~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/wireless/util.c

Version: ~ [ linux-5.5-rc7 ] ~ [ linux-5.4.13 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.97 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.166 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.210 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.210 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.81 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Wireless utility functions
  3  *
  4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
  5  */
  6 #include <linux/export.h>
  7 #include <linux/bitops.h>
  8 #include <linux/etherdevice.h>
  9 #include <linux/slab.h>
 10 #include <net/cfg80211.h>
 11 #include <net/ip.h>
 12 #include <net/dsfield.h>
 13 #include "core.h"
 14 #include "rdev-ops.h"
 15 
 16 
 17 struct ieee80211_rate *
 18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
 19                             u32 basic_rates, int bitrate)
 20 {
 21         struct ieee80211_rate *result = &sband->bitrates[0];
 22         int i;
 23 
 24         for (i = 0; i < sband->n_bitrates; i++) {
 25                 if (!(basic_rates & BIT(i)))
 26                         continue;
 27                 if (sband->bitrates[i].bitrate > bitrate)
 28                         continue;
 29                 result = &sband->bitrates[i];
 30         }
 31 
 32         return result;
 33 }
 34 EXPORT_SYMBOL(ieee80211_get_response_rate);
 35 
 36 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
 37                               enum nl80211_bss_scan_width scan_width)
 38 {
 39         struct ieee80211_rate *bitrates;
 40         u32 mandatory_rates = 0;
 41         enum ieee80211_rate_flags mandatory_flag;
 42         int i;
 43 
 44         if (WARN_ON(!sband))
 45                 return 1;
 46 
 47         if (sband->band == IEEE80211_BAND_2GHZ) {
 48                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
 49                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
 50                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
 51                 else
 52                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
 53         } else {
 54                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 55         }
 56 
 57         bitrates = sband->bitrates;
 58         for (i = 0; i < sband->n_bitrates; i++)
 59                 if (bitrates[i].flags & mandatory_flag)
 60                         mandatory_rates |= BIT(i);
 61         return mandatory_rates;
 62 }
 63 EXPORT_SYMBOL(ieee80211_mandatory_rates);
 64 
 65 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
 66 {
 67         /* see 802.11 17.3.8.3.2 and Annex J
 68          * there are overlapping channel numbers in 5GHz and 2GHz bands */
 69         if (chan <= 0)
 70                 return 0; /* not supported */
 71         switch (band) {
 72         case IEEE80211_BAND_2GHZ:
 73                 if (chan == 14)
 74                         return 2484;
 75                 else if (chan < 14)
 76                         return 2407 + chan * 5;
 77                 break;
 78         case IEEE80211_BAND_5GHZ:
 79                 if (chan >= 182 && chan <= 196)
 80                         return 4000 + chan * 5;
 81                 else
 82                         return 5000 + chan * 5;
 83                 break;
 84         case IEEE80211_BAND_60GHZ:
 85                 if (chan < 5)
 86                         return 56160 + chan * 2160;
 87                 break;
 88         default:
 89                 ;
 90         }
 91         return 0; /* not supported */
 92 }
 93 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 94 
 95 int ieee80211_frequency_to_channel(int freq)
 96 {
 97         /* see 802.11 17.3.8.3.2 and Annex J */
 98         if (freq == 2484)
 99                 return 14;
100         else if (freq < 2484)
101                 return (freq - 2407) / 5;
102         else if (freq >= 4910 && freq <= 4980)
103                 return (freq - 4000) / 5;
104         else if (freq <= 45000) /* DMG band lower limit */
105                 return (freq - 5000) / 5;
106         else if (freq >= 58320 && freq <= 64800)
107                 return (freq - 56160) / 2160;
108         else
109                 return 0;
110 }
111 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
112 
113 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
114                                                   int freq)
115 {
116         enum ieee80211_band band;
117         struct ieee80211_supported_band *sband;
118         int i;
119 
120         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
121                 sband = wiphy->bands[band];
122 
123                 if (!sband)
124                         continue;
125 
126                 for (i = 0; i < sband->n_channels; i++) {
127                         if (sband->channels[i].center_freq == freq)
128                                 return &sband->channels[i];
129                 }
130         }
131 
132         return NULL;
133 }
134 EXPORT_SYMBOL(__ieee80211_get_channel);
135 
136 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
137                                      enum ieee80211_band band)
138 {
139         int i, want;
140 
141         switch (band) {
142         case IEEE80211_BAND_5GHZ:
143                 want = 3;
144                 for (i = 0; i < sband->n_bitrates; i++) {
145                         if (sband->bitrates[i].bitrate == 60 ||
146                             sband->bitrates[i].bitrate == 120 ||
147                             sband->bitrates[i].bitrate == 240) {
148                                 sband->bitrates[i].flags |=
149                                         IEEE80211_RATE_MANDATORY_A;
150                                 want--;
151                         }
152                 }
153                 WARN_ON(want);
154                 break;
155         case IEEE80211_BAND_2GHZ:
156                 want = 7;
157                 for (i = 0; i < sband->n_bitrates; i++) {
158                         if (sband->bitrates[i].bitrate == 10) {
159                                 sband->bitrates[i].flags |=
160                                         IEEE80211_RATE_MANDATORY_B |
161                                         IEEE80211_RATE_MANDATORY_G;
162                                 want--;
163                         }
164 
165                         if (sband->bitrates[i].bitrate == 20 ||
166                             sband->bitrates[i].bitrate == 55 ||
167                             sband->bitrates[i].bitrate == 110 ||
168                             sband->bitrates[i].bitrate == 60 ||
169                             sband->bitrates[i].bitrate == 120 ||
170                             sband->bitrates[i].bitrate == 240) {
171                                 sband->bitrates[i].flags |=
172                                         IEEE80211_RATE_MANDATORY_G;
173                                 want--;
174                         }
175 
176                         if (sband->bitrates[i].bitrate != 10 &&
177                             sband->bitrates[i].bitrate != 20 &&
178                             sband->bitrates[i].bitrate != 55 &&
179                             sband->bitrates[i].bitrate != 110)
180                                 sband->bitrates[i].flags |=
181                                         IEEE80211_RATE_ERP_G;
182                 }
183                 WARN_ON(want != 0 && want != 3 && want != 6);
184                 break;
185         case IEEE80211_BAND_60GHZ:
186                 /* check for mandatory HT MCS 1..4 */
187                 WARN_ON(!sband->ht_cap.ht_supported);
188                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
189                 break;
190         case IEEE80211_NUM_BANDS:
191                 WARN_ON(1);
192                 break;
193         }
194 }
195 
196 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
197 {
198         enum ieee80211_band band;
199 
200         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
201                 if (wiphy->bands[band])
202                         set_mandatory_flags_band(wiphy->bands[band], band);
203 }
204 
205 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
206 {
207         int i;
208         for (i = 0; i < wiphy->n_cipher_suites; i++)
209                 if (cipher == wiphy->cipher_suites[i])
210                         return true;
211         return false;
212 }
213 
214 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
215                                    struct key_params *params, int key_idx,
216                                    bool pairwise, const u8 *mac_addr)
217 {
218         if (key_idx > 5)
219                 return -EINVAL;
220 
221         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
222                 return -EINVAL;
223 
224         if (pairwise && !mac_addr)
225                 return -EINVAL;
226 
227         /*
228          * Disallow pairwise keys with non-zero index unless it's WEP
229          * or a vendor specific cipher (because current deployments use
230          * pairwise WEP keys with non-zero indices and for vendor specific
231          * ciphers this should be validated in the driver or hardware level
232          * - but 802.11i clearly specifies to use zero)
233          */
234         if (pairwise && key_idx &&
235             ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
236              (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
237              (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
238                 return -EINVAL;
239 
240         switch (params->cipher) {
241         case WLAN_CIPHER_SUITE_WEP40:
242                 if (params->key_len != WLAN_KEY_LEN_WEP40)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_TKIP:
246                 if (params->key_len != WLAN_KEY_LEN_TKIP)
247                         return -EINVAL;
248                 break;
249         case WLAN_CIPHER_SUITE_CCMP:
250                 if (params->key_len != WLAN_KEY_LEN_CCMP)
251                         return -EINVAL;
252                 break;
253         case WLAN_CIPHER_SUITE_WEP104:
254                 if (params->key_len != WLAN_KEY_LEN_WEP104)
255                         return -EINVAL;
256                 break;
257         case WLAN_CIPHER_SUITE_AES_CMAC:
258                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
259                         return -EINVAL;
260                 break;
261         default:
262                 /*
263                  * We don't know anything about this algorithm,
264                  * allow using it -- but the driver must check
265                  * all parameters! We still check below whether
266                  * or not the driver supports this algorithm,
267                  * of course.
268                  */
269                 break;
270         }
271 
272         if (params->seq) {
273                 switch (params->cipher) {
274                 case WLAN_CIPHER_SUITE_WEP40:
275                 case WLAN_CIPHER_SUITE_WEP104:
276                         /* These ciphers do not use key sequence */
277                         return -EINVAL;
278                 case WLAN_CIPHER_SUITE_TKIP:
279                 case WLAN_CIPHER_SUITE_CCMP:
280                 case WLAN_CIPHER_SUITE_AES_CMAC:
281                         if (params->seq_len != 6)
282                                 return -EINVAL;
283                         break;
284                 }
285         }
286 
287         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
288                 return -EINVAL;
289 
290         return 0;
291 }
292 
293 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
294 {
295         unsigned int hdrlen = 24;
296 
297         if (ieee80211_is_data(fc)) {
298                 if (ieee80211_has_a4(fc))
299                         hdrlen = 30;
300                 if (ieee80211_is_data_qos(fc)) {
301                         hdrlen += IEEE80211_QOS_CTL_LEN;
302                         if (ieee80211_has_order(fc))
303                                 hdrlen += IEEE80211_HT_CTL_LEN;
304                 }
305                 goto out;
306         }
307 
308         if (ieee80211_is_ctl(fc)) {
309                 /*
310                  * ACK and CTS are 10 bytes, all others 16. To see how
311                  * to get this condition consider
312                  *   subtype mask:   0b0000000011110000 (0x00F0)
313                  *   ACK subtype:    0b0000000011010000 (0x00D0)
314                  *   CTS subtype:    0b0000000011000000 (0x00C0)
315                  *   bits that matter:         ^^^      (0x00E0)
316                  *   value of those: 0b0000000011000000 (0x00C0)
317                  */
318                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
319                         hdrlen = 10;
320                 else
321                         hdrlen = 16;
322         }
323 out:
324         return hdrlen;
325 }
326 EXPORT_SYMBOL(ieee80211_hdrlen);
327 
328 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
329 {
330         const struct ieee80211_hdr *hdr =
331                         (const struct ieee80211_hdr *)skb->data;
332         unsigned int hdrlen;
333 
334         if (unlikely(skb->len < 10))
335                 return 0;
336         hdrlen = ieee80211_hdrlen(hdr->frame_control);
337         if (unlikely(hdrlen > skb->len))
338                 return 0;
339         return hdrlen;
340 }
341 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
342 
343 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
344 {
345         int ae = meshhdr->flags & MESH_FLAGS_AE;
346         /* 802.11-2012, 8.2.4.7.3 */
347         switch (ae) {
348         default:
349         case 0:
350                 return 6;
351         case MESH_FLAGS_AE_A4:
352                 return 12;
353         case MESH_FLAGS_AE_A5_A6:
354                 return 18;
355         }
356 }
357 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
358 
359 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
360                            enum nl80211_iftype iftype)
361 {
362         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
363         u16 hdrlen, ethertype;
364         u8 *payload;
365         u8 dst[ETH_ALEN];
366         u8 src[ETH_ALEN] __aligned(2);
367 
368         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
369                 return -1;
370 
371         hdrlen = ieee80211_hdrlen(hdr->frame_control);
372 
373         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
374          * header
375          * IEEE 802.11 address fields:
376          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
377          *   0     0   DA    SA    BSSID n/a
378          *   0     1   DA    BSSID SA    n/a
379          *   1     0   BSSID SA    DA    n/a
380          *   1     1   RA    TA    DA    SA
381          */
382         memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
383         memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
384 
385         switch (hdr->frame_control &
386                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
387         case cpu_to_le16(IEEE80211_FCTL_TODS):
388                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
389                              iftype != NL80211_IFTYPE_AP_VLAN &&
390                              iftype != NL80211_IFTYPE_P2P_GO))
391                         return -1;
392                 break;
393         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
394                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
395                              iftype != NL80211_IFTYPE_MESH_POINT &&
396                              iftype != NL80211_IFTYPE_AP_VLAN &&
397                              iftype != NL80211_IFTYPE_STATION))
398                         return -1;
399                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
400                         struct ieee80211s_hdr *meshdr =
401                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
402                         /* make sure meshdr->flags is on the linear part */
403                         if (!pskb_may_pull(skb, hdrlen + 1))
404                                 return -1;
405                         if (meshdr->flags & MESH_FLAGS_AE_A4)
406                                 return -1;
407                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
408                                 skb_copy_bits(skb, hdrlen +
409                                         offsetof(struct ieee80211s_hdr, eaddr1),
410                                         dst, ETH_ALEN);
411                                 skb_copy_bits(skb, hdrlen +
412                                         offsetof(struct ieee80211s_hdr, eaddr2),
413                                         src, ETH_ALEN);
414                         }
415                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
416                 }
417                 break;
418         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
419                 if ((iftype != NL80211_IFTYPE_STATION &&
420                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
421                      iftype != NL80211_IFTYPE_MESH_POINT) ||
422                     (is_multicast_ether_addr(dst) &&
423                      ether_addr_equal(src, addr)))
424                         return -1;
425                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
426                         struct ieee80211s_hdr *meshdr =
427                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
428                         /* make sure meshdr->flags is on the linear part */
429                         if (!pskb_may_pull(skb, hdrlen + 1))
430                                 return -1;
431                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
432                                 return -1;
433                         if (meshdr->flags & MESH_FLAGS_AE_A4)
434                                 skb_copy_bits(skb, hdrlen +
435                                         offsetof(struct ieee80211s_hdr, eaddr1),
436                                         src, ETH_ALEN);
437                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
438                 }
439                 break;
440         case cpu_to_le16(0):
441                 if (iftype != NL80211_IFTYPE_ADHOC &&
442                     iftype != NL80211_IFTYPE_STATION)
443                                 return -1;
444                 break;
445         }
446 
447         if (!pskb_may_pull(skb, hdrlen + 8))
448                 return -1;
449 
450         payload = skb->data + hdrlen;
451         ethertype = (payload[6] << 8) | payload[7];
452 
453         if (likely((ether_addr_equal(payload, rfc1042_header) &&
454                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
455                    ether_addr_equal(payload, bridge_tunnel_header))) {
456                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
457                  * replace EtherType */
458                 skb_pull(skb, hdrlen + 6);
459                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
460                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
461         } else {
462                 struct ethhdr *ehdr;
463                 __be16 len;
464 
465                 skb_pull(skb, hdrlen);
466                 len = htons(skb->len);
467                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
468                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
469                 memcpy(ehdr->h_source, src, ETH_ALEN);
470                 ehdr->h_proto = len;
471         }
472         return 0;
473 }
474 EXPORT_SYMBOL(ieee80211_data_to_8023);
475 
476 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
477                              enum nl80211_iftype iftype, u8 *bssid, bool qos)
478 {
479         struct ieee80211_hdr hdr;
480         u16 hdrlen, ethertype;
481         __le16 fc;
482         const u8 *encaps_data;
483         int encaps_len, skip_header_bytes;
484         int nh_pos, h_pos;
485         int head_need;
486 
487         if (unlikely(skb->len < ETH_HLEN))
488                 return -EINVAL;
489 
490         nh_pos = skb_network_header(skb) - skb->data;
491         h_pos = skb_transport_header(skb) - skb->data;
492 
493         /* convert Ethernet header to proper 802.11 header (based on
494          * operation mode) */
495         ethertype = (skb->data[12] << 8) | skb->data[13];
496         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
497 
498         switch (iftype) {
499         case NL80211_IFTYPE_AP:
500         case NL80211_IFTYPE_AP_VLAN:
501         case NL80211_IFTYPE_P2P_GO:
502                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
503                 /* DA BSSID SA */
504                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
505                 memcpy(hdr.addr2, addr, ETH_ALEN);
506                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
507                 hdrlen = 24;
508                 break;
509         case NL80211_IFTYPE_STATION:
510         case NL80211_IFTYPE_P2P_CLIENT:
511                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
512                 /* BSSID SA DA */
513                 memcpy(hdr.addr1, bssid, ETH_ALEN);
514                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
515                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
516                 hdrlen = 24;
517                 break;
518         case NL80211_IFTYPE_ADHOC:
519                 /* DA SA BSSID */
520                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
521                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
522                 memcpy(hdr.addr3, bssid, ETH_ALEN);
523                 hdrlen = 24;
524                 break;
525         default:
526                 return -EOPNOTSUPP;
527         }
528 
529         if (qos) {
530                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
531                 hdrlen += 2;
532         }
533 
534         hdr.frame_control = fc;
535         hdr.duration_id = 0;
536         hdr.seq_ctrl = 0;
537 
538         skip_header_bytes = ETH_HLEN;
539         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
540                 encaps_data = bridge_tunnel_header;
541                 encaps_len = sizeof(bridge_tunnel_header);
542                 skip_header_bytes -= 2;
543         } else if (ethertype >= ETH_P_802_3_MIN) {
544                 encaps_data = rfc1042_header;
545                 encaps_len = sizeof(rfc1042_header);
546                 skip_header_bytes -= 2;
547         } else {
548                 encaps_data = NULL;
549                 encaps_len = 0;
550         }
551 
552         skb_pull(skb, skip_header_bytes);
553         nh_pos -= skip_header_bytes;
554         h_pos -= skip_header_bytes;
555 
556         head_need = hdrlen + encaps_len - skb_headroom(skb);
557 
558         if (head_need > 0 || skb_cloned(skb)) {
559                 head_need = max(head_need, 0);
560                 if (head_need)
561                         skb_orphan(skb);
562 
563                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
564                         return -ENOMEM;
565 
566                 skb->truesize += head_need;
567         }
568 
569         if (encaps_data) {
570                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
571                 nh_pos += encaps_len;
572                 h_pos += encaps_len;
573         }
574 
575         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
576 
577         nh_pos += hdrlen;
578         h_pos += hdrlen;
579 
580         /* Update skb pointers to various headers since this modified frame
581          * is going to go through Linux networking code that may potentially
582          * need things like pointer to IP header. */
583         skb_set_mac_header(skb, 0);
584         skb_set_network_header(skb, nh_pos);
585         skb_set_transport_header(skb, h_pos);
586 
587         return 0;
588 }
589 EXPORT_SYMBOL(ieee80211_data_from_8023);
590 
591 
592 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
593                               const u8 *addr, enum nl80211_iftype iftype,
594                               const unsigned int extra_headroom,
595                               bool has_80211_header)
596 {
597         struct sk_buff *frame = NULL;
598         u16 ethertype;
599         u8 *payload;
600         const struct ethhdr *eth;
601         int remaining, err;
602         u8 dst[ETH_ALEN], src[ETH_ALEN];
603 
604         if (has_80211_header) {
605                 err = ieee80211_data_to_8023(skb, addr, iftype);
606                 if (err)
607                         goto out;
608 
609                 /* skip the wrapping header */
610                 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
611                 if (!eth)
612                         goto out;
613         } else {
614                 eth = (struct ethhdr *) skb->data;
615         }
616 
617         while (skb != frame) {
618                 u8 padding;
619                 __be16 len = eth->h_proto;
620                 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
621 
622                 remaining = skb->len;
623                 memcpy(dst, eth->h_dest, ETH_ALEN);
624                 memcpy(src, eth->h_source, ETH_ALEN);
625 
626                 padding = (4 - subframe_len) & 0x3;
627                 /* the last MSDU has no padding */
628                 if (subframe_len > remaining)
629                         goto purge;
630 
631                 skb_pull(skb, sizeof(struct ethhdr));
632                 /* reuse skb for the last subframe */
633                 if (remaining <= subframe_len + padding)
634                         frame = skb;
635                 else {
636                         unsigned int hlen = ALIGN(extra_headroom, 4);
637                         /*
638                          * Allocate and reserve two bytes more for payload
639                          * alignment since sizeof(struct ethhdr) is 14.
640                          */
641                         frame = dev_alloc_skb(hlen + subframe_len + 2);
642                         if (!frame)
643                                 goto purge;
644 
645                         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
646                         memcpy(skb_put(frame, ntohs(len)), skb->data,
647                                 ntohs(len));
648 
649                         eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
650                                                         padding);
651                         if (!eth) {
652                                 dev_kfree_skb(frame);
653                                 goto purge;
654                         }
655                 }
656 
657                 skb_reset_network_header(frame);
658                 frame->dev = skb->dev;
659                 frame->priority = skb->priority;
660 
661                 payload = frame->data;
662                 ethertype = (payload[6] << 8) | payload[7];
663 
664                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
665                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
666                            ether_addr_equal(payload, bridge_tunnel_header))) {
667                         /* remove RFC1042 or Bridge-Tunnel
668                          * encapsulation and replace EtherType */
669                         skb_pull(frame, 6);
670                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
671                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
672                 } else {
673                         memcpy(skb_push(frame, sizeof(__be16)), &len,
674                                 sizeof(__be16));
675                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
676                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
677                 }
678                 __skb_queue_tail(list, frame);
679         }
680 
681         return;
682 
683  purge:
684         __skb_queue_purge(list);
685  out:
686         dev_kfree_skb(skb);
687 }
688 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
689 
690 /* Given a data frame determine the 802.1p/1d tag to use. */
691 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
692 {
693         unsigned int dscp;
694 
695         /* skb->priority values from 256->263 are magic values to
696          * directly indicate a specific 802.1d priority.  This is used
697          * to allow 802.1d priority to be passed directly in from VLAN
698          * tags, etc.
699          */
700         if (skb->priority >= 256 && skb->priority <= 263)
701                 return skb->priority - 256;
702 
703         switch (skb->protocol) {
704         case htons(ETH_P_IP):
705                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
706                 break;
707         case htons(ETH_P_IPV6):
708                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
709                 break;
710         default:
711                 return 0;
712         }
713 
714         return dscp >> 5;
715 }
716 EXPORT_SYMBOL(cfg80211_classify8021d);
717 
718 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
719 {
720         const struct cfg80211_bss_ies *ies;
721 
722         ies = rcu_dereference(bss->ies);
723         if (!ies)
724                 return NULL;
725 
726         return cfg80211_find_ie(ie, ies->data, ies->len);
727 }
728 EXPORT_SYMBOL(ieee80211_bss_get_ie);
729 
730 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
731 {
732         struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
733         struct net_device *dev = wdev->netdev;
734         int i;
735 
736         if (!wdev->connect_keys)
737                 return;
738 
739         for (i = 0; i < 6; i++) {
740                 if (!wdev->connect_keys->params[i].cipher)
741                         continue;
742                 if (rdev_add_key(rdev, dev, i, false, NULL,
743                                  &wdev->connect_keys->params[i])) {
744                         netdev_err(dev, "failed to set key %d\n", i);
745                         continue;
746                 }
747                 if (wdev->connect_keys->def == i)
748                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
749                                 netdev_err(dev, "failed to set defkey %d\n", i);
750                                 continue;
751                         }
752                 if (wdev->connect_keys->defmgmt == i)
753                         if (rdev_set_default_mgmt_key(rdev, dev, i))
754                                 netdev_err(dev, "failed to set mgtdef %d\n", i);
755         }
756 
757         kfree(wdev->connect_keys);
758         wdev->connect_keys = NULL;
759 }
760 
761 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
762 {
763         struct cfg80211_event *ev;
764         unsigned long flags;
765         const u8 *bssid = NULL;
766 
767         spin_lock_irqsave(&wdev->event_lock, flags);
768         while (!list_empty(&wdev->event_list)) {
769                 ev = list_first_entry(&wdev->event_list,
770                                       struct cfg80211_event, list);
771                 list_del(&ev->list);
772                 spin_unlock_irqrestore(&wdev->event_lock, flags);
773 
774                 wdev_lock(wdev);
775                 switch (ev->type) {
776                 case EVENT_CONNECT_RESULT:
777                         if (!is_zero_ether_addr(ev->cr.bssid))
778                                 bssid = ev->cr.bssid;
779                         __cfg80211_connect_result(
780                                 wdev->netdev, bssid,
781                                 ev->cr.req_ie, ev->cr.req_ie_len,
782                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
783                                 ev->cr.status,
784                                 ev->cr.status == WLAN_STATUS_SUCCESS,
785                                 NULL);
786                         break;
787                 case EVENT_ROAMED:
788                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
789                                           ev->rm.req_ie_len, ev->rm.resp_ie,
790                                           ev->rm.resp_ie_len);
791                         break;
792                 case EVENT_DISCONNECTED:
793                         __cfg80211_disconnected(wdev->netdev,
794                                                 ev->dc.ie, ev->dc.ie_len,
795                                                 ev->dc.reason, true);
796                         break;
797                 case EVENT_IBSS_JOINED:
798                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
799                         break;
800                 }
801                 wdev_unlock(wdev);
802 
803                 kfree(ev);
804 
805                 spin_lock_irqsave(&wdev->event_lock, flags);
806         }
807         spin_unlock_irqrestore(&wdev->event_lock, flags);
808 }
809 
810 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
811 {
812         struct wireless_dev *wdev;
813 
814         ASSERT_RTNL();
815         ASSERT_RDEV_LOCK(rdev);
816 
817         list_for_each_entry(wdev, &rdev->wdev_list, list)
818                 cfg80211_process_wdev_events(wdev);
819 }
820 
821 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
822                           struct net_device *dev, enum nl80211_iftype ntype,
823                           u32 *flags, struct vif_params *params)
824 {
825         int err;
826         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
827 
828         ASSERT_RDEV_LOCK(rdev);
829 
830         /* don't support changing VLANs, you just re-create them */
831         if (otype == NL80211_IFTYPE_AP_VLAN)
832                 return -EOPNOTSUPP;
833 
834         /* cannot change into P2P device type */
835         if (ntype == NL80211_IFTYPE_P2P_DEVICE)
836                 return -EOPNOTSUPP;
837 
838         if (!rdev->ops->change_virtual_intf ||
839             !(rdev->wiphy.interface_modes & (1 << ntype)))
840                 return -EOPNOTSUPP;
841 
842         /* if it's part of a bridge, reject changing type to station/ibss */
843         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
844             (ntype == NL80211_IFTYPE_ADHOC ||
845              ntype == NL80211_IFTYPE_STATION ||
846              ntype == NL80211_IFTYPE_P2P_CLIENT))
847                 return -EBUSY;
848 
849         if (ntype != otype && netif_running(dev)) {
850                 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
851                                                     ntype);
852                 if (err)
853                         return err;
854 
855                 dev->ieee80211_ptr->use_4addr = false;
856                 dev->ieee80211_ptr->mesh_id_up_len = 0;
857 
858                 switch (otype) {
859                 case NL80211_IFTYPE_AP:
860                         cfg80211_stop_ap(rdev, dev);
861                         break;
862                 case NL80211_IFTYPE_ADHOC:
863                         cfg80211_leave_ibss(rdev, dev, false);
864                         break;
865                 case NL80211_IFTYPE_STATION:
866                 case NL80211_IFTYPE_P2P_CLIENT:
867                         wdev_lock(dev->ieee80211_ptr);
868                         cfg80211_disconnect(rdev, dev,
869                                             WLAN_REASON_DEAUTH_LEAVING, true);
870                         wdev_unlock(dev->ieee80211_ptr);
871                         break;
872                 case NL80211_IFTYPE_MESH_POINT:
873                         /* mesh should be handled? */
874                         break;
875                 default:
876                         break;
877                 }
878 
879                 cfg80211_process_rdev_events(rdev);
880         }
881 
882         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
883 
884         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
885 
886         if (!err && params && params->use_4addr != -1)
887                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
888 
889         if (!err) {
890                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
891                 switch (ntype) {
892                 case NL80211_IFTYPE_STATION:
893                         if (dev->ieee80211_ptr->use_4addr)
894                                 break;
895                         /* fall through */
896                 case NL80211_IFTYPE_P2P_CLIENT:
897                 case NL80211_IFTYPE_ADHOC:
898                         dev->priv_flags |= IFF_DONT_BRIDGE;
899                         break;
900                 case NL80211_IFTYPE_P2P_GO:
901                 case NL80211_IFTYPE_AP:
902                 case NL80211_IFTYPE_AP_VLAN:
903                 case NL80211_IFTYPE_WDS:
904                 case NL80211_IFTYPE_MESH_POINT:
905                         /* bridging OK */
906                         break;
907                 case NL80211_IFTYPE_MONITOR:
908                         /* monitor can't bridge anyway */
909                         break;
910                 case NL80211_IFTYPE_UNSPECIFIED:
911                 case NUM_NL80211_IFTYPES:
912                         /* not happening */
913                         break;
914                 case NL80211_IFTYPE_P2P_DEVICE:
915                         WARN_ON(1);
916                         break;
917                 }
918         }
919 
920         if (!err && ntype != otype && netif_running(dev)) {
921                 cfg80211_update_iface_num(rdev, ntype, 1);
922                 cfg80211_update_iface_num(rdev, otype, -1);
923         }
924 
925         return err;
926 }
927 
928 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
929 {
930         static const u32 __mcs2bitrate[] = {
931                 /* control PHY */
932                 [0] =   275,
933                 /* SC PHY */
934                 [1] =  3850,
935                 [2] =  7700,
936                 [3] =  9625,
937                 [4] = 11550,
938                 [5] = 12512, /* 1251.25 mbps */
939                 [6] = 15400,
940                 [7] = 19250,
941                 [8] = 23100,
942                 [9] = 25025,
943                 [10] = 30800,
944                 [11] = 38500,
945                 [12] = 46200,
946                 /* OFDM PHY */
947                 [13] =  6930,
948                 [14] =  8662, /* 866.25 mbps */
949                 [15] = 13860,
950                 [16] = 17325,
951                 [17] = 20790,
952                 [18] = 27720,
953                 [19] = 34650,
954                 [20] = 41580,
955                 [21] = 45045,
956                 [22] = 51975,
957                 [23] = 62370,
958                 [24] = 67568, /* 6756.75 mbps */
959                 /* LP-SC PHY */
960                 [25] =  6260,
961                 [26] =  8340,
962                 [27] = 11120,
963                 [28] = 12510,
964                 [29] = 16680,
965                 [30] = 22240,
966                 [31] = 25030,
967         };
968 
969         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
970                 return 0;
971 
972         return __mcs2bitrate[rate->mcs];
973 }
974 
975 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
976 {
977         static const u32 base[4][10] = {
978                 {   6500000,
979                    13000000,
980                    19500000,
981                    26000000,
982                    39000000,
983                    52000000,
984                    58500000,
985                    65000000,
986                    78000000,
987                    0,
988                 },
989                 {  13500000,
990                    27000000,
991                    40500000,
992                    54000000,
993                    81000000,
994                   108000000,
995                   121500000,
996                   135000000,
997                   162000000,
998                   180000000,
999                 },
1000                 {  29300000,
1001                    58500000,
1002                    87800000,
1003                   117000000,
1004                   175500000,
1005                   234000000,
1006                   263300000,
1007                   292500000,
1008                   351000000,
1009                   390000000,
1010                 },
1011                 {  58500000,
1012                   117000000,
1013                   175500000,
1014                   234000000,
1015                   351000000,
1016                   468000000,
1017                   526500000,
1018                   585000000,
1019                   702000000,
1020                   780000000,
1021                 },
1022         };
1023         u32 bitrate;
1024         int idx;
1025 
1026         if (WARN_ON_ONCE(rate->mcs > 9))
1027                 return 0;
1028 
1029         idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1030                              RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1031                   rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1032                   rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1033 
1034         bitrate = base[idx][rate->mcs];
1035         bitrate *= rate->nss;
1036 
1037         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1038                 bitrate = (bitrate / 9) * 10;
1039 
1040         /* do NOT round down here */
1041         return (bitrate + 50000) / 100000;
1042 }
1043 
1044 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1045 {
1046         int modulation, streams, bitrate;
1047 
1048         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1049             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1050                 return rate->legacy;
1051         if (rate->flags & RATE_INFO_FLAGS_60G)
1052                 return cfg80211_calculate_bitrate_60g(rate);
1053         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1054                 return cfg80211_calculate_bitrate_vht(rate);
1055 
1056         /* the formula below does only work for MCS values smaller than 32 */
1057         if (WARN_ON_ONCE(rate->mcs >= 32))
1058                 return 0;
1059 
1060         modulation = rate->mcs & 7;
1061         streams = (rate->mcs >> 3) + 1;
1062 
1063         bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1064                         13500000 : 6500000;
1065 
1066         if (modulation < 4)
1067                 bitrate *= (modulation + 1);
1068         else if (modulation == 4)
1069                 bitrate *= (modulation + 2);
1070         else
1071                 bitrate *= (modulation + 3);
1072 
1073         bitrate *= streams;
1074 
1075         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1076                 bitrate = (bitrate / 9) * 10;
1077 
1078         /* do NOT round down here */
1079         return (bitrate + 50000) / 100000;
1080 }
1081 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1082 
1083 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1084                           enum ieee80211_p2p_attr_id attr,
1085                           u8 *buf, unsigned int bufsize)
1086 {
1087         u8 *out = buf;
1088         u16 attr_remaining = 0;
1089         bool desired_attr = false;
1090         u16 desired_len = 0;
1091 
1092         while (len > 0) {
1093                 unsigned int iedatalen;
1094                 unsigned int copy;
1095                 const u8 *iedata;
1096 
1097                 if (len < 2)
1098                         return -EILSEQ;
1099                 iedatalen = ies[1];
1100                 if (iedatalen + 2 > len)
1101                         return -EILSEQ;
1102 
1103                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1104                         goto cont;
1105 
1106                 if (iedatalen < 4)
1107                         goto cont;
1108 
1109                 iedata = ies + 2;
1110 
1111                 /* check WFA OUI, P2P subtype */
1112                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1113                     iedata[2] != 0x9a || iedata[3] != 0x09)
1114                         goto cont;
1115 
1116                 iedatalen -= 4;
1117                 iedata += 4;
1118 
1119                 /* check attribute continuation into this IE */
1120                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1121                 if (copy && desired_attr) {
1122                         desired_len += copy;
1123                         if (out) {
1124                                 memcpy(out, iedata, min(bufsize, copy));
1125                                 out += min(bufsize, copy);
1126                                 bufsize -= min(bufsize, copy);
1127                         }
1128 
1129 
1130                         if (copy == attr_remaining)
1131                                 return desired_len;
1132                 }
1133 
1134                 attr_remaining -= copy;
1135                 if (attr_remaining)
1136                         goto cont;
1137 
1138                 iedatalen -= copy;
1139                 iedata += copy;
1140 
1141                 while (iedatalen > 0) {
1142                         u16 attr_len;
1143 
1144                         /* P2P attribute ID & size must fit */
1145                         if (iedatalen < 3)
1146                                 return -EILSEQ;
1147                         desired_attr = iedata[0] == attr;
1148                         attr_len = get_unaligned_le16(iedata + 1);
1149                         iedatalen -= 3;
1150                         iedata += 3;
1151 
1152                         copy = min_t(unsigned int, attr_len, iedatalen);
1153 
1154                         if (desired_attr) {
1155                                 desired_len += copy;
1156                                 if (out) {
1157                                         memcpy(out, iedata, min(bufsize, copy));
1158                                         out += min(bufsize, copy);
1159                                         bufsize -= min(bufsize, copy);
1160                                 }
1161 
1162                                 if (copy == attr_len)
1163                                         return desired_len;
1164                         }
1165 
1166                         iedata += copy;
1167                         iedatalen -= copy;
1168                         attr_remaining = attr_len - copy;
1169                 }
1170 
1171  cont:
1172                 len -= ies[1] + 2;
1173                 ies += ies[1] + 2;
1174         }
1175 
1176         if (attr_remaining && desired_attr)
1177                 return -EILSEQ;
1178 
1179         return -ENOENT;
1180 }
1181 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1182 
1183 bool ieee80211_operating_class_to_band(u8 operating_class,
1184                                        enum ieee80211_band *band)
1185 {
1186         switch (operating_class) {
1187         case 112:
1188         case 115 ... 127:
1189                 *band = IEEE80211_BAND_5GHZ;
1190                 return true;
1191         case 81:
1192         case 82:
1193         case 83:
1194         case 84:
1195                 *band = IEEE80211_BAND_2GHZ;
1196                 return true;
1197         case 180:
1198                 *band = IEEE80211_BAND_60GHZ;
1199                 return true;
1200         }
1201 
1202         return false;
1203 }
1204 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1205 
1206 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1207                                  u32 beacon_int)
1208 {
1209         struct wireless_dev *wdev;
1210         int res = 0;
1211 
1212         if (!beacon_int)
1213                 return -EINVAL;
1214 
1215         list_for_each_entry(wdev, &rdev->wdev_list, list) {
1216                 if (!wdev->beacon_interval)
1217                         continue;
1218                 if (wdev->beacon_interval != beacon_int) {
1219                         res = -EINVAL;
1220                         break;
1221                 }
1222         }
1223 
1224         return res;
1225 }
1226 
1227 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1228                                  struct wireless_dev *wdev,
1229                                  enum nl80211_iftype iftype,
1230                                  struct ieee80211_channel *chan,
1231                                  enum cfg80211_chan_mode chanmode,
1232                                  u8 radar_detect)
1233 {
1234         struct wireless_dev *wdev_iter;
1235         u32 used_iftypes = BIT(iftype);
1236         int num[NUM_NL80211_IFTYPES];
1237         struct ieee80211_channel
1238                         *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1239         struct ieee80211_channel *ch;
1240         enum cfg80211_chan_mode chmode;
1241         int num_different_channels = 0;
1242         int total = 1;
1243         bool radar_required;
1244         int i, j;
1245 
1246         ASSERT_RTNL();
1247 
1248         if (WARN_ON(hweight32(radar_detect) > 1))
1249                 return -EINVAL;
1250 
1251         switch (iftype) {
1252         case NL80211_IFTYPE_ADHOC:
1253         case NL80211_IFTYPE_AP:
1254         case NL80211_IFTYPE_AP_VLAN:
1255         case NL80211_IFTYPE_MESH_POINT:
1256         case NL80211_IFTYPE_P2P_GO:
1257         case NL80211_IFTYPE_WDS:
1258                 radar_required = !!(chan &&
1259                                     (chan->flags & IEEE80211_CHAN_RADAR));
1260                 break;
1261         case NL80211_IFTYPE_P2P_CLIENT:
1262         case NL80211_IFTYPE_STATION:
1263         case NL80211_IFTYPE_P2P_DEVICE:
1264         case NL80211_IFTYPE_MONITOR:
1265                 radar_required = false;
1266                 break;
1267         case NUM_NL80211_IFTYPES:
1268         case NL80211_IFTYPE_UNSPECIFIED:
1269         default:
1270                 return -EINVAL;
1271         }
1272 
1273         if (radar_required && !radar_detect)
1274                 return -EINVAL;
1275 
1276         /* Always allow software iftypes */
1277         if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1278                 if (radar_detect)
1279                         return -EINVAL;
1280                 return 0;
1281         }
1282 
1283         memset(num, 0, sizeof(num));
1284         memset(used_channels, 0, sizeof(used_channels));
1285 
1286         num[iftype] = 1;
1287 
1288         switch (chanmode) {
1289         case CHAN_MODE_UNDEFINED:
1290                 break;
1291         case CHAN_MODE_SHARED:
1292                 WARN_ON(!chan);
1293                 used_channels[0] = chan;
1294                 num_different_channels++;
1295                 break;
1296         case CHAN_MODE_EXCLUSIVE:
1297                 num_different_channels++;
1298                 break;
1299         }
1300 
1301         list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1302                 if (wdev_iter == wdev)
1303                         continue;
1304                 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1305                         if (!wdev_iter->p2p_started)
1306                                 continue;
1307                 } else if (wdev_iter->netdev) {
1308                         if (!netif_running(wdev_iter->netdev))
1309                                 continue;
1310                 } else {
1311                         WARN_ON(1);
1312                 }
1313 
1314                 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1315                         continue;
1316 
1317                 /*
1318                  * We may be holding the "wdev" mutex, but now need to lock
1319                  * wdev_iter. This is OK because once we get here wdev_iter
1320                  * is not wdev (tested above), but we need to use the nested
1321                  * locking for lockdep.
1322                  */
1323                 mutex_lock_nested(&wdev_iter->mtx, 1);
1324                 __acquire(wdev_iter->mtx);
1325                 cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1326                 wdev_unlock(wdev_iter);
1327 
1328                 switch (chmode) {
1329                 case CHAN_MODE_UNDEFINED:
1330                         break;
1331                 case CHAN_MODE_SHARED:
1332                         for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1333                                 if (!used_channels[i] || used_channels[i] == ch)
1334                                         break;
1335 
1336                         if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1337                                 return -EBUSY;
1338 
1339                         if (used_channels[i] == NULL) {
1340                                 used_channels[i] = ch;
1341                                 num_different_channels++;
1342                         }
1343                         break;
1344                 case CHAN_MODE_EXCLUSIVE:
1345                         num_different_channels++;
1346                         break;
1347                 }
1348 
1349                 num[wdev_iter->iftype]++;
1350                 total++;
1351                 used_iftypes |= BIT(wdev_iter->iftype);
1352         }
1353 
1354         if (total == 1 && !radar_detect)
1355                 return 0;
1356 
1357         for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1358                 const struct ieee80211_iface_combination *c;
1359                 struct ieee80211_iface_limit *limits;
1360                 u32 all_iftypes = 0;
1361 
1362                 c = &rdev->wiphy.iface_combinations[i];
1363 
1364                 if (total > c->max_interfaces)
1365                         continue;
1366                 if (num_different_channels > c->num_different_channels)
1367                         continue;
1368 
1369                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1370                                  GFP_KERNEL);
1371                 if (!limits)
1372                         return -ENOMEM;
1373 
1374                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1375                         if (rdev->wiphy.software_iftypes & BIT(iftype))
1376                                 continue;
1377                         for (j = 0; j < c->n_limits; j++) {
1378                                 all_iftypes |= limits[j].types;
1379                                 if (!(limits[j].types & BIT(iftype)))
1380                                         continue;
1381                                 if (limits[j].max < num[iftype])
1382                                         goto cont;
1383                                 limits[j].max -= num[iftype];
1384                         }
1385                 }
1386 
1387                 if (radar_detect && !(c->radar_detect_widths & radar_detect))
1388                         goto cont;
1389 
1390                 /*
1391                  * Finally check that all iftypes that we're currently
1392                  * using are actually part of this combination. If they
1393                  * aren't then we can't use this combination and have
1394                  * to continue to the next.
1395                  */
1396                 if ((all_iftypes & used_iftypes) != used_iftypes)
1397                         goto cont;
1398 
1399                 /*
1400                  * This combination covered all interface types and
1401                  * supported the requested numbers, so we're good.
1402                  */
1403                 kfree(limits);
1404                 return 0;
1405  cont:
1406                 kfree(limits);
1407         }
1408 
1409         return -EBUSY;
1410 }
1411 
1412 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1413                            const u8 *rates, unsigned int n_rates,
1414                            u32 *mask)
1415 {
1416         int i, j;
1417 
1418         if (!sband)
1419                 return -EINVAL;
1420 
1421         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1422                 return -EINVAL;
1423 
1424         *mask = 0;
1425 
1426         for (i = 0; i < n_rates; i++) {
1427                 int rate = (rates[i] & 0x7f) * 5;
1428                 bool found = false;
1429 
1430                 for (j = 0; j < sband->n_bitrates; j++) {
1431                         if (sband->bitrates[j].bitrate == rate) {
1432                                 found = true;
1433                                 *mask |= BIT(j);
1434                                 break;
1435                         }
1436                 }
1437                 if (!found)
1438                         return -EINVAL;
1439         }
1440 
1441         /*
1442          * mask must have at least one bit set here since we
1443          * didn't accept a 0-length rates array nor allowed
1444          * entries in the array that didn't exist
1445          */
1446 
1447         return 0;
1448 }
1449 
1450 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1451 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1452 const unsigned char rfc1042_header[] __aligned(2) =
1453         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1454 EXPORT_SYMBOL(rfc1042_header);
1455 
1456 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1457 const unsigned char bridge_tunnel_header[] __aligned(2) =
1458         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1459 EXPORT_SYMBOL(bridge_tunnel_header);
1460 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp