~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/security/integrity/ima/ima_crypto.c

Version: ~ [ linux-5.3-rc5 ] ~ [ linux-5.2.9 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.67 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.139 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.189 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.189 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.72 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
  3  *
  4  * Authors:
  5  * Mimi Zohar <zohar@us.ibm.com>
  6  * Kylene Hall <kjhall@us.ibm.com>
  7  *
  8  * This program is free software; you can redistribute it and/or modify
  9  * it under the terms of the GNU General Public License as published by
 10  * the Free Software Foundation, version 2 of the License.
 11  *
 12  * File: ima_crypto.c
 13  *      Calculates md5/sha1 file hash, template hash, boot-aggreate hash
 14  */
 15 
 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 17 
 18 #include <linux/kernel.h>
 19 #include <linux/moduleparam.h>
 20 #include <linux/ratelimit.h>
 21 #include <linux/file.h>
 22 #include <linux/crypto.h>
 23 #include <linux/scatterlist.h>
 24 #include <linux/err.h>
 25 #include <linux/slab.h>
 26 #include <crypto/hash.h>
 27 
 28 #include "ima.h"
 29 
 30 struct ahash_completion {
 31         struct completion completion;
 32         int err;
 33 };
 34 
 35 /* minimum file size for ahash use */
 36 static unsigned long ima_ahash_minsize;
 37 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
 38 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
 39 
 40 /* default is 0 - 1 page. */
 41 static int ima_maxorder;
 42 static unsigned int ima_bufsize = PAGE_SIZE;
 43 
 44 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
 45 {
 46         unsigned long long size;
 47         int order;
 48 
 49         size = memparse(val, NULL);
 50         order = get_order(size);
 51         if (order >= MAX_ORDER)
 52                 return -EINVAL;
 53         ima_maxorder = order;
 54         ima_bufsize = PAGE_SIZE << order;
 55         return 0;
 56 }
 57 
 58 static const struct kernel_param_ops param_ops_bufsize = {
 59         .set = param_set_bufsize,
 60         .get = param_get_uint,
 61 };
 62 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
 63 
 64 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
 65 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
 66 
 67 static struct crypto_shash *ima_shash_tfm;
 68 static struct crypto_ahash *ima_ahash_tfm;
 69 
 70 int __init ima_init_crypto(void)
 71 {
 72         long rc;
 73 
 74         ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
 75         if (IS_ERR(ima_shash_tfm)) {
 76                 rc = PTR_ERR(ima_shash_tfm);
 77                 pr_err("Can not allocate %s (reason: %ld)\n",
 78                        hash_algo_name[ima_hash_algo], rc);
 79                 return rc;
 80         }
 81         return 0;
 82 }
 83 
 84 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
 85 {
 86         struct crypto_shash *tfm = ima_shash_tfm;
 87         int rc;
 88 
 89         if (algo < 0 || algo >= HASH_ALGO__LAST)
 90                 algo = ima_hash_algo;
 91 
 92         if (algo != ima_hash_algo) {
 93                 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
 94                 if (IS_ERR(tfm)) {
 95                         rc = PTR_ERR(tfm);
 96                         pr_err("Can not allocate %s (reason: %d)\n",
 97                                hash_algo_name[algo], rc);
 98                 }
 99         }
100         return tfm;
101 }
102 
103 static void ima_free_tfm(struct crypto_shash *tfm)
104 {
105         if (tfm != ima_shash_tfm)
106                 crypto_free_shash(tfm);
107 }
108 
109 /**
110  * ima_alloc_pages() - Allocate contiguous pages.
111  * @max_size:       Maximum amount of memory to allocate.
112  * @allocated_size: Returned size of actual allocation.
113  * @last_warn:      Should the min_size allocation warn or not.
114  *
115  * Tries to do opportunistic allocation for memory first trying to allocate
116  * max_size amount of memory and then splitting that until zero order is
117  * reached. Allocation is tried without generating allocation warnings unless
118  * last_warn is set. Last_warn set affects only last allocation of zero order.
119  *
120  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
121  *
122  * Return pointer to allocated memory, or NULL on failure.
123  */
124 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
125                              int last_warn)
126 {
127         void *ptr;
128         int order = ima_maxorder;
129         gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
130 
131         if (order)
132                 order = min(get_order(max_size), order);
133 
134         for (; order; order--) {
135                 ptr = (void *)__get_free_pages(gfp_mask, order);
136                 if (ptr) {
137                         *allocated_size = PAGE_SIZE << order;
138                         return ptr;
139                 }
140         }
141 
142         /* order is zero - one page */
143 
144         gfp_mask = GFP_KERNEL;
145 
146         if (!last_warn)
147                 gfp_mask |= __GFP_NOWARN;
148 
149         ptr = (void *)__get_free_pages(gfp_mask, 0);
150         if (ptr) {
151                 *allocated_size = PAGE_SIZE;
152                 return ptr;
153         }
154 
155         *allocated_size = 0;
156         return NULL;
157 }
158 
159 /**
160  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
161  * @ptr:  Pointer to allocated pages.
162  * @size: Size of allocated buffer.
163  */
164 static void ima_free_pages(void *ptr, size_t size)
165 {
166         if (!ptr)
167                 return;
168         free_pages((unsigned long)ptr, get_order(size));
169 }
170 
171 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
172 {
173         struct crypto_ahash *tfm = ima_ahash_tfm;
174         int rc;
175 
176         if (algo < 0 || algo >= HASH_ALGO__LAST)
177                 algo = ima_hash_algo;
178 
179         if (algo != ima_hash_algo || !tfm) {
180                 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
181                 if (!IS_ERR(tfm)) {
182                         if (algo == ima_hash_algo)
183                                 ima_ahash_tfm = tfm;
184                 } else {
185                         rc = PTR_ERR(tfm);
186                         pr_err("Can not allocate %s (reason: %d)\n",
187                                hash_algo_name[algo], rc);
188                 }
189         }
190         return tfm;
191 }
192 
193 static void ima_free_atfm(struct crypto_ahash *tfm)
194 {
195         if (tfm != ima_ahash_tfm)
196                 crypto_free_ahash(tfm);
197 }
198 
199 static void ahash_complete(struct crypto_async_request *req, int err)
200 {
201         struct ahash_completion *res = req->data;
202 
203         if (err == -EINPROGRESS)
204                 return;
205         res->err = err;
206         complete(&res->completion);
207 }
208 
209 static int ahash_wait(int err, struct ahash_completion *res)
210 {
211         switch (err) {
212         case 0:
213                 break;
214         case -EINPROGRESS:
215         case -EBUSY:
216                 wait_for_completion(&res->completion);
217                 reinit_completion(&res->completion);
218                 err = res->err;
219                 /* fall through */
220         default:
221                 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
222         }
223 
224         return err;
225 }
226 
227 static int ima_calc_file_hash_atfm(struct file *file,
228                                    struct ima_digest_data *hash,
229                                    struct crypto_ahash *tfm)
230 {
231         loff_t i_size, offset;
232         char *rbuf[2] = { NULL, };
233         int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0;
234         struct ahash_request *req;
235         struct scatterlist sg[1];
236         struct ahash_completion res;
237         size_t rbuf_size[2];
238 
239         hash->length = crypto_ahash_digestsize(tfm);
240 
241         req = ahash_request_alloc(tfm, GFP_KERNEL);
242         if (!req)
243                 return -ENOMEM;
244 
245         init_completion(&res.completion);
246         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
247                                    CRYPTO_TFM_REQ_MAY_SLEEP,
248                                    ahash_complete, &res);
249 
250         rc = ahash_wait(crypto_ahash_init(req), &res);
251         if (rc)
252                 goto out1;
253 
254         i_size = i_size_read(file_inode(file));
255 
256         if (i_size == 0)
257                 goto out2;
258 
259         /*
260          * Try to allocate maximum size of memory.
261          * Fail if even a single page cannot be allocated.
262          */
263         rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
264         if (!rbuf[0]) {
265                 rc = -ENOMEM;
266                 goto out1;
267         }
268 
269         /* Only allocate one buffer if that is enough. */
270         if (i_size > rbuf_size[0]) {
271                 /*
272                  * Try to allocate secondary buffer. If that fails fallback to
273                  * using single buffering. Use previous memory allocation size
274                  * as baseline for possible allocation size.
275                  */
276                 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
277                                           &rbuf_size[1], 0);
278         }
279 
280         if (!(file->f_mode & FMODE_READ)) {
281                 file->f_mode |= FMODE_READ;
282                 read = 1;
283         }
284 
285         for (offset = 0; offset < i_size; offset += rbuf_len) {
286                 if (!rbuf[1] && offset) {
287                         /* Not using two buffers, and it is not the first
288                          * read/request, wait for the completion of the
289                          * previous ahash_update() request.
290                          */
291                         rc = ahash_wait(ahash_rc, &res);
292                         if (rc)
293                                 goto out3;
294                 }
295                 /* read buffer */
296                 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
297                 rc = integrity_kernel_read(file, offset, rbuf[active],
298                                            rbuf_len);
299                 if (rc != rbuf_len)
300                         goto out3;
301 
302                 if (rbuf[1] && offset) {
303                         /* Using two buffers, and it is not the first
304                          * read/request, wait for the completion of the
305                          * previous ahash_update() request.
306                          */
307                         rc = ahash_wait(ahash_rc, &res);
308                         if (rc)
309                                 goto out3;
310                 }
311 
312                 sg_init_one(&sg[0], rbuf[active], rbuf_len);
313                 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
314 
315                 ahash_rc = crypto_ahash_update(req);
316 
317                 if (rbuf[1])
318                         active = !active; /* swap buffers, if we use two */
319         }
320         /* wait for the last update request to complete */
321         rc = ahash_wait(ahash_rc, &res);
322 out3:
323         if (read)
324                 file->f_mode &= ~FMODE_READ;
325         ima_free_pages(rbuf[0], rbuf_size[0]);
326         ima_free_pages(rbuf[1], rbuf_size[1]);
327 out2:
328         if (!rc) {
329                 ahash_request_set_crypt(req, NULL, hash->digest, 0);
330                 rc = ahash_wait(crypto_ahash_final(req), &res);
331         }
332 out1:
333         ahash_request_free(req);
334         return rc;
335 }
336 
337 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
338 {
339         struct crypto_ahash *tfm;
340         int rc;
341 
342         tfm = ima_alloc_atfm(hash->algo);
343         if (IS_ERR(tfm))
344                 return PTR_ERR(tfm);
345 
346         rc = ima_calc_file_hash_atfm(file, hash, tfm);
347 
348         ima_free_atfm(tfm);
349 
350         return rc;
351 }
352 
353 static int ima_calc_file_hash_tfm(struct file *file,
354                                   struct ima_digest_data *hash,
355                                   struct crypto_shash *tfm)
356 {
357         loff_t i_size, offset = 0;
358         char *rbuf;
359         int rc, read = 0;
360         SHASH_DESC_ON_STACK(shash, tfm);
361 
362         shash->tfm = tfm;
363         shash->flags = 0;
364 
365         hash->length = crypto_shash_digestsize(tfm);
366 
367         rc = crypto_shash_init(shash);
368         if (rc != 0)
369                 return rc;
370 
371         i_size = i_size_read(file_inode(file));
372 
373         if (i_size == 0)
374                 goto out;
375 
376         rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
377         if (!rbuf)
378                 return -ENOMEM;
379 
380         if (!(file->f_mode & FMODE_READ)) {
381                 file->f_mode |= FMODE_READ;
382                 read = 1;
383         }
384 
385         while (offset < i_size) {
386                 int rbuf_len;
387 
388                 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
389                 if (rbuf_len < 0) {
390                         rc = rbuf_len;
391                         break;
392                 }
393                 if (rbuf_len == 0)
394                         break;
395                 offset += rbuf_len;
396 
397                 rc = crypto_shash_update(shash, rbuf, rbuf_len);
398                 if (rc)
399                         break;
400         }
401         if (read)
402                 file->f_mode &= ~FMODE_READ;
403         kfree(rbuf);
404 out:
405         if (!rc)
406                 rc = crypto_shash_final(shash, hash->digest);
407         return rc;
408 }
409 
410 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
411 {
412         struct crypto_shash *tfm;
413         int rc;
414 
415         tfm = ima_alloc_tfm(hash->algo);
416         if (IS_ERR(tfm))
417                 return PTR_ERR(tfm);
418 
419         rc = ima_calc_file_hash_tfm(file, hash, tfm);
420 
421         ima_free_tfm(tfm);
422 
423         return rc;
424 }
425 
426 /*
427  * ima_calc_file_hash - calculate file hash
428  *
429  * Asynchronous hash (ahash) allows using HW acceleration for calculating
430  * a hash. ahash performance varies for different data sizes on different
431  * crypto accelerators. shash performance might be better for smaller files.
432  * The 'ima.ahash_minsize' module parameter allows specifying the best
433  * minimum file size for using ahash on the system.
434  *
435  * If the ima.ahash_minsize parameter is not specified, this function uses
436  * shash for the hash calculation.  If ahash fails, it falls back to using
437  * shash.
438  */
439 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
440 {
441         loff_t i_size;
442         int rc;
443 
444         i_size = i_size_read(file_inode(file));
445 
446         if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
447                 rc = ima_calc_file_ahash(file, hash);
448                 if (!rc)
449                         return 0;
450         }
451 
452         return ima_calc_file_shash(file, hash);
453 }
454 
455 /*
456  * Calculate the hash of template data
457  */
458 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
459                                          struct ima_template_desc *td,
460                                          int num_fields,
461                                          struct ima_digest_data *hash,
462                                          struct crypto_shash *tfm)
463 {
464         SHASH_DESC_ON_STACK(shash, tfm);
465         int rc, i;
466 
467         shash->tfm = tfm;
468         shash->flags = 0;
469 
470         hash->length = crypto_shash_digestsize(tfm);
471 
472         rc = crypto_shash_init(shash);
473         if (rc != 0)
474                 return rc;
475 
476         for (i = 0; i < num_fields; i++) {
477                 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
478                 u8 *data_to_hash = field_data[i].data;
479                 u32 datalen = field_data[i].len;
480 
481                 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
482                         rc = crypto_shash_update(shash,
483                                                 (const u8 *) &field_data[i].len,
484                                                 sizeof(field_data[i].len));
485                         if (rc)
486                                 break;
487                 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
488                         memcpy(buffer, data_to_hash, datalen);
489                         data_to_hash = buffer;
490                         datalen = IMA_EVENT_NAME_LEN_MAX + 1;
491                 }
492                 rc = crypto_shash_update(shash, data_to_hash, datalen);
493                 if (rc)
494                         break;
495         }
496 
497         if (!rc)
498                 rc = crypto_shash_final(shash, hash->digest);
499 
500         return rc;
501 }
502 
503 int ima_calc_field_array_hash(struct ima_field_data *field_data,
504                               struct ima_template_desc *desc, int num_fields,
505                               struct ima_digest_data *hash)
506 {
507         struct crypto_shash *tfm;
508         int rc;
509 
510         tfm = ima_alloc_tfm(hash->algo);
511         if (IS_ERR(tfm))
512                 return PTR_ERR(tfm);
513 
514         rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
515                                            hash, tfm);
516 
517         ima_free_tfm(tfm);
518 
519         return rc;
520 }
521 
522 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
523                                   struct ima_digest_data *hash,
524                                   struct crypto_ahash *tfm)
525 {
526         struct ahash_request *req;
527         struct scatterlist sg;
528         struct ahash_completion res;
529         int rc, ahash_rc = 0;
530 
531         hash->length = crypto_ahash_digestsize(tfm);
532 
533         req = ahash_request_alloc(tfm, GFP_KERNEL);
534         if (!req)
535                 return -ENOMEM;
536 
537         init_completion(&res.completion);
538         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
539                                    CRYPTO_TFM_REQ_MAY_SLEEP,
540                                    ahash_complete, &res);
541 
542         rc = ahash_wait(crypto_ahash_init(req), &res);
543         if (rc)
544                 goto out;
545 
546         sg_init_one(&sg, buf, len);
547         ahash_request_set_crypt(req, &sg, NULL, len);
548 
549         ahash_rc = crypto_ahash_update(req);
550 
551         /* wait for the update request to complete */
552         rc = ahash_wait(ahash_rc, &res);
553         if (!rc) {
554                 ahash_request_set_crypt(req, NULL, hash->digest, 0);
555                 rc = ahash_wait(crypto_ahash_final(req), &res);
556         }
557 out:
558         ahash_request_free(req);
559         return rc;
560 }
561 
562 static int calc_buffer_ahash(const void *buf, loff_t len,
563                              struct ima_digest_data *hash)
564 {
565         struct crypto_ahash *tfm;
566         int rc;
567 
568         tfm = ima_alloc_atfm(hash->algo);
569         if (IS_ERR(tfm))
570                 return PTR_ERR(tfm);
571 
572         rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
573 
574         ima_free_atfm(tfm);
575 
576         return rc;
577 }
578 
579 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
580                                 struct ima_digest_data *hash,
581                                 struct crypto_shash *tfm)
582 {
583         SHASH_DESC_ON_STACK(shash, tfm);
584         unsigned int len;
585         int rc;
586 
587         shash->tfm = tfm;
588         shash->flags = 0;
589 
590         hash->length = crypto_shash_digestsize(tfm);
591 
592         rc = crypto_shash_init(shash);
593         if (rc != 0)
594                 return rc;
595 
596         while (size) {
597                 len = size < PAGE_SIZE ? size : PAGE_SIZE;
598                 rc = crypto_shash_update(shash, buf, len);
599                 if (rc)
600                         break;
601                 buf += len;
602                 size -= len;
603         }
604 
605         if (!rc)
606                 rc = crypto_shash_final(shash, hash->digest);
607         return rc;
608 }
609 
610 static int calc_buffer_shash(const void *buf, loff_t len,
611                              struct ima_digest_data *hash)
612 {
613         struct crypto_shash *tfm;
614         int rc;
615 
616         tfm = ima_alloc_tfm(hash->algo);
617         if (IS_ERR(tfm))
618                 return PTR_ERR(tfm);
619 
620         rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
621 
622         ima_free_tfm(tfm);
623         return rc;
624 }
625 
626 int ima_calc_buffer_hash(const void *buf, loff_t len,
627                          struct ima_digest_data *hash)
628 {
629         int rc;
630 
631         if (ima_ahash_minsize && len >= ima_ahash_minsize) {
632                 rc = calc_buffer_ahash(buf, len, hash);
633                 if (!rc)
634                         return 0;
635         }
636 
637         return calc_buffer_shash(buf, len, hash);
638 }
639 
640 static void __init ima_pcrread(int idx, u8 *pcr)
641 {
642         if (!ima_used_chip)
643                 return;
644 
645         if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0)
646                 pr_err("Error Communicating to TPM chip\n");
647 }
648 
649 /*
650  * Calculate the boot aggregate hash
651  */
652 static int __init ima_calc_boot_aggregate_tfm(char *digest,
653                                               struct crypto_shash *tfm)
654 {
655         u8 pcr_i[TPM_DIGEST_SIZE];
656         int rc, i;
657         SHASH_DESC_ON_STACK(shash, tfm);
658 
659         shash->tfm = tfm;
660         shash->flags = 0;
661 
662         rc = crypto_shash_init(shash);
663         if (rc != 0)
664                 return rc;
665 
666         /* cumulative sha1 over tpm registers 0-7 */
667         for (i = TPM_PCR0; i < TPM_PCR8; i++) {
668                 ima_pcrread(i, pcr_i);
669                 /* now accumulate with current aggregate */
670                 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
671         }
672         if (!rc)
673                 crypto_shash_final(shash, digest);
674         return rc;
675 }
676 
677 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
678 {
679         struct crypto_shash *tfm;
680         int rc;
681 
682         tfm = ima_alloc_tfm(hash->algo);
683         if (IS_ERR(tfm))
684                 return PTR_ERR(tfm);
685 
686         hash->length = crypto_shash_digestsize(tfm);
687         rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
688 
689         ima_free_tfm(tfm);
690 
691         return rc;
692 }
693 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp