freq */
656         no = idx;
657 
658         while (no) {
659                 tmp = &rd->reg_rules[--no];
660                 freq_range_tmp = &tmp->freq_range;
661 
662                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663                         break;
664 
665                 freq_range = freq_range_tmp;
666         }
667 
668         start_freq = freq_range->start_freq_khz;
669 
670         /* get end_freq */
671         freq_range = &rule->freq_range;
672         no = idx;
673 
674         while (no < rd->n_reg_rules - 1) {
675                 tmp = &rd->reg_rules[++no];
676                 freq_range_tmp = &tmp->freq_range;
677 
678                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679                         break;
680 
681                 freq_range = freq_range_tmp;
682         }
683 
684         end_freq = freq_range->end_freq_khz;
685 
686         return end_freq - start_freq;
687 }
688 
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690                                    const struct ieee80211_reg_rule *rule)
691 {
692         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693 
694         if (rule->flags & NL80211_RRF_NO_160MHZ)
695                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696         if (rule->flags & NL80211_RRF_NO_80MHZ)
697                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698 
699         /*
700          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701          * are not allowed.
702          */
703         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704             rule->flags & NL80211_RRF_NO_HT40PLUS)
705                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706 
707         return bw;
708 }
709 
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714         u32 freq_diff;
715 
716         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717                 return false;
718 
719         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720                 return false;
721 
722         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723 
724         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725             freq_range->max_bandwidth_khz > freq_diff)
726                 return false;
727 
728         return true;
729 }
730 
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733         const struct ieee80211_reg_rule *reg_rule = NULL;
734         unsigned int i;
735 
736         if (!rd->n_reg_rules)
737                 return false;
738 
739         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740                 return false;
741 
742         for (i = 0; i < rd->n_reg_rules; i++) {
743                 reg_rule = &rd->reg_rules[i];
744                 if (!is_valid_reg_rule(reg_rule))
745                         return false;
746         }
747 
748         return true;
749 }
750 
751 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
752                             u32 center_freq_khz, u32 bw_khz)
753 {
754         u32 start_freq_khz, end_freq_khz;
755 
756         start_freq_khz = center_freq_khz - (bw_khz/2);
757         end_freq_khz = center_freq_khz + (bw_khz/2);
758 
759         if (start_freq_khz >= freq_range->start_freq_khz &&
760             end_freq_khz <= freq_range->end_freq_khz)
761                 return true;
762 
763         return false;
764 }
765 
766 /**
767  * freq_in_rule_band - tells us if a frequency is in a frequency band
768  * @freq_range: frequency rule we want to query
769  * @freq_khz: frequency we are inquiring about
770  *
771  * This lets us know if a specific frequency rule is or is not relevant to
772  * a specific frequency's band. Bands are device specific and artificial
773  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
774  * however it is safe for now to assume that a frequency rule should not be
775  * part of a frequency's band if the start freq or end freq are off by more
776  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
777  * 60 GHz band.
778  * This resolution can be lowered and should be considered as we add
779  * regulatory rule support for other "bands".
780  **/
781 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
782                               u32 freq_khz)
783 {
784 #define ONE_GHZ_IN_KHZ  1000000
785         /*
786          * From 802.11ad: directional multi-gigabit (DMG):
787          * Pertaining to operation in a frequency band containing a channel
788          * with the Channel starting frequency above 45 GHz.
789          */
790         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
791                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
792         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
793                 return true;
794         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
795                 return true;
796         return false;
797 #undef ONE_GHZ_IN_KHZ
798 }
799 
800 /*
801  * Later on we can perhaps use the more restrictive DFS
802  * region but we don't have information for that yet so
803  * for now simply disallow conflicts.
804  */
805 static enum nl80211_dfs_regions
806 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
807                          const enum nl80211_dfs_regions dfs_region2)
808 {
809         if (dfs_region1 != dfs_region2)
810                 return NL80211_DFS_UNSET;
811         return dfs_region1;
812 }
813 
814 /*
815  * Helper for regdom_intersect(), this does the real
816  * mathematical intersection fun
817  */
818 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
819                                const struct ieee80211_regdomain *rd2,
820                                const struct ieee80211_reg_rule *rule1,
821                                const struct ieee80211_reg_rule *rule2,
822                                struct ieee80211_reg_rule *intersected_rule)
823 {
824         const struct ieee80211_freq_range *freq_range1, *freq_range2;
825         struct ieee80211_freq_range *freq_range;
826         const struct ieee80211_power_rule *power_rule1, *power_rule2;
827         struct ieee80211_power_rule *power_rule;
828         u32 freq_diff, max_bandwidth1, max_bandwidth2;
829 
830         freq_range1 = &rule1->freq_range;
831         freq_range2 = &rule2->freq_range;
832         freq_range = &intersected_rule->freq_range;
833 
834         power_rule1 = &rule1->power_rule;
835         power_rule2 = &rule2->power_rule;
836         power_rule = &intersected_rule->power_rule;
837 
838         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
839                                          freq_range2->start_freq_khz);
840         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
841                                        freq_range2->end_freq_khz);
842 
843         max_bandwidth1 = freq_range1->max_bandwidth_khz;
844         max_bandwidth2 = freq_range2->max_bandwidth_khz;
845 
846         if (rule1->flags & NL80211_RRF_AUTO_BW)
847                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
848         if (rule2->flags & NL80211_RRF_AUTO_BW)
849                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
850 
851         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
852 
853         intersected_rule->flags = rule1->flags | rule2->flags;
854 
855         /*
856          * In case NL80211_RRF_AUTO_BW requested for both rules
857          * set AUTO_BW in intersected rule also. Next we will
858          * calculate BW correctly in handle_channel function.
859          * In other case remove AUTO_BW flag while we calculate
860          * maximum bandwidth correctly and auto calculation is
861          * not required.
862          */
863         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
864             (rule2->flags & NL80211_RRF_AUTO_BW))
865                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
866         else
867                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
868 
869         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
870         if (freq_range->max_bandwidth_khz > freq_diff)
871                 freq_range->max_bandwidth_khz = freq_diff;
872 
873         power_rule->max_eirp = min(power_rule1->max_eirp,
874                 power_rule2->max_eirp);
875         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
876                 power_rule2->max_antenna_gain);
877 
878         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
879                                            rule2->dfs_cac_ms);
880 
881         if (!is_valid_reg_rule(intersected_rule))
882                 return -EINVAL;
883 
884         return 0;
885 }
886 
887 /* check whether old rule contains new rule */
888 static bool rule_contains(struct ieee80211_reg_rule *r1,
889                           struct ieee80211_reg_rule *r2)
890 {
891         /* for simplicity, currently consider only same flags */
892         if (r1->flags != r2->flags)
893                 return false;
894 
895         /* verify r1 is more restrictive */
896         if ((r1->power_rule.max_antenna_gain >
897              r2->power_rule.max_antenna_gain) ||
898             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
899                 return false;
900 
901         /* make sure r2's range is contained within r1 */
902         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
903             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
904                 return false;
905 
906         /* and finally verify that r1.max_bw >= r2.max_bw */
907         if (r1->freq_range.max_bandwidth_khz <
908             r2->freq_range.max_bandwidth_khz)
909                 return false;
910 
911         return true;
912 }
913 
914 /* add or extend current rules. do nothing if rule is already contained */
915 static void add_rule(struct ieee80211_reg_rule *rule,
916                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
917 {
918         struct ieee80211_reg_rule *tmp_rule;
919         int i;
920 
921         for (i = 0; i < *n_rules; i++) {
922                 tmp_rule = &reg_rules[i];
923                 /* rule is already contained - do nothing */
924                 if (rule_contains(tmp_rule, rule))
925                         return;
926 
927                 /* extend rule if possible */
928                 if (rule_contains(rule, tmp_rule)) {
929                         memcpy(tmp_rule, rule, sizeof(*rule));
930                         return;
931                 }
932         }
933 
934         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
935         (*n_rules)++;
936 }
937 
938 /**
939  * regdom_intersect - do the intersection between two regulatory domains
940  * @rd1: first regulatory domain
941  * @rd2: second regulatory domain
942  *
943  * Use this function to get the intersection between two regulatory domains.
944  * Once completed we will mark the alpha2 for the rd as intersected, "98",
945  * as no one single alpha2 can represent this regulatory domain.
946  *
947  * Returns a pointer to the regulatory domain structure which will hold the
948  * resulting intersection of rules between rd1 and rd2. We will
949  * kzalloc() this structure for you.
950  */
951 static struct ieee80211_regdomain *
952 regdom_intersect(const struct ieee80211_regdomain *rd1,
953                  const struct ieee80211_regdomain *rd2)
954 {
955         int r, size_of_regd;
956         unsigned int x, y;
957         unsigned int num_rules = 0;
958         const struct ieee80211_reg_rule *rule1, *rule2;
959         struct ieee80211_reg_rule intersected_rule;
960         struct ieee80211_regdomain *rd;
961 
962         if (!rd1 || !rd2)
963                 return NULL;
964 
965         /*
966          * First we get a count of the rules we'll need, then we actually
967          * build them. This is to so we can malloc() and free() a
968          * regdomain once. The reason we use reg_rules_intersect() here
969          * is it will return -EINVAL if the rule computed makes no sense.
970          * All rules that do check out OK are valid.
971          */
972 
973         for (x = 0; x < rd1->n_reg_rules; x++) {
974                 rule1 = &rd1->reg_rules[x];
975                 for (y = 0; y < rd2->n_reg_rules; y++) {
976                         rule2 = &rd2->reg_rules[y];
977                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
978                                                  &intersected_rule))
979                                 num_rules++;
980                 }
981         }
982 
983         if (!num_rules)
984                 return NULL;
985 
986         size_of_regd = sizeof(struct ieee80211_regdomain) +
987                        num_rules * sizeof(struct ieee80211_reg_rule);
988 
989         rd = kzalloc(size_of_regd, GFP_KERNEL);
990         if (!rd)
991                 return NULL;
992 
993         for (x = 0; x < rd1->n_reg_rules; x++) {
994                 rule1 = &rd1->reg_rules[x];
995                 for (y = 0; y < rd2->n_reg_rules; y++) {
996                         rule2 = &rd2->reg_rules[y];
997                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
998                                                 &intersected_rule);
999                         /*
1000                          * No need to memset here the intersected rule here as
1001                          * we're not using the stack anymore
1002                          */
1003                         if (r)
1004                                 continue;
1005 
1006                         add_rule(&intersected_rule, rd->reg_rules,
1007                                  &rd->n_reg_rules);
1008                 }
1009         }
1010 
1011         rd->alpha2[0] = '9';
1012         rd->alpha2[1] = '8';
1013         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1014                                                   rd2->dfs_region);
1015 
1016         return rd;
1017 }
1018 
1019 /*
1020  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021  * want to just have the channel structure use these
1022  */
1023 static u32 map_regdom_flags(u32 rd_flags)
1024 {
1025         u32 channel_flags = 0;
1026         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1027                 channel_flags |= IEEE80211_CHAN_NO_IR;
1028         if (rd_flags & NL80211_RRF_DFS)
1029                 channel_flags |= IEEE80211_CHAN_RADAR;
1030         if (rd_flags & NL80211_RRF_NO_OFDM)
1031                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1032         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1033                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1034         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1035                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1036         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1037                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1038         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1039                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1040         if (rd_flags & NL80211_RRF_NO_80MHZ)
1041                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1042         if (rd_flags & NL80211_RRF_NO_160MHZ)
1043                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1044         return channel_flags;
1045 }
1046 
1047 static const struct ieee80211_reg_rule *
1048 freq_reg_info_regd(u32 center_freq,
1049                    const struct ieee80211_regdomain *regd, u32 bw)
1050 {
1051         int i;
1052         bool band_rule_found = false;
1053         bool bw_fits = false;
1054 
1055         if (!regd)
1056                 return ERR_PTR(-EINVAL);
1057 
1058         for (i = 0; i < regd->n_reg_rules; i++) {
1059                 const struct ieee80211_reg_rule *rr;
1060                 const struct ieee80211_freq_range *fr = NULL;
1061 
1062                 rr = &regd->reg_rules[i];
1063                 fr = &rr->freq_range;
1064 
1065                 /*
1066                  * We only need to know if one frequency rule was
1067                  * was in center_freq's band, that's enough, so lets
1068                  * not overwrite it once found
1069                  */
1070                 if (!band_rule_found)
1071                         band_rule_found = freq_in_rule_band(fr, center_freq);
1072 
1073                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1074 
1075                 if (band_rule_found && bw_fits)
1076                         return rr;
1077         }
1078 
1079         if (!band_rule_found)
1080                 return ERR_PTR(-ERANGE);
1081 
1082         return ERR_PTR(-EINVAL);
1083 }
1084 
1085 static const struct ieee80211_reg_rule *
1086 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1087 {
1088         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1089         const struct ieee80211_reg_rule *reg_rule = NULL;
1090         u32 bw;
1091 
1092         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1093                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1094                 if (!IS_ERR(reg_rule))
1095                         return reg_rule;
1096         }
1097 
1098         return reg_rule;
1099 }
1100 
1101 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1102                                                u32 center_freq)
1103 {
1104         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1105 }
1106 EXPORT_SYMBOL(freq_reg_info);
1107 
1108 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1109 {
1110         switch (initiator) {
1111         case NL80211_REGDOM_SET_BY_CORE:
1112                 return "core";
1113         case NL80211_REGDOM_SET_BY_USER:
1114                 return "user";
1115         case NL80211_REGDOM_SET_BY_DRIVER:
1116                 return "driver";
1117         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1118                 return "country IE";
1119         default:
1120                 WARN_ON(1);
1121                 return "bug";
1122         }
1123 }
1124 EXPORT_SYMBOL(reg_initiator_name);
1125 
1126 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1127                                           const struct ieee80211_reg_rule *reg_rule,
1128                                           const struct ieee80211_channel *chan)
1129 {
1130         const struct ieee80211_freq_range *freq_range = NULL;
1131         u32 max_bandwidth_khz, bw_flags = 0;
1132 
1133         freq_range = &reg_rule->freq_range;
1134 
1135         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1136         /* Check if auto calculation requested */
1137         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1138                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1139 
1140         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1141         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1142                              MHZ_TO_KHZ(10)))
1143                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1144         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1145                              MHZ_TO_KHZ(20)))
1146                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1147 
1148         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1149                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1150         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1151                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1152         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1153                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1154         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1155                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1156         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1157                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1158         return bw_flags;
1159 }
1160 
1161 /*
1162  * Note that right now we assume the desired channel bandwidth
1163  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164  * per channel, the primary and the extension channel).
1165  */
1166 static void handle_channel(struct wiphy *wiphy,
1167                            enum nl80211_reg_initiator initiator,
1168                            struct ieee80211_channel *chan)
1169 {
1170         u32 flags, bw_flags = 0;
1171         const struct ieee80211_reg_rule *reg_rule = NULL;
1172         const struct ieee80211_power_rule *power_rule = NULL;
1173         struct wiphy *request_wiphy = NULL;
1174         struct regulatory_request *lr = get_last_request();
1175         const struct ieee80211_regdomain *regd;
1176 
1177         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1178 
1179         flags = chan->orig_flags;
1180 
1181         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1182         if (IS_ERR(reg_rule)) {
1183                 /*
1184                  * We will disable all channels that do not match our
1185                  * received regulatory rule unless the hint is coming
1186                  * from a Country IE and the Country IE had no information
1187                  * about a band. The IEEE 802.11 spec allows for an AP
1188                  * to send only a subset of the regulatory rules allowed,
1189                  * so an AP in the US that only supports 2.4 GHz may only send
1190                  * a country IE with information for the 2.4 GHz band
1191                  * while 5 GHz is still supported.
1192                  */
1193                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1194                     PTR_ERR(reg_rule) == -ERANGE)
1195                         return;
1196 
1197                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1198                     request_wiphy && request_wiphy == wiphy &&
1199                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1200                         pr_debug("Disabling freq %d MHz for good\n",
1201                                  chan->center_freq);
1202                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1203                         chan->flags = chan->orig_flags;
1204                 } else {
1205                         pr_debug("Disabling freq %d MHz\n",
1206                                  chan->center_freq);
1207                         chan->flags |= IEEE80211_CHAN_DISABLED;
1208                 }
1209                 return;
1210         }
1211 
1212         regd = reg_get_regdomain(wiphy);
1213 
1214         power_rule = &reg_rule->power_rule;
1215         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1216 
1217         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1218             request_wiphy && request_wiphy == wiphy &&
1219             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1220                 /*
1221                  * This guarantees the driver's requested regulatory domain
1222                  * will always be used as a base for further regulatory
1223                  * settings
1224                  */
1225                 chan->flags = chan->orig_flags =
1226                         map_regdom_flags(reg_rule->flags) | bw_flags;
1227                 chan->max_antenna_gain = chan->orig_mag =
1228                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1229                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1230                         (int) MBM_TO_DBM(power_rule->max_eirp);
1231 
1232                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1233                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1234                         if (reg_rule->dfs_cac_ms)
1235                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1236                 }
1237 
1238                 return;
1239         }
1240 
1241         chan->dfs_state = NL80211_DFS_USABLE;
1242         chan->dfs_state_entered = jiffies;
1243 
1244         chan->beacon_found = false;
1245         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1246         chan->max_antenna_gain =
1247                 min_t(int, chan->orig_mag,
1248                       MBI_TO_DBI(power_rule->max_antenna_gain));
1249         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1250 
1251         if (chan->flags & IEEE80211_CHAN_RADAR) {
1252                 if (reg_rule->dfs_cac_ms)
1253                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1254                 else
1255                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1256         }
1257 
1258         if (chan->orig_mpwr) {
1259                 /*
1260                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261                  * will always follow the passed country IE power settings.
1262                  */
1263                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1264                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1265                         chan->max_power = chan->max_reg_power;
1266                 else
1267                         chan->max_power = min(chan->orig_mpwr,
1268                                               chan->max_reg_power);
1269         } else
1270                 chan->max_power = chan->max_reg_power;
1271 }
1272 
1273 static void handle_band(struct wiphy *wiphy,
1274                         enum nl80211_reg_initiator initiator,
1275                         struct ieee80211_supported_band *sband)
1276 {
1277         unsigned int i;
1278 
1279         if (!sband)
1280                 return;
1281 
1282         for (i = 0; i < sband->n_channels; i++)
1283                 handle_channel(wiphy, initiator, &sband->channels[i]);
1284 }
1285 
1286 static bool reg_request_cell_base(struct regulatory_request *request)
1287 {
1288         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1289                 return false;
1290         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1291 }
1292 
1293 bool reg_last_request_cell_base(void)
1294 {
1295         return reg_request_cell_base(get_last_request());
1296 }
1297 
1298 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299 /* Core specific check */
1300 static enum reg_request_treatment
1301 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1302 {
1303         struct regulatory_request *lr = get_last_request();
1304 
1305         if (!reg_num_devs_support_basehint)
1306                 return REG_REQ_IGNORE;
1307 
1308         if (reg_request_cell_base(lr) &&
1309             !regdom_changes(pending_request->alpha2))
1310                 return REG_REQ_ALREADY_SET;
1311 
1312         return REG_REQ_OK;
1313 }
1314 
1315 /* Device specific check */
1316 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317 {
1318         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1319 }
1320 #else
1321 static enum reg_request_treatment
1322 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1323 {
1324         return REG_REQ_IGNORE;
1325 }
1326 
1327 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1328 {
1329         return true;
1330 }
1331 #endif
1332 
1333 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1334 {
1335         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1336             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1337                 return true;
1338         return false;
1339 }
1340 
1341 static bool ignore_reg_update(struct wiphy *wiphy,
1342                               enum nl80211_reg_initiator initiator)
1343 {
1344         struct regulatory_request *lr = get_last_request();
1345 
1346         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1347                 return true;
1348 
1349         if (!lr) {
1350                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351                          reg_initiator_name(initiator));
1352                 return true;
1353         }
1354 
1355         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1356             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1357                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358                          reg_initiator_name(initiator));
1359                 return true;
1360         }
1361 
1362         /*
1363          * wiphy->regd will be set once the device has its own
1364          * desired regulatory domain set
1365          */
1366         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1367             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1368             !is_world_regdom(lr->alpha2)) {
1369                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370                          reg_initiator_name(initiator));
1371                 return true;
1372         }
1373 
1374         if (reg_request_cell_base(lr))
1375                 return reg_dev_ignore_cell_hint(wiphy);
1376 
1377         return false;
1378 }
1379 
1380 static bool reg_is_world_roaming(struct wiphy *wiphy)
1381 {
1382         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1383         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1384         struct regulatory_request *lr = get_last_request();
1385 
1386         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1387                 return true;
1388 
1389         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1390             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1391                 return true;
1392 
1393         return false;
1394 }
1395 
1396 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1397                               struct reg_beacon *reg_beacon)
1398 {
1399         struct ieee80211_supported_band *sband;
1400         struct ieee80211_channel *chan;
1401         bool channel_changed = false;
1402         struct ieee80211_channel chan_before;
1403 
1404         sband = wiphy->bands[reg_beacon->chan.band];
1405         chan = &sband->channels[chan_idx];
1406 
1407         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1408                 return;
1409 
1410         if (chan->beacon_found)
1411                 return;
1412 
1413         chan->beacon_found = true;
1414 
1415         if (!reg_is_world_roaming(wiphy))
1416                 return;
1417 
1418         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1419                 return;
1420 
1421         chan_before.center_freq = chan->center_freq;
1422         chan_before.flags = chan->flags;
1423 
1424         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1425                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1426                 channel_changed = true;
1427         }
1428 
1429         if (channel_changed)
1430                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431 }
1432 
1433 /*
1434  * Called when a scan on a wiphy finds a beacon on
1435  * new channel
1436  */
1437 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1438                                     struct reg_beacon *reg_beacon)
1439 {
1440         unsigned int i;
1441         struct ieee80211_supported_band *sband;
1442 
1443         if (!wiphy->bands[reg_beacon->chan.band])
1444                 return;
1445 
1446         sband = wiphy->bands[reg_beacon->chan.band];
1447 
1448         for (i = 0; i < sband->n_channels; i++)
1449                 handle_reg_beacon(wiphy, i, reg_beacon);
1450 }
1451 
1452 /*
1453  * Called upon reg changes or a new wiphy is added
1454  */
1455 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1456 {
1457         unsigned int i;
1458         struct ieee80211_supported_band *sband;
1459         struct reg_beacon *reg_beacon;
1460 
1461         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1462                 if (!wiphy->bands[reg_beacon->chan.band])
1463                         continue;
1464                 sband = wiphy->bands[reg_beacon->chan.band];
1465                 for (i = 0; i < sband->n_channels; i++)
1466                         handle_reg_beacon(wiphy, i, reg_beacon);
1467         }
1468 }
1469 
1470 /* Reap the advantages of previously found beacons */
1471 static void reg_process_beacons(struct wiphy *wiphy)
1472 {
1473         /*
1474          * Means we are just firing up cfg80211, so no beacons would
1475          * have been processed yet.
1476          */
1477         if (!last_request)
1478                 return;
1479         wiphy_update_beacon_reg(wiphy);
1480 }
1481 
1482 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483 {
1484         if (!chan)
1485                 return false;
1486         if (chan->flags & IEEE80211_CHAN_DISABLED)
1487                 return false;
1488         /* This would happen when regulatory rules disallow HT40 completely */
1489         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1490                 return false;
1491         return true;
1492 }
1493 
1494 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1495                                          struct ieee80211_channel *channel)
1496 {
1497         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1498         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1499         unsigned int i;
1500 
1501         if (!is_ht40_allowed(channel)) {
1502                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1503                 return;
1504         }
1505 
1506         /*
1507          * We need to ensure the extension channels exist to
1508          * be able to use HT40- or HT40+, this finds them (or not)
1509          */
1510         for (i = 0; i < sband->n_channels; i++) {
1511                 struct ieee80211_channel *c = &sband->channels[i];
1512 
1513                 if (c->center_freq == (channel->center_freq - 20))
1514                         channel_before = c;
1515                 if (c->center_freq == (channel->center_freq + 20))
1516                         channel_after = c;
1517         }
1518 
1519         /*
1520          * Please note that this assumes target bandwidth is 20 MHz,
1521          * if that ever changes we also need to change the below logic
1522          * to include that as well.
1523          */
1524         if (!is_ht40_allowed(channel_before))
1525                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1526         else
1527                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1528 
1529         if (!is_ht40_allowed(channel_after))
1530                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1531         else
1532                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1533 }
1534 
1535 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1536                                       struct ieee80211_supported_band *sband)
1537 {
1538         unsigned int i;
1539 
1540         if (!sband)
1541                 return;
1542 
1543         for (i = 0; i < sband->n_channels; i++)
1544                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1545 }
1546 
1547 static void reg_process_ht_flags(struct wiphy *wiphy)
1548 {
1549         enum nl80211_band band;
1550 
1551         if (!wiphy)
1552                 return;
1553 
1554         for (band = 0; band < NUM_NL80211_BANDS; band++)
1555                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1556 }
1557 
1558 static void reg_call_notifier(struct wiphy *wiphy,
1559                               struct regulatory_request *request)
1560 {
1561         if (wiphy->reg_notifier)
1562                 wiphy->reg_notifier(wiphy, request);
1563 }
1564 
1565 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1566 {
1567         struct cfg80211_chan_def chandef;
1568         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1569         enum nl80211_iftype iftype;
1570 
1571         wdev_lock(wdev);
1572         iftype = wdev->iftype;
1573 
1574         /* make sure the interface is active */
1575         if (!wdev->netdev || !netif_running(wdev->netdev))
1576                 goto wdev_inactive_unlock;
1577 
1578         switch (iftype) {
1579         case NL80211_IFTYPE_AP:
1580         case NL80211_IFTYPE_P2P_GO:
1581                 if (!wdev->beacon_interval)
1582                         goto wdev_inactive_unlock;
1583                 chandef = wdev->chandef;
1584                 break;
1585         case NL80211_IFTYPE_ADHOC:
1586                 if (!wdev->ssid_len)
1587                         goto wdev_inactive_unlock;
1588                 chandef = wdev->chandef;
1589                 break;
1590         case NL80211_IFTYPE_STATION:
1591         case NL80211_IFTYPE_P2P_CLIENT:
1592                 if (!wdev->current_bss ||
1593                     !wdev->current_bss->pub.channel)
1594                         goto wdev_inactive_unlock;
1595 
1596                 if (!rdev->ops->get_channel ||
1597                     rdev_get_channel(rdev, wdev, &chandef))
1598                         cfg80211_chandef_create(&chandef,
1599                                                 wdev->current_bss->pub.channel,
1600                                                 NL80211_CHAN_NO_HT);
1601                 break;
1602         case NL80211_IFTYPE_MONITOR:
1603         case NL80211_IFTYPE_AP_VLAN:
1604         case NL80211_IFTYPE_P2P_DEVICE:
1605                 /* no enforcement required */
1606                 break;
1607         default:
1608                 /* others not implemented for now */
1609                 WARN_ON(1);
1610                 break;
1611         }
1612 
1613         wdev_unlock(wdev);
1614 
1615         switch (iftype) {
1616         case NL80211_IFTYPE_AP:
1617         case NL80211_IFTYPE_P2P_GO:
1618         case NL80211_IFTYPE_ADHOC:
1619                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1620         case NL80211_IFTYPE_STATION:
1621         case NL80211_IFTYPE_P2P_CLIENT:
1622                 return cfg80211_chandef_usable(wiphy, &chandef,
1623                                                IEEE80211_CHAN_DISABLED);
1624         default:
1625                 break;
1626         }
1627 
1628         return true;
1629 
1630 wdev_inactive_unlock:
1631         wdev_unlock(wdev);
1632         return true;
1633 }
1634 
1635 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1636 {
1637         struct wireless_dev *wdev;
1638         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639 
1640         ASSERT_RTNL();
1641 
1642         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1643                 if (!reg_wdev_chan_valid(wiphy, wdev))
1644                         cfg80211_leave(rdev, wdev);
1645 }
1646 
1647 static void reg_check_chans_work(struct work_struct *work)
1648 {
1649         struct cfg80211_registered_device *rdev;
1650 
1651         pr_debug("Verifying active interfaces after reg change\n");
1652         rtnl_lock();
1653 
1654         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1655                 if (!(rdev->wiphy.regulatory_flags &
1656                       REGULATORY_IGNORE_STALE_KICKOFF))
1657                         reg_leave_invalid_chans(&rdev->wiphy);
1658 
1659         rtnl_unlock();
1660 }
1661 
1662 static void reg_check_channels(void)
1663 {
1664         /*
1665          * Give usermode a chance to do something nicer (move to another
1666          * channel, orderly disconnection), before forcing a disconnection.
1667          */
1668         mod_delayed_work(system_power_efficient_wq,
1669                          &reg_check_chans,
1670                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1671 }
1672 
1673 static void wiphy_update_regulatory(struct wiphy *wiphy,
1674                                     enum nl80211_reg_initiator initiator)
1675 {
1676         enum nl80211_band band;
1677         struct regulatory_request *lr = get_last_request();
1678 
1679         if (ignore_reg_update(wiphy, initiator)) {
1680                 /*
1681                  * Regulatory updates set by CORE are ignored for custom
1682                  * regulatory cards. Let us notify the changes to the driver,
1683                  * as some drivers used this to restore its orig_* reg domain.
1684                  */
1685                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1686                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1687                         reg_call_notifier(wiphy, lr);
1688                 return;
1689         }
1690 
1691         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1692 
1693         for (band = 0; band < NUM_NL80211_BANDS; band++)
1694                 handle_band(wiphy, initiator, wiphy->bands[band]);
1695 
1696         reg_process_beacons(wiphy);
1697         reg_process_ht_flags(wiphy);
1698         reg_call_notifier(wiphy, lr);
1699 }
1700 
1701 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1702 {
1703         struct cfg80211_registered_device *rdev;
1704         struct wiphy *wiphy;
1705 
1706         ASSERT_RTNL();
1707 
1708         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1709                 wiphy = &rdev->wiphy;
1710                 wiphy_update_regulatory(wiphy, initiator);
1711         }
1712 
1713         reg_check_channels();
1714 }
1715 
1716 static void handle_channel_custom(struct wiphy *wiphy,
1717                                   struct ieee80211_channel *chan,
1718                                   const struct ieee80211_regdomain *regd)
1719 {
1720         u32 bw_flags = 0;
1721         const struct ieee80211_reg_rule *reg_rule = NULL;
1722         const struct ieee80211_power_rule *power_rule = NULL;
1723         u32 bw;
1724 
1725         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1726                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1727                                               regd, bw);
1728                 if (!IS_ERR(reg_rule))
1729                         break;
1730         }
1731 
1732         if (IS_ERR(reg_rule)) {
1733                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734                          chan->center_freq);
1735                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736                         chan->flags |= IEEE80211_CHAN_DISABLED;
1737                 } else {
1738                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739                         chan->flags = chan->orig_flags;
1740                 }
1741                 return;
1742         }
1743 
1744         power_rule = &reg_rule->power_rule;
1745         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746 
1747         chan->dfs_state_entered = jiffies;
1748         chan->dfs_state = NL80211_DFS_USABLE;
1749 
1750         chan->beacon_found = false;
1751 
1752         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1753                 chan->flags = chan->orig_flags | bw_flags |
1754                               map_regdom_flags(reg_rule->flags);
1755         else
1756                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1757 
1758         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759         chan->max_reg_power = chan->max_power =
1760                 (int) MBM_TO_DBM(power_rule->max_eirp);
1761 
1762         if (chan->flags & IEEE80211_CHAN_RADAR) {
1763                 if (reg_rule->dfs_cac_ms)
1764                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1765                 else
1766                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767         }
1768 
1769         chan->max_power = chan->max_reg_power;
1770 }
1771 
1772 static void handle_band_custom(struct wiphy *wiphy,
1773                                struct ieee80211_supported_band *sband,
1774                                const struct ieee80211_regdomain *regd)
1775 {
1776         unsigned int i;
1777 
1778         if (!sband)
1779                 return;
1780 
1781         for (i = 0; i < sband->n_channels; i++)
1782                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1783 }
1784 
1785 /* Used by drivers prior to wiphy registration */
1786 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1787                                    const struct ieee80211_regdomain *regd)
1788 {
1789         enum nl80211_band band;
1790         unsigned int bands_set = 0;
1791 
1792         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1793              "wiphy should have REGULATORY_CUSTOM_REG\n");
1794         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1795 
1796         for (band = 0; band < NUM_NL80211_BANDS; band++) {
1797                 if (!wiphy->bands[band])
1798                         continue;
1799                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1800                 bands_set++;
1801         }
1802 
1803         /*
1804          * no point in calling this if it won't have any effect
1805          * on your device's supported bands.
1806          */
1807         WARN_ON(!bands_set);
1808 }
1809 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1810 
1811 static void reg_set_request_processed(void)
1812 {
1813         bool need_more_processing = false;
1814         struct regulatory_request *lr = get_last_request();
1815 
1816         lr->processed = true;
1817 
1818         spin_lock(&reg_requests_lock);
1819         if (!list_empty(&reg_requests_list))
1820                 need_more_processing = true;
1821         spin_unlock(&reg_requests_lock);
1822 
1823         cancel_crda_timeout();
1824 
1825         if (need_more_processing)
1826                 schedule_work(&reg_work);
1827 }
1828 
1829 /**
1830  * reg_process_hint_core - process core regulatory requests
1831  * @pending_request: a pending core regulatory request
1832  *
1833  * The wireless subsystem can use this function to process
1834  * a regulatory request issued by the regulatory core.
1835  */
1836 static enum reg_request_treatment
1837 reg_process_hint_core(struct regulatory_request *core_request)
1838 {
1839         if (reg_query_database(core_request)) {
1840                 core_request->intersect = false;
1841                 core_request->processed = false;
1842                 reg_update_last_request(core_request);
1843                 return REG_REQ_OK;
1844         }
1845 
1846         return REG_REQ_IGNORE;
1847 }
1848 
1849 static enum reg_request_treatment
1850 __reg_process_hint_user(struct regulatory_request *user_request)
1851 {
1852         struct regulatory_request *lr = get_last_request();
1853 
1854         if (reg_request_cell_base(user_request))
1855                 return reg_ignore_cell_hint(user_request);
1856 
1857         if (reg_request_cell_base(lr))
1858                 return REG_REQ_IGNORE;
1859 
1860         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1861                 return REG_REQ_INTERSECT;
1862         /*
1863          * If the user knows better the user should set the regdom
1864          * to their country before the IE is picked up
1865          */
1866         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1867             lr->intersect)
1868                 return REG_REQ_IGNORE;
1869         /*
1870          * Process user requests only after previous user/driver/core
1871          * requests have been processed
1872          */
1873         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1874              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1875              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1876             regdom_changes(lr->alpha2))
1877                 return REG_REQ_IGNORE;
1878 
1879         if (!regdom_changes(user_request->alpha2))
1880                 return REG_REQ_ALREADY_SET;
1881 
1882         return REG_REQ_OK;
1883 }
1884 
1885 /**
1886  * reg_process_hint_user - process user regulatory requests
1887  * @user_request: a pending user regulatory request
1888  *
1889  * The wireless subsystem can use this function to process
1890  * a regulatory request initiated by userspace.
1891  */
1892 static enum reg_request_treatment
1893 reg_process_hint_user(struct regulatory_request *user_request)
1894 {
1895         enum reg_request_treatment treatment;
1896 
1897         treatment = __reg_process_hint_user(user_request);
1898         if (treatment == REG_REQ_IGNORE ||
1899             treatment == REG_REQ_ALREADY_SET)
1900                 return REG_REQ_IGNORE;
1901 
1902         user_request->intersect = treatment == REG_REQ_INTERSECT;
1903         user_request->processed = false;
1904 
1905         if (reg_query_database(user_request)) {
1906                 reg_update_last_request(user_request);
1907                 user_alpha2[0] = user_request->alpha2[0];
1908                 user_alpha2[1] = user_request->alpha2[1];
1909                 return REG_REQ_OK;
1910         }
1911 
1912         return REG_REQ_IGNORE;
1913 }
1914 
1915 static enum reg_request_treatment
1916 __reg_process_hint_driver(struct regulatory_request *driver_request)
1917 {
1918         struct regulatory_request *lr = get_last_request();
1919 
1920         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1921                 if (regdom_changes(driver_request->alpha2))
1922                         return REG_REQ_OK;
1923                 return REG_REQ_ALREADY_SET;
1924         }
1925 
1926         /*
1927          * This would happen if you unplug and plug your card
1928          * back in or if you add a new device for which the previously
1929          * loaded card also agrees on the regulatory domain.
1930          */
1931         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1932             !regdom_changes(driver_request->alpha2))
1933                 return REG_REQ_ALREADY_SET;
1934 
1935         return REG_REQ_INTERSECT;
1936 }
1937 
1938 /**
1939  * reg_process_hint_driver - process driver regulatory requests
1940  * @driver_request: a pending driver regulatory request
1941  *
1942  * The wireless subsystem can use this function to process
1943  * a regulatory request issued by an 802.11 driver.
1944  *
1945  * Returns one of the different reg request treatment values.
1946  */
1947 static enum reg_request_treatment
1948 reg_process_hint_driver(struct wiphy *wiphy,
1949                         struct regulatory_request *driver_request)
1950 {
1951         const struct ieee80211_regdomain *regd, *tmp;
1952         enum reg_request_treatment treatment;
1953 
1954         treatment = __reg_process_hint_driver(driver_request);
1955 
1956         switch (treatment) {
1957         case REG_REQ_OK:
1958                 break;
1959         case REG_REQ_IGNORE:
1960                 return REG_REQ_IGNORE;
1961         case REG_REQ_INTERSECT:
1962         case REG_REQ_ALREADY_SET:
1963                 regd = reg_copy_regd(get_cfg80211_regdom());
1964                 if (IS_ERR(regd))
1965                         return REG_REQ_IGNORE;
1966 
1967                 tmp = get_wiphy_regdom(wiphy);
1968                 rcu_assign_pointer(wiphy->regd, regd);
1969                 rcu_free_regdom(tmp);
1970         }
1971 
1972 
1973         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1974         driver_request->processed = false;
1975 
1976         /*
1977          * Since CRDA will not be called in this case as we already
1978          * have applied the requested regulatory domain before we just
1979          * inform userspace we have processed the request
1980          */
1981         if (treatment == REG_REQ_ALREADY_SET) {
1982                 nl80211_send_reg_change_event(driver_request);
1983                 reg_update_last_request(driver_request);
1984                 reg_set_request_processed();
1985                 return REG_REQ_ALREADY_SET;
1986         }
1987 
1988         if (reg_query_database(driver_request)) {
1989                 reg_update_last_request(driver_request);
1990                 return REG_REQ_OK;
1991         }
1992 
1993         return REG_REQ_IGNORE;
1994 }
1995 
1996 static enum reg_request_treatment
1997 __reg_process_hint_country_ie(struct wiphy *wiphy,
1998                               struct regulatory_request *country_ie_request)
1999 {
2000         struct wiphy *last_wiphy = NULL;
2001         struct regulatory_request *lr = get_last_request();
2002 
2003         if (reg_request_cell_base(lr)) {
2004                 /* Trust a Cell base station over the AP's country IE */
2005                 if (regdom_changes(country_ie_request->alpha2))
2006                         return REG_REQ_IGNORE;
2007                 return REG_REQ_ALREADY_SET;
2008         } else {
2009                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2010                         return REG_REQ_IGNORE;
2011         }
2012 
2013         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2014                 return -EINVAL;
2015 
2016         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2017                 return REG_REQ_OK;
2018 
2019         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2020 
2021         if (last_wiphy != wiphy) {
2022                 /*
2023                  * Two cards with two APs claiming different
2024                  * Country IE alpha2s. We could
2025                  * intersect them, but that seems unlikely
2026                  * to be correct. Reject second one for now.
2027                  */
2028                 if (regdom_changes(country_ie_request->alpha2))
2029                         return REG_REQ_IGNORE;
2030                 return REG_REQ_ALREADY_SET;
2031         }
2032 
2033         if (regdom_changes(country_ie_request->alpha2))
2034                 return REG_REQ_OK;
2035         return REG_REQ_ALREADY_SET;
2036 }
2037 
2038 /**
2039  * reg_process_hint_country_ie - process regulatory requests from country IEs
2040  * @country_ie_request: a regulatory request from a country IE
2041  *
2042  * The wireless subsystem can use this function to process
2043  * a regulatory request issued by a country Information Element.
2044  *
2045  * Returns one of the different reg request treatment values.
2046  */
2047 static enum reg_request_treatment
2048 reg_process_hint_country_ie(struct wiphy *wiphy,
2049                             struct regulatory_request *country_ie_request)
2050 {
2051         enum reg_request_treatment treatment;
2052 
2053         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2054 
2055         switch (treatment) {
2056         case REG_REQ_OK:
2057                 break;
2058         case REG_REQ_IGNORE:
2059                 return REG_REQ_IGNORE;
2060         case REG_REQ_ALREADY_SET:
2061                 reg_free_request(country_ie_request);
2062                 return REG_REQ_ALREADY_SET;
2063         case REG_REQ_INTERSECT:
2064                 /*
2065                  * This doesn't happen yet, not sure we
2066                  * ever want to support it for this case.
2067                  */
2068                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2069                 return REG_REQ_IGNORE;
2070         }
2071 
2072         country_ie_request->intersect = false;
2073         country_ie_request->processed = false;
2074 
2075         if (reg_query_database(country_ie_request)) {
2076                 reg_update_last_request(country_ie_request);
2077                 return REG_REQ_OK;
2078         }
2079 
2080         return REG_REQ_IGNORE;
2081 }
2082 
2083 /* This processes *all* regulatory hints */
2084 static void reg_process_hint(struct regulatory_request *reg_request)
2085 {
2086         struct wiphy *wiphy = NULL;
2087         enum reg_request_treatment treatment;
2088 
2089         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2090                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2091 
2092         switch (reg_request->initiator) {
2093         case NL80211_REGDOM_SET_BY_CORE:
2094                 treatment = reg_process_hint_core(reg_request);
2095                 break;
2096         case NL80211_REGDOM_SET_BY_USER:
2097                 treatment = reg_process_hint_user(reg_request);
2098                 break;
2099         case NL80211_REGDOM_SET_BY_DRIVER:
2100                 if (!wiphy)
2101                         goto out_free;
2102                 treatment = reg_process_hint_driver(wiphy, reg_request);
2103                 break;
2104         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2105                 if (!wiphy)
2106                         goto out_free;
2107                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2108                 break;
2109         default:
2110                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2111                 goto out_free;
2112         }
2113 
2114         if (treatment == REG_REQ_IGNORE)
2115                 goto out_free;
2116 
2117         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2118              "unexpected treatment value %d\n", treatment);
2119 
2120         /* This is required so that the orig_* parameters are saved.
2121          * NOTE: treatment must be set for any case that reaches here!
2122          */
2123         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2124             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2125                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2126                 reg_check_channels();
2127         }
2128 
2129         return;
2130 
2131 out_free:
2132         reg_free_request(reg_request);
2133 }
2134 
2135 static bool reg_only_self_managed_wiphys(void)
2136 {
2137         struct cfg80211_registered_device *rdev;
2138         struct wiphy *wiphy;
2139         bool self_managed_found = false;
2140 
2141         ASSERT_RTNL();
2142 
2143         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2144                 wiphy = &rdev->wiphy;
2145                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2146                         self_managed_found = true;
2147                 else
2148                         return false;
2149         }
2150 
2151         /* make sure at least one self-managed wiphy exists */
2152         return self_managed_found;
2153 }
2154 
2155 /*
2156  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2157  * Regulatory hints come on a first come first serve basis and we
2158  * must process each one atomically.
2159  */
2160 static void reg_process_pending_hints(void)
2161 {
2162         struct regulatory_request *reg_request, *lr;
2163 
2164         lr = get_last_request();
2165 
2166         /* When last_request->processed becomes true this will be rescheduled */
2167         if (lr && !lr->processed) {
2168                 reg_process_hint(lr);
2169                 return;
2170         }
2171 
2172         spin_lock(&reg_requests_lock);
2173 
2174         if (list_empty(&reg_requests_list)) {
2175                 spin_unlock(&reg_requests_lock);
2176                 return;
2177         }
2178 
2179         reg_request = list_first_entry(&reg_requests_list,
2180                                        struct regulatory_request,
2181                                        list);
2182         list_del_init(&reg_request->list);
2183 
2184         spin_unlock(&reg_requests_lock);
2185 
2186         if (reg_only_self_managed_wiphys()) {
2187                 reg_free_request(reg_request);
2188                 return;
2189         }
2190 
2191         reg_process_hint(reg_request);
2192 
2193         lr = get_last_request();
2194 
2195         spin_lock(&reg_requests_lock);
2196         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2197                 schedule_work(&reg_work);
2198         spin_unlock(&reg_requests_lock);
2199 }
2200 
2201 /* Processes beacon hints -- this has nothing to do with country IEs */
2202 static void reg_process_pending_beacon_hints(void)
2203 {
2204         struct cfg80211_registered_device *rdev;
2205         struct reg_beacon *pending_beacon, *tmp;
2206 
2207         /* This goes through the _pending_ beacon list */
2208         spin_lock_bh(&reg_pending_beacons_lock);
2209 
2210         list_for_each_entry_safe(pending_beacon, tmp,
2211                                  &reg_pending_beacons, list) {
2212                 list_del_init(&pending_beacon->list);
2213 
2214                 /* Applies the beacon hint to current wiphys */
2215                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2216                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2217 
2218                 /* Remembers the beacon hint for new wiphys or reg changes */
2219                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2220         }
2221 
2222         spin_unlock_bh(&reg_pending_beacons_lock);
2223 }
2224 
2225 static void reg_process_self_managed_hints(void)
2226 {
2227         struct cfg80211_registered_device *rdev;
2228         struct wiphy *wiphy;
2229         const struct ieee80211_regdomain *tmp;
2230         const struct ieee80211_regdomain *regd;
2231         enum nl80211_band band;
2232         struct regulatory_request request = {};
2233 
2234         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2235                 wiphy = &rdev->wiphy;
2236 
2237                 spin_lock(&reg_requests_lock);
2238                 regd = rdev->requested_regd;
2239                 rdev->requested_regd = NULL;
2240                 spin_unlock(&reg_requests_lock);
2241 
2242                 if (regd == NULL)
2243                         continue;
2244 
2245                 tmp = get_wiphy_regdom(wiphy);
2246                 rcu_assign_pointer(wiphy->regd, regd);
2247                 rcu_free_regdom(tmp);
2248 
2249                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2250                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2251 
2252                 reg_process_ht_flags(wiphy);
2253 
2254                 request.wiphy_idx = get_wiphy_idx(wiphy);
2255                 request.alpha2[0] = regd->alpha2[0];
2256                 request.alpha2[1] = regd->alpha2[1];
2257                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2258 
2259                 nl80211_send_wiphy_reg_change_event(&request);
2260         }
2261 
2262         reg_check_channels();
2263 }
2264 
2265 static void reg_todo(struct work_struct *work)
2266 {
2267         rtnl_lock();
2268         reg_process_pending_hints();
2269         reg_process_pending_beacon_hints();
2270         reg_process_self_managed_hints();
2271         rtnl_unlock();
2272 }
2273 
2274 static void queue_regulatory_request(struct regulatory_request *request)
2275 {
2276         request->alpha2[0] = toupper(request->alpha2[0]);
2277         request->alpha2[1] = toupper(request->alpha2[1]);
2278 
2279         spin_lock(&reg_requests_lock);
2280         list_add_tail(&request->list, &reg_requests_list);
2281         spin_unlock(&reg_requests_lock);
2282 
2283         schedule_work(&reg_work);
2284 }
2285 
2286 /*
2287  * Core regulatory hint -- happens during cfg80211_init()
2288  * and when we restore regulatory settings.
2289  */
2290 static int regulatory_hint_core(const char *alpha2)
2291 {
2292         struct regulatory_request *request;
2293 
2294         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2295         if (!request)
2296                 return -ENOMEM;
2297 
2298         request->alpha2[0] = alpha2[0];
2299         request->alpha2[1] = alpha2[1];
2300         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2301 
2302         queue_regulatory_request(request);
2303 
2304         return 0;
2305 }
2306 
2307 /* User hints */
2308 int regulatory_hint_user(const char *alpha2,
2309                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2310 {
2311         struct regulatory_request *request;
2312 
2313         if (WARN_ON(!alpha2))
2314                 return -EINVAL;
2315 
2316         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317         if (!request)
2318                 return -ENOMEM;
2319 
2320         request->wiphy_idx = WIPHY_IDX_INVALID;
2321         request->alpha2[0] = alpha2[0];
2322         request->alpha2[1] = alpha2[1];
2323         request->initiator = NL80211_REGDOM_SET_BY_USER;
2324         request->user_reg_hint_type = user_reg_hint_type;
2325 
2326         /* Allow calling CRDA again */
2327         reset_crda_timeouts();
2328 
2329         queue_regulatory_request(request);
2330 
2331         return 0;
2332 }
2333 
2334 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2335 {
2336         spin_lock(&reg_indoor_lock);
2337 
2338         /* It is possible that more than one user space process is trying to
2339          * configure the indoor setting. To handle such cases, clear the indoor
2340          * setting in case that some process does not think that the device
2341          * is operating in an indoor environment. In addition, if a user space
2342          * process indicates that it is controlling the indoor setting, save its
2343          * portid, i.e., make it the owner.
2344          */
2345         reg_is_indoor = is_indoor;
2346         if (reg_is_indoor) {
2347                 if (!reg_is_indoor_portid)
2348                         reg_is_indoor_portid = portid;
2349         } else {
2350                 reg_is_indoor_portid = 0;
2351         }
2352 
2353         spin_unlock(&reg_indoor_lock);
2354 
2355         if (!is_indoor)
2356                 reg_check_channels();
2357 
2358         return 0;
2359 }
2360 
2361 void regulatory_netlink_notify(u32 portid)
2362 {
2363         spin_lock(&reg_indoor_lock);
2364 
2365         if (reg_is_indoor_portid != portid) {
2366                 spin_unlock(&reg_indoor_lock);
2367                 return;
2368         }
2369 
2370         reg_is_indoor = false;
2371         reg_is_indoor_portid = 0;
2372 
2373         spin_unlock(&reg_indoor_lock);
2374 
2375         reg_check_channels();
2376 }
2377 
2378 /* Driver hints */
2379 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2380 {
2381         struct regulatory_request *request;
2382 
2383         if (WARN_ON(!alpha2 || !wiphy))
2384                 return -EINVAL;
2385 
2386         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2387 
2388         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2389         if (!request)
2390                 return -ENOMEM;
2391 
2392         request->wiphy_idx = get_wiphy_idx(wiphy);
2393 
2394         request->alpha2[0] = alpha2[0];
2395         request->alpha2[1] = alpha2[1];
2396         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2397 
2398         /* Allow calling CRDA again */
2399         reset_crda_timeouts();
2400 
2401         queue_regulatory_request(request);
2402 
2403         return 0;
2404 }
2405 EXPORT_SYMBOL(regulatory_hint);
2406 
2407 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2408                                 const u8 *country_ie, u8 country_ie_len)
2409 {
2410         char alpha2[2];
2411         enum environment_cap env = ENVIRON_ANY;
2412         struct regulatory_request *request = NULL, *lr;
2413 
2414         /* IE len must be evenly divisible by 2 */
2415         if (country_ie_len & 0x01)
2416                 return;
2417 
2418         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2419                 return;
2420 
2421         request = kzalloc(sizeof(*request), GFP_KERNEL);
2422         if (!request)
2423                 return;
2424 
2425         alpha2[0] = country_ie[0];
2426         alpha2[1] = country_ie[1];
2427 
2428         if (country_ie[2] == 'I')
2429                 env = ENVIRON_INDOOR;
2430         else if (country_ie[2] == 'O')
2431                 env = ENVIRON_OUTDOOR;
2432 
2433         rcu_read_lock();
2434         lr = get_last_request();
2435 
2436         if (unlikely(!lr))
2437                 goto out;
2438 
2439         /*
2440          * We will run this only upon a successful connection on cfg80211.
2441          * We leave conflict resolution to the workqueue, where can hold
2442          * the RTNL.
2443          */
2444         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2445             lr->wiphy_idx != WIPHY_IDX_INVALID)
2446                 goto out;
2447 
2448         request->wiphy_idx = get_wiphy_idx(wiphy);
2449         request->alpha2[0] = alpha2[0];
2450         request->alpha2[1] = alpha2[1];
2451         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2452         request->country_ie_env = env;
2453 
2454         /* Allow calling CRDA again */
2455         reset_crda_timeouts();
2456 
2457         queue_regulatory_request(request);
2458         request = NULL;
2459 out:
2460         kfree(request);
2461         rcu_read_unlock();
2462 }
2463 
2464 static void restore_alpha2(char *alpha2, bool reset_user)
2465 {
2466         /* indicates there is no alpha2 to consider for restoration */
2467         alpha2[0] = '9';
2468         alpha2[1] = '7';
2469 
2470         /* The user setting has precedence over the module parameter */
2471         if (is_user_regdom_saved()) {
2472                 /* Unless we're asked to ignore it and reset it */
2473                 if (reset_user) {
2474                         pr_debug("Restoring regulatory settings including user preference\n");
2475                         user_alpha2[0] = '9';
2476                         user_alpha2[1] = '7';
2477 
2478                         /*
2479                          * If we're ignoring user settings, we still need to
2480                          * check the module parameter to ensure we put things
2481                          * back as they were for a full restore.
2482                          */
2483                         if (!is_world_regdom(ieee80211_regdom)) {
2484                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2485                                          ieee80211_regdom[0], ieee80211_regdom[1]);
2486                                 alpha2[0] = ieee80211_regdom[0];
2487                                 alpha2[1] = ieee80211_regdom[1];
2488                         }
2489                 } else {
2490                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2491                                  user_alpha2[0], user_alpha2[1]);
2492                         alpha2[0] = user_alpha2[0];
2493                         alpha2[1] = user_alpha2[1];
2494                 }
2495         } else if (!is_world_regdom(ieee80211_regdom)) {
2496                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2497                          ieee80211_regdom[0], ieee80211_regdom[1]);
2498                 alpha2[0] = ieee80211_regdom[0];
2499                 alpha2[1] = ieee80211_regdom[1];
2500         } else
2501                 pr_debug("Restoring regulatory settings\n");
2502 }
2503 
2504 static void restore_custom_reg_settings(struct wiphy *wiphy)
2505 {
2506         struct ieee80211_supported_band *sband;
2507         enum nl80211_band band;
2508         struct ieee80211_channel *chan;
2509         int i;
2510 
2511         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2512                 sband = wiphy->bands[band];
2513                 if (!sband)
2514                         continue;
2515                 for (i = 0; i < sband->n_channels; i++) {
2516                         chan = &sband->channels[i];
2517                         chan->flags = chan->orig_flags;
2518                         chan->max_antenna_gain = chan->orig_mag;
2519                         chan->max_power = chan->orig_mpwr;
2520                         chan->beacon_found = false;
2521                 }
2522         }
2523 }
2524 
2525 /*
2526  * Restoring regulatory settings involves ingoring any
2527  * possibly stale country IE information and user regulatory
2528  * settings if so desired, this includes any beacon hints
2529  * learned as we could have traveled outside to another country
2530  * after disconnection. To restore regulatory settings we do
2531  * exactly what we did at bootup:
2532  *
2533  *   - send a core regulatory hint
2534  *   - send a user regulatory hint if applicable
2535  *
2536  * Device drivers that send a regulatory hint for a specific country
2537  * keep their own regulatory domain on wiphy->regd so that does does
2538  * not need to be remembered.
2539  */
2540 static void restore_regulatory_settings(bool reset_user)
2541 {
2542         char alpha2[2];
2543         char world_alpha2[2];
2544         struct reg_beacon *reg_beacon, *btmp;
2545         LIST_HEAD(tmp_reg_req_list);
2546         struct cfg80211_registered_device *rdev;
2547 
2548         ASSERT_RTNL();
2549 
2550         /*
2551          * Clear the indoor setting in case that it is not controlled by user
2552          * space, as otherwise there is no guarantee that the device is still
2553          * operating in an indoor environment.
2554          */
2555         spin_lock(&reg_indoor_lock);
2556         if (reg_is_indoor && !reg_is_indoor_portid) {
2557                 reg_is_indoor = false;
2558                 reg_check_channels();
2559         }
2560         spin_unlock(&reg_indoor_lock);
2561 
2562         reset_regdomains(true, &world_regdom);
2563         restore_alpha2(alpha2, reset_user);
2564 
2565         /*
2566          * If there's any pending requests we simply
2567          * stash them to a temporary pending queue and
2568          * add then after we've restored regulatory
2569          * settings.
2570          */
2571         spin_lock(&reg_requests_lock);
2572         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2573         spin_unlock(&reg_requests_lock);
2574 
2575         /* Clear beacon hints */
2576         spin_lock_bh(&reg_pending_beacons_lock);
2577         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2578                 list_del(&reg_beacon->list);
2579                 kfree(reg_beacon);
2580         }
2581         spin_unlock_bh(&reg_pending_beacons_lock);
2582 
2583         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2584                 list_del(&reg_beacon->list);
2585                 kfree(reg_beacon);
2586         }
2587 
2588         /* First restore to the basic regulatory settings */
2589         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2590         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2591 
2592         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2593                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594                         continue;
2595                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2596                         restore_custom_reg_settings(&rdev->wiphy);
2597         }
2598 
2599         regulatory_hint_core(world_alpha2);
2600 
2601         /*
2602          * This restores the ieee80211_regdom module parameter
2603          * preference or the last user requested regulatory
2604          * settings, user regulatory settings takes precedence.
2605          */
2606         if (is_an_alpha2(alpha2))
2607                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2608 
2609         spin_lock(&reg_requests_lock);
2610         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2611         spin_unlock(&reg_requests_lock);
2612 
2613         pr_debug("Kicking the queue\n");
2614 
2615         schedule_work(&reg_work);
2616 }
2617 
2618 void regulatory_hint_disconnect(void)
2619 {
2620         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2621         restore_regulatory_settings(false);
2622 }
2623 
2624 static bool freq_is_chan_12_13_14(u16 freq)
2625 {
2626         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2627             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2628             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2629                 return true;
2630         return false;
2631 }
2632 
2633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2634 {
2635         struct reg_beacon *pending_beacon;
2636 
2637         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2638                 if (beacon_chan->center_freq ==
2639                     pending_beacon->chan.center_freq)
2640                         return true;
2641         return false;
2642 }
2643 
2644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2645                                  struct ieee80211_channel *beacon_chan,
2646                                  gfp_t gfp)
2647 {
2648         struct reg_beacon *reg_beacon;
2649         bool processing;
2650 
2651         if (beacon_chan->beacon_found ||
2652             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2653             (beacon_chan->band == NL80211_BAND_2GHZ &&
2654              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2655                 return 0;
2656 
2657         spin_lock_bh(&reg_pending_beacons_lock);
2658         processing = pending_reg_beacon(beacon_chan);
2659         spin_unlock_bh(&reg_pending_beacons_lock);
2660 
2661         if (processing)
2662                 return 0;
2663 
2664         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2665         if (!reg_beacon)
2666                 return -ENOMEM;
2667 
2668         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2669                  beacon_chan->center_freq,
2670                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
2671                  wiphy_name(wiphy));
2672 
2673         memcpy(&reg_beacon->chan, beacon_chan,
2674                sizeof(struct ieee80211_channel));
2675 
2676         /*
2677          * Since we can be called from BH or and non-BH context
2678          * we must use spin_lock_bh()
2679          */
2680         spin_lock_bh(&reg_pending_beacons_lock);
2681         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2682         spin_unlock_bh(&reg_pending_beacons_lock);
2683 
2684         schedule_work(&reg_work);
2685 
2686         return 0;
2687 }
2688 
2689 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2690 {
2691         unsigned int i;
2692         const struct ieee80211_reg_rule *reg_rule = NULL;
2693         const struct ieee80211_freq_range *freq_range = NULL;
2694         const struct ieee80211_power_rule *power_rule = NULL;
2695         char bw[32], cac_time[32];
2696 
2697         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2698 
2699         for (i = 0; i < rd->n_reg_rules; i++) {
2700                 reg_rule = &rd->reg_rules[i];
2701                 freq_range = &reg_rule->freq_range;
2702                 power_rule = &reg_rule->power_rule;
2703 
2704                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2705                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2706                                  freq_range->max_bandwidth_khz,
2707                                  reg_get_max_bandwidth(rd, reg_rule));
2708                 else
2709                         snprintf(bw, sizeof(bw), "%d KHz",
2710                                  freq_range->max_bandwidth_khz);
2711 
2712                 if (reg_rule->flags & NL80211_RRF_DFS)
2713                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2714                                   reg_rule->dfs_cac_ms/1000);
2715                 else
2716                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2717 
2718 
2719                 /*
2720                  * There may not be documentation for max antenna gain
2721                  * in certain regions
2722                  */
2723                 if (power_rule->max_antenna_gain)
2724                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2725                                 freq_range->start_freq_khz,
2726                                 freq_range->end_freq_khz,
2727                                 bw,
2728                                 power_rule->max_antenna_gain,
2729                                 power_rule->max_eirp,
2730                                 cac_time);
2731                 else
2732                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2733                                 freq_range->start_freq_khz,
2734                                 freq_range->end_freq_khz,
2735                                 bw,
2736                                 power_rule->max_eirp,
2737                                 cac_time);
2738         }
2739 }
2740 
2741 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2742 {
2743         switch (dfs_region) {
2744         case NL80211_DFS_UNSET:
2745         case NL80211_DFS_FCC:
2746         case NL80211_DFS_ETSI:
2747         case NL80211_DFS_JP:
2748                 return true;
2749         default:
2750                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2751                 return false;
2752         }
2753 }
2754 
2755 static void print_regdomain(const struct ieee80211_regdomain *rd)
2756 {
2757         struct regulatory_request *lr = get_last_request();
2758 
2759         if (is_intersected_alpha2(rd->alpha2)) {
2760                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2761                         struct cfg80211_registered_device *rdev;
2762                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2763                         if (rdev) {
2764                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2765                                         rdev->country_ie_alpha2[0],
2766                                         rdev->country_ie_alpha2[1]);
2767                         } else
2768                                 pr_debug("Current regulatory domain intersected:\n");
2769                 } else
2770                         pr_debug("Current regulatory domain intersected:\n");
2771         } else if (is_world_regdom(rd->alpha2)) {
2772                 pr_debug("World regulatory domain updated:\n");
2773         } else {
2774                 if (is_unknown_alpha2(rd->alpha2))
2775                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2776                 else {
2777                         if (reg_request_cell_base(lr))
2778                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2779                                         rd->alpha2[0], rd->alpha2[1]);
2780                         else
2781                                 pr_debug("Regulatory domain changed to country: %c%c\n",
2782                                         rd->alpha2[0], rd->alpha2[1]);
2783                 }
2784         }
2785 
2786         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2787         print_rd_rules(rd);
2788 }
2789 
2790 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2791 {
2792         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2793         print_rd_rules(rd);
2794 }
2795 
2796 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2797 {
2798         if (!is_world_regdom(rd->alpha2))
2799                 return -EINVAL;
2800         update_world_regdomain(rd);
2801         return 0;
2802 }
2803 
2804 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2805                            struct regulatory_request *user_request)
2806 {
2807         const struct ieee80211_regdomain *intersected_rd = NULL;
2808 
2809         if (!regdom_changes(rd->alpha2))
2810                 return -EALREADY;
2811 
2812         if (!is_valid_rd(rd)) {
2813                 pr_err("Invalid regulatory domain detected: %c%c\n",
2814                        rd->alpha2[0], rd->alpha2[1]);
2815                 print_regdomain_info(rd);
2816                 return -EINVAL;
2817         }
2818 
2819         if (!user_request->intersect) {
2820                 reset_regdomains(false, rd);
2821                 return 0;
2822         }
2823 
2824         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2825         if (!intersected_rd)
2826                 return -EINVAL;
2827 
2828         kfree(rd);
2829         rd = NULL;
2830         reset_regdomains(false, intersected_rd);
2831 
2832         return 0;
2833 }
2834 
2835 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2836                              struct regulatory_request *driver_request)
2837 {
2838         const struct ieee80211_regdomain *regd;
2839         const struct ieee80211_regdomain *intersected_rd = NULL;
2840         const struct ieee80211_regdomain *tmp;
2841         struct wiphy *request_wiphy;
2842 
2843         if (is_world_regdom(rd->alpha2))
2844                 return -EINVAL;
2845 
2846         if (!regdom_changes(rd->alpha2))
2847                 return -EALREADY;
2848 
2849         if (!is_valid_rd(rd)) {
2850                 pr_err("Invalid regulatory domain detected: %c%c\n",
2851                        rd->alpha2[0], rd->alpha2[1]);
2852                 print_regdomain_info(rd);
2853                 return -EINVAL;
2854         }
2855 
2856         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2857         if (!request_wiphy)
2858                 return -ENODEV;
2859 
2860         if (!driver_request->intersect) {
2861                 if (request_wiphy->regd)
2862                         return -EALREADY;
2863 
2864                 regd = reg_copy_regd(rd);
2865                 if (IS_ERR(regd))
2866                         return PTR_ERR(regd);
2867 
2868                 rcu_assign_pointer(request_wiphy->regd, regd);
2869                 reset_regdomains(false, rd);
2870                 return 0;
2871         }
2872 
2873         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2874         if (!intersected_rd)
2875                 return -EINVAL;
2876 
2877         /*
2878          * We can trash what CRDA provided now.
2879          * However if a driver requested this specific regulatory
2880          * domain we keep it for its private use
2881          */
2882         tmp = get_wiphy_regdom(request_wiphy);
2883         rcu_assign_pointer(request_wiphy->regd, rd);
2884         rcu_free_regdom(tmp);
2885 
2886         rd = NULL;
2887 
2888         reset_regdomains(false, intersected_rd);
2889 
2890         return 0;
2891 }
2892 
2893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2894                                  struct regulatory_request *country_ie_request)
2895 {
2896         struct wiphy *request_wiphy;
2897 
2898         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2899             !is_unknown_alpha2(rd->alpha2))
2900                 return -EINVAL;
2901 
2902         /*
2903          * Lets only bother proceeding on the same alpha2 if the current
2904          * rd is non static (it means CRDA was present and was used last)
2905          * and the pending request came in from a country IE
2906          */
2907 
2908         if (!is_valid_rd(rd)) {
2909                 pr_err("Invalid regulatory domain detected: %c%c\n",
2910                        rd->alpha2[0], rd->alpha2[1]);
2911                 print_regdomain_info(rd);
2912                 return -EINVAL;
2913         }
2914 
2915         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2916         if (!request_wiphy)
2917                 return -ENODEV;
2918 
2919         if (country_ie_request->intersect)
2920                 return -EINVAL;
2921 
2922         reset_regdomains(false, rd);
2923         return 0;
2924 }
2925 
2926 /*
2927  * Use this call to set the current regulatory domain. Conflicts with
2928  * multiple drivers can be ironed out later. Caller must've already
2929  * kmalloc'd the rd structure.
2930  */
2931 int set_regdom(const struct ieee80211_regdomain *rd,
2932                enum ieee80211_regd_source regd_src)
2933 {
2934         struct regulatory_request *lr;
2935         bool user_reset = false;
2936         int r;
2937 
2938         if (!reg_is_valid_request(rd->alpha2)) {
2939                 kfree(rd);
2940                 return -EINVAL;
2941         }
2942 
2943         if (regd_src == REGD_SOURCE_CRDA)
2944                 reset_crda_timeouts();
2945 
2946         lr = get_last_request();
2947 
2948         /* Note that this doesn't update the wiphys, this is done below */
2949         switch (lr->initiator) {
2950         case NL80211_REGDOM_SET_BY_CORE:
2951                 r = reg_set_rd_core(rd);
2952                 break;
2953         case NL80211_REGDOM_SET_BY_USER:
2954                 r = reg_set_rd_user(rd, lr);
2955                 user_reset = true;
2956                 break;
2957         case NL80211_REGDOM_SET_BY_DRIVER:
2958                 r = reg_set_rd_driver(rd, lr);
2959                 break;
2960         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961                 r = reg_set_rd_country_ie(rd, lr);
2962                 break;
2963         default:
2964                 WARN(1, "invalid initiator %d\n", lr->initiator);
2965                 kfree(rd);
2966                 return -EINVAL;
2967         }
2968 
2969         if (r) {
2970                 switch (r) {
2971                 case -EALREADY:
2972                         reg_set_request_processed();
2973                         break;
2974                 default:
2975                         /* Back to world regulatory in case of errors */
2976                         restore_regulatory_settings(user_reset);
2977                 }
2978 
2979                 kfree(rd);
2980                 return r;
2981         }
2982 
2983         /* This would make this whole thing pointless */
2984         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2985                 return -EINVAL;
2986 
2987         /* update all wiphys now with the new established regulatory domain */
2988         update_all_wiphy_regulatory(lr->initiator);
2989 
2990         print_regdomain(get_cfg80211_regdom());
2991 
2992         nl80211_send_reg_change_event(lr);
2993 
2994         reg_set_request_processed();
2995 
2996         return 0;
2997 }
2998 
2999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3000                                        struct ieee80211_regdomain *rd)
3001 {
3002         const struct ieee80211_regdomain *regd;
3003         const struct ieee80211_regdomain *prev_regd;
3004         struct cfg80211_registered_device *rdev;
3005 
3006         if (WARN_ON(!wiphy || !rd))
3007                 return -EINVAL;
3008 
3009         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3010                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3011                 return -EPERM;
3012 
3013         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3014                 print_regdomain_info(rd);
3015                 return -EINVAL;
3016         }
3017 
3018         regd = reg_copy_regd(rd);
3019         if (IS_ERR(regd))
3020                 return PTR_ERR(regd);
3021 
3022         rdev = wiphy_to_rdev(wiphy);
3023 
3024         spin_lock(&reg_requests_lock);
3025         prev_regd = rdev->requested_regd;
3026         rdev->requested_regd = regd;
3027         spin_unlock(&reg_requests_lock);
3028 
3029         kfree(prev_regd);
3030         return 0;
3031 }
3032 
3033 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3034                               struct ieee80211_regdomain *rd)
3035 {
3036         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037 
3038         if (ret)
3039                 return ret;
3040 
3041         schedule_work(&reg_work);
3042         return 0;
3043 }
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3045 
3046 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3047                                         struct ieee80211_regdomain *rd)
3048 {
3049         int ret;
3050 
3051         ASSERT_RTNL();
3052 
3053         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3054         if (ret)
3055                 return ret;
3056 
3057         /* process the request immediately */
3058         reg_process_self_managed_hints();
3059         return 0;
3060 }
3061 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3062 
3063 void wiphy_regulatory_register(struct wiphy *wiphy)
3064 {
3065         struct regulatory_request *lr;
3066 
3067         /* self-managed devices ignore external hints */
3068         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3069                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3070                                            REGULATORY_COUNTRY_IE_IGNORE;
3071 
3072         if (!reg_dev_ignore_cell_hint(wiphy))
3073                 reg_num_devs_support_basehint++;
3074 
3075         lr = get_last_request();
3076         wiphy_update_regulatory(wiphy, lr->initiator);
3077 }
3078 
3079 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3080 {
3081         struct wiphy *request_wiphy = NULL;
3082         struct regulatory_request *lr;
3083 
3084         lr = get_last_request();
3085 
3086         if (!reg_dev_ignore_cell_hint(wiphy))
3087                 reg_num_devs_support_basehint--;
3088 
3089         rcu_free_regdom(get_wiphy_regdom(wiphy));
3090         RCU_INIT_POINTER(wiphy->regd, NULL);
3091 
3092         if (lr)
3093                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3094 
3095         if (!request_wiphy || request_wiphy != wiphy)
3096                 return;
3097 
3098         lr->wiphy_idx = WIPHY_IDX_INVALID;
3099         lr->country_ie_env = ENVIRON_ANY;
3100 }
3101 
3102 /*
3103  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3104  * UNII band definitions
3105  */
3106 int cfg80211_get_unii(int freq)
3107 {
3108         /* UNII-1 */
3109         if (freq >= 5150 && freq <= 5250)
3110                 return 0;
3111 
3112         /* UNII-2A */
3113         if (freq > 5250 && freq <= 5350)
3114                 return 1;
3115 
3116         /* UNII-2B */
3117         if (freq > 5350 && freq <= 5470)
3118                 return 2;
3119 
3120         /* UNII-2C */
3121         if (freq > 5470 && freq <= 5725)
3122                 return 3;
3123 
3124         /* UNII-3 */
3125         if (freq > 5725 && freq <= 5825)
3126                 return 4;
3127 
3128         return -EINVAL;
3129 }
3130 
3131 bool regulatory_indoor_allowed(void)
3132 {
3133         return reg_is_indoor;
3134 }
3135 
3136 int __init regulatory_init(void)
3137 {
3138         int err = 0;
3139 
3140         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3141         if (IS_ERR(reg_pdev))
3142                 return PTR_ERR(reg_pdev);
3143 
3144         spin_lock_init(&reg_requests_lock);
3145         spin_lock_init(&reg_pending_beacons_lock);
3146         spin_lock_init(&reg_indoor_lock);
3147 
3148         reg_regdb_size_check();
3149 
3150         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3151 
3152         user_alpha2[0] = '9';
3153         user_alpha2[1] = '7';
3154 
3155         /* We always try to get an update for the static regdomain */
3156         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3157         if (err) {
3158                 if (err == -ENOMEM) {
3159                         platform_device_unregister(reg_pdev);
3160                         return err;
3161                 }
3162                 /*
3163                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3164                  * memory which is handled and propagated appropriately above
3165                  * but it can also fail during a netlink_broadcast() or during
3166                  * early boot for call_usermodehelper(). For now treat these
3167                  * errors as non-fatal.
3168                  */
3169                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3170         }
3171 
3172         /*
3173          * Finally, if the user set the module parameter treat it
3174          * as a user hint.
3175          */
3176         if (!is_world_regdom(ieee80211_regdom))
3177                 regulatory_hint_user(ieee80211_regdom,
3178                                      NL80211_USER_REG_HINT_USER);
3179 
3180         return 0;
3181 }
3182 
3183 void regulatory_exit(void)
3184 {
3185         struct regulatory_request *reg_request, *tmp;
3186         struct reg_beacon *reg_beacon, *btmp;
3187 
3188         cancel_work_sync(&reg_work);
3189         cancel_crda_timeout_sync();
3190         cancel_delayed_work_sync(&reg_check_chans);
3191 
3192         /* Lock to suppress warnings */
3193         rtnl_lock();
3194         reset_regdomains(true, NULL);
3195         rtnl_unlock();
3196 
3197         dev_set_uevent_suppress(&reg_pdev->dev, true);
3198 
3199         platform_device_unregister(reg_pdev);
3200 
3201         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3202                 list_del(&reg_beacon->list);
3203                 kfree(reg_beacon);
3204         }
3205 
3206         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3207                 list_del(&reg_beacon->list);
3208                 kfree(reg_beacon);
3209         }
3210 
3211         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3212                 list_del(&reg_request->list);
3213                 kfree(reg_request);
3214         }
3215 }
3216 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp