~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/security/security.c

Version: ~ [ linux-5.6 ] ~ [ linux-5.5.13 ] ~ [ linux-5.4.28 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.113 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.174 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.217 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.217 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.82 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Security plug functions
  3  *
  4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7  *
  8  *      This program is free software; you can redistribute it and/or modify
  9  *      it under the terms of the GNU General Public License as published by
 10  *      the Free Software Foundation; either version 2 of the License, or
 11  *      (at your option) any later version.
 12  */
 13 
 14 #include <linux/capability.h>
 15 #include <linux/module.h>
 16 #include <linux/init.h>
 17 #include <linux/kernel.h>
 18 #include <linux/security.h>
 19 #include <linux/integrity.h>
 20 #include <linux/ima.h>
 21 #include <linux/evm.h>
 22 
 23 #define MAX_LSM_EVM_XATTR       2
 24 
 25 /* Boot-time LSM user choice */
 26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
 27         CONFIG_DEFAULT_SECURITY;
 28 
 29 static struct security_operations *security_ops;
 30 static struct security_operations default_security_ops = {
 31         .name   = "default",
 32 };
 33 
 34 static inline int __init verify(struct security_operations *ops)
 35 {
 36         /* verify the security_operations structure exists */
 37         if (!ops)
 38                 return -EINVAL;
 39         security_fixup_ops(ops);
 40         return 0;
 41 }
 42 
 43 static void __init do_security_initcalls(void)
 44 {
 45         initcall_t *call;
 46         call = __security_initcall_start;
 47         while (call < __security_initcall_end) {
 48                 (*call) ();
 49                 call++;
 50         }
 51 }
 52 
 53 /**
 54  * security_init - initializes the security framework
 55  *
 56  * This should be called early in the kernel initialization sequence.
 57  */
 58 int __init security_init(void)
 59 {
 60         printk(KERN_INFO "Security Framework initialized\n");
 61 
 62         security_fixup_ops(&default_security_ops);
 63         security_ops = &default_security_ops;
 64         do_security_initcalls();
 65 
 66         return 0;
 67 }
 68 
 69 void reset_security_ops(void)
 70 {
 71         security_ops = &default_security_ops;
 72 }
 73 
 74 /* Save user chosen LSM */
 75 static int __init choose_lsm(char *str)
 76 {
 77         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
 78         return 1;
 79 }
 80 __setup("security=", choose_lsm);
 81 
 82 /**
 83  * security_module_enable - Load given security module on boot ?
 84  * @ops: a pointer to the struct security_operations that is to be checked.
 85  *
 86  * Each LSM must pass this method before registering its own operations
 87  * to avoid security registration races. This method may also be used
 88  * to check if your LSM is currently loaded during kernel initialization.
 89  *
 90  * Return true if:
 91  *      -The passed LSM is the one chosen by user at boot time,
 92  *      -or the passed LSM is configured as the default and the user did not
 93  *       choose an alternate LSM at boot time.
 94  * Otherwise, return false.
 95  */
 96 int __init security_module_enable(struct security_operations *ops)
 97 {
 98         return !strcmp(ops->name, chosen_lsm);
 99 }
100 
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115         if (verify(ops)) {
116                 printk(KERN_DEBUG "%s could not verify "
117                        "security_operations structure.\n", __func__);
118                 return -EINVAL;
119         }
120 
121         if (security_ops != &default_security_ops)
122                 return -EAGAIN;
123 
124         security_ops = ops;
125 
126         return 0;
127 }
128 
129 /* Security operations */
130 
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133         return security_ops->ptrace_access_check(child, mode);
134 }
135 
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138         return security_ops->ptrace_traceme(parent);
139 }
140 
141 int security_capget(struct task_struct *target,
142                      kernel_cap_t *effective,
143                      kernel_cap_t *inheritable,
144                      kernel_cap_t *permitted)
145 {
146         return security_ops->capget(target, effective, inheritable, permitted);
147 }
148 
149 int security_capset(struct cred *new, const struct cred *old,
150                     const kernel_cap_t *effective,
151                     const kernel_cap_t *inheritable,
152                     const kernel_cap_t *permitted)
153 {
154         return security_ops->capset(new, old,
155                                     effective, inheritable, permitted);
156 }
157 
158 int security_capable(const struct cred *cred, struct user_namespace *ns,
159                      int cap)
160 {
161         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
162 }
163 
164 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
165                              int cap)
166 {
167         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
168 }
169 
170 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
171 {
172         return security_ops->quotactl(cmds, type, id, sb);
173 }
174 
175 int security_quota_on(struct dentry *dentry)
176 {
177         return security_ops->quota_on(dentry);
178 }
179 
180 int security_syslog(int type)
181 {
182         return security_ops->syslog(type);
183 }
184 
185 int security_settime(const struct timespec *ts, const struct timezone *tz)
186 {
187         int error = security_ops->settime(ts, tz);
188         if (!error && !ccs_capable(CCS_SYS_SETTIME))
189                 error = -EPERM;
190         return error;
191 }
192 
193 int security_vm_enough_memory(long pages)
194 {
195         WARN_ON(current->mm == NULL);
196         return security_ops->vm_enough_memory(current->mm, pages);
197 }
198 
199 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
200 {
201         WARN_ON(mm == NULL);
202         return security_ops->vm_enough_memory(mm, pages);
203 }
204 
205 int security_vm_enough_memory_kern(long pages)
206 {
207         /* If current->mm is a kernel thread then we will pass NULL,
208            for this specific case that is fine */
209         return security_ops->vm_enough_memory(current->mm, pages);
210 }
211 
212 int security_bprm_set_creds(struct linux_binprm *bprm)
213 {
214         return security_ops->bprm_set_creds(bprm);
215 }
216 
217 int security_bprm_check(struct linux_binprm *bprm)
218 {
219         int ret;
220 
221         ret = security_ops->bprm_check_security(bprm);
222         if (ret)
223                 return ret;
224         return ima_bprm_check(bprm);
225 }
226 
227 void security_bprm_committing_creds(struct linux_binprm *bprm)
228 {
229         security_ops->bprm_committing_creds(bprm);
230 }
231 
232 void security_bprm_committed_creds(struct linux_binprm *bprm)
233 {
234         security_ops->bprm_committed_creds(bprm);
235 }
236 
237 int security_bprm_secureexec(struct linux_binprm *bprm)
238 {
239         return security_ops->bprm_secureexec(bprm);
240 }
241 
242 int security_sb_alloc(struct super_block *sb)
243 {
244         return security_ops->sb_alloc_security(sb);
245 }
246 
247 void security_sb_free(struct super_block *sb)
248 {
249         security_ops->sb_free_security(sb);
250 }
251 
252 int security_sb_copy_data(char *orig, char *copy)
253 {
254         return security_ops->sb_copy_data(orig, copy);
255 }
256 EXPORT_SYMBOL(security_sb_copy_data);
257 
258 int security_sb_remount(struct super_block *sb, void *data)
259 {
260         return security_ops->sb_remount(sb, data);
261 }
262 
263 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
264 {
265         return security_ops->sb_kern_mount(sb, flags, data);
266 }
267 
268 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
269 {
270         return security_ops->sb_show_options(m, sb);
271 }
272 
273 int security_sb_statfs(struct dentry *dentry)
274 {
275         return security_ops->sb_statfs(dentry);
276 }
277 
278 int security_sb_mount(char *dev_name, struct path *path,
279                        char *type, unsigned long flags, void *data)
280 {
281         int error = security_ops->sb_mount(dev_name, path, type, flags, data);
282         if (!error)
283                 error = ccs_mount_permission(dev_name, path, type, flags,
284                                              data);
285         return error;
286 }
287 
288 int security_sb_umount(struct vfsmount *mnt, int flags)
289 {
290         int error = security_ops->sb_umount(mnt, flags);
291         if (!error)
292                 error = ccs_umount_permission(mnt, flags);
293         return error;
294 }
295 
296 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
297 {
298         int error = security_ops->sb_pivotroot(old_path, new_path);
299         if (!error)
300                 error = ccs_pivot_root_permission(old_path, new_path);
301         return error;
302 }
303 
304 int security_sb_set_mnt_opts(struct super_block *sb,
305                                 struct security_mnt_opts *opts)
306 {
307         return security_ops->sb_set_mnt_opts(sb, opts);
308 }
309 EXPORT_SYMBOL(security_sb_set_mnt_opts);
310 
311 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
312                                 struct super_block *newsb)
313 {
314         security_ops->sb_clone_mnt_opts(oldsb, newsb);
315 }
316 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
317 
318 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
319 {
320         return security_ops->sb_parse_opts_str(options, opts);
321 }
322 EXPORT_SYMBOL(security_sb_parse_opts_str);
323 
324 int security_inode_alloc(struct inode *inode)
325 {
326         inode->i_security = NULL;
327         return security_ops->inode_alloc_security(inode);
328 }
329 
330 void security_inode_free(struct inode *inode)
331 {
332         integrity_inode_free(inode);
333         security_ops->inode_free_security(inode);
334 }
335 
336 int security_inode_init_security(struct inode *inode, struct inode *dir,
337                                  const struct qstr *qstr,
338                                  const initxattrs initxattrs, void *fs_data)
339 {
340         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
341         struct xattr *lsm_xattr, *evm_xattr, *xattr;
342         int ret;
343 
344         if (unlikely(IS_PRIVATE(inode)))
345                 return 0;
346 
347         memset(new_xattrs, 0, sizeof new_xattrs);
348         if (!initxattrs)
349                 return security_ops->inode_init_security(inode, dir, qstr,
350                                                          NULL, NULL, NULL);
351         lsm_xattr = new_xattrs;
352         ret = security_ops->inode_init_security(inode, dir, qstr,
353                                                 &lsm_xattr->name,
354                                                 &lsm_xattr->value,
355                                                 &lsm_xattr->value_len);
356         if (ret)
357                 goto out;
358 
359         evm_xattr = lsm_xattr + 1;
360         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
361         if (ret)
362                 goto out;
363         ret = initxattrs(inode, new_xattrs, fs_data);
364 out:
365         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
366                 kfree(xattr->name);
367                 kfree(xattr->value);
368         }
369         return (ret == -EOPNOTSUPP) ? 0 : ret;
370 }
371 EXPORT_SYMBOL(security_inode_init_security);
372 
373 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
374                                      const struct qstr *qstr, char **name,
375                                      void **value, size_t *len)
376 {
377         if (unlikely(IS_PRIVATE(inode)))
378                 return -EOPNOTSUPP;
379         return security_ops->inode_init_security(inode, dir, qstr, name, value,
380                                                  len);
381 }
382 EXPORT_SYMBOL(security_old_inode_init_security);
383 
384 #ifdef CONFIG_SECURITY_PATH
385 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
386                         unsigned int dev)
387 {
388         int error;
389         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390                 return 0;
391         error = security_ops->path_mknod(dir, dentry, mode, dev);
392         if (!error)
393                 error = ccs_mknod_permission(dentry, dir->mnt, mode, dev);
394         return error;
395 }
396 EXPORT_SYMBOL(security_path_mknod);
397 
398 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
399 {
400         int error;
401         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
402                 return 0;
403         error = security_ops->path_mkdir(dir, dentry, mode);
404         if (!error)
405                 error = ccs_mkdir_permission(dentry, dir->mnt, mode);
406         return error;
407 }
408 EXPORT_SYMBOL(security_path_mkdir);
409 
410 int security_path_rmdir(struct path *dir, struct dentry *dentry)
411 {
412         int error;
413         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414                 return 0;
415         error = security_ops->path_rmdir(dir, dentry);
416         if (!error)
417                 error = ccs_rmdir_permission(dentry, dir->mnt);
418         return error;
419 }
420 
421 int security_path_unlink(struct path *dir, struct dentry *dentry)
422 {
423         int error;
424         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425                 return 0;
426         error = security_ops->path_unlink(dir, dentry);
427         if (!error)
428                 error = ccs_unlink_permission(dentry, dir->mnt);
429         return error;
430 }
431 EXPORT_SYMBOL(security_path_unlink);
432 
433 int security_path_symlink(struct path *dir, struct dentry *dentry,
434                           const char *old_name)
435 {
436         int error;
437         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
438                 return 0;
439         error = security_ops->path_symlink(dir, dentry, old_name);
440         if (!error)
441                 error = ccs_symlink_permission(dentry, dir->mnt, old_name);
442         return error;
443 }
444 
445 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
446                        struct dentry *new_dentry)
447 {
448         int error;
449         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
450                 return 0;
451         error = security_ops->path_link(old_dentry, new_dir, new_dentry);
452         if (!error)
453                 error = ccs_link_permission(old_dentry, new_dentry,
454                                             new_dir->mnt);
455         return error;
456 }
457 
458 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
459                          struct path *new_dir, struct dentry *new_dentry)
460 {
461         int error;
462         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
463                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
464                 return 0;
465         error = security_ops->path_rename(old_dir, old_dentry, new_dir,
466                                           new_dentry);
467         if (!error)
468                 error = ccs_rename_permission(old_dentry, new_dentry,
469                                               new_dir->mnt);
470         return error;
471 }
472 EXPORT_SYMBOL(security_path_rename);
473 
474 int security_path_truncate(struct path *path)
475 {
476         int error;
477         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
478                 return 0;
479         error = security_ops->path_truncate(path);
480         if (!error)
481                 error = ccs_truncate_permission(path->dentry, path->mnt);
482         return error;
483 }
484 
485 int security_path_chmod(struct path *path, umode_t mode)
486 {
487         int error;
488         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
489                 return 0;
490         error = security_ops->path_chmod(path, mode);
491         if (!error)
492                 error = ccs_chmod_permission(path->dentry, path->mnt, mode);
493         return error;
494 }
495 
496 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
497 {
498         int error;
499         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
500                 return 0;
501         error = security_ops->path_chown(path, uid, gid);
502         if (!error)
503                 error = ccs_chown_permission(path->dentry, path->mnt, uid,
504                                              gid);
505         return error;
506 }
507 
508 int security_path_chroot(struct path *path)
509 {
510         int error = security_ops->path_chroot(path);
511         if (!error)
512                 error = ccs_chroot_permission(path);
513         return error;
514 }
515 #endif
516 
517 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
518 {
519         if (unlikely(IS_PRIVATE(dir)))
520                 return 0;
521         return security_ops->inode_create(dir, dentry, mode);
522 }
523 EXPORT_SYMBOL_GPL(security_inode_create);
524 
525 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
526                          struct dentry *new_dentry)
527 {
528         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
529                 return 0;
530         return security_ops->inode_link(old_dentry, dir, new_dentry);
531 }
532 
533 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
534 {
535         if (unlikely(IS_PRIVATE(dentry->d_inode)))
536                 return 0;
537         return security_ops->inode_unlink(dir, dentry);
538 }
539 
540 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
541                             const char *old_name)
542 {
543         if (unlikely(IS_PRIVATE(dir)))
544                 return 0;
545         return security_ops->inode_symlink(dir, dentry, old_name);
546 }
547 
548 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
549 {
550         if (unlikely(IS_PRIVATE(dir)))
551                 return 0;
552         return security_ops->inode_mkdir(dir, dentry, mode);
553 }
554 EXPORT_SYMBOL_GPL(security_inode_mkdir);
555 
556 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
557 {
558         if (unlikely(IS_PRIVATE(dentry->d_inode)))
559                 return 0;
560         return security_ops->inode_rmdir(dir, dentry);
561 }
562 
563 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
564 {
565         if (unlikely(IS_PRIVATE(dir)))
566                 return 0;
567         return security_ops->inode_mknod(dir, dentry, mode, dev);
568 }
569 
570 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
571                            struct inode *new_dir, struct dentry *new_dentry)
572 {
573         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
574             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
575                 return 0;
576         return security_ops->inode_rename(old_dir, old_dentry,
577                                            new_dir, new_dentry);
578 }
579 
580 int security_inode_readlink(struct dentry *dentry)
581 {
582         if (unlikely(IS_PRIVATE(dentry->d_inode)))
583                 return 0;
584         return security_ops->inode_readlink(dentry);
585 }
586 
587 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
588 {
589         if (unlikely(IS_PRIVATE(dentry->d_inode)))
590                 return 0;
591         return security_ops->inode_follow_link(dentry, nd);
592 }
593 
594 int security_inode_permission(struct inode *inode, int mask)
595 {
596         if (unlikely(IS_PRIVATE(inode)))
597                 return 0;
598         return security_ops->inode_permission(inode, mask);
599 }
600 
601 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
602 {
603         int ret;
604 
605         if (unlikely(IS_PRIVATE(dentry->d_inode)))
606                 return 0;
607         ret = security_ops->inode_setattr(dentry, attr);
608         if (ret)
609                 return ret;
610         return evm_inode_setattr(dentry, attr);
611 }
612 EXPORT_SYMBOL_GPL(security_inode_setattr);
613 
614 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
615 {
616         int error;
617         if (unlikely(IS_PRIVATE(dentry->d_inode)))
618                 return 0;
619         error = security_ops->inode_getattr(mnt, dentry);
620         if (!error)
621                 error = ccs_getattr_permission(mnt, dentry);
622         return error;
623 }
624 
625 int security_inode_setxattr(struct dentry *dentry, const char *name,
626                             const void *value, size_t size, int flags)
627 {
628         int ret;
629 
630         if (unlikely(IS_PRIVATE(dentry->d_inode)))
631                 return 0;
632         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
633         if (ret)
634                 return ret;
635         return evm_inode_setxattr(dentry, name, value, size);
636 }
637 
638 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
639                                   const void *value, size_t size, int flags)
640 {
641         if (unlikely(IS_PRIVATE(dentry->d_inode)))
642                 return;
643         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
644         evm_inode_post_setxattr(dentry, name, value, size);
645 }
646 
647 int security_inode_getxattr(struct dentry *dentry, const char *name)
648 {
649         if (unlikely(IS_PRIVATE(dentry->d_inode)))
650                 return 0;
651         return security_ops->inode_getxattr(dentry, name);
652 }
653 
654 int security_inode_listxattr(struct dentry *dentry)
655 {
656         if (unlikely(IS_PRIVATE(dentry->d_inode)))
657                 return 0;
658         return security_ops->inode_listxattr(dentry);
659 }
660 
661 int security_inode_removexattr(struct dentry *dentry, const char *name)
662 {
663         int ret;
664 
665         if (unlikely(IS_PRIVATE(dentry->d_inode)))
666                 return 0;
667         ret = security_ops->inode_removexattr(dentry, name);
668         if (ret)
669                 return ret;
670         return evm_inode_removexattr(dentry, name);
671 }
672 
673 int security_inode_need_killpriv(struct dentry *dentry)
674 {
675         return security_ops->inode_need_killpriv(dentry);
676 }
677 
678 int security_inode_killpriv(struct dentry *dentry)
679 {
680         return security_ops->inode_killpriv(dentry);
681 }
682 
683 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
684 {
685         if (unlikely(IS_PRIVATE(inode)))
686                 return -EOPNOTSUPP;
687         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
688 }
689 
690 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
691 {
692         if (unlikely(IS_PRIVATE(inode)))
693                 return -EOPNOTSUPP;
694         return security_ops->inode_setsecurity(inode, name, value, size, flags);
695 }
696 
697 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
698 {
699         if (unlikely(IS_PRIVATE(inode)))
700                 return 0;
701         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
702 }
703 
704 void security_inode_getsecid(const struct inode *inode, u32 *secid)
705 {
706         security_ops->inode_getsecid(inode, secid);
707 }
708 
709 int security_file_permission(struct file *file, int mask)
710 {
711         int ret;
712 
713         ret = security_ops->file_permission(file, mask);
714         if (ret)
715                 return ret;
716 
717         return fsnotify_perm(file, mask);
718 }
719 
720 int security_file_alloc(struct file *file)
721 {
722         return security_ops->file_alloc_security(file);
723 }
724 
725 void security_file_free(struct file *file)
726 {
727         security_ops->file_free_security(file);
728 }
729 
730 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
731 {
732         int error = security_ops->file_ioctl(file, cmd, arg);
733         if (!error)
734                 error = ccs_ioctl_permission(file, cmd, arg);
735         return error;
736 }
737 
738 int security_file_mmap(struct file *file, unsigned long reqprot,
739                         unsigned long prot, unsigned long flags,
740                         unsigned long addr, unsigned long addr_only)
741 {
742         int ret;
743 
744         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
745         if (ret)
746                 return ret;
747         return ima_file_mmap(file, prot);
748 }
749 
750 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
751                             unsigned long prot)
752 {
753         return security_ops->file_mprotect(vma, reqprot, prot);
754 }
755 
756 int security_file_lock(struct file *file, unsigned int cmd)
757 {
758         return security_ops->file_lock(file, cmd);
759 }
760 
761 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
762 {
763         int error = security_ops->file_fcntl(file, cmd, arg);
764         if (!error)
765                 error = ccs_fcntl_permission(file, cmd, arg);
766         return error;
767 }
768 
769 int security_file_set_fowner(struct file *file)
770 {
771         return security_ops->file_set_fowner(file);
772 }
773 
774 int security_file_send_sigiotask(struct task_struct *tsk,
775                                   struct fown_struct *fown, int sig)
776 {
777         return security_ops->file_send_sigiotask(tsk, fown, sig);
778 }
779 
780 int security_file_receive(struct file *file)
781 {
782         return security_ops->file_receive(file);
783 }
784 
785 int security_dentry_open(struct file *file, const struct cred *cred)
786 {
787         int ret;
788 
789         ret = security_ops->dentry_open(file, cred);
790         if (!ret)
791                 ret = ccs_open_permission(file);
792         if (ret)
793                 return ret;
794 
795         return fsnotify_perm(file, MAY_OPEN);
796 }
797 
798 int security_task_create(unsigned long clone_flags)
799 {
800         return security_ops->task_create(clone_flags);
801 }
802 
803 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
804 {
805         return security_ops->cred_alloc_blank(cred, gfp);
806 }
807 
808 void security_cred_free(struct cred *cred)
809 {
810         security_ops->cred_free(cred);
811 }
812 
813 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
814 {
815         return security_ops->cred_prepare(new, old, gfp);
816 }
817 
818 void security_transfer_creds(struct cred *new, const struct cred *old)
819 {
820         security_ops->cred_transfer(new, old);
821 }
822 
823 int security_kernel_act_as(struct cred *new, u32 secid)
824 {
825         return security_ops->kernel_act_as(new, secid);
826 }
827 
828 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
829 {
830         return security_ops->kernel_create_files_as(new, inode);
831 }
832 
833 int security_kernel_module_request(char *kmod_name)
834 {
835         return security_ops->kernel_module_request(kmod_name);
836 }
837 
838 int security_task_fix_setuid(struct cred *new, const struct cred *old,
839                              int flags)
840 {
841         return security_ops->task_fix_setuid(new, old, flags);
842 }
843 
844 int security_task_setpgid(struct task_struct *p, pid_t pgid)
845 {
846         return security_ops->task_setpgid(p, pgid);
847 }
848 
849 int security_task_getpgid(struct task_struct *p)
850 {
851         return security_ops->task_getpgid(p);
852 }
853 
854 int security_task_getsid(struct task_struct *p)
855 {
856         return security_ops->task_getsid(p);
857 }
858 
859 void security_task_getsecid(struct task_struct *p, u32 *secid)
860 {
861         security_ops->task_getsecid(p, secid);
862 }
863 EXPORT_SYMBOL(security_task_getsecid);
864 
865 int security_task_setnice(struct task_struct *p, int nice)
866 {
867         return security_ops->task_setnice(p, nice);
868 }
869 
870 int security_task_setioprio(struct task_struct *p, int ioprio)
871 {
872         return security_ops->task_setioprio(p, ioprio);
873 }
874 
875 int security_task_getioprio(struct task_struct *p)
876 {
877         return security_ops->task_getioprio(p);
878 }
879 
880 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
881                 struct rlimit *new_rlim)
882 {
883         return security_ops->task_setrlimit(p, resource, new_rlim);
884 }
885 
886 int security_task_setscheduler(struct task_struct *p)
887 {
888         return security_ops->task_setscheduler(p);
889 }
890 
891 int security_task_getscheduler(struct task_struct *p)
892 {
893         return security_ops->task_getscheduler(p);
894 }
895 
896 int security_task_movememory(struct task_struct *p)
897 {
898         return security_ops->task_movememory(p);
899 }
900 
901 int security_task_kill(struct task_struct *p, struct siginfo *info,
902                         int sig, u32 secid)
903 {
904         return security_ops->task_kill(p, info, sig, secid);
905 }
906 
907 int security_task_wait(struct task_struct *p)
908 {
909         return security_ops->task_wait(p);
910 }
911 
912 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
913                          unsigned long arg4, unsigned long arg5)
914 {
915         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
916 }
917 
918 void security_task_to_inode(struct task_struct *p, struct inode *inode)
919 {
920         security_ops->task_to_inode(p, inode);
921 }
922 
923 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
924 {
925         return security_ops->ipc_permission(ipcp, flag);
926 }
927 
928 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
929 {
930         security_ops->ipc_getsecid(ipcp, secid);
931 }
932 
933 int security_msg_msg_alloc(struct msg_msg *msg)
934 {
935         return security_ops->msg_msg_alloc_security(msg);
936 }
937 
938 void security_msg_msg_free(struct msg_msg *msg)
939 {
940         security_ops->msg_msg_free_security(msg);
941 }
942 
943 int security_msg_queue_alloc(struct msg_queue *msq)
944 {
945         return security_ops->msg_queue_alloc_security(msq);
946 }
947 
948 void security_msg_queue_free(struct msg_queue *msq)
949 {
950         security_ops->msg_queue_free_security(msq);
951 }
952 
953 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
954 {
955         return security_ops->msg_queue_associate(msq, msqflg);
956 }
957 
958 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
959 {
960         return security_ops->msg_queue_msgctl(msq, cmd);
961 }
962 
963 int security_msg_queue_msgsnd(struct msg_queue *msq,
964                                struct msg_msg *msg, int msqflg)
965 {
966         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
967 }
968 
969 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
970                                struct task_struct *target, long type, int mode)
971 {
972         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
973 }
974 
975 int security_shm_alloc(struct shmid_kernel *shp)
976 {
977         return security_ops->shm_alloc_security(shp);
978 }
979 
980 void security_shm_free(struct shmid_kernel *shp)
981 {
982         security_ops->shm_free_security(shp);
983 }
984 
985 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
986 {
987         return security_ops->shm_associate(shp, shmflg);
988 }
989 
990 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
991 {
992         return security_ops->shm_shmctl(shp, cmd);
993 }
994 
995 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
996 {
997         return security_ops->shm_shmat(shp, shmaddr, shmflg);
998 }
999 
1000 int security_sem_alloc(struct sem_array *sma)
1001 {
1002         return security_ops->sem_alloc_security(sma);
1003 }
1004 
1005 void security_sem_free(struct sem_array *sma)
1006 {
1007         security_ops->sem_free_security(sma);
1008 }
1009 
1010 int security_sem_associate(struct sem_array *sma, int semflg)
1011 {
1012         return security_ops->sem_associate(sma, semflg);
1013 }
1014 
1015 int security_sem_semctl(struct sem_array *sma, int cmd)
1016 {
1017         return security_ops->sem_semctl(sma, cmd);
1018 }
1019 
1020 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1021                         unsigned nsops, int alter)
1022 {
1023         return security_ops->sem_semop(sma, sops, nsops, alter);
1024 }
1025 
1026 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1027 {
1028         if (unlikely(inode && IS_PRIVATE(inode)))
1029                 return;
1030         security_ops->d_instantiate(dentry, inode);
1031 }
1032 EXPORT_SYMBOL(security_d_instantiate);
1033 
1034 int security_getprocattr(struct task_struct *p, char *name, char **value)
1035 {
1036         return security_ops->getprocattr(p, name, value);
1037 }
1038 
1039 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1040 {
1041         return security_ops->setprocattr(p, name, value, size);
1042 }
1043 
1044 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1045 {
1046         return security_ops->netlink_send(sk, skb);
1047 }
1048 
1049 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1050 {
1051         return security_ops->secid_to_secctx(secid, secdata, seclen);
1052 }
1053 EXPORT_SYMBOL(security_secid_to_secctx);
1054 
1055 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1056 {
1057         return security_ops->secctx_to_secid(secdata, seclen, secid);
1058 }
1059 EXPORT_SYMBOL(security_secctx_to_secid);
1060 
1061 void security_release_secctx(char *secdata, u32 seclen)
1062 {
1063         security_ops->release_secctx(secdata, seclen);
1064 }
1065 EXPORT_SYMBOL(security_release_secctx);
1066 
1067 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1068 {
1069         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1070 }
1071 EXPORT_SYMBOL(security_inode_notifysecctx);
1072 
1073 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1074 {
1075         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1076 }
1077 EXPORT_SYMBOL(security_inode_setsecctx);
1078 
1079 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1080 {
1081         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1082 }
1083 EXPORT_SYMBOL(security_inode_getsecctx);
1084 
1085 #ifdef CONFIG_SECURITY_NETWORK
1086 
1087 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1088 {
1089         return security_ops->unix_stream_connect(sock, other, newsk);
1090 }
1091 EXPORT_SYMBOL(security_unix_stream_connect);
1092 
1093 int security_unix_may_send(struct socket *sock,  struct socket *other)
1094 {
1095         return security_ops->unix_may_send(sock, other);
1096 }
1097 EXPORT_SYMBOL(security_unix_may_send);
1098 
1099 int security_socket_create(int family, int type, int protocol, int kern)
1100 {
1101         int error = security_ops->socket_create(family, type, protocol, kern);
1102         if (!error)
1103                 error = ccs_socket_create_permission(family, type, protocol);
1104         return error;
1105 }
1106 
1107 int security_socket_post_create(struct socket *sock, int family,
1108                                 int type, int protocol, int kern)
1109 {
1110         return security_ops->socket_post_create(sock, family, type,
1111                                                 protocol, kern);
1112 }
1113 
1114 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1115 {
1116         int error = security_ops->socket_bind(sock, address, addrlen);
1117         if (!error)
1118                 error = ccs_socket_bind_permission(sock, address, addrlen);
1119         return error;
1120 }
1121 
1122 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1123 {
1124         int error = security_ops->socket_connect(sock, address, addrlen);
1125         if (!error)
1126                 error = ccs_socket_connect_permission(sock, address, addrlen);
1127         return error;
1128 }
1129 
1130 int security_socket_listen(struct socket *sock, int backlog)
1131 {
1132         int error = security_ops->socket_listen(sock, backlog);
1133         if (!error)
1134                 error = ccs_socket_listen_permission(sock);
1135         return error;
1136 }
1137 
1138 int security_socket_accept(struct socket *sock, struct socket *newsock)
1139 {
1140         return security_ops->socket_accept(sock, newsock);
1141 }
1142 
1143 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1144 {
1145         int error = security_ops->socket_sendmsg(sock, msg, size);
1146         if (!error)
1147                 error = ccs_socket_sendmsg_permission(sock, msg, size);
1148         return error;
1149 }
1150 
1151 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1152                             int size, int flags)
1153 {
1154         return security_ops->socket_recvmsg(sock, msg, size, flags);
1155 }
1156 
1157 int security_socket_getsockname(struct socket *sock)
1158 {
1159         return security_ops->socket_getsockname(sock);
1160 }
1161 
1162 int security_socket_getpeername(struct socket *sock)
1163 {
1164         return security_ops->socket_getpeername(sock);
1165 }
1166 
1167 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1168 {
1169         return security_ops->socket_getsockopt(sock, level, optname);
1170 }
1171 
1172 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1173 {
1174         return security_ops->socket_setsockopt(sock, level, optname);
1175 }
1176 
1177 int security_socket_shutdown(struct socket *sock, int how)
1178 {
1179         return security_ops->socket_shutdown(sock, how);
1180 }
1181 
1182 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1183 {
1184         return security_ops->socket_sock_rcv_skb(sk, skb);
1185 }
1186 EXPORT_SYMBOL(security_sock_rcv_skb);
1187 
1188 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1189                                       int __user *optlen, unsigned len)
1190 {
1191         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1192 }
1193 
1194 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1195 {
1196         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1197 }
1198 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1199 
1200 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1201 {
1202         return security_ops->sk_alloc_security(sk, family, priority);
1203 }
1204 
1205 void security_sk_free(struct sock *sk)
1206 {
1207         security_ops->sk_free_security(sk);
1208 }
1209 
1210 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1211 {
1212         security_ops->sk_clone_security(sk, newsk);
1213 }
1214 EXPORT_SYMBOL(security_sk_clone);
1215 
1216 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1217 {
1218         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1219 }
1220 EXPORT_SYMBOL(security_sk_classify_flow);
1221 
1222 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1223 {
1224         security_ops->req_classify_flow(req, fl);
1225 }
1226 EXPORT_SYMBOL(security_req_classify_flow);
1227 
1228 void security_sock_graft(struct sock *sk, struct socket *parent)
1229 {
1230         security_ops->sock_graft(sk, parent);
1231 }
1232 EXPORT_SYMBOL(security_sock_graft);
1233 
1234 int security_inet_conn_request(struct sock *sk,
1235                         struct sk_buff *skb, struct request_sock *req)
1236 {
1237         return security_ops->inet_conn_request(sk, skb, req);
1238 }
1239 EXPORT_SYMBOL(security_inet_conn_request);
1240 
1241 void security_inet_csk_clone(struct sock *newsk,
1242                         const struct request_sock *req)
1243 {
1244         security_ops->inet_csk_clone(newsk, req);
1245 }
1246 
1247 void security_inet_conn_established(struct sock *sk,
1248                         struct sk_buff *skb)
1249 {
1250         security_ops->inet_conn_established(sk, skb);
1251 }
1252 
1253 int security_secmark_relabel_packet(u32 secid)
1254 {
1255         return security_ops->secmark_relabel_packet(secid);
1256 }
1257 EXPORT_SYMBOL(security_secmark_relabel_packet);
1258 
1259 void security_secmark_refcount_inc(void)
1260 {
1261         security_ops->secmark_refcount_inc();
1262 }
1263 EXPORT_SYMBOL(security_secmark_refcount_inc);
1264 
1265 void security_secmark_refcount_dec(void)
1266 {
1267         security_ops->secmark_refcount_dec();
1268 }
1269 EXPORT_SYMBOL(security_secmark_refcount_dec);
1270 
1271 int security_tun_dev_create(void)
1272 {
1273         return security_ops->tun_dev_create();
1274 }
1275 EXPORT_SYMBOL(security_tun_dev_create);
1276 
1277 void security_tun_dev_post_create(struct sock *sk)
1278 {
1279         return security_ops->tun_dev_post_create(sk);
1280 }
1281 EXPORT_SYMBOL(security_tun_dev_post_create);
1282 
1283 int security_tun_dev_attach(struct sock *sk)
1284 {
1285         return security_ops->tun_dev_attach(sk);
1286 }
1287 EXPORT_SYMBOL(security_tun_dev_attach);
1288 
1289 #endif  /* CONFIG_SECURITY_NETWORK */
1290 
1291 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1292 
1293 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1294 {
1295         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1296 }
1297 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1298 
1299 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1300                               struct xfrm_sec_ctx **new_ctxp)
1301 {
1302         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1303 }
1304 
1305 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1306 {
1307         security_ops->xfrm_policy_free_security(ctx);
1308 }
1309 EXPORT_SYMBOL(security_xfrm_policy_free);
1310 
1311 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1312 {
1313         return security_ops->xfrm_policy_delete_security(ctx);
1314 }
1315 
1316 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1317 {
1318         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1319 }
1320 EXPORT_SYMBOL(security_xfrm_state_alloc);
1321 
1322 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1323                                       struct xfrm_sec_ctx *polsec, u32 secid)
1324 {
1325         if (!polsec)
1326                 return 0;
1327         /*
1328          * We want the context to be taken from secid which is usually
1329          * from the sock.
1330          */
1331         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1332 }
1333 
1334 int security_xfrm_state_delete(struct xfrm_state *x)
1335 {
1336         return security_ops->xfrm_state_delete_security(x);
1337 }
1338 EXPORT_SYMBOL(security_xfrm_state_delete);
1339 
1340 void security_xfrm_state_free(struct xfrm_state *x)
1341 {
1342         security_ops->xfrm_state_free_security(x);
1343 }
1344 
1345 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1346 {
1347         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1348 }
1349 
1350 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1351                                        struct xfrm_policy *xp,
1352                                        const struct flowi *fl)
1353 {
1354         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1355 }
1356 
1357 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1358 {
1359         return security_ops->xfrm_decode_session(skb, secid, 1);
1360 }
1361 
1362 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1363 {
1364         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1365 
1366         BUG_ON(rc);
1367 }
1368 EXPORT_SYMBOL(security_skb_classify_flow);
1369 
1370 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1371 
1372 #ifdef CONFIG_KEYS
1373 
1374 int security_key_alloc(struct key *key, const struct cred *cred,
1375                        unsigned long flags)
1376 {
1377         return security_ops->key_alloc(key, cred, flags);
1378 }
1379 
1380 void security_key_free(struct key *key)
1381 {
1382         security_ops->key_free(key);
1383 }
1384 
1385 int security_key_permission(key_ref_t key_ref,
1386                             const struct cred *cred, key_perm_t perm)
1387 {
1388         return security_ops->key_permission(key_ref, cred, perm);
1389 }
1390 
1391 int security_key_getsecurity(struct key *key, char **_buffer)
1392 {
1393         return security_ops->key_getsecurity(key, _buffer);
1394 }
1395 
1396 #endif  /* CONFIG_KEYS */
1397 
1398 #ifdef CONFIG_AUDIT
1399 
1400 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1401 {
1402         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1403 }
1404 
1405 int security_audit_rule_known(struct audit_krule *krule)
1406 {
1407         return security_ops->audit_rule_known(krule);
1408 }
1409 
1410 void security_audit_rule_free(void *lsmrule)
1411 {
1412         security_ops->audit_rule_free(lsmrule);
1413 }
1414 
1415 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1416                               struct audit_context *actx)
1417 {
1418         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1419 }
1420 
1421 #endif /* CONFIG_AUDIT */
1422 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp