~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/wireless/reg.c

Version: ~ [ linux-5.8 ] ~ [ linux-5.7.14 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.57 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.138 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.193 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.232 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.232 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright 2002-2005, Instant802 Networks, Inc.
  3  * Copyright 2005-2006, Devicescape Software, Inc.
  4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
  6  * Copyright 2013-2014  Intel Mobile Communications GmbH
  7  * Copyright      2017  Intel Deutschland GmbH
  8  * Copyright (C) 2018 Intel Corporation
  9  *
 10  * Permission to use, copy, modify, and/or distribute this software for any
 11  * purpose with or without fee is hereby granted, provided that the above
 12  * copyright notice and this permission notice appear in all copies.
 13  *
 14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 21  */
 22 
 23 
 24 /**
 25  * DOC: Wireless regulatory infrastructure
 26  *
 27  * The usual implementation is for a driver to read a device EEPROM to
 28  * determine which regulatory domain it should be operating under, then
 29  * looking up the allowable channels in a driver-local table and finally
 30  * registering those channels in the wiphy structure.
 31  *
 32  * Another set of compliance enforcement is for drivers to use their
 33  * own compliance limits which can be stored on the EEPROM. The host
 34  * driver or firmware may ensure these are used.
 35  *
 36  * In addition to all this we provide an extra layer of regulatory
 37  * conformance. For drivers which do not have any regulatory
 38  * information CRDA provides the complete regulatory solution.
 39  * For others it provides a community effort on further restrictions
 40  * to enhance compliance.
 41  *
 42  * Note: When number of rules --> infinity we will not be able to
 43  * index on alpha2 any more, instead we'll probably have to
 44  * rely on some SHA1 checksum of the regdomain for example.
 45  *
 46  */
 47 
 48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 49 
 50 #include <linux/kernel.h>
 51 #include <linux/export.h>
 52 #include <linux/slab.h>
 53 #include <linux/list.h>
 54 #include <linux/ctype.h>
 55 #include <linux/nl80211.h>
 56 #include <linux/platform_device.h>
 57 #include <linux/verification.h>
 58 #include <linux/moduleparam.h>
 59 #include <linux/firmware.h>
 60 #include <net/cfg80211.h>
 61 #include "core.h"
 62 #include "reg.h"
 63 #include "rdev-ops.h"
 64 #include "nl80211.h"
 65 
 66 /*
 67  * Grace period we give before making sure all current interfaces reside on
 68  * channels allowed by the current regulatory domain.
 69  */
 70 #define REG_ENFORCE_GRACE_MS 60000
 71 
 72 /**
 73  * enum reg_request_treatment - regulatory request treatment
 74  *
 75  * @REG_REQ_OK: continue processing the regulatory request
 76  * @REG_REQ_IGNORE: ignore the regulatory request
 77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
 78  *      be intersected with the current one.
 79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
 80  *      regulatory settings, and no further processing is required.
 81  */
 82 enum reg_request_treatment {
 83         REG_REQ_OK,
 84         REG_REQ_IGNORE,
 85         REG_REQ_INTERSECT,
 86         REG_REQ_ALREADY_SET,
 87 };
 88 
 89 static struct regulatory_request core_request_world = {
 90         .initiator = NL80211_REGDOM_SET_BY_CORE,
 91         .alpha2[0] = '',
 92         .alpha2[1] = '',
 93         .intersect = false,
 94         .processed = true,
 95         .country_ie_env = ENVIRON_ANY,
 96 };
 97 
 98 /*
 99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user);
135 
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138         return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140 
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143         return rcu_dereference_rtnl(wiphy->regd);
144 }
145 
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148         switch (dfs_region) {
149         case NL80211_DFS_UNSET:
150                 return "unset";
151         case NL80211_DFS_FCC:
152                 return "FCC";
153         case NL80211_DFS_ETSI:
154                 return "ETSI";
155         case NL80211_DFS_JP:
156                 return "JP";
157         }
158         return "Unknown";
159 }
160 
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163         const struct ieee80211_regdomain *regd = NULL;
164         const struct ieee80211_regdomain *wiphy_regd = NULL;
165 
166         regd = get_cfg80211_regdom();
167         if (!wiphy)
168                 goto out;
169 
170         wiphy_regd = get_wiphy_regdom(wiphy);
171         if (!wiphy_regd)
172                 goto out;
173 
174         if (wiphy_regd->dfs_region == regd->dfs_region)
175                 goto out;
176 
177         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178                  dev_name(&wiphy->dev),
179                  reg_dfs_region_str(wiphy_regd->dfs_region),
180                  reg_dfs_region_str(regd->dfs_region));
181 
182 out:
183         return regd->dfs_region;
184 }
185 
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188         if (!r)
189                 return;
190         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192 
193 static struct regulatory_request *get_last_request(void)
194 {
195         return rcu_dereference_rtnl(last_request);
196 }
197 
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201 
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205 
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208 
209 struct reg_beacon {
210         struct list_head list;
211         struct ieee80211_channel chan;
212 };
213 
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219 
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222         .n_reg_rules = 8,
223         .alpha2 =  "00",
224         .reg_rules = {
225                 /* IEEE 802.11b/g, channels 1..11 */
226                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227                 /* IEEE 802.11b/g, channels 12..13. */
228                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230                 /* IEEE 802.11 channel 14 - Only JP enables
231                  * this and for 802.11b only */
232                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233                         NL80211_RRF_NO_IR |
234                         NL80211_RRF_NO_OFDM),
235                 /* IEEE 802.11a, channel 36..48 */
236                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239 
240                 /* IEEE 802.11a, channel 52..64 - DFS required */
241                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_AUTO_BW |
244                         NL80211_RRF_DFS),
245 
246                 /* IEEE 802.11a, channel 100..144 - DFS required */
247                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_DFS),
250 
251                 /* IEEE 802.11a, channel 149..165 */
252                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253                         NL80211_RRF_NO_IR),
254 
255                 /* IEEE 802.11ad (60GHz), channels 1..3 */
256                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257         }
258 };
259 
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262         &world_regdom;
263 
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266 
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 
270 static void reg_free_request(struct regulatory_request *request)
271 {
272         if (request == &core_request_world)
273                 return;
274 
275         if (request != get_last_request())
276                 kfree(request);
277 }
278 
279 static void reg_free_last_request(void)
280 {
281         struct regulatory_request *lr = get_last_request();
282 
283         if (lr != &core_request_world && lr)
284                 kfree_rcu(lr, rcu_head);
285 }
286 
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289         struct regulatory_request *lr;
290 
291         lr = get_last_request();
292         if (lr == request)
293                 return;
294 
295         reg_free_last_request();
296         rcu_assign_pointer(last_request, request);
297 }
298 
299 static void reset_regdomains(bool full_reset,
300                              const struct ieee80211_regdomain *new_regdom)
301 {
302         const struct ieee80211_regdomain *r;
303 
304         ASSERT_RTNL();
305 
306         r = get_cfg80211_regdom();
307 
308         /* avoid freeing static information or freeing something twice */
309         if (r == cfg80211_world_regdom)
310                 r = NULL;
311         if (cfg80211_world_regdom == &world_regdom)
312                 cfg80211_world_regdom = NULL;
313         if (r == &world_regdom)
314                 r = NULL;
315 
316         rcu_free_regdom(r);
317         rcu_free_regdom(cfg80211_world_regdom);
318 
319         cfg80211_world_regdom = &world_regdom;
320         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 
322         if (!full_reset)
323                 return;
324 
325         reg_update_last_request(&core_request_world);
326 }
327 
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334         struct regulatory_request *lr;
335 
336         lr = get_last_request();
337 
338         WARN_ON(!lr);
339 
340         reset_regdomains(false, rd);
341 
342         cfg80211_world_regdom = rd;
343 }
344 
345 bool is_world_regdom(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] == '' && alpha2[1] == '';
350 }
351 
352 static bool is_alpha2_set(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] && alpha2[1];
357 }
358 
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         /*
364          * Special case where regulatory domain was built by driver
365          * but a specific alpha2 cannot be determined
366          */
367         return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369 
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372         if (!alpha2)
373                 return false;
374         /*
375          * Special case where regulatory domain is the
376          * result of an intersection between two regulatory domain
377          * structures
378          */
379         return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381 
382 static bool is_an_alpha2(const char *alpha2)
383 {
384         if (!alpha2)
385                 return false;
386         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388 
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391         if (!alpha2_x || !alpha2_y)
392                 return false;
393         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395 
396 static bool regdom_changes(const char *alpha2)
397 {
398         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 
400         if (!r)
401                 return true;
402         return !alpha2_equal(r->alpha2, alpha2);
403 }
404 
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413                 return false;
414 
415         /* This would indicate a mistake on the design */
416         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417                  "Unexpected user alpha2: %c%c\n",
418                  user_alpha2[0], user_alpha2[1]))
419                 return false;
420 
421         return true;
422 }
423 
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427         struct ieee80211_regdomain *regd;
428         int size_of_regd;
429         unsigned int i;
430 
431         size_of_regd =
432                 sizeof(struct ieee80211_regdomain) +
433                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434 
435         regd = kzalloc(size_of_regd, GFP_KERNEL);
436         if (!regd)
437                 return ERR_PTR(-ENOMEM);
438 
439         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440 
441         for (i = 0; i < src_regd->n_reg_rules; i++)
442                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443                        sizeof(struct ieee80211_reg_rule));
444 
445         return regd;
446 }
447 
448 struct reg_regdb_apply_request {
449         struct list_head list;
450         const struct ieee80211_regdomain *regdom;
451 };
452 
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455 
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458         struct reg_regdb_apply_request *request;
459 
460         rtnl_lock();
461 
462         mutex_lock(&reg_regdb_apply_mutex);
463         while (!list_empty(&reg_regdb_apply_list)) {
464                 request = list_first_entry(&reg_regdb_apply_list,
465                                            struct reg_regdb_apply_request,
466                                            list);
467                 list_del(&request->list);
468 
469                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470                 kfree(request);
471         }
472         mutex_unlock(&reg_regdb_apply_mutex);
473 
474         rtnl_unlock();
475 }
476 
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478 
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481         struct reg_regdb_apply_request *request;
482 
483         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484         if (!request) {
485                 kfree(regdom);
486                 return -ENOMEM;
487         }
488 
489         request->regdom = regdom;
490 
491         mutex_lock(&reg_regdb_apply_mutex);
492         list_add_tail(&request->list, &reg_regdb_apply_list);
493         mutex_unlock(&reg_regdb_apply_mutex);
494 
495         schedule_work(&reg_regdb_work);
496         return 0;
497 }
498 
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA  */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502 
503 static u32 reg_crda_timeouts;
504 
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507 
508 static void crda_timeout_work(struct work_struct *work)
509 {
510         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511         rtnl_lock();
512         reg_crda_timeouts++;
513         restore_regulatory_settings(true);
514         rtnl_unlock();
515 }
516 
517 static void cancel_crda_timeout(void)
518 {
519         cancel_delayed_work(&crda_timeout);
520 }
521 
522 static void cancel_crda_timeout_sync(void)
523 {
524         cancel_delayed_work_sync(&crda_timeout);
525 }
526 
527 static void reset_crda_timeouts(void)
528 {
529         reg_crda_timeouts = 0;
530 }
531 
532 /*
533  * This lets us keep regulatory code which is updated on a regulatory
534  * basis in userspace.
535  */
536 static int call_crda(const char *alpha2)
537 {
538         char country[12];
539         char *env[] = { country, NULL };
540         int ret;
541 
542         snprintf(country, sizeof(country), "COUNTRY=%c%c",
543                  alpha2[0], alpha2[1]);
544 
545         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547                 return -EINVAL;
548         }
549 
550         if (!is_world_regdom((char *) alpha2))
551                 pr_debug("Calling CRDA for country: %c%c\n",
552                          alpha2[0], alpha2[1]);
553         else
554                 pr_debug("Calling CRDA to update world regulatory domain\n");
555 
556         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557         if (ret)
558                 return ret;
559 
560         queue_delayed_work(system_power_efficient_wq,
561                            &crda_timeout, msecs_to_jiffies(3142));
562         return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570         return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573 
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576 
577 struct fwdb_country {
578         u8 alpha2[2];
579         __be16 coll_ptr;
580         /* this struct cannot be extended */
581 } __packed __aligned(4);
582 
583 struct fwdb_collection {
584         u8 len;
585         u8 n_rules;
586         u8 dfs_region;
587         /* no optional data yet */
588         /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590 
591 enum fwdb_flags {
592         FWDB_FLAG_NO_OFDM       = BIT(0),
593         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
594         FWDB_FLAG_DFS           = BIT(2),
595         FWDB_FLAG_NO_IR         = BIT(3),
596         FWDB_FLAG_AUTO_BW       = BIT(4),
597 };
598 
599 struct fwdb_wmm_ac {
600         u8 ecw;
601         u8 aifsn;
602         __be16 cot;
603 } __packed;
604 
605 struct fwdb_wmm_rule {
606         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609 
610 struct fwdb_rule {
611         u8 len;
612         u8 flags;
613         __be16 max_eirp;
614         __be32 start, end, max_bw;
615         /* start of optional data */
616         __be16 cac_timeout;
617         __be16 wmm_ptr;
618 } __packed __aligned(4);
619 
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622 
623 struct fwdb_header {
624         __be32 magic;
625         __be32 version;
626         struct fwdb_country country[];
627 } __packed __aligned(4);
628 
629 static int ecw2cw(int ecw)
630 {
631         return (1 << ecw) - 1;
632 }
633 
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637         int i;
638 
639         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642                 u8 aifsn = ac[i].aifsn;
643 
644                 if (cw_min >= cw_max)
645                         return false;
646 
647                 if (aifsn < 1)
648                         return false;
649         }
650 
651         return true;
652 }
653 
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657 
658         if ((u8 *)rule + sizeof(rule->len) > data + size)
659                 return false;
660 
661         /* mandatory fields */
662         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663                 return false;
664         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666                 struct fwdb_wmm_rule *wmm;
667 
668                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669                         return false;
670 
671                 wmm = (void *)(data + wmm_ptr);
672 
673                 if (!valid_wmm(wmm))
674                         return false;
675         }
676         return true;
677 }
678 
679 static bool valid_country(const u8 *data, unsigned int size,
680                           const struct fwdb_country *country)
681 {
682         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683         struct fwdb_collection *coll = (void *)(data + ptr);
684         __be16 *rules_ptr;
685         unsigned int i;
686 
687         /* make sure we can read len/n_rules */
688         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689                 return false;
690 
691         /* make sure base struct and all rules fit */
692         if ((u8 *)coll + ALIGN(coll->len, 2) +
693             (coll->n_rules * 2) > data + size)
694                 return false;
695 
696         /* mandatory fields must exist */
697         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698                 return false;
699 
700         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701 
702         for (i = 0; i < coll->n_rules; i++) {
703                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704 
705                 if (!valid_rule(data, size, rule_ptr))
706                         return false;
707         }
708 
709         return true;
710 }
711 
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714 
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717         const u8 *end = p + buflen;
718         size_t plen;
719         key_ref_t key;
720 
721         while (p < end) {
722                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723                  * than 256 bytes in size.
724                  */
725                 if (end - p < 4)
726                         goto dodgy_cert;
727                 if (p[0] != 0x30 &&
728                     p[1] != 0x82)
729                         goto dodgy_cert;
730                 plen = (p[2] << 8) | p[3];
731                 plen += 4;
732                 if (plen > end - p)
733                         goto dodgy_cert;
734 
735                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736                                            "asymmetric", NULL, p, plen,
737                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738                                             KEY_USR_VIEW | KEY_USR_READ),
739                                            KEY_ALLOC_NOT_IN_QUOTA |
740                                            KEY_ALLOC_BUILT_IN |
741                                            KEY_ALLOC_BYPASS_RESTRICTION);
742                 if (IS_ERR(key)) {
743                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744                                PTR_ERR(key));
745                 } else {
746                         pr_notice("Loaded X.509 cert '%s'\n",
747                                   key_ref_to_ptr(key)->description);
748                         key_ref_put(key);
749                 }
750                 p += plen;
751         }
752 
753         return;
754 
755 dodgy_cert:
756         pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758 
759 static int __init load_builtin_regdb_keys(void)
760 {
761         builtin_regdb_keys =
762                 keyring_alloc(".builtin_regdb_keys",
763                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767         if (IS_ERR(builtin_regdb_keys))
768                 return PTR_ERR(builtin_regdb_keys);
769 
770         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771 
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779 
780         return 0;
781 }
782 
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785         const struct firmware *sig;
786         bool result;
787 
788         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789                 return false;
790 
791         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792                                         builtin_regdb_keys,
793                                         VERIFYING_UNSPECIFIED_SIGNATURE,
794                                         NULL, NULL) == 0;
795 
796         release_firmware(sig);
797 
798         return result;
799 }
800 
801 static void free_regdb_keyring(void)
802 {
803         key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808         return 0;
809 }
810 
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813         return true;
814 }
815 
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820 
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823         const struct fwdb_header *hdr = (void *)data;
824         const struct fwdb_country *country;
825 
826         if (size < sizeof(*hdr))
827                 return false;
828 
829         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830                 return false;
831 
832         if (hdr->version != cpu_to_be32(FWDB_VERSION))
833                 return false;
834 
835         if (!regdb_has_valid_signature(data, size))
836                 return false;
837 
838         country = &hdr->country[0];
839         while ((u8 *)(country + 1) <= data + size) {
840                 if (!country->coll_ptr)
841                         break;
842                 if (!valid_country(data, size, country))
843                         return false;
844                 country++;
845         }
846 
847         return true;
848 }
849 
850 static void set_wmm_rule(const struct fwdb_header *db,
851                          const struct fwdb_country *country,
852                          const struct fwdb_rule *rule,
853                          struct ieee80211_reg_rule *rrule)
854 {
855         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856         struct fwdb_wmm_rule *wmm;
857         unsigned int i, wmm_ptr;
858 
859         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860         wmm = (void *)((u8 *)db + wmm_ptr);
861 
862         if (!valid_wmm(wmm)) {
863                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865                        country->alpha2[0], country->alpha2[1]);
866                 return;
867         }
868 
869         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870                 wmm_rule->client[i].cw_min =
871                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
874                 wmm_rule->client[i].cot =
875                         1000 * be16_to_cpu(wmm->client[i].cot);
876                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880         }
881 
882         rrule->has_wmm = true;
883 }
884 
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886                              const struct fwdb_country *country, int freq,
887                              struct ieee80211_reg_rule *rrule)
888 {
889         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891         int i;
892 
893         for (i = 0; i < coll->n_rules; i++) {
894                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897 
898                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899                         continue;
900 
901                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903                         set_wmm_rule(db, country, rule, rrule);
904                         return 0;
905                 }
906         }
907 
908         return -ENODATA;
909 }
910 
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913         const struct fwdb_header *hdr = regdb;
914         const struct fwdb_country *country;
915 
916         if (!regdb)
917                 return -ENODATA;
918 
919         if (IS_ERR(regdb))
920                 return PTR_ERR(regdb);
921 
922         country = &hdr->country[0];
923         while (country->coll_ptr) {
924                 if (alpha2_equal(alpha2, country->alpha2))
925                         return __regdb_query_wmm(regdb, country, freq, rule);
926 
927                 country++;
928         }
929 
930         return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933 
934 static int regdb_query_country(const struct fwdb_header *db,
935                                const struct fwdb_country *country)
936 {
937         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939         struct ieee80211_regdomain *regdom;
940         unsigned int size_of_regd, i;
941 
942         size_of_regd = sizeof(struct ieee80211_regdomain) +
943                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
944 
945         regdom = kzalloc(size_of_regd, GFP_KERNEL);
946         if (!regdom)
947                 return -ENOMEM;
948 
949         regdom->n_reg_rules = coll->n_rules;
950         regdom->alpha2[0] = country->alpha2[0];
951         regdom->alpha2[1] = country->alpha2[1];
952         regdom->dfs_region = coll->dfs_region;
953 
954         for (i = 0; i < regdom->n_reg_rules; i++) {
955                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959 
960                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963 
964                 rrule->power_rule.max_antenna_gain = 0;
965                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966 
967                 rrule->flags = 0;
968                 if (rule->flags & FWDB_FLAG_NO_OFDM)
969                         rrule->flags |= NL80211_RRF_NO_OFDM;
970                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972                 if (rule->flags & FWDB_FLAG_DFS)
973                         rrule->flags |= NL80211_RRF_DFS;
974                 if (rule->flags & FWDB_FLAG_NO_IR)
975                         rrule->flags |= NL80211_RRF_NO_IR;
976                 if (rule->flags & FWDB_FLAG_AUTO_BW)
977                         rrule->flags |= NL80211_RRF_AUTO_BW;
978 
979                 rrule->dfs_cac_ms = 0;
980 
981                 /* handle optional data */
982                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983                         rrule->dfs_cac_ms =
984                                 1000 * be16_to_cpu(rule->cac_timeout);
985                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986                         set_wmm_rule(db, country, rule, rrule);
987         }
988 
989         return reg_schedule_apply(regdom);
990 }
991 
992 static int query_regdb(const char *alpha2)
993 {
994         const struct fwdb_header *hdr = regdb;
995         const struct fwdb_country *country;
996 
997         ASSERT_RTNL();
998 
999         if (IS_ERR(regdb))
1000                 return PTR_ERR(regdb);
1001 
1002         country = &hdr->country[0];
1003         while (country->coll_ptr) {
1004                 if (alpha2_equal(alpha2, country->alpha2))
1005                         return regdb_query_country(regdb, country);
1006                 country++;
1007         }
1008 
1009         return -ENODATA;
1010 }
1011 
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014         int set_error = 0;
1015         bool restore = true;
1016         void *db;
1017 
1018         if (!fw) {
1019                 pr_info("failed to load regulatory.db\n");
1020                 set_error = -ENODATA;
1021         } else if (!valid_regdb(fw->data, fw->size)) {
1022                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023                 set_error = -EINVAL;
1024         }
1025 
1026         rtnl_lock();
1027         if (regdb && !IS_ERR(regdb)) {
1028                 /* negative case - a bug
1029                  * positive case - can happen due to race in case of multiple cb's in
1030                  * queue, due to usage of asynchronous callback
1031                  *
1032                  * Either case, just restore and free new db.
1033                  */
1034         } else if (set_error) {
1035                 regdb = ERR_PTR(set_error);
1036         } else if (fw) {
1037                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1038                 if (db) {
1039                         regdb = db;
1040                         restore = context && query_regdb(context);
1041                 } else {
1042                         restore = true;
1043                 }
1044         }
1045 
1046         if (restore)
1047                 restore_regulatory_settings(true);
1048 
1049         rtnl_unlock();
1050 
1051         kfree(context);
1052 
1053         release_firmware(fw);
1054 }
1055 
1056 static int query_regdb_file(const char *alpha2)
1057 {
1058         ASSERT_RTNL();
1059 
1060         if (regdb)
1061                 return query_regdb(alpha2);
1062 
1063         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1064         if (!alpha2)
1065                 return -ENOMEM;
1066 
1067         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1068                                        &reg_pdev->dev, GFP_KERNEL,
1069                                        (void *)alpha2, regdb_fw_cb);
1070 }
1071 
1072 int reg_reload_regdb(void)
1073 {
1074         const struct firmware *fw;
1075         void *db;
1076         int err;
1077 
1078         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1079         if (err)
1080                 return err;
1081 
1082         if (!valid_regdb(fw->data, fw->size)) {
1083                 err = -ENODATA;
1084                 goto out;
1085         }
1086 
1087         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088         if (!db) {
1089                 err = -ENOMEM;
1090                 goto out;
1091         }
1092 
1093         rtnl_lock();
1094         if (!IS_ERR_OR_NULL(regdb))
1095                 kfree(regdb);
1096         regdb = db;
1097         rtnl_unlock();
1098 
1099  out:
1100         release_firmware(fw);
1101         return err;
1102 }
1103 
1104 static bool reg_query_database(struct regulatory_request *request)
1105 {
1106         if (query_regdb_file(request->alpha2) == 0)
1107                 return true;
1108 
1109         if (call_crda(request->alpha2) == 0)
1110                 return true;
1111 
1112         return false;
1113 }
1114 
1115 bool reg_is_valid_request(const char *alpha2)
1116 {
1117         struct regulatory_request *lr = get_last_request();
1118 
1119         if (!lr || lr->processed)
1120                 return false;
1121 
1122         return alpha2_equal(lr->alpha2, alpha2);
1123 }
1124 
1125 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1126 {
1127         struct regulatory_request *lr = get_last_request();
1128 
1129         /*
1130          * Follow the driver's regulatory domain, if present, unless a country
1131          * IE has been processed or a user wants to help complaince further
1132          */
1133         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1134             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1135             wiphy->regd)
1136                 return get_wiphy_regdom(wiphy);
1137 
1138         return get_cfg80211_regdom();
1139 }
1140 
1141 static unsigned int
1142 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1143                                  const struct ieee80211_reg_rule *rule)
1144 {
1145         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1146         const struct ieee80211_freq_range *freq_range_tmp;
1147         const struct ieee80211_reg_rule *tmp;
1148         u32 start_freq, end_freq, idx, no;
1149 
1150         for (idx = 0; idx < rd->n_reg_rules; idx++)
1151                 if (rule == &rd->reg_rules[idx])
1152                         break;
1153 
1154         if (idx == rd->n_reg_rules)
1155                 return 0;
1156 
1157         /* get start_freq */
1158         no = idx;
1159 
1160         while (no) {
1161                 tmp = &rd->reg_rules[--no];
1162                 freq_range_tmp = &tmp->freq_range;
1163 
1164                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1165                         break;
1166 
1167                 freq_range = freq_range_tmp;
1168         }
1169 
1170         start_freq = freq_range->start_freq_khz;
1171 
1172         /* get end_freq */
1173         freq_range = &rule->freq_range;
1174         no = idx;
1175 
1176         while (no < rd->n_reg_rules - 1) {
1177                 tmp = &rd->reg_rules[++no];
1178                 freq_range_tmp = &tmp->freq_range;
1179 
1180                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1181                         break;
1182 
1183                 freq_range = freq_range_tmp;
1184         }
1185 
1186         end_freq = freq_range->end_freq_khz;
1187 
1188         return end_freq - start_freq;
1189 }
1190 
1191 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1192                                    const struct ieee80211_reg_rule *rule)
1193 {
1194         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1195 
1196         if (rule->flags & NL80211_RRF_NO_160MHZ)
1197                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1198         if (rule->flags & NL80211_RRF_NO_80MHZ)
1199                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1200 
1201         /*
1202          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1203          * are not allowed.
1204          */
1205         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1206             rule->flags & NL80211_RRF_NO_HT40PLUS)
1207                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1208 
1209         return bw;
1210 }
1211 
1212 /* Sanity check on a regulatory rule */
1213 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1214 {
1215         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1216         u32 freq_diff;
1217 
1218         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1219                 return false;
1220 
1221         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1222                 return false;
1223 
1224         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1225 
1226         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1227             freq_range->max_bandwidth_khz > freq_diff)
1228                 return false;
1229 
1230         return true;
1231 }
1232 
1233 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1234 {
1235         const struct ieee80211_reg_rule *reg_rule = NULL;
1236         unsigned int i;
1237 
1238         if (!rd->n_reg_rules)
1239                 return false;
1240 
1241         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1242                 return false;
1243 
1244         for (i = 0; i < rd->n_reg_rules; i++) {
1245                 reg_rule = &rd->reg_rules[i];
1246                 if (!is_valid_reg_rule(reg_rule))
1247                         return false;
1248         }
1249 
1250         return true;
1251 }
1252 
1253 /**
1254  * freq_in_rule_band - tells us if a frequency is in a frequency band
1255  * @freq_range: frequency rule we want to query
1256  * @freq_khz: frequency we are inquiring about
1257  *
1258  * This lets us know if a specific frequency rule is or is not relevant to
1259  * a specific frequency's band. Bands are device specific and artificial
1260  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1261  * however it is safe for now to assume that a frequency rule should not be
1262  * part of a frequency's band if the start freq or end freq are off by more
1263  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1264  * 60 GHz band.
1265  * This resolution can be lowered and should be considered as we add
1266  * regulatory rule support for other "bands".
1267  **/
1268 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1269                               u32 freq_khz)
1270 {
1271 #define ONE_GHZ_IN_KHZ  1000000
1272         /*
1273          * From 802.11ad: directional multi-gigabit (DMG):
1274          * Pertaining to operation in a frequency band containing a channel
1275          * with the Channel starting frequency above 45 GHz.
1276          */
1277         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1278                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1279         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1280                 return true;
1281         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1282                 return true;
1283         return false;
1284 #undef ONE_GHZ_IN_KHZ
1285 }
1286 
1287 /*
1288  * Later on we can perhaps use the more restrictive DFS
1289  * region but we don't have information for that yet so
1290  * for now simply disallow conflicts.
1291  */
1292 static enum nl80211_dfs_regions
1293 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1294                          const enum nl80211_dfs_regions dfs_region2)
1295 {
1296         if (dfs_region1 != dfs_region2)
1297                 return NL80211_DFS_UNSET;
1298         return dfs_region1;
1299 }
1300 
1301 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1302                                     const struct ieee80211_wmm_ac *wmm_ac2,
1303                                     struct ieee80211_wmm_ac *intersect)
1304 {
1305         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1306         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1307         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1308         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1309 }
1310 
1311 /*
1312  * Helper for regdom_intersect(), this does the real
1313  * mathematical intersection fun
1314  */
1315 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1316                                const struct ieee80211_regdomain *rd2,
1317                                const struct ieee80211_reg_rule *rule1,
1318                                const struct ieee80211_reg_rule *rule2,
1319                                struct ieee80211_reg_rule *intersected_rule)
1320 {
1321         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1322         struct ieee80211_freq_range *freq_range;
1323         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1324         struct ieee80211_power_rule *power_rule;
1325         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1326         struct ieee80211_wmm_rule *wmm_rule;
1327         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1328 
1329         freq_range1 = &rule1->freq_range;
1330         freq_range2 = &rule2->freq_range;
1331         freq_range = &intersected_rule->freq_range;
1332 
1333         power_rule1 = &rule1->power_rule;
1334         power_rule2 = &rule2->power_rule;
1335         power_rule = &intersected_rule->power_rule;
1336 
1337         wmm_rule1 = &rule1->wmm_rule;
1338         wmm_rule2 = &rule2->wmm_rule;
1339         wmm_rule = &intersected_rule->wmm_rule;
1340 
1341         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1342                                          freq_range2->start_freq_khz);
1343         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1344                                        freq_range2->end_freq_khz);
1345 
1346         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1347         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1348 
1349         if (rule1->flags & NL80211_RRF_AUTO_BW)
1350                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1351         if (rule2->flags & NL80211_RRF_AUTO_BW)
1352                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1353 
1354         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1355 
1356         intersected_rule->flags = rule1->flags | rule2->flags;
1357 
1358         /*
1359          * In case NL80211_RRF_AUTO_BW requested for both rules
1360          * set AUTO_BW in intersected rule also. Next we will
1361          * calculate BW correctly in handle_channel function.
1362          * In other case remove AUTO_BW flag while we calculate
1363          * maximum bandwidth correctly and auto calculation is
1364          * not required.
1365          */
1366         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1367             (rule2->flags & NL80211_RRF_AUTO_BW))
1368                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1369         else
1370                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1371 
1372         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1373         if (freq_range->max_bandwidth_khz > freq_diff)
1374                 freq_range->max_bandwidth_khz = freq_diff;
1375 
1376         power_rule->max_eirp = min(power_rule1->max_eirp,
1377                 power_rule2->max_eirp);
1378         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1379                 power_rule2->max_antenna_gain);
1380 
1381         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1382                                            rule2->dfs_cac_ms);
1383 
1384         if (rule1->has_wmm && rule2->has_wmm) {
1385                 u8 ac;
1386 
1387                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1388                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1389                                                 &wmm_rule2->client[ac],
1390                                                 &wmm_rule->client[ac]);
1391                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1392                                                 &wmm_rule2->ap[ac],
1393                                                 &wmm_rule->ap[ac]);
1394                 }
1395 
1396                 intersected_rule->has_wmm = true;
1397         } else if (rule1->has_wmm) {
1398                 *wmm_rule = *wmm_rule1;
1399                 intersected_rule->has_wmm = true;
1400         } else if (rule2->has_wmm) {
1401                 *wmm_rule = *wmm_rule2;
1402                 intersected_rule->has_wmm = true;
1403         } else {
1404                 intersected_rule->has_wmm = false;
1405         }
1406 
1407         if (!is_valid_reg_rule(intersected_rule))
1408                 return -EINVAL;
1409 
1410         return 0;
1411 }
1412 
1413 /* check whether old rule contains new rule */
1414 static bool rule_contains(struct ieee80211_reg_rule *r1,
1415                           struct ieee80211_reg_rule *r2)
1416 {
1417         /* for simplicity, currently consider only same flags */
1418         if (r1->flags != r2->flags)
1419                 return false;
1420 
1421         /* verify r1 is more restrictive */
1422         if ((r1->power_rule.max_antenna_gain >
1423              r2->power_rule.max_antenna_gain) ||
1424             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1425                 return false;
1426 
1427         /* make sure r2's range is contained within r1 */
1428         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1429             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1430                 return false;
1431 
1432         /* and finally verify that r1.max_bw >= r2.max_bw */
1433         if (r1->freq_range.max_bandwidth_khz <
1434             r2->freq_range.max_bandwidth_khz)
1435                 return false;
1436 
1437         return true;
1438 }
1439 
1440 /* add or extend current rules. do nothing if rule is already contained */
1441 static void add_rule(struct ieee80211_reg_rule *rule,
1442                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1443 {
1444         struct ieee80211_reg_rule *tmp_rule;
1445         int i;
1446 
1447         for (i = 0; i < *n_rules; i++) {
1448                 tmp_rule = &reg_rules[i];
1449                 /* rule is already contained - do nothing */
1450                 if (rule_contains(tmp_rule, rule))
1451                         return;
1452 
1453                 /* extend rule if possible */
1454                 if (rule_contains(rule, tmp_rule)) {
1455                         memcpy(tmp_rule, rule, sizeof(*rule));
1456                         return;
1457                 }
1458         }
1459 
1460         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1461         (*n_rules)++;
1462 }
1463 
1464 /**
1465  * regdom_intersect - do the intersection between two regulatory domains
1466  * @rd1: first regulatory domain
1467  * @rd2: second regulatory domain
1468  *
1469  * Use this function to get the intersection between two regulatory domains.
1470  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1471  * as no one single alpha2 can represent this regulatory domain.
1472  *
1473  * Returns a pointer to the regulatory domain structure which will hold the
1474  * resulting intersection of rules between rd1 and rd2. We will
1475  * kzalloc() this structure for you.
1476  */
1477 static struct ieee80211_regdomain *
1478 regdom_intersect(const struct ieee80211_regdomain *rd1,
1479                  const struct ieee80211_regdomain *rd2)
1480 {
1481         int r, size_of_regd;
1482         unsigned int x, y;
1483         unsigned int num_rules = 0;
1484         const struct ieee80211_reg_rule *rule1, *rule2;
1485         struct ieee80211_reg_rule intersected_rule;
1486         struct ieee80211_regdomain *rd;
1487 
1488         if (!rd1 || !rd2)
1489                 return NULL;
1490 
1491         /*
1492          * First we get a count of the rules we'll need, then we actually
1493          * build them. This is to so we can malloc() and free() a
1494          * regdomain once. The reason we use reg_rules_intersect() here
1495          * is it will return -EINVAL if the rule computed makes no sense.
1496          * All rules that do check out OK are valid.
1497          */
1498 
1499         for (x = 0; x < rd1->n_reg_rules; x++) {
1500                 rule1 = &rd1->reg_rules[x];
1501                 for (y = 0; y < rd2->n_reg_rules; y++) {
1502                         rule2 = &rd2->reg_rules[y];
1503                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1504                                                  &intersected_rule))
1505                                 num_rules++;
1506                 }
1507         }
1508 
1509         if (!num_rules)
1510                 return NULL;
1511 
1512         size_of_regd = sizeof(struct ieee80211_regdomain) +
1513                        num_rules * sizeof(struct ieee80211_reg_rule);
1514 
1515         rd = kzalloc(size_of_regd, GFP_KERNEL);
1516         if (!rd)
1517                 return NULL;
1518 
1519         for (x = 0; x < rd1->n_reg_rules; x++) {
1520                 rule1 = &rd1->reg_rules[x];
1521                 for (y = 0; y < rd2->n_reg_rules; y++) {
1522                         rule2 = &rd2->reg_rules[y];
1523                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1524                                                 &intersected_rule);
1525                         /*
1526                          * No need to memset here the intersected rule here as
1527                          * we're not using the stack anymore
1528                          */
1529                         if (r)
1530                                 continue;
1531 
1532                         add_rule(&intersected_rule, rd->reg_rules,
1533                                  &rd->n_reg_rules);
1534                 }
1535         }
1536 
1537         rd->alpha2[0] = '9';
1538         rd->alpha2[1] = '8';
1539         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1540                                                   rd2->dfs_region);
1541 
1542         return rd;
1543 }
1544 
1545 /*
1546  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1547  * want to just have the channel structure use these
1548  */
1549 static u32 map_regdom_flags(u32 rd_flags)
1550 {
1551         u32 channel_flags = 0;
1552         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1553                 channel_flags |= IEEE80211_CHAN_NO_IR;
1554         if (rd_flags & NL80211_RRF_DFS)
1555                 channel_flags |= IEEE80211_CHAN_RADAR;
1556         if (rd_flags & NL80211_RRF_NO_OFDM)
1557                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1558         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1559                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1560         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1561                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1562         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1563                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1564         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1566         if (rd_flags & NL80211_RRF_NO_80MHZ)
1567                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1568         if (rd_flags & NL80211_RRF_NO_160MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1570         return channel_flags;
1571 }
1572 
1573 static const struct ieee80211_reg_rule *
1574 freq_reg_info_regd(u32 center_freq,
1575                    const struct ieee80211_regdomain *regd, u32 bw)
1576 {
1577         int i;
1578         bool band_rule_found = false;
1579         bool bw_fits = false;
1580 
1581         if (!regd)
1582                 return ERR_PTR(-EINVAL);
1583 
1584         for (i = 0; i < regd->n_reg_rules; i++) {
1585                 const struct ieee80211_reg_rule *rr;
1586                 const struct ieee80211_freq_range *fr = NULL;
1587 
1588                 rr = &regd->reg_rules[i];
1589                 fr = &rr->freq_range;
1590 
1591                 /*
1592                  * We only need to know if one frequency rule was
1593                  * was in center_freq's band, that's enough, so lets
1594                  * not overwrite it once found
1595                  */
1596                 if (!band_rule_found)
1597                         band_rule_found = freq_in_rule_band(fr, center_freq);
1598 
1599                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1600 
1601                 if (band_rule_found && bw_fits)
1602                         return rr;
1603         }
1604 
1605         if (!band_rule_found)
1606                 return ERR_PTR(-ERANGE);
1607 
1608         return ERR_PTR(-EINVAL);
1609 }
1610 
1611 static const struct ieee80211_reg_rule *
1612 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1613 {
1614         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1615         const struct ieee80211_reg_rule *reg_rule = NULL;
1616         u32 bw;
1617 
1618         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1619                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1620                 if (!IS_ERR(reg_rule))
1621                         return reg_rule;
1622         }
1623 
1624         return reg_rule;
1625 }
1626 
1627 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1628                                                u32 center_freq)
1629 {
1630         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1631 }
1632 EXPORT_SYMBOL(freq_reg_info);
1633 
1634 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1635 {
1636         switch (initiator) {
1637         case NL80211_REGDOM_SET_BY_CORE:
1638                 return "core";
1639         case NL80211_REGDOM_SET_BY_USER:
1640                 return "user";
1641         case NL80211_REGDOM_SET_BY_DRIVER:
1642                 return "driver";
1643         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1644                 return "country element";
1645         default:
1646                 WARN_ON(1);
1647                 return "bug";
1648         }
1649 }
1650 EXPORT_SYMBOL(reg_initiator_name);
1651 
1652 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1653                                           const struct ieee80211_reg_rule *reg_rule,
1654                                           const struct ieee80211_channel *chan)
1655 {
1656         const struct ieee80211_freq_range *freq_range = NULL;
1657         u32 max_bandwidth_khz, bw_flags = 0;
1658 
1659         freq_range = &reg_rule->freq_range;
1660 
1661         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1662         /* Check if auto calculation requested */
1663         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1664                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1665 
1666         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1667         if (!cfg80211_does_bw_fit_range(freq_range,
1668                                         MHZ_TO_KHZ(chan->center_freq),
1669                                         MHZ_TO_KHZ(10)))
1670                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1671         if (!cfg80211_does_bw_fit_range(freq_range,
1672                                         MHZ_TO_KHZ(chan->center_freq),
1673                                         MHZ_TO_KHZ(20)))
1674                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1675 
1676         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1677                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1678         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1679                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1681                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1682         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1683                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1684         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1685                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1686         return bw_flags;
1687 }
1688 
1689 /*
1690  * Note that right now we assume the desired channel bandwidth
1691  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1692  * per channel, the primary and the extension channel).
1693  */
1694 static void handle_channel(struct wiphy *wiphy,
1695                            enum nl80211_reg_initiator initiator,
1696                            struct ieee80211_channel *chan)
1697 {
1698         u32 flags, bw_flags = 0;
1699         const struct ieee80211_reg_rule *reg_rule = NULL;
1700         const struct ieee80211_power_rule *power_rule = NULL;
1701         struct wiphy *request_wiphy = NULL;
1702         struct regulatory_request *lr = get_last_request();
1703         const struct ieee80211_regdomain *regd;
1704 
1705         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1706 
1707         flags = chan->orig_flags;
1708 
1709         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1710         if (IS_ERR(reg_rule)) {
1711                 /*
1712                  * We will disable all channels that do not match our
1713                  * received regulatory rule unless the hint is coming
1714                  * from a Country IE and the Country IE had no information
1715                  * about a band. The IEEE 802.11 spec allows for an AP
1716                  * to send only a subset of the regulatory rules allowed,
1717                  * so an AP in the US that only supports 2.4 GHz may only send
1718                  * a country IE with information for the 2.4 GHz band
1719                  * while 5 GHz is still supported.
1720                  */
1721                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1722                     PTR_ERR(reg_rule) == -ERANGE)
1723                         return;
1724 
1725                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1726                     request_wiphy && request_wiphy == wiphy &&
1727                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1728                         pr_debug("Disabling freq %d MHz for good\n",
1729                                  chan->center_freq);
1730                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1731                         chan->flags = chan->orig_flags;
1732                 } else {
1733                         pr_debug("Disabling freq %d MHz\n",
1734                                  chan->center_freq);
1735                         chan->flags |= IEEE80211_CHAN_DISABLED;
1736                 }
1737                 return;
1738         }
1739 
1740         regd = reg_get_regdomain(wiphy);
1741 
1742         power_rule = &reg_rule->power_rule;
1743         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1744 
1745         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1746             request_wiphy && request_wiphy == wiphy &&
1747             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1748                 /*
1749                  * This guarantees the driver's requested regulatory domain
1750                  * will always be used as a base for further regulatory
1751                  * settings
1752                  */
1753                 chan->flags = chan->orig_flags =
1754                         map_regdom_flags(reg_rule->flags) | bw_flags;
1755                 chan->max_antenna_gain = chan->orig_mag =
1756                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1757                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1758                         (int) MBM_TO_DBM(power_rule->max_eirp);
1759 
1760                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1761                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1762                         if (reg_rule->dfs_cac_ms)
1763                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1764                 }
1765 
1766                 return;
1767         }
1768 
1769         chan->dfs_state = NL80211_DFS_USABLE;
1770         chan->dfs_state_entered = jiffies;
1771 
1772         chan->beacon_found = false;
1773         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1774         chan->max_antenna_gain =
1775                 min_t(int, chan->orig_mag,
1776                       MBI_TO_DBI(power_rule->max_antenna_gain));
1777         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1778 
1779         if (chan->flags & IEEE80211_CHAN_RADAR) {
1780                 if (reg_rule->dfs_cac_ms)
1781                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1782                 else
1783                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1784         }
1785 
1786         if (chan->orig_mpwr) {
1787                 /*
1788                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1789                  * will always follow the passed country IE power settings.
1790                  */
1791                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1792                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1793                         chan->max_power = chan->max_reg_power;
1794                 else
1795                         chan->max_power = min(chan->orig_mpwr,
1796                                               chan->max_reg_power);
1797         } else
1798                 chan->max_power = chan->max_reg_power;
1799 }
1800 
1801 static void handle_band(struct wiphy *wiphy,
1802                         enum nl80211_reg_initiator initiator,
1803                         struct ieee80211_supported_band *sband)
1804 {
1805         unsigned int i;
1806 
1807         if (!sband)
1808                 return;
1809 
1810         for (i = 0; i < sband->n_channels; i++)
1811                 handle_channel(wiphy, initiator, &sband->channels[i]);
1812 }
1813 
1814 static bool reg_request_cell_base(struct regulatory_request *request)
1815 {
1816         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1817                 return false;
1818         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1819 }
1820 
1821 bool reg_last_request_cell_base(void)
1822 {
1823         return reg_request_cell_base(get_last_request());
1824 }
1825 
1826 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1827 /* Core specific check */
1828 static enum reg_request_treatment
1829 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1830 {
1831         struct regulatory_request *lr = get_last_request();
1832 
1833         if (!reg_num_devs_support_basehint)
1834                 return REG_REQ_IGNORE;
1835 
1836         if (reg_request_cell_base(lr) &&
1837             !regdom_changes(pending_request->alpha2))
1838                 return REG_REQ_ALREADY_SET;
1839 
1840         return REG_REQ_OK;
1841 }
1842 
1843 /* Device specific check */
1844 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1845 {
1846         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1847 }
1848 #else
1849 static enum reg_request_treatment
1850 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1851 {
1852         return REG_REQ_IGNORE;
1853 }
1854 
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856 {
1857         return true;
1858 }
1859 #endif
1860 
1861 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1862 {
1863         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1864             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1865                 return true;
1866         return false;
1867 }
1868 
1869 static bool ignore_reg_update(struct wiphy *wiphy,
1870                               enum nl80211_reg_initiator initiator)
1871 {
1872         struct regulatory_request *lr = get_last_request();
1873 
1874         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1875                 return true;
1876 
1877         if (!lr) {
1878                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1879                          reg_initiator_name(initiator));
1880                 return true;
1881         }
1882 
1883         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1884             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1885                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1886                          reg_initiator_name(initiator));
1887                 return true;
1888         }
1889 
1890         /*
1891          * wiphy->regd will be set once the device has its own
1892          * desired regulatory domain set
1893          */
1894         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1895             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1896             !is_world_regdom(lr->alpha2)) {
1897                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1898                          reg_initiator_name(initiator));
1899                 return true;
1900         }
1901 
1902         if (reg_request_cell_base(lr))
1903                 return reg_dev_ignore_cell_hint(wiphy);
1904 
1905         return false;
1906 }
1907 
1908 static bool reg_is_world_roaming(struct wiphy *wiphy)
1909 {
1910         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1911         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1912         struct regulatory_request *lr = get_last_request();
1913 
1914         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1915                 return true;
1916 
1917         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1918             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1919                 return true;
1920 
1921         return false;
1922 }
1923 
1924 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1925                               struct reg_beacon *reg_beacon)
1926 {
1927         struct ieee80211_supported_band *sband;
1928         struct ieee80211_channel *chan;
1929         bool channel_changed = false;
1930         struct ieee80211_channel chan_before;
1931 
1932         sband = wiphy->bands[reg_beacon->chan.band];
1933         chan = &sband->channels[chan_idx];
1934 
1935         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1936                 return;
1937 
1938         if (chan->beacon_found)
1939                 return;
1940 
1941         chan->beacon_found = true;
1942 
1943         if (!reg_is_world_roaming(wiphy))
1944                 return;
1945 
1946         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1947                 return;
1948 
1949         chan_before = *chan;
1950 
1951         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1952                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1953                 channel_changed = true;
1954         }
1955 
1956         if (channel_changed)
1957                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1958 }
1959 
1960 /*
1961  * Called when a scan on a wiphy finds a beacon on
1962  * new channel
1963  */
1964 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1965                                     struct reg_beacon *reg_beacon)
1966 {
1967         unsigned int i;
1968         struct ieee80211_supported_band *sband;
1969 
1970         if (!wiphy->bands[reg_beacon->chan.band])
1971                 return;
1972 
1973         sband = wiphy->bands[reg_beacon->chan.band];
1974 
1975         for (i = 0; i < sband->n_channels; i++)
1976                 handle_reg_beacon(wiphy, i, reg_beacon);
1977 }
1978 
1979 /*
1980  * Called upon reg changes or a new wiphy is added
1981  */
1982 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1983 {
1984         unsigned int i;
1985         struct ieee80211_supported_band *sband;
1986         struct reg_beacon *reg_beacon;
1987 
1988         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1989                 if (!wiphy->bands[reg_beacon->chan.band])
1990                         continue;
1991                 sband = wiphy->bands[reg_beacon->chan.band];
1992                 for (i = 0; i < sband->n_channels; i++)
1993                         handle_reg_beacon(wiphy, i, reg_beacon);
1994         }
1995 }
1996 
1997 /* Reap the advantages of previously found beacons */
1998 static void reg_process_beacons(struct wiphy *wiphy)
1999 {
2000         /*
2001          * Means we are just firing up cfg80211, so no beacons would
2002          * have been processed yet.
2003          */
2004         if (!last_request)
2005                 return;
2006         wiphy_update_beacon_reg(wiphy);
2007 }
2008 
2009 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2010 {
2011         if (!chan)
2012                 return false;
2013         if (chan->flags & IEEE80211_CHAN_DISABLED)
2014                 return false;
2015         /* This would happen when regulatory rules disallow HT40 completely */
2016         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2017                 return false;
2018         return true;
2019 }
2020 
2021 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2022                                          struct ieee80211_channel *channel)
2023 {
2024         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2025         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2026         const struct ieee80211_regdomain *regd;
2027         unsigned int i;
2028         u32 flags;
2029 
2030         if (!is_ht40_allowed(channel)) {
2031                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2032                 return;
2033         }
2034 
2035         /*
2036          * We need to ensure the extension channels exist to
2037          * be able to use HT40- or HT40+, this finds them (or not)
2038          */
2039         for (i = 0; i < sband->n_channels; i++) {
2040                 struct ieee80211_channel *c = &sband->channels[i];
2041 
2042                 if (c->center_freq == (channel->center_freq - 20))
2043                         channel_before = c;
2044                 if (c->center_freq == (channel->center_freq + 20))
2045                         channel_after = c;
2046         }
2047 
2048         flags = 0;
2049         regd = get_wiphy_regdom(wiphy);
2050         if (regd) {
2051                 const struct ieee80211_reg_rule *reg_rule =
2052                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2053                                            regd, MHZ_TO_KHZ(20));
2054 
2055                 if (!IS_ERR(reg_rule))
2056                         flags = reg_rule->flags;
2057         }
2058 
2059         /*
2060          * Please note that this assumes target bandwidth is 20 MHz,
2061          * if that ever changes we also need to change the below logic
2062          * to include that as well.
2063          */
2064         if (!is_ht40_allowed(channel_before) ||
2065             flags & NL80211_RRF_NO_HT40MINUS)
2066                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2067         else
2068                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2069 
2070         if (!is_ht40_allowed(channel_after) ||
2071             flags & NL80211_RRF_NO_HT40PLUS)
2072                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2073         else
2074                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2075 }
2076 
2077 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2078                                       struct ieee80211_supported_band *sband)
2079 {
2080         unsigned int i;
2081 
2082         if (!sband)
2083                 return;
2084 
2085         for (i = 0; i < sband->n_channels; i++)
2086                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2087 }
2088 
2089 static void reg_process_ht_flags(struct wiphy *wiphy)
2090 {
2091         enum nl80211_band band;
2092 
2093         if (!wiphy)
2094                 return;
2095 
2096         for (band = 0; band < NUM_NL80211_BANDS; band++)
2097                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2098 }
2099 
2100 static void reg_call_notifier(struct wiphy *wiphy,
2101                               struct regulatory_request *request)
2102 {
2103         if (wiphy->reg_notifier)
2104                 wiphy->reg_notifier(wiphy, request);
2105 }
2106 
2107 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2108 {
2109         struct cfg80211_chan_def chandef;
2110         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2111         enum nl80211_iftype iftype;
2112 
2113         wdev_lock(wdev);
2114         iftype = wdev->iftype;
2115 
2116         /* make sure the interface is active */
2117         if (!wdev->netdev || !netif_running(wdev->netdev))
2118                 goto wdev_inactive_unlock;
2119 
2120         switch (iftype) {
2121         case NL80211_IFTYPE_AP:
2122         case NL80211_IFTYPE_P2P_GO:
2123                 if (!wdev->beacon_interval)
2124                         goto wdev_inactive_unlock;
2125                 chandef = wdev->chandef;
2126                 break;
2127         case NL80211_IFTYPE_ADHOC:
2128                 if (!wdev->ssid_len)
2129                         goto wdev_inactive_unlock;
2130                 chandef = wdev->chandef;
2131                 break;
2132         case NL80211_IFTYPE_STATION:
2133         case NL80211_IFTYPE_P2P_CLIENT:
2134                 if (!wdev->current_bss ||
2135                     !wdev->current_bss->pub.channel)
2136                         goto wdev_inactive_unlock;
2137 
2138                 if (!rdev->ops->get_channel ||
2139                     rdev_get_channel(rdev, wdev, &chandef))
2140                         cfg80211_chandef_create(&chandef,
2141                                                 wdev->current_bss->pub.channel,
2142                                                 NL80211_CHAN_NO_HT);
2143                 break;
2144         case NL80211_IFTYPE_MONITOR:
2145         case NL80211_IFTYPE_AP_VLAN:
2146         case NL80211_IFTYPE_P2P_DEVICE:
2147                 /* no enforcement required */
2148                 break;
2149         default:
2150                 /* others not implemented for now */
2151                 WARN_ON(1);
2152                 break;
2153         }
2154 
2155         wdev_unlock(wdev);
2156 
2157         switch (iftype) {
2158         case NL80211_IFTYPE_AP:
2159         case NL80211_IFTYPE_P2P_GO:
2160         case NL80211_IFTYPE_ADHOC:
2161                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2162         case NL80211_IFTYPE_STATION:
2163         case NL80211_IFTYPE_P2P_CLIENT:
2164                 return cfg80211_chandef_usable(wiphy, &chandef,
2165                                                IEEE80211_CHAN_DISABLED);
2166         default:
2167                 break;
2168         }
2169 
2170         return true;
2171 
2172 wdev_inactive_unlock:
2173         wdev_unlock(wdev);
2174         return true;
2175 }
2176 
2177 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2178 {
2179         struct wireless_dev *wdev;
2180         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2181 
2182         ASSERT_RTNL();
2183 
2184         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2185                 if (!reg_wdev_chan_valid(wiphy, wdev))
2186                         cfg80211_leave(rdev, wdev);
2187 }
2188 
2189 static void reg_check_chans_work(struct work_struct *work)
2190 {
2191         struct cfg80211_registered_device *rdev;
2192 
2193         pr_debug("Verifying active interfaces after reg change\n");
2194         rtnl_lock();
2195 
2196         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2197                 if (!(rdev->wiphy.regulatory_flags &
2198                       REGULATORY_IGNORE_STALE_KICKOFF))
2199                         reg_leave_invalid_chans(&rdev->wiphy);
2200 
2201         rtnl_unlock();
2202 }
2203 
2204 static void reg_check_channels(void)
2205 {
2206         /*
2207          * Give usermode a chance to do something nicer (move to another
2208          * channel, orderly disconnection), before forcing a disconnection.
2209          */
2210         mod_delayed_work(system_power_efficient_wq,
2211                          &reg_check_chans,
2212                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2213 }
2214 
2215 static void wiphy_update_regulatory(struct wiphy *wiphy,
2216                                     enum nl80211_reg_initiator initiator)
2217 {
2218         enum nl80211_band band;
2219         struct regulatory_request *lr = get_last_request();
2220 
2221         if (ignore_reg_update(wiphy, initiator)) {
2222                 /*
2223                  * Regulatory updates set by CORE are ignored for custom
2224                  * regulatory cards. Let us notify the changes to the driver,
2225                  * as some drivers used this to restore its orig_* reg domain.
2226                  */
2227                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2228                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2229                     !(wiphy->regulatory_flags &
2230                       REGULATORY_WIPHY_SELF_MANAGED))
2231                         reg_call_notifier(wiphy, lr);
2232                 return;
2233         }
2234 
2235         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2236 
2237         for (band = 0; band < NUM_NL80211_BANDS; band++)
2238                 handle_band(wiphy, initiator, wiphy->bands[band]);
2239 
2240         reg_process_beacons(wiphy);
2241         reg_process_ht_flags(wiphy);
2242         reg_call_notifier(wiphy, lr);
2243 }
2244 
2245 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2246 {
2247         struct cfg80211_registered_device *rdev;
2248         struct wiphy *wiphy;
2249 
2250         ASSERT_RTNL();
2251 
2252         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2253                 wiphy = &rdev->wiphy;
2254                 wiphy_update_regulatory(wiphy, initiator);
2255         }
2256 
2257         reg_check_channels();
2258 }
2259 
2260 static void handle_channel_custom(struct wiphy *wiphy,
2261                                   struct ieee80211_channel *chan,
2262                                   const struct ieee80211_regdomain *regd)
2263 {
2264         u32 bw_flags = 0;
2265         const struct ieee80211_reg_rule *reg_rule = NULL;
2266         const struct ieee80211_power_rule *power_rule = NULL;
2267         u32 bw;
2268 
2269         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2270                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2271                                               regd, bw);
2272                 if (!IS_ERR(reg_rule))
2273                         break;
2274         }
2275 
2276         if (IS_ERR(reg_rule)) {
2277                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2278                          chan->center_freq);
2279                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2280                         chan->flags |= IEEE80211_CHAN_DISABLED;
2281                 } else {
2282                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2283                         chan->flags = chan->orig_flags;
2284                 }
2285                 return;
2286         }
2287 
2288         power_rule = &reg_rule->power_rule;
2289         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2290 
2291         chan->dfs_state_entered = jiffies;
2292         chan->dfs_state = NL80211_DFS_USABLE;
2293 
2294         chan->beacon_found = false;
2295 
2296         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2297                 chan->flags = chan->orig_flags | bw_flags |
2298                               map_regdom_flags(reg_rule->flags);
2299         else
2300                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2301 
2302         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2303         chan->max_reg_power = chan->max_power =
2304                 (int) MBM_TO_DBM(power_rule->max_eirp);
2305 
2306         if (chan->flags & IEEE80211_CHAN_RADAR) {
2307                 if (reg_rule->dfs_cac_ms)
2308                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2309                 else
2310                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2311         }
2312 
2313         chan->max_power = chan->max_reg_power;
2314 }
2315 
2316 static void handle_band_custom(struct wiphy *wiphy,
2317                                struct ieee80211_supported_band *sband,
2318                                const struct ieee80211_regdomain *regd)
2319 {
2320         unsigned int i;
2321 
2322         if (!sband)
2323                 return;
2324 
2325         for (i = 0; i < sband->n_channels; i++)
2326                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2327 }
2328 
2329 /* Used by drivers prior to wiphy registration */
2330 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2331                                    const struct ieee80211_regdomain *regd)
2332 {
2333         enum nl80211_band band;
2334         unsigned int bands_set = 0;
2335 
2336         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2337              "wiphy should have REGULATORY_CUSTOM_REG\n");
2338         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2339 
2340         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2341                 if (!wiphy->bands[band])
2342                         continue;
2343                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2344                 bands_set++;
2345         }
2346 
2347         /*
2348          * no point in calling this if it won't have any effect
2349          * on your device's supported bands.
2350          */
2351         WARN_ON(!bands_set);
2352 }
2353 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2354 
2355 static void reg_set_request_processed(void)
2356 {
2357         bool need_more_processing = false;
2358         struct regulatory_request *lr = get_last_request();
2359 
2360         lr->processed = true;
2361 
2362         spin_lock(&reg_requests_lock);
2363         if (!list_empty(&reg_requests_list))
2364                 need_more_processing = true;
2365         spin_unlock(&reg_requests_lock);
2366 
2367         cancel_crda_timeout();
2368 
2369         if (need_more_processing)
2370                 schedule_work(&reg_work);
2371 }
2372 
2373 /**
2374  * reg_process_hint_core - process core regulatory requests
2375  * @pending_request: a pending core regulatory request
2376  *
2377  * The wireless subsystem can use this function to process
2378  * a regulatory request issued by the regulatory core.
2379  */
2380 static enum reg_request_treatment
2381 reg_process_hint_core(struct regulatory_request *core_request)
2382 {
2383         if (reg_query_database(core_request)) {
2384                 core_request->intersect = false;
2385                 core_request->processed = false;
2386                 reg_update_last_request(core_request);
2387                 return REG_REQ_OK;
2388         }
2389 
2390         return REG_REQ_IGNORE;
2391 }
2392 
2393 static enum reg_request_treatment
2394 __reg_process_hint_user(struct regulatory_request *user_request)
2395 {
2396         struct regulatory_request *lr = get_last_request();
2397 
2398         if (reg_request_cell_base(user_request))
2399                 return reg_ignore_cell_hint(user_request);
2400 
2401         if (reg_request_cell_base(lr))
2402                 return REG_REQ_IGNORE;
2403 
2404         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2405                 return REG_REQ_INTERSECT;
2406         /*
2407          * If the user knows better the user should set the regdom
2408          * to their country before the IE is picked up
2409          */
2410         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2411             lr->intersect)
2412                 return REG_REQ_IGNORE;
2413         /*
2414          * Process user requests only after previous user/driver/core
2415          * requests have been processed
2416          */
2417         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2418              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2419              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2420             regdom_changes(lr->alpha2))
2421                 return REG_REQ_IGNORE;
2422 
2423         if (!regdom_changes(user_request->alpha2))
2424                 return REG_REQ_ALREADY_SET;
2425 
2426         return REG_REQ_OK;
2427 }
2428 
2429 /**
2430  * reg_process_hint_user - process user regulatory requests
2431  * @user_request: a pending user regulatory request
2432  *
2433  * The wireless subsystem can use this function to process
2434  * a regulatory request initiated by userspace.
2435  */
2436 static enum reg_request_treatment
2437 reg_process_hint_user(struct regulatory_request *user_request)
2438 {
2439         enum reg_request_treatment treatment;
2440 
2441         treatment = __reg_process_hint_user(user_request);
2442         if (treatment == REG_REQ_IGNORE ||
2443             treatment == REG_REQ_ALREADY_SET)
2444                 return REG_REQ_IGNORE;
2445 
2446         user_request->intersect = treatment == REG_REQ_INTERSECT;
2447         user_request->processed = false;
2448 
2449         if (reg_query_database(user_request)) {
2450                 reg_update_last_request(user_request);
2451                 user_alpha2[0] = user_request->alpha2[0];
2452                 user_alpha2[1] = user_request->alpha2[1];
2453                 return REG_REQ_OK;
2454         }
2455 
2456         return REG_REQ_IGNORE;
2457 }
2458 
2459 static enum reg_request_treatment
2460 __reg_process_hint_driver(struct regulatory_request *driver_request)
2461 {
2462         struct regulatory_request *lr = get_last_request();
2463 
2464         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2465                 if (regdom_changes(driver_request->alpha2))
2466                         return REG_REQ_OK;
2467                 return REG_REQ_ALREADY_SET;
2468         }
2469 
2470         /*
2471          * This would happen if you unplug and plug your card
2472          * back in or if you add a new device for which the previously
2473          * loaded card also agrees on the regulatory domain.
2474          */
2475         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2476             !regdom_changes(driver_request->alpha2))
2477                 return REG_REQ_ALREADY_SET;
2478 
2479         return REG_REQ_INTERSECT;
2480 }
2481 
2482 /**
2483  * reg_process_hint_driver - process driver regulatory requests
2484  * @driver_request: a pending driver regulatory request
2485  *
2486  * The wireless subsystem can use this function to process
2487  * a regulatory request issued by an 802.11 driver.
2488  *
2489  * Returns one of the different reg request treatment values.
2490  */
2491 static enum reg_request_treatment
2492 reg_process_hint_driver(struct wiphy *wiphy,
2493                         struct regulatory_request *driver_request)
2494 {
2495         const struct ieee80211_regdomain *regd, *tmp;
2496         enum reg_request_treatment treatment;
2497 
2498         treatment = __reg_process_hint_driver(driver_request);
2499 
2500         switch (treatment) {
2501         case REG_REQ_OK:
2502                 break;
2503         case REG_REQ_IGNORE:
2504                 return REG_REQ_IGNORE;
2505         case REG_REQ_INTERSECT:
2506         case REG_REQ_ALREADY_SET:
2507                 regd = reg_copy_regd(get_cfg80211_regdom());
2508                 if (IS_ERR(regd))
2509                         return REG_REQ_IGNORE;
2510 
2511                 tmp = get_wiphy_regdom(wiphy);
2512                 rcu_assign_pointer(wiphy->regd, regd);
2513                 rcu_free_regdom(tmp);
2514         }
2515 
2516 
2517         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2518         driver_request->processed = false;
2519 
2520         /*
2521          * Since CRDA will not be called in this case as we already
2522          * have applied the requested regulatory domain before we just
2523          * inform userspace we have processed the request
2524          */
2525         if (treatment == REG_REQ_ALREADY_SET) {
2526                 nl80211_send_reg_change_event(driver_request);
2527                 reg_update_last_request(driver_request);
2528                 reg_set_request_processed();
2529                 return REG_REQ_ALREADY_SET;
2530         }
2531 
2532         if (reg_query_database(driver_request)) {
2533                 reg_update_last_request(driver_request);
2534                 return REG_REQ_OK;
2535         }
2536 
2537         return REG_REQ_IGNORE;
2538 }
2539 
2540 static enum reg_request_treatment
2541 __reg_process_hint_country_ie(struct wiphy *wiphy,
2542                               struct regulatory_request *country_ie_request)
2543 {
2544         struct wiphy *last_wiphy = NULL;
2545         struct regulatory_request *lr = get_last_request();
2546 
2547         if (reg_request_cell_base(lr)) {
2548                 /* Trust a Cell base station over the AP's country IE */
2549                 if (regdom_changes(country_ie_request->alpha2))
2550                         return REG_REQ_IGNORE;
2551                 return REG_REQ_ALREADY_SET;
2552         } else {
2553                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2554                         return REG_REQ_IGNORE;
2555         }
2556 
2557         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2558                 return -EINVAL;
2559 
2560         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2561                 return REG_REQ_OK;
2562 
2563         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2564 
2565         if (last_wiphy != wiphy) {
2566                 /*
2567                  * Two cards with two APs claiming different
2568                  * Country IE alpha2s. We could
2569                  * intersect them, but that seems unlikely
2570                  * to be correct. Reject second one for now.
2571                  */
2572                 if (regdom_changes(country_ie_request->alpha2))
2573                         return REG_REQ_IGNORE;
2574                 return REG_REQ_ALREADY_SET;
2575         }
2576 
2577         if (regdom_changes(country_ie_request->alpha2))
2578                 return REG_REQ_OK;
2579         return REG_REQ_ALREADY_SET;
2580 }
2581 
2582 /**
2583  * reg_process_hint_country_ie - process regulatory requests from country IEs
2584  * @country_ie_request: a regulatory request from a country IE
2585  *
2586  * The wireless subsystem can use this function to process
2587  * a regulatory request issued by a country Information Element.
2588  *
2589  * Returns one of the different reg request treatment values.
2590  */
2591 static enum reg_request_treatment
2592 reg_process_hint_country_ie(struct wiphy *wiphy,
2593                             struct regulatory_request *country_ie_request)
2594 {
2595         enum reg_request_treatment treatment;
2596 
2597         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2598 
2599         switch (treatment) {
2600         case REG_REQ_OK:
2601                 break;
2602         case REG_REQ_IGNORE:
2603                 return REG_REQ_IGNORE;
2604         case REG_REQ_ALREADY_SET:
2605                 reg_free_request(country_ie_request);
2606                 return REG_REQ_ALREADY_SET;
2607         case REG_REQ_INTERSECT:
2608                 /*
2609                  * This doesn't happen yet, not sure we
2610                  * ever want to support it for this case.
2611                  */
2612                 WARN_ONCE(1, "Unexpected intersection for country elements");
2613                 return REG_REQ_IGNORE;
2614         }
2615 
2616         country_ie_request->intersect = false;
2617         country_ie_request->processed = false;
2618 
2619         if (reg_query_database(country_ie_request)) {
2620                 reg_update_last_request(country_ie_request);
2621                 return REG_REQ_OK;
2622         }
2623 
2624         return REG_REQ_IGNORE;
2625 }
2626 
2627 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2628 {
2629         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2630         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2631         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2632         bool dfs_domain_same;
2633 
2634         rcu_read_lock();
2635 
2636         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2637         wiphy1_regd = rcu_dereference(wiphy1->regd);
2638         if (!wiphy1_regd)
2639                 wiphy1_regd = cfg80211_regd;
2640 
2641         wiphy2_regd = rcu_dereference(wiphy2->regd);
2642         if (!wiphy2_regd)
2643                 wiphy2_regd = cfg80211_regd;
2644 
2645         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2646 
2647         rcu_read_unlock();
2648 
2649         return dfs_domain_same;
2650 }
2651 
2652 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2653                                     struct ieee80211_channel *src_chan)
2654 {
2655         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2656             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2657                 return;
2658 
2659         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2660             src_chan->flags & IEEE80211_CHAN_DISABLED)
2661                 return;
2662 
2663         if (src_chan->center_freq == dst_chan->center_freq &&
2664             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2665                 dst_chan->dfs_state = src_chan->dfs_state;
2666                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2667         }
2668 }
2669 
2670 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2671                                        struct wiphy *src_wiphy)
2672 {
2673         struct ieee80211_supported_band *src_sband, *dst_sband;
2674         struct ieee80211_channel *src_chan, *dst_chan;
2675         int i, j, band;
2676 
2677         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2678                 return;
2679 
2680         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2681                 dst_sband = dst_wiphy->bands[band];
2682                 src_sband = src_wiphy->bands[band];
2683                 if (!dst_sband || !src_sband)
2684                         continue;
2685 
2686                 for (i = 0; i < dst_sband->n_channels; i++) {
2687                         dst_chan = &dst_sband->channels[i];
2688                         for (j = 0; j < src_sband->n_channels; j++) {
2689                                 src_chan = &src_sband->channels[j];
2690                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2691                         }
2692                 }
2693         }
2694 }
2695 
2696 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2697 {
2698         struct cfg80211_registered_device *rdev;
2699 
2700         ASSERT_RTNL();
2701 
2702         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2703                 if (wiphy == &rdev->wiphy)
2704                         continue;
2705                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2706         }
2707 }
2708 
2709 /* This processes *all* regulatory hints */
2710 static void reg_process_hint(struct regulatory_request *reg_request)
2711 {
2712         struct wiphy *wiphy = NULL;
2713         enum reg_request_treatment treatment;
2714         enum nl80211_reg_initiator initiator = reg_request->initiator;
2715 
2716         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2717                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2718 
2719         switch (initiator) {
2720         case NL80211_REGDOM_SET_BY_CORE:
2721                 treatment = reg_process_hint_core(reg_request);
2722                 break;
2723         case NL80211_REGDOM_SET_BY_USER:
2724                 treatment = reg_process_hint_user(reg_request);
2725                 break;
2726         case NL80211_REGDOM_SET_BY_DRIVER:
2727                 if (!wiphy)
2728                         goto out_free;
2729                 treatment = reg_process_hint_driver(wiphy, reg_request);
2730                 break;
2731         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2732                 if (!wiphy)
2733                         goto out_free;
2734                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2735                 break;
2736         default:
2737                 WARN(1, "invalid initiator %d\n", initiator);
2738                 goto out_free;
2739         }
2740 
2741         if (treatment == REG_REQ_IGNORE)
2742                 goto out_free;
2743 
2744         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2745              "unexpected treatment value %d\n", treatment);
2746 
2747         /* This is required so that the orig_* parameters are saved.
2748          * NOTE: treatment must be set for any case that reaches here!
2749          */
2750         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2751             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2752                 wiphy_update_regulatory(wiphy, initiator);
2753                 wiphy_all_share_dfs_chan_state(wiphy);
2754                 reg_check_channels();
2755         }
2756 
2757         return;
2758 
2759 out_free:
2760         reg_free_request(reg_request);
2761 }
2762 
2763 static void notify_self_managed_wiphys(struct regulatory_request *request)
2764 {
2765         struct cfg80211_registered_device *rdev;
2766         struct wiphy *wiphy;
2767 
2768         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2769                 wiphy = &rdev->wiphy;
2770                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2771                     request->initiator == NL80211_REGDOM_SET_BY_USER &&
2772                     request->user_reg_hint_type ==
2773                                 NL80211_USER_REG_HINT_CELL_BASE)
2774                         reg_call_notifier(wiphy, request);
2775         }
2776 }
2777 
2778 /*
2779  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2780  * Regulatory hints come on a first come first serve basis and we
2781  * must process each one atomically.
2782  */
2783 static void reg_process_pending_hints(void)
2784 {
2785         struct regulatory_request *reg_request, *lr;
2786 
2787         lr = get_last_request();
2788 
2789         /* When last_request->processed becomes true this will be rescheduled */
2790         if (lr && !lr->processed) {
2791                 reg_process_hint(lr);
2792                 return;
2793         }
2794 
2795         spin_lock(&reg_requests_lock);
2796 
2797         if (list_empty(&reg_requests_list)) {
2798                 spin_unlock(&reg_requests_lock);
2799                 return;
2800         }
2801 
2802         reg_request = list_first_entry(&reg_requests_list,
2803                                        struct regulatory_request,
2804                                        list);
2805         list_del_init(&reg_request->list);
2806 
2807         spin_unlock(&reg_requests_lock);
2808 
2809         notify_self_managed_wiphys(reg_request);
2810 
2811         reg_process_hint(reg_request);
2812 
2813         lr = get_last_request();
2814 
2815         spin_lock(&reg_requests_lock);
2816         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2817                 schedule_work(&reg_work);
2818         spin_unlock(&reg_requests_lock);
2819 }
2820 
2821 /* Processes beacon hints -- this has nothing to do with country IEs */
2822 static void reg_process_pending_beacon_hints(void)
2823 {
2824         struct cfg80211_registered_device *rdev;
2825         struct reg_beacon *pending_beacon, *tmp;
2826 
2827         /* This goes through the _pending_ beacon list */
2828         spin_lock_bh(&reg_pending_beacons_lock);
2829 
2830         list_for_each_entry_safe(pending_beacon, tmp,
2831                                  &reg_pending_beacons, list) {
2832                 list_del_init(&pending_beacon->list);
2833 
2834                 /* Applies the beacon hint to current wiphys */
2835                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2836                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2837 
2838                 /* Remembers the beacon hint for new wiphys or reg changes */
2839                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2840         }
2841 
2842         spin_unlock_bh(&reg_pending_beacons_lock);
2843 }
2844 
2845 static void reg_process_self_managed_hints(void)
2846 {
2847         struct cfg80211_registered_device *rdev;
2848         struct wiphy *wiphy;
2849         const struct ieee80211_regdomain *tmp;
2850         const struct ieee80211_regdomain *regd;
2851         enum nl80211_band band;
2852         struct regulatory_request request = {};
2853 
2854         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2855                 wiphy = &rdev->wiphy;
2856 
2857                 spin_lock(&reg_requests_lock);
2858                 regd = rdev->requested_regd;
2859                 rdev->requested_regd = NULL;
2860                 spin_unlock(&reg_requests_lock);
2861 
2862                 if (regd == NULL)
2863                         continue;
2864 
2865                 tmp = get_wiphy_regdom(wiphy);
2866                 rcu_assign_pointer(wiphy->regd, regd);
2867                 rcu_free_regdom(tmp);
2868 
2869                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2870                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2871 
2872                 reg_process_ht_flags(wiphy);
2873 
2874                 request.wiphy_idx = get_wiphy_idx(wiphy);
2875                 request.alpha2[0] = regd->alpha2[0];
2876                 request.alpha2[1] = regd->alpha2[1];
2877                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2878 
2879                 nl80211_send_wiphy_reg_change_event(&request);
2880         }
2881 
2882         reg_check_channels();
2883 }
2884 
2885 static void reg_todo(struct work_struct *work)
2886 {
2887         rtnl_lock();
2888         reg_process_pending_hints();
2889         reg_process_pending_beacon_hints();
2890         reg_process_self_managed_hints();
2891         rtnl_unlock();
2892 }
2893 
2894 static void queue_regulatory_request(struct regulatory_request *request)
2895 {
2896         request->alpha2[0] = toupper(request->alpha2[0]);
2897         request->alpha2[1] = toupper(request->alpha2[1]);
2898 
2899         spin_lock(&reg_requests_lock);
2900         list_add_tail(&request->list, &reg_requests_list);
2901         spin_unlock(&reg_requests_lock);
2902 
2903         schedule_work(&reg_work);
2904 }
2905 
2906 /*
2907  * Core regulatory hint -- happens during cfg80211_init()
2908  * and when we restore regulatory settings.
2909  */
2910 static int regulatory_hint_core(const char *alpha2)
2911 {
2912         struct regulatory_request *request;
2913 
2914         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2915         if (!request)
2916                 return -ENOMEM;
2917 
2918         request->alpha2[0] = alpha2[0];
2919         request->alpha2[1] = alpha2[1];
2920         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2921         request->wiphy_idx = WIPHY_IDX_INVALID;
2922 
2923         queue_regulatory_request(request);
2924 
2925         return 0;
2926 }
2927 
2928 /* User hints */
2929 int regulatory_hint_user(const char *alpha2,
2930                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2931 {
2932         struct regulatory_request *request;
2933 
2934         if (WARN_ON(!alpha2))
2935                 return -EINVAL;
2936 
2937         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2938         if (!request)
2939                 return -ENOMEM;
2940 
2941         request->wiphy_idx = WIPHY_IDX_INVALID;
2942         request->alpha2[0] = alpha2[0];
2943         request->alpha2[1] = alpha2[1];
2944         request->initiator = NL80211_REGDOM_SET_BY_USER;
2945         request->user_reg_hint_type = user_reg_hint_type;
2946 
2947         /* Allow calling CRDA again */
2948         reset_crda_timeouts();
2949 
2950         queue_regulatory_request(request);
2951 
2952         return 0;
2953 }
2954 
2955 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2956 {
2957         spin_lock(&reg_indoor_lock);
2958 
2959         /* It is possible that more than one user space process is trying to
2960          * configure the indoor setting. To handle such cases, clear the indoor
2961          * setting in case that some process does not think that the device
2962          * is operating in an indoor environment. In addition, if a user space
2963          * process indicates that it is controlling the indoor setting, save its
2964          * portid, i.e., make it the owner.
2965          */
2966         reg_is_indoor = is_indoor;
2967         if (reg_is_indoor) {
2968                 if (!reg_is_indoor_portid)
2969                         reg_is_indoor_portid = portid;
2970         } else {
2971                 reg_is_indoor_portid = 0;
2972         }
2973 
2974         spin_unlock(&reg_indoor_lock);
2975 
2976         if (!is_indoor)
2977                 reg_check_channels();
2978 
2979         return 0;
2980 }
2981 
2982 void regulatory_netlink_notify(u32 portid)
2983 {
2984         spin_lock(&reg_indoor_lock);
2985 
2986         if (reg_is_indoor_portid != portid) {
2987                 spin_unlock(&reg_indoor_lock);
2988                 return;
2989         }
2990 
2991         reg_is_indoor = false;
2992         reg_is_indoor_portid = 0;
2993 
2994         spin_unlock(&reg_indoor_lock);
2995 
2996         reg_check_channels();
2997 }
2998 
2999 /* Driver hints */
3000 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3001 {
3002         struct regulatory_request *request;
3003 
3004         if (WARN_ON(!alpha2 || !wiphy))
3005                 return -EINVAL;
3006 
3007         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3008 
3009         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3010         if (!request)
3011                 return -ENOMEM;
3012 
3013         request->wiphy_idx = get_wiphy_idx(wiphy);
3014 
3015         request->alpha2[0] = alpha2[0];
3016         request->alpha2[1] = alpha2[1];
3017         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3018 
3019         /* Allow calling CRDA again */
3020         reset_crda_timeouts();
3021 
3022         queue_regulatory_request(request);
3023 
3024         return 0;
3025 }
3026 EXPORT_SYMBOL(regulatory_hint);
3027 
3028 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3029                                 const u8 *country_ie, u8 country_ie_len)
3030 {
3031         char alpha2[2];
3032         enum environment_cap env = ENVIRON_ANY;
3033         struct regulatory_request *request = NULL, *lr;
3034 
3035         /* IE len must be evenly divisible by 2 */
3036         if (country_ie_len & 0x01)
3037                 return;
3038 
3039         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3040                 return;
3041 
3042         request = kzalloc(sizeof(*request), GFP_KERNEL);
3043         if (!request)
3044                 return;
3045 
3046         alpha2[0] = country_ie[0];
3047         alpha2[1] = country_ie[1];
3048 
3049         if (country_ie[2] == 'I')
3050                 env = ENVIRON_INDOOR;
3051         else if (country_ie[2] == 'O')
3052                 env = ENVIRON_OUTDOOR;
3053 
3054         rcu_read_lock();
3055         lr = get_last_request();
3056 
3057         if (unlikely(!lr))
3058                 goto out;
3059 
3060         /*
3061          * We will run this only upon a successful connection on cfg80211.
3062          * We leave conflict resolution to the workqueue, where can hold
3063          * the RTNL.
3064          */
3065         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3066             lr->wiphy_idx != WIPHY_IDX_INVALID)
3067                 goto out;
3068 
3069         request->wiphy_idx = get_wiphy_idx(wiphy);
3070         request->alpha2[0] = alpha2[0];
3071         request->alpha2[1] = alpha2[1];
3072         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3073         request->country_ie_env = env;
3074 
3075         /* Allow calling CRDA again */
3076         reset_crda_timeouts();
3077 
3078         queue_regulatory_request(request);
3079         request = NULL;
3080 out:
3081         kfree(request);
3082         rcu_read_unlock();
3083 }
3084 
3085 static void restore_alpha2(char *alpha2, bool reset_user)
3086 {
3087         /* indicates there is no alpha2 to consider for restoration */
3088         alpha2[0] = '9';
3089         alpha2[1] = '7';
3090 
3091         /* The user setting has precedence over the module parameter */
3092         if (is_user_regdom_saved()) {
3093                 /* Unless we're asked to ignore it and reset it */
3094                 if (reset_user) {
3095                         pr_debug("Restoring regulatory settings including user preference\n");
3096                         user_alpha2[0] = '9';
3097                         user_alpha2[1] = '7';
3098 
3099                         /*
3100                          * If we're ignoring user settings, we still need to
3101                          * check the module parameter to ensure we put things
3102                          * back as they were for a full restore.
3103                          */
3104                         if (!is_world_regdom(ieee80211_regdom)) {
3105                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3106                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3107                                 alpha2[0] = ieee80211_regdom[0];
3108                                 alpha2[1] = ieee80211_regdom[1];
3109                         }
3110                 } else {
3111                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3112                                  user_alpha2[0], user_alpha2[1]);
3113                         alpha2[0] = user_alpha2[0];
3114                         alpha2[1] = user_alpha2[1];
3115                 }
3116         } else if (!is_world_regdom(ieee80211_regdom)) {
3117                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3118                          ieee80211_regdom[0], ieee80211_regdom[1]);
3119                 alpha2[0] = ieee80211_regdom[0];
3120                 alpha2[1] = ieee80211_regdom[1];
3121         } else
3122                 pr_debug("Restoring regulatory settings\n");
3123 }
3124 
3125 static void restore_custom_reg_settings(struct wiphy *wiphy)
3126 {
3127         struct ieee80211_supported_band *sband;
3128         enum nl80211_band band;
3129         struct ieee80211_channel *chan;
3130         int i;
3131 
3132         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3133                 sband = wiphy->bands[band];
3134                 if (!sband)
3135                         continue;
3136                 for (i = 0; i < sband->n_channels; i++) {
3137                         chan = &sband->channels[i];
3138                         chan->flags = chan->orig_flags;
3139                         chan->max_antenna_gain = chan->orig_mag;
3140                         chan->max_power = chan->orig_mpwr;
3141                         chan->beacon_found = false;
3142                 }
3143         }
3144 }
3145 
3146 /*
3147  * Restoring regulatory settings involves ingoring any
3148  * possibly stale country IE information and user regulatory
3149  * settings if so desired, this includes any beacon hints
3150  * learned as we could have traveled outside to another country
3151  * after disconnection. To restore regulatory settings we do
3152  * exactly what we did at bootup:
3153  *
3154  *   - send a core regulatory hint
3155  *   - send a user regulatory hint if applicable
3156  *
3157  * Device drivers that send a regulatory hint for a specific country
3158  * keep their own regulatory domain on wiphy->regd so that does does
3159  * not need to be remembered.
3160  */
3161 static void restore_regulatory_settings(bool reset_user)
3162 {
3163         char alpha2[2];
3164         char world_alpha2[2];
3165         struct reg_beacon *reg_beacon, *btmp;
3166         LIST_HEAD(tmp_reg_req_list);
3167         struct cfg80211_registered_device *rdev;
3168 
3169         ASSERT_RTNL();
3170 
3171         /*
3172          * Clear the indoor setting in case that it is not controlled by user
3173          * space, as otherwise there is no guarantee that the device is still
3174          * operating in an indoor environment.
3175          */
3176         spin_lock(&reg_indoor_lock);
3177         if (reg_is_indoor && !reg_is_indoor_portid) {
3178                 reg_is_indoor = false;
3179                 reg_check_channels();
3180         }
3181         spin_unlock(&reg_indoor_lock);
3182 
3183         reset_regdomains(true, &world_regdom);
3184         restore_alpha2(alpha2, reset_user);
3185 
3186         /*
3187          * If there's any pending requests we simply
3188          * stash them to a temporary pending queue and
3189          * add then after we've restored regulatory
3190          * settings.
3191          */
3192         spin_lock(&reg_requests_lock);
3193         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3194         spin_unlock(&reg_requests_lock);
3195 
3196         /* Clear beacon hints */
3197         spin_lock_bh(&reg_pending_beacons_lock);
3198         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3199                 list_del(&reg_beacon->list);
3200                 kfree(reg_beacon);
3201         }
3202         spin_unlock_bh(&reg_pending_beacons_lock);
3203 
3204         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3205                 list_del(&reg_beacon->list);
3206                 kfree(reg_beacon);
3207         }
3208 
3209         /* First restore to the basic regulatory settings */
3210         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3211         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3212 
3213         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3214                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3215                         continue;
3216                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3217                         restore_custom_reg_settings(&rdev->wiphy);
3218         }
3219 
3220         regulatory_hint_core(world_alpha2);
3221 
3222         /*
3223          * This restores the ieee80211_regdom module parameter
3224          * preference or the last user requested regulatory
3225          * settings, user regulatory settings takes precedence.
3226          */
3227         if (is_an_alpha2(alpha2))
3228                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3229 
3230         spin_lock(&reg_requests_lock);
3231         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3232         spin_unlock(&reg_requests_lock);
3233 
3234         pr_debug("Kicking the queue\n");
3235 
3236         schedule_work(&reg_work);
3237 }
3238 
3239 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3240 {
3241         struct cfg80211_registered_device *rdev;
3242         struct wireless_dev *wdev;
3243 
3244         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3245                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3246                         wdev_lock(wdev);
3247                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3248                                 wdev_unlock(wdev);
3249                                 return false;
3250                         }
3251                         wdev_unlock(wdev);
3252                 }
3253         }
3254 
3255         return true;
3256 }
3257 
3258 void regulatory_hint_disconnect(void)
3259 {
3260         /* Restore of regulatory settings is not required when wiphy(s)
3261          * ignore IE from connected access point but clearance of beacon hints
3262          * is required when wiphy(s) supports beacon hints.
3263          */
3264         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3265                 struct reg_beacon *reg_beacon, *btmp;
3266 
3267                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3268                         return;
3269 
3270                 spin_lock_bh(&reg_pending_beacons_lock);
3271                 list_for_each_entry_safe(reg_beacon, btmp,
3272                                          &reg_pending_beacons, list) {
3273                         list_del(&reg_beacon->list);
3274                         kfree(reg_beacon);
3275                 }
3276                 spin_unlock_bh(&reg_pending_beacons_lock);
3277 
3278                 list_for_each_entry_safe(reg_beacon, btmp,
3279                                          &reg_beacon_list, list) {
3280                         list_del(&reg_beacon->list);
3281                         kfree(reg_beacon);
3282                 }
3283 
3284                 return;
3285         }
3286 
3287         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3288         restore_regulatory_settings(false);
3289 }
3290 
3291 static bool freq_is_chan_12_13_14(u32 freq)
3292 {
3293         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3294             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3295             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3296                 return true;
3297         return false;
3298 }
3299 
3300 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3301 {
3302         struct reg_beacon *pending_beacon;
3303 
3304         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3305                 if (beacon_chan->center_freq ==
3306                     pending_beacon->chan.center_freq)
3307                         return true;
3308         return false;
3309 }
3310 
3311 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3312                                  struct ieee80211_channel *beacon_chan,
3313                                  gfp_t gfp)
3314 {
3315         struct reg_beacon *reg_beacon;
3316         bool processing;
3317 
3318         if (beacon_chan->beacon_found ||
3319             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3320             (beacon_chan->band == NL80211_BAND_2GHZ &&
3321              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3322                 return 0;
3323 
3324         spin_lock_bh(&reg_pending_beacons_lock);
3325         processing = pending_reg_beacon(beacon_chan);
3326         spin_unlock_bh(&reg_pending_beacons_lock);
3327 
3328         if (processing)
3329                 return 0;
3330 
3331         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3332         if (!reg_beacon)
3333                 return -ENOMEM;
3334 
3335         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3336                  beacon_chan->center_freq,
3337                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3338                  wiphy_name(wiphy));
3339 
3340         memcpy(&reg_beacon->chan, beacon_chan,
3341                sizeof(struct ieee80211_channel));
3342 
3343         /*
3344          * Since we can be called from BH or and non-BH context
3345          * we must use spin_lock_bh()
3346          */
3347         spin_lock_bh(&reg_pending_beacons_lock);
3348         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3349         spin_unlock_bh(&reg_pending_beacons_lock);
3350 
3351         schedule_work(&reg_work);
3352 
3353         return 0;
3354 }
3355 
3356 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3357 {
3358         unsigned int i;
3359         const struct ieee80211_reg_rule *reg_rule = NULL;
3360         const struct ieee80211_freq_range *freq_range = NULL;
3361         const struct ieee80211_power_rule *power_rule = NULL;
3362         char bw[32], cac_time[32];
3363 
3364         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3365 
3366         for (i = 0; i < rd->n_reg_rules; i++) {
3367                 reg_rule = &rd->reg_rules[i];
3368                 freq_range = &reg_rule->freq_range;
3369                 power_rule = &reg_rule->power_rule;
3370 
3371                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3372                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3373                                  freq_range->max_bandwidth_khz,
3374                                  reg_get_max_bandwidth(rd, reg_rule));
3375                 else
3376                         snprintf(bw, sizeof(bw), "%d KHz",
3377                                  freq_range->max_bandwidth_khz);
3378 
3379                 if (reg_rule->flags & NL80211_RRF_DFS)
3380                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3381                                   reg_rule->dfs_cac_ms/1000);
3382                 else
3383                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3384 
3385 
3386                 /*
3387                  * There may not be documentation for max antenna gain
3388                  * in certain regions
3389                  */
3390                 if (power_rule->max_antenna_gain)
3391                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3392                                 freq_range->start_freq_khz,
3393                                 freq_range->end_freq_khz,
3394                                 bw,
3395                                 power_rule->max_antenna_gain,
3396                                 power_rule->max_eirp,
3397                                 cac_time);
3398                 else
3399                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3400                                 freq_range->start_freq_khz,
3401                                 freq_range->end_freq_khz,
3402                                 bw,
3403                                 power_rule->max_eirp,
3404                                 cac_time);
3405         }
3406 }
3407 
3408 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3409 {
3410         switch (dfs_region) {
3411         case NL80211_DFS_UNSET:
3412         case NL80211_DFS_FCC:
3413         case NL80211_DFS_ETSI:
3414         case NL80211_DFS_JP:
3415                 return true;
3416         default:
3417                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3418                 return false;
3419         }
3420 }
3421 
3422 static void print_regdomain(const struct ieee80211_regdomain *rd)
3423 {
3424         struct regulatory_request *lr = get_last_request();
3425 
3426         if (is_intersected_alpha2(rd->alpha2)) {
3427                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3428                         struct cfg80211_registered_device *rdev;
3429                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3430                         if (rdev) {
3431                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3432                                         rdev->country_ie_alpha2[0],
3433                                         rdev->country_ie_alpha2[1]);
3434                         } else
3435                                 pr_debug("Current regulatory domain intersected:\n");
3436                 } else
3437                         pr_debug("Current regulatory domain intersected:\n");
3438         } else if (is_world_regdom(rd->alpha2)) {
3439                 pr_debug("World regulatory domain updated:\n");
3440         } else {
3441                 if (is_unknown_alpha2(rd->alpha2))
3442                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3443                 else {
3444                         if (reg_request_cell_base(lr))
3445                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3446                                         rd->alpha2[0], rd->alpha2[1]);
3447                         else
3448                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3449                                         rd->alpha2[0], rd->alpha2[1]);
3450                 }
3451         }
3452 
3453         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3454         print_rd_rules(rd);
3455 }
3456 
3457 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3458 {
3459         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3460         print_rd_rules(rd);
3461 }
3462 
3463 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3464 {
3465         if (!is_world_regdom(rd->alpha2))
3466                 return -EINVAL;
3467         update_world_regdomain(rd);
3468         return 0;
3469 }
3470 
3471 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3472                            struct regulatory_request *user_request)
3473 {
3474         const struct ieee80211_regdomain *intersected_rd = NULL;
3475 
3476         if (!regdom_changes(rd->alpha2))
3477                 return -EALREADY;
3478 
3479         if (!is_valid_rd(rd)) {
3480                 pr_err("Invalid regulatory domain detected: %c%c\n",
3481                        rd->alpha2[0], rd->alpha2[1]);
3482                 print_regdomain_info(rd);
3483                 return -EINVAL;
3484         }
3485 
3486         if (!user_request->intersect) {
3487                 reset_regdomains(false, rd);
3488                 return 0;
3489         }
3490 
3491         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3492         if (!intersected_rd)
3493                 return -EINVAL;
3494 
3495         kfree(rd);
3496         rd = NULL;
3497         reset_regdomains(false, intersected_rd);
3498 
3499         return 0;
3500 }
3501 
3502 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3503                              struct regulatory_request *driver_request)
3504 {
3505         const struct ieee80211_regdomain *regd;
3506         const struct ieee80211_regdomain *intersected_rd = NULL;
3507         const struct ieee80211_regdomain *tmp;
3508         struct wiphy *request_wiphy;
3509 
3510         if (is_world_regdom(rd->alpha2))
3511                 return -EINVAL;
3512 
3513         if (!regdom_changes(rd->alpha2))
3514                 return -EALREADY;
3515 
3516         if (!is_valid_rd(rd)) {
3517                 pr_err("Invalid regulatory domain detected: %c%c\n",
3518                        rd->alpha2[0], rd->alpha2[1]);
3519                 print_regdomain_info(rd);
3520                 return -EINVAL;
3521         }
3522 
3523         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3524         if (!request_wiphy)
3525                 return -ENODEV;
3526 
3527         if (!driver_request->intersect) {
3528                 if (request_wiphy->regd)
3529                         return -EALREADY;
3530 
3531                 regd = reg_copy_regd(rd);
3532                 if (IS_ERR(regd))
3533                         return PTR_ERR(regd);
3534 
3535                 rcu_assign_pointer(request_wiphy->regd, regd);
3536                 reset_regdomains(false, rd);
3537                 return 0;
3538         }
3539 
3540         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3541         if (!intersected_rd)
3542                 return -EINVAL;
3543 
3544         /*
3545          * We can trash what CRDA provided now.
3546          * However if a driver requested this specific regulatory
3547          * domain we keep it for its private use
3548          */
3549         tmp = get_wiphy_regdom(request_wiphy);
3550         rcu_assign_pointer(request_wiphy->regd, rd);
3551         rcu_free_regdom(tmp);
3552 
3553         rd = NULL;
3554 
3555         reset_regdomains(false, intersected_rd);
3556 
3557         return 0;
3558 }
3559 
3560 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3561                                  struct regulatory_request *country_ie_request)
3562 {
3563         struct wiphy *request_wiphy;
3564 
3565         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3566             !is_unknown_alpha2(rd->alpha2))
3567                 return -EINVAL;
3568 
3569         /*
3570          * Lets only bother proceeding on the same alpha2 if the current
3571          * rd is non static (it means CRDA was present and was used last)
3572          * and the pending request came in from a country IE
3573          */
3574 
3575         if (!is_valid_rd(rd)) {
3576                 pr_err("Invalid regulatory domain detected: %c%c\n",
3577                        rd->alpha2[0], rd->alpha2[1]);
3578                 print_regdomain_info(rd);
3579                 return -EINVAL;
3580         }
3581 
3582         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3583         if (!request_wiphy)
3584                 return -ENODEV;
3585 
3586         if (country_ie_request->intersect)
3587                 return -EINVAL;
3588 
3589         reset_regdomains(false, rd);
3590         return 0;
3591 }
3592 
3593 /*
3594  * Use this call to set the current regulatory domain. Conflicts with
3595  * multiple drivers can be ironed out later. Caller must've already
3596  * kmalloc'd the rd structure.
3597  */
3598 int set_regdom(const struct ieee80211_regdomain *rd,
3599                enum ieee80211_regd_source regd_src)
3600 {
3601         struct regulatory_request *lr;
3602         bool user_reset = false;
3603         int r;
3604 
3605         if (!reg_is_valid_request(rd->alpha2)) {
3606                 kfree(rd);
3607                 return -EINVAL;
3608         }
3609 
3610         if (regd_src == REGD_SOURCE_CRDA)
3611                 reset_crda_timeouts();
3612 
3613         lr = get_last_request();
3614 
3615         /* Note that this doesn't update the wiphys, this is done below */
3616         switch (lr->initiator) {
3617         case NL80211_REGDOM_SET_BY_CORE:
3618                 r = reg_set_rd_core(rd);
3619                 break;
3620         case NL80211_REGDOM_SET_BY_USER:
3621                 r = reg_set_rd_user(rd, lr);
3622                 user_reset = true;
3623                 break;
3624         case NL80211_REGDOM_SET_BY_DRIVER:
3625                 r = reg_set_rd_driver(rd, lr);
3626                 break;
3627         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3628                 r = reg_set_rd_country_ie(rd, lr);
3629                 break;
3630         default:
3631                 WARN(1, "invalid initiator %d\n", lr->initiator);
3632                 kfree(rd);
3633                 return -EINVAL;
3634         }
3635 
3636         if (r) {
3637                 switch (r) {
3638                 case -EALREADY:
3639                         reg_set_request_processed();
3640                         break;
3641                 default:
3642                         /* Back to world regulatory in case of errors */
3643                         restore_regulatory_settings(user_reset);
3644                 }
3645 
3646                 kfree(rd);
3647                 return r;
3648         }
3649 
3650         /* This would make this whole thing pointless */
3651         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3652                 return -EINVAL;
3653 
3654         /* update all wiphys now with the new established regulatory domain */
3655         update_all_wiphy_regulatory(lr->initiator);
3656 
3657         print_regdomain(get_cfg80211_regdom());
3658 
3659         nl80211_send_reg_change_event(lr);
3660 
3661         reg_set_request_processed();
3662 
3663         return 0;
3664 }
3665 
3666 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3667                                        struct ieee80211_regdomain *rd)
3668 {
3669         const struct ieee80211_regdomain *regd;
3670         const struct ieee80211_regdomain *prev_regd;
3671         struct cfg80211_registered_device *rdev;
3672 
3673         if (WARN_ON(!wiphy || !rd))
3674                 return -EINVAL;
3675 
3676         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3677                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3678                 return -EPERM;
3679 
3680         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3681                 print_regdomain_info(rd);
3682                 return -EINVAL;
3683         }
3684 
3685         regd = reg_copy_regd(rd);
3686         if (IS_ERR(regd))
3687                 return PTR_ERR(regd);
3688 
3689         rdev = wiphy_to_rdev(wiphy);
3690 
3691         spin_lock(&reg_requests_lock);
3692         prev_regd = rdev->requested_regd;
3693         rdev->requested_regd = regd;
3694         spin_unlock(&reg_requests_lock);
3695 
3696         kfree(prev_regd);
3697         return 0;
3698 }
3699 
3700 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3701                               struct ieee80211_regdomain *rd)
3702 {
3703         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3704 
3705         if (ret)
3706                 return ret;
3707 
3708         schedule_work(&reg_work);
3709         return 0;
3710 }
3711 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3712 
3713 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3714                                         struct ieee80211_regdomain *rd)
3715 {
3716         int ret;
3717 
3718         ASSERT_RTNL();
3719 
3720         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3721         if (ret)
3722                 return ret;
3723 
3724         /* process the request immediately */
3725         reg_process_self_managed_hints();
3726         return 0;
3727 }
3728 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3729 
3730 void wiphy_regulatory_register(struct wiphy *wiphy)
3731 {
3732         struct regulatory_request *lr = get_last_request();
3733 
3734         /* self-managed devices ignore beacon hints and country IE */
3735         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3736                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3737                                            REGULATORY_COUNTRY_IE_IGNORE;
3738 
3739                 /*
3740                  * The last request may have been received before this
3741                  * registration call. Call the driver notifier if
3742                  * initiator is USER and user type is CELL_BASE.
3743                  */
3744                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3745                     lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3746                         reg_call_notifier(wiphy, lr);
3747         }
3748 
3749         if (!reg_dev_ignore_cell_hint(wiphy))
3750                 reg_num_devs_support_basehint++;
3751 
3752         wiphy_update_regulatory(wiphy, lr->initiator);
3753         wiphy_all_share_dfs_chan_state(wiphy);
3754 }
3755 
3756 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3757 {
3758         struct wiphy *request_wiphy = NULL;
3759         struct regulatory_request *lr;
3760 
3761         lr = get_last_request();
3762 
3763         if (!reg_dev_ignore_cell_hint(wiphy))
3764                 reg_num_devs_support_basehint--;
3765 
3766         rcu_free_regdom(get_wiphy_regdom(wiphy));
3767         RCU_INIT_POINTER(wiphy->regd, NULL);
3768 
3769         if (lr)
3770                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3771 
3772         if (!request_wiphy || request_wiphy != wiphy)
3773                 return;
3774 
3775         lr->wiphy_idx = WIPHY_IDX_INVALID;
3776         lr->country_ie_env = ENVIRON_ANY;
3777 }
3778 
3779 /*
3780  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3781  * UNII band definitions
3782  */
3783 int cfg80211_get_unii(int freq)
3784 {
3785         /* UNII-1 */
3786         if (freq >= 5150 && freq <= 5250)
3787                 return 0;
3788 
3789         /* UNII-2A */
3790         if (freq > 5250 && freq <= 5350)
3791                 return 1;
3792 
3793         /* UNII-2B */
3794         if (freq > 5350 && freq <= 5470)
3795                 return 2;
3796 
3797         /* UNII-2C */
3798         if (freq > 5470 && freq <= 5725)
3799                 return 3;
3800 
3801         /* UNII-3 */
3802         if (freq > 5725 && freq <= 5825)
3803                 return 4;
3804 
3805         return -EINVAL;
3806 }
3807 
3808 bool regulatory_indoor_allowed(void)
3809 {
3810         return reg_is_indoor;
3811 }
3812 
3813 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3814 {
3815         const struct ieee80211_regdomain *regd = NULL;
3816         const struct ieee80211_regdomain *wiphy_regd = NULL;
3817         bool pre_cac_allowed = false;
3818 
3819         rcu_read_lock();
3820 
3821         regd = rcu_dereference(cfg80211_regdomain);
3822         wiphy_regd = rcu_dereference(wiphy->regd);
3823         if (!wiphy_regd) {
3824                 if (regd->dfs_region == NL80211_DFS_ETSI)
3825                         pre_cac_allowed = true;
3826 
3827                 rcu_read_unlock();
3828 
3829                 return pre_cac_allowed;
3830         }
3831 
3832         if (regd->dfs_region == wiphy_regd->dfs_region &&
3833             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3834                 pre_cac_allowed = true;
3835 
3836         rcu_read_unlock();
3837 
3838         return pre_cac_allowed;
3839 }
3840 
3841 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3842                                     struct cfg80211_chan_def *chandef,
3843                                     enum nl80211_dfs_state dfs_state,
3844                                     enum nl80211_radar_event event)
3845 {
3846         struct cfg80211_registered_device *rdev;
3847 
3848         ASSERT_RTNL();
3849 
3850         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3851                 return;
3852 
3853         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3854                 if (wiphy == &rdev->wiphy)
3855                         continue;
3856 
3857                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3858                         continue;
3859 
3860                 if (!ieee80211_get_channel(&rdev->wiphy,
3861                                            chandef->chan->center_freq))
3862                         continue;
3863 
3864                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3865 
3866                 if (event == NL80211_RADAR_DETECTED ||
3867                     event == NL80211_RADAR_CAC_FINISHED)
3868                         cfg80211_sched_dfs_chan_update(rdev);
3869 
3870                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3871         }
3872 }
3873 
3874 static int __init regulatory_init_db(void)
3875 {
3876         int err;
3877 
3878         /*
3879          * It's possible that - due to other bugs/issues - cfg80211
3880          * never called regulatory_init() below, or that it failed;
3881          * in that case, don't try to do any further work here as
3882          * it's doomed to lead to crashes.
3883          */
3884         if (IS_ERR_OR_NULL(reg_pdev))
3885                 return -EINVAL;
3886 
3887         err = load_builtin_regdb_keys();
3888         if (err)
3889                 return err;
3890 
3891         /* We always try to get an update for the static regdomain */
3892         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3893         if (err) {
3894                 if (err == -ENOMEM) {
3895                         platform_device_unregister(reg_pdev);
3896                         return err;
3897                 }
3898                 /*
3899                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3900                  * memory which is handled and propagated appropriately above
3901                  * but it can also fail during a netlink_broadcast() or during
3902                  * early boot for call_usermodehelper(). For now treat these
3903                  * errors as non-fatal.
3904                  */
3905                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3906         }
3907 
3908         /*
3909          * Finally, if the user set the module parameter treat it
3910          * as a user hint.
3911          */
3912         if (!is_world_regdom(ieee80211_regdom))
3913                 regulatory_hint_user(ieee80211_regdom,
3914                                      NL80211_USER_REG_HINT_USER);
3915 
3916         return 0;
3917 }
3918 #ifndef MODULE
3919 late_initcall(regulatory_init_db);
3920 #endif
3921 
3922 int __init regulatory_init(void)
3923 {
3924         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3925         if (IS_ERR(reg_pdev))
3926                 return PTR_ERR(reg_pdev);
3927 
3928         spin_lock_init(&reg_requests_lock);
3929         spin_lock_init(&reg_pending_beacons_lock);
3930         spin_lock_init(&reg_indoor_lock);
3931 
3932         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3933 
3934         user_alpha2[0] = '9';
3935         user_alpha2[1] = '7';
3936 
3937 #ifdef MODULE
3938         return regulatory_init_db();
3939 #else
3940         return 0;
3941 #endif
3942 }
3943 
3944 void regulatory_exit(void)
3945 {
3946         struct regulatory_request *reg_request, *tmp;
3947         struct reg_beacon *reg_beacon, *btmp;
3948 
3949         cancel_work_sync(&reg_work);
3950         cancel_crda_timeout_sync();
3951         cancel_delayed_work_sync(&reg_check_chans);
3952 
3953         /* Lock to suppress warnings */
3954         rtnl_lock();
3955         reset_regdomains(true, NULL);
3956         rtnl_unlock();
3957 
3958         dev_set_uevent_suppress(&reg_pdev->dev, true);
3959 
3960         platform_device_unregister(reg_pdev);
3961 
3962         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3963                 list_del(&reg_beacon->list);
3964                 kfree(reg_beacon);
3965         }
3966 
3967         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3968                 list_del(&reg_beacon->list);
3969                 kfree(reg_beacon);
3970         }
3971 
3972         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3973                 list_del(&reg_request->list);
3974                 kfree(reg_request);
3975         }
3976 
3977         if (!IS_ERR_OR_NULL(regdb))
3978                 kfree(regdb);
3979 
3980         free_regdb_keyring();
3981 }
3982 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp