~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/security/security.c

Version: ~ [ linux-5.12-rc1 ] ~ [ linux-5.11.2 ] ~ [ linux-5.10.19 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.101 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.177 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.222 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.258 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.258 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Security plug functions
  4  *
  5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  8  * Copyright (C) 2016 Mellanox Technologies
  9  */
 10 
 11 #define pr_fmt(fmt) "LSM: " fmt
 12 
 13 #include <linux/bpf.h>
 14 #include <linux/capability.h>
 15 #include <linux/dcache.h>
 16 #include <linux/export.h>
 17 #include <linux/init.h>
 18 #include <linux/kernel.h>
 19 #include <linux/lsm_hooks.h>
 20 #include <linux/integrity.h>
 21 #include <linux/ima.h>
 22 #include <linux/evm.h>
 23 #include <linux/fsnotify.h>
 24 #include <linux/mman.h>
 25 #include <linux/mount.h>
 26 #include <linux/personality.h>
 27 #include <linux/backing-dev.h>
 28 #include <linux/string.h>
 29 #include <linux/msg.h>
 30 #include <net/flow.h>
 31 
 32 #define MAX_LSM_EVM_XATTR       2
 33 
 34 /* How many LSMs were built into the kernel? */
 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
 36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
 37 
 38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
 39 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
 40 
 41 static struct kmem_cache *lsm_file_cache;
 42 static struct kmem_cache *lsm_inode_cache;
 43 
 44 char *lsm_names;
 45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
 46 
 47 /* Boot-time LSM user choice */
 48 static __initdata const char *chosen_lsm_order;
 49 static __initdata const char *chosen_major_lsm;
 50 
 51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
 52 
 53 /* Ordered list of LSMs to initialize. */
 54 static __initdata struct lsm_info **ordered_lsms;
 55 static __initdata struct lsm_info *exclusive;
 56 
 57 static __initdata bool debug;
 58 #define init_debug(...)                                         \
 59         do {                                                    \
 60                 if (debug)                                      \
 61                         pr_info(__VA_ARGS__);                   \
 62         } while (0)
 63 
 64 static bool __init is_enabled(struct lsm_info *lsm)
 65 {
 66         if (!lsm->enabled)
 67                 return false;
 68 
 69         return *lsm->enabled;
 70 }
 71 
 72 /* Mark an LSM's enabled flag. */
 73 static int lsm_enabled_true __initdata = 1;
 74 static int lsm_enabled_false __initdata = 0;
 75 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 76 {
 77         /*
 78          * When an LSM hasn't configured an enable variable, we can use
 79          * a hard-coded location for storing the default enabled state.
 80          */
 81         if (!lsm->enabled) {
 82                 if (enabled)
 83                         lsm->enabled = &lsm_enabled_true;
 84                 else
 85                         lsm->enabled = &lsm_enabled_false;
 86         } else if (lsm->enabled == &lsm_enabled_true) {
 87                 if (!enabled)
 88                         lsm->enabled = &lsm_enabled_false;
 89         } else if (lsm->enabled == &lsm_enabled_false) {
 90                 if (enabled)
 91                         lsm->enabled = &lsm_enabled_true;
 92         } else {
 93                 *lsm->enabled = enabled;
 94         }
 95 }
 96 
 97 /* Is an LSM already listed in the ordered LSMs list? */
 98 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 99 {
100         struct lsm_info **check;
101 
102         for (check = ordered_lsms; *check; check++)
103                 if (*check == lsm)
104                         return true;
105 
106         return false;
107 }
108 
109 /* Append an LSM to the list of ordered LSMs to initialize. */
110 static int last_lsm __initdata;
111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112 {
113         /* Ignore duplicate selections. */
114         if (exists_ordered_lsm(lsm))
115                 return;
116 
117         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118                 return;
119 
120         /* Enable this LSM, if it is not already set. */
121         if (!lsm->enabled)
122                 lsm->enabled = &lsm_enabled_true;
123         ordered_lsms[last_lsm++] = lsm;
124 
125         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126                    is_enabled(lsm) ? "en" : "dis");
127 }
128 
129 /* Is an LSM allowed to be initialized? */
130 static bool __init lsm_allowed(struct lsm_info *lsm)
131 {
132         /* Skip if the LSM is disabled. */
133         if (!is_enabled(lsm))
134                 return false;
135 
136         /* Not allowed if another exclusive LSM already initialized. */
137         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138                 init_debug("exclusive disabled: %s\n", lsm->name);
139                 return false;
140         }
141 
142         return true;
143 }
144 
145 static void __init lsm_set_blob_size(int *need, int *lbs)
146 {
147         int offset;
148 
149         if (*need > 0) {
150                 offset = *lbs;
151                 *lbs += *need;
152                 *need = offset;
153         }
154 }
155 
156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157 {
158         if (!needed)
159                 return;
160 
161         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163         /*
164          * The inode blob gets an rcu_head in addition to
165          * what the modules might need.
166          */
167         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173 }
174 
175 /* Prepare LSM for initialization. */
176 static void __init prepare_lsm(struct lsm_info *lsm)
177 {
178         int enabled = lsm_allowed(lsm);
179 
180         /* Record enablement (to handle any following exclusive LSMs). */
181         set_enabled(lsm, enabled);
182 
183         /* If enabled, do pre-initialization work. */
184         if (enabled) {
185                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186                         exclusive = lsm;
187                         init_debug("exclusive chosen: %s\n", lsm->name);
188                 }
189 
190                 lsm_set_blob_sizes(lsm->blobs);
191         }
192 }
193 
194 /* Initialize a given LSM, if it is enabled. */
195 static void __init initialize_lsm(struct lsm_info *lsm)
196 {
197         if (is_enabled(lsm)) {
198                 int ret;
199 
200                 init_debug("initializing %s\n", lsm->name);
201                 ret = lsm->init();
202                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203         }
204 }
205 
206 /* Populate ordered LSMs list from comma-separated LSM name list. */
207 static void __init ordered_lsm_parse(const char *order, const char *origin)
208 {
209         struct lsm_info *lsm;
210         char *sep, *name, *next;
211 
212         /* LSM_ORDER_FIRST is always first. */
213         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214                 if (lsm->order == LSM_ORDER_FIRST)
215                         append_ordered_lsm(lsm, "first");
216         }
217 
218         /* Process "security=", if given. */
219         if (chosen_major_lsm) {
220                 struct lsm_info *major;
221 
222                 /*
223                  * To match the original "security=" behavior, this
224                  * explicitly does NOT fallback to another Legacy Major
225                  * if the selected one was separately disabled: disable
226                  * all non-matching Legacy Major LSMs.
227                  */
228                 for (major = __start_lsm_info; major < __end_lsm_info;
229                      major++) {
230                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231                             strcmp(major->name, chosen_major_lsm) != 0) {
232                                 set_enabled(major, false);
233                                 init_debug("security=%s disabled: %s\n",
234                                            chosen_major_lsm, major->name);
235                         }
236                 }
237         }
238 
239         sep = kstrdup(order, GFP_KERNEL);
240         next = sep;
241         /* Walk the list, looking for matching LSMs. */
242         while ((name = strsep(&next, ",")) != NULL) {
243                 bool found = false;
244 
245                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246                         if (lsm->order == LSM_ORDER_MUTABLE &&
247                             strcmp(lsm->name, name) == 0) {
248                                 append_ordered_lsm(lsm, origin);
249                                 found = true;
250                         }
251                 }
252 
253                 if (!found)
254                         init_debug("%s ignored: %s\n", origin, name);
255         }
256 
257         /* Process "security=", if given. */
258         if (chosen_major_lsm) {
259                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260                         if (exists_ordered_lsm(lsm))
261                                 continue;
262                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
263                                 append_ordered_lsm(lsm, "security=");
264                 }
265         }
266 
267         /* Disable all LSMs not in the ordered list. */
268         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269                 if (exists_ordered_lsm(lsm))
270                         continue;
271                 set_enabled(lsm, false);
272                 init_debug("%s disabled: %s\n", origin, lsm->name);
273         }
274 
275         kfree(sep);
276 }
277 
278 static void __init lsm_early_cred(struct cred *cred);
279 static void __init lsm_early_task(struct task_struct *task);
280 
281 static int lsm_append(const char *new, char **result);
282 
283 static void __init ordered_lsm_init(void)
284 {
285         struct lsm_info **lsm;
286 
287         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288                                 GFP_KERNEL);
289 
290         if (chosen_lsm_order) {
291                 if (chosen_major_lsm) {
292                         pr_info("security= is ignored because it is superseded by lsm=\n");
293                         chosen_major_lsm = NULL;
294                 }
295                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296         } else
297                 ordered_lsm_parse(builtin_lsm_order, "builtin");
298 
299         for (lsm = ordered_lsms; *lsm; lsm++)
300                 prepare_lsm(*lsm);
301 
302         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
303         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
304         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
305         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
306         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
307         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
308 
309         /*
310          * Create any kmem_caches needed for blobs
311          */
312         if (blob_sizes.lbs_file)
313                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314                                                    blob_sizes.lbs_file, 0,
315                                                    SLAB_PANIC, NULL);
316         if (blob_sizes.lbs_inode)
317                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318                                                     blob_sizes.lbs_inode, 0,
319                                                     SLAB_PANIC, NULL);
320 
321         lsm_early_cred((struct cred *) current->cred);
322         lsm_early_task(current);
323         for (lsm = ordered_lsms; *lsm; lsm++)
324                 initialize_lsm(*lsm);
325 
326         kfree(ordered_lsms);
327 }
328 
329 int __init early_security_init(void)
330 {
331         int i;
332         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333         struct lsm_info *lsm;
334 
335         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336              i++)
337                 INIT_HLIST_HEAD(&list[i]);
338 
339         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340                 if (!lsm->enabled)
341                         lsm->enabled = &lsm_enabled_true;
342                 prepare_lsm(lsm);
343                 initialize_lsm(lsm);
344         }
345 
346         return 0;
347 }
348 
349 /**
350  * security_init - initializes the security framework
351  *
352  * This should be called early in the kernel initialization sequence.
353  */
354 int __init security_init(void)
355 {
356         struct lsm_info *lsm;
357 
358         pr_info("Security Framework initializing\n");
359 
360         /*
361          * Append the names of the early LSM modules now that kmalloc() is
362          * available
363          */
364         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365                 if (lsm->enabled)
366                         lsm_append(lsm->name, &lsm_names);
367         }
368 
369         /* Load LSMs in specified order. */
370         ordered_lsm_init();
371 
372         return 0;
373 }
374 
375 /* Save user chosen LSM */
376 static int __init choose_major_lsm(char *str)
377 {
378         chosen_major_lsm = str;
379         return 1;
380 }
381 __setup("security=", choose_major_lsm);
382 
383 /* Explicitly choose LSM initialization order. */
384 static int __init choose_lsm_order(char *str)
385 {
386         chosen_lsm_order = str;
387         return 1;
388 }
389 __setup("lsm=", choose_lsm_order);
390 
391 /* Enable LSM order debugging. */
392 static int __init enable_debug(char *str)
393 {
394         debug = true;
395         return 1;
396 }
397 __setup("lsm.debug", enable_debug);
398 
399 static bool match_last_lsm(const char *list, const char *lsm)
400 {
401         const char *last;
402 
403         if (WARN_ON(!list || !lsm))
404                 return false;
405         last = strrchr(list, ',');
406         if (last)
407                 /* Pass the comma, strcmp() will check for '\0' */
408                 last++;
409         else
410                 last = list;
411         return !strcmp(last, lsm);
412 }
413 
414 static int lsm_append(const char *new, char **result)
415 {
416         char *cp;
417 
418         if (*result == NULL) {
419                 *result = kstrdup(new, GFP_KERNEL);
420                 if (*result == NULL)
421                         return -ENOMEM;
422         } else {
423                 /* Check if it is the last registered name */
424                 if (match_last_lsm(*result, new))
425                         return 0;
426                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427                 if (cp == NULL)
428                         return -ENOMEM;
429                 kfree(*result);
430                 *result = cp;
431         }
432         return 0;
433 }
434 
435 /**
436  * security_add_hooks - Add a modules hooks to the hook lists.
437  * @hooks: the hooks to add
438  * @count: the number of hooks to add
439  * @lsm: the name of the security module
440  *
441  * Each LSM has to register its hooks with the infrastructure.
442  */
443 void __init security_add_hooks(struct security_hook_list *hooks, int count,
444                                 char *lsm)
445 {
446         int i;
447 
448         for (i = 0; i < count; i++) {
449                 hooks[i].lsm = lsm;
450                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451         }
452 
453         /*
454          * Don't try to append during early_security_init(), we'll come back
455          * and fix this up afterwards.
456          */
457         if (slab_is_available()) {
458                 if (lsm_append(lsm, &lsm_names) < 0)
459                         panic("%s - Cannot get early memory.\n", __func__);
460         }
461 }
462 
463 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464 {
465         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466                                             event, data);
467 }
468 EXPORT_SYMBOL(call_blocking_lsm_notifier);
469 
470 int register_blocking_lsm_notifier(struct notifier_block *nb)
471 {
472         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473                                                 nb);
474 }
475 EXPORT_SYMBOL(register_blocking_lsm_notifier);
476 
477 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478 {
479         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480                                                   nb);
481 }
482 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483 
484 /**
485  * lsm_cred_alloc - allocate a composite cred blob
486  * @cred: the cred that needs a blob
487  * @gfp: allocation type
488  *
489  * Allocate the cred blob for all the modules
490  *
491  * Returns 0, or -ENOMEM if memory can't be allocated.
492  */
493 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494 {
495         if (blob_sizes.lbs_cred == 0) {
496                 cred->security = NULL;
497                 return 0;
498         }
499 
500         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501         if (cred->security == NULL)
502                 return -ENOMEM;
503         return 0;
504 }
505 
506 /**
507  * lsm_early_cred - during initialization allocate a composite cred blob
508  * @cred: the cred that needs a blob
509  *
510  * Allocate the cred blob for all the modules
511  */
512 static void __init lsm_early_cred(struct cred *cred)
513 {
514         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515 
516         if (rc)
517                 panic("%s: Early cred alloc failed.\n", __func__);
518 }
519 
520 /**
521  * lsm_file_alloc - allocate a composite file blob
522  * @file: the file that needs a blob
523  *
524  * Allocate the file blob for all the modules
525  *
526  * Returns 0, or -ENOMEM if memory can't be allocated.
527  */
528 static int lsm_file_alloc(struct file *file)
529 {
530         if (!lsm_file_cache) {
531                 file->f_security = NULL;
532                 return 0;
533         }
534 
535         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536         if (file->f_security == NULL)
537                 return -ENOMEM;
538         return 0;
539 }
540 
541 /**
542  * lsm_inode_alloc - allocate a composite inode blob
543  * @inode: the inode that needs a blob
544  *
545  * Allocate the inode blob for all the modules
546  *
547  * Returns 0, or -ENOMEM if memory can't be allocated.
548  */
549 int lsm_inode_alloc(struct inode *inode)
550 {
551         if (!lsm_inode_cache) {
552                 inode->i_security = NULL;
553                 return 0;
554         }
555 
556         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557         if (inode->i_security == NULL)
558                 return -ENOMEM;
559         return 0;
560 }
561 
562 /**
563  * lsm_task_alloc - allocate a composite task blob
564  * @task: the task that needs a blob
565  *
566  * Allocate the task blob for all the modules
567  *
568  * Returns 0, or -ENOMEM if memory can't be allocated.
569  */
570 static int lsm_task_alloc(struct task_struct *task)
571 {
572         if (blob_sizes.lbs_task == 0) {
573                 task->security = NULL;
574                 return 0;
575         }
576 
577         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578         if (task->security == NULL)
579                 return -ENOMEM;
580         return 0;
581 }
582 
583 /**
584  * lsm_ipc_alloc - allocate a composite ipc blob
585  * @kip: the ipc that needs a blob
586  *
587  * Allocate the ipc blob for all the modules
588  *
589  * Returns 0, or -ENOMEM if memory can't be allocated.
590  */
591 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592 {
593         if (blob_sizes.lbs_ipc == 0) {
594                 kip->security = NULL;
595                 return 0;
596         }
597 
598         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599         if (kip->security == NULL)
600                 return -ENOMEM;
601         return 0;
602 }
603 
604 /**
605  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606  * @mp: the msg_msg that needs a blob
607  *
608  * Allocate the ipc blob for all the modules
609  *
610  * Returns 0, or -ENOMEM if memory can't be allocated.
611  */
612 static int lsm_msg_msg_alloc(struct msg_msg *mp)
613 {
614         if (blob_sizes.lbs_msg_msg == 0) {
615                 mp->security = NULL;
616                 return 0;
617         }
618 
619         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620         if (mp->security == NULL)
621                 return -ENOMEM;
622         return 0;
623 }
624 
625 /**
626  * lsm_early_task - during initialization allocate a composite task blob
627  * @task: the task that needs a blob
628  *
629  * Allocate the task blob for all the modules
630  */
631 static void __init lsm_early_task(struct task_struct *task)
632 {
633         int rc = lsm_task_alloc(task);
634 
635         if (rc)
636                 panic("%s: Early task alloc failed.\n", __func__);
637 }
638 
639 /*
640  * Hook list operation macros.
641  *
642  * call_void_hook:
643  *      This is a hook that does not return a value.
644  *
645  * call_int_hook:
646  *      This is a hook that returns a value.
647  */
648 
649 #define call_void_hook(FUNC, ...)                               \
650         do {                                                    \
651                 struct security_hook_list *P;                   \
652                                                                 \
653                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654                         P->hook.FUNC(__VA_ARGS__);              \
655         } while (0)
656 
657 #define call_int_hook(FUNC, IRC, ...) ({                        \
658         int RC = IRC;                                           \
659         do {                                                    \
660                 struct security_hook_list *P;                   \
661                                                                 \
662                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663                         RC = P->hook.FUNC(__VA_ARGS__);         \
664                         if (RC != 0)                            \
665                                 break;                          \
666                 }                                               \
667         } while (0);                                            \
668         RC;                                                     \
669 })
670 
671 /* Security operations */
672 
673 int security_binder_set_context_mgr(struct task_struct *mgr)
674 {
675         return call_int_hook(binder_set_context_mgr, 0, mgr);
676 }
677 
678 int security_binder_transaction(struct task_struct *from,
679                                 struct task_struct *to)
680 {
681         return call_int_hook(binder_transaction, 0, from, to);
682 }
683 
684 int security_binder_transfer_binder(struct task_struct *from,
685                                     struct task_struct *to)
686 {
687         return call_int_hook(binder_transfer_binder, 0, from, to);
688 }
689 
690 int security_binder_transfer_file(struct task_struct *from,
691                                   struct task_struct *to, struct file *file)
692 {
693         return call_int_hook(binder_transfer_file, 0, from, to, file);
694 }
695 
696 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697 {
698         return call_int_hook(ptrace_access_check, 0, child, mode);
699 }
700 
701 int security_ptrace_traceme(struct task_struct *parent)
702 {
703         return call_int_hook(ptrace_traceme, 0, parent);
704 }
705 
706 int security_capget(struct task_struct *target,
707                      kernel_cap_t *effective,
708                      kernel_cap_t *inheritable,
709                      kernel_cap_t *permitted)
710 {
711         return call_int_hook(capget, 0, target,
712                                 effective, inheritable, permitted);
713 }
714 
715 int security_capset(struct cred *new, const struct cred *old,
716                     const kernel_cap_t *effective,
717                     const kernel_cap_t *inheritable,
718                     const kernel_cap_t *permitted)
719 {
720         return call_int_hook(capset, 0, new, old,
721                                 effective, inheritable, permitted);
722 }
723 
724 int security_capable(const struct cred *cred,
725                      struct user_namespace *ns,
726                      int cap,
727                      unsigned int opts)
728 {
729         return call_int_hook(capable, 0, cred, ns, cap, opts);
730 }
731 
732 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733 {
734         return call_int_hook(quotactl, 0, cmds, type, id, sb);
735 }
736 
737 int security_quota_on(struct dentry *dentry)
738 {
739         return call_int_hook(quota_on, 0, dentry);
740 }
741 
742 int security_syslog(int type)
743 {
744         return call_int_hook(syslog, 0, type);
745 }
746 
747 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748 {
749         return call_int_hook(settime, 0, ts, tz);
750 }
751 
752 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753 {
754         struct security_hook_list *hp;
755         int cap_sys_admin = 1;
756         int rc;
757 
758         /*
759          * The module will respond with a positive value if
760          * it thinks the __vm_enough_memory() call should be
761          * made with the cap_sys_admin set. If all of the modules
762          * agree that it should be set it will. If any module
763          * thinks it should not be set it won't.
764          */
765         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766                 rc = hp->hook.vm_enough_memory(mm, pages);
767                 if (rc <= 0) {
768                         cap_sys_admin = 0;
769                         break;
770                 }
771         }
772         return __vm_enough_memory(mm, pages, cap_sys_admin);
773 }
774 
775 int security_bprm_set_creds(struct linux_binprm *bprm)
776 {
777         return call_int_hook(bprm_set_creds, 0, bprm);
778 }
779 
780 int security_bprm_check(struct linux_binprm *bprm)
781 {
782         int ret;
783 
784         ret = call_int_hook(bprm_check_security, 0, bprm);
785         if (ret)
786                 return ret;
787         return ima_bprm_check(bprm);
788 }
789 
790 void security_bprm_committing_creds(struct linux_binprm *bprm)
791 {
792         call_void_hook(bprm_committing_creds, bprm);
793 }
794 
795 void security_bprm_committed_creds(struct linux_binprm *bprm)
796 {
797         call_void_hook(bprm_committed_creds, bprm);
798 }
799 
800 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801 {
802         return call_int_hook(fs_context_dup, 0, fc, src_fc);
803 }
804 
805 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
806 {
807         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
808 }
809 
810 int security_sb_alloc(struct super_block *sb)
811 {
812         return call_int_hook(sb_alloc_security, 0, sb);
813 }
814 
815 void security_sb_free(struct super_block *sb)
816 {
817         call_void_hook(sb_free_security, sb);
818 }
819 
820 void security_free_mnt_opts(void **mnt_opts)
821 {
822         if (!*mnt_opts)
823                 return;
824         call_void_hook(sb_free_mnt_opts, *mnt_opts);
825         *mnt_opts = NULL;
826 }
827 EXPORT_SYMBOL(security_free_mnt_opts);
828 
829 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
830 {
831         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
832 }
833 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
834 
835 int security_sb_remount(struct super_block *sb,
836                         void *mnt_opts)
837 {
838         return call_int_hook(sb_remount, 0, sb, mnt_opts);
839 }
840 EXPORT_SYMBOL(security_sb_remount);
841 
842 int security_sb_kern_mount(struct super_block *sb)
843 {
844         return call_int_hook(sb_kern_mount, 0, sb);
845 }
846 
847 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
848 {
849         return call_int_hook(sb_show_options, 0, m, sb);
850 }
851 
852 int security_sb_statfs(struct dentry *dentry)
853 {
854         return call_int_hook(sb_statfs, 0, dentry);
855 }
856 
857 int security_sb_mount(const char *dev_name, const struct path *path,
858                        const char *type, unsigned long flags, void *data)
859 {
860         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
861 }
862 
863 int security_sb_umount(struct vfsmount *mnt, int flags)
864 {
865         return call_int_hook(sb_umount, 0, mnt, flags);
866 }
867 
868 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
869 {
870         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
871 }
872 
873 int security_sb_set_mnt_opts(struct super_block *sb,
874                                 void *mnt_opts,
875                                 unsigned long kern_flags,
876                                 unsigned long *set_kern_flags)
877 {
878         return call_int_hook(sb_set_mnt_opts,
879                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
880                                 mnt_opts, kern_flags, set_kern_flags);
881 }
882 EXPORT_SYMBOL(security_sb_set_mnt_opts);
883 
884 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
885                                 struct super_block *newsb,
886                                 unsigned long kern_flags,
887                                 unsigned long *set_kern_flags)
888 {
889         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
890                                 kern_flags, set_kern_flags);
891 }
892 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
893 
894 int security_add_mnt_opt(const char *option, const char *val, int len,
895                          void **mnt_opts)
896 {
897         return call_int_hook(sb_add_mnt_opt, -EINVAL,
898                                         option, val, len, mnt_opts);
899 }
900 EXPORT_SYMBOL(security_add_mnt_opt);
901 
902 int security_move_mount(const struct path *from_path, const struct path *to_path)
903 {
904         return call_int_hook(move_mount, 0, from_path, to_path);
905 }
906 
907 int security_path_notify(const struct path *path, u64 mask,
908                                 unsigned int obj_type)
909 {
910         return call_int_hook(path_notify, 0, path, mask, obj_type);
911 }
912 
913 int security_inode_alloc(struct inode *inode)
914 {
915         int rc = lsm_inode_alloc(inode);
916 
917         if (unlikely(rc))
918                 return rc;
919         rc = call_int_hook(inode_alloc_security, 0, inode);
920         if (unlikely(rc))
921                 security_inode_free(inode);
922         return rc;
923 }
924 
925 static void inode_free_by_rcu(struct rcu_head *head)
926 {
927         /*
928          * The rcu head is at the start of the inode blob
929          */
930         kmem_cache_free(lsm_inode_cache, head);
931 }
932 
933 void security_inode_free(struct inode *inode)
934 {
935         integrity_inode_free(inode);
936         call_void_hook(inode_free_security, inode);
937         /*
938          * The inode may still be referenced in a path walk and
939          * a call to security_inode_permission() can be made
940          * after inode_free_security() is called. Ideally, the VFS
941          * wouldn't do this, but fixing that is a much harder
942          * job. For now, simply free the i_security via RCU, and
943          * leave the current inode->i_security pointer intact.
944          * The inode will be freed after the RCU grace period too.
945          */
946         if (inode->i_security)
947                 call_rcu((struct rcu_head *)inode->i_security,
948                                 inode_free_by_rcu);
949 }
950 
951 int security_dentry_init_security(struct dentry *dentry, int mode,
952                                         const struct qstr *name, void **ctx,
953                                         u32 *ctxlen)
954 {
955         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
956                                 name, ctx, ctxlen);
957 }
958 EXPORT_SYMBOL(security_dentry_init_security);
959 
960 int security_dentry_create_files_as(struct dentry *dentry, int mode,
961                                     struct qstr *name,
962                                     const struct cred *old, struct cred *new)
963 {
964         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
965                                 name, old, new);
966 }
967 EXPORT_SYMBOL(security_dentry_create_files_as);
968 
969 int security_inode_init_security(struct inode *inode, struct inode *dir,
970                                  const struct qstr *qstr,
971                                  const initxattrs initxattrs, void *fs_data)
972 {
973         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
974         struct xattr *lsm_xattr, *evm_xattr, *xattr;
975         int ret;
976 
977         if (unlikely(IS_PRIVATE(inode)))
978                 return 0;
979 
980         if (!initxattrs)
981                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
982                                      dir, qstr, NULL, NULL, NULL);
983         memset(new_xattrs, 0, sizeof(new_xattrs));
984         lsm_xattr = new_xattrs;
985         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
986                                                 &lsm_xattr->name,
987                                                 &lsm_xattr->value,
988                                                 &lsm_xattr->value_len);
989         if (ret)
990                 goto out;
991 
992         evm_xattr = lsm_xattr + 1;
993         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
994         if (ret)
995                 goto out;
996         ret = initxattrs(inode, new_xattrs, fs_data);
997 out:
998         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
999                 kfree(xattr->value);
1000         return (ret == -EOPNOTSUPP) ? 0 : ret;
1001 }
1002 EXPORT_SYMBOL(security_inode_init_security);
1003 
1004 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005                                      const struct qstr *qstr, const char **name,
1006                                      void **value, size_t *len)
1007 {
1008         if (unlikely(IS_PRIVATE(inode)))
1009                 return -EOPNOTSUPP;
1010         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011                              qstr, name, value, len);
1012 }
1013 EXPORT_SYMBOL(security_old_inode_init_security);
1014 
1015 #ifdef CONFIG_SECURITY_PATH
1016 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017                         unsigned int dev)
1018 {
1019         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020                 return 0;
1021         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022 }
1023 EXPORT_SYMBOL(security_path_mknod);
1024 
1025 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026 {
1027         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028                 return 0;
1029         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030 }
1031 EXPORT_SYMBOL(security_path_mkdir);
1032 
1033 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034 {
1035         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036                 return 0;
1037         return call_int_hook(path_rmdir, 0, dir, dentry);
1038 }
1039 
1040 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041 {
1042         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043                 return 0;
1044         return call_int_hook(path_unlink, 0, dir, dentry);
1045 }
1046 EXPORT_SYMBOL(security_path_unlink);
1047 
1048 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049                           const char *old_name)
1050 {
1051         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052                 return 0;
1053         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054 }
1055 
1056 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057                        struct dentry *new_dentry)
1058 {
1059         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060                 return 0;
1061         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062 }
1063 
1064 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065                          const struct path *new_dir, struct dentry *new_dentry,
1066                          unsigned int flags)
1067 {
1068         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070                 return 0;
1071 
1072         if (flags & RENAME_EXCHANGE) {
1073                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074                                         old_dir, old_dentry);
1075                 if (err)
1076                         return err;
1077         }
1078 
1079         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080                                 new_dentry);
1081 }
1082 EXPORT_SYMBOL(security_path_rename);
1083 
1084 int security_path_truncate(const struct path *path)
1085 {
1086         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087                 return 0;
1088         return call_int_hook(path_truncate, 0, path);
1089 }
1090 
1091 int security_path_chmod(const struct path *path, umode_t mode)
1092 {
1093         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094                 return 0;
1095         return call_int_hook(path_chmod, 0, path, mode);
1096 }
1097 
1098 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099 {
1100         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101                 return 0;
1102         return call_int_hook(path_chown, 0, path, uid, gid);
1103 }
1104 
1105 int security_path_chroot(const struct path *path)
1106 {
1107         return call_int_hook(path_chroot, 0, path);
1108 }
1109 #endif
1110 
1111 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112 {
1113         if (unlikely(IS_PRIVATE(dir)))
1114                 return 0;
1115         return call_int_hook(inode_create, 0, dir, dentry, mode);
1116 }
1117 EXPORT_SYMBOL_GPL(security_inode_create);
1118 
1119 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120                          struct dentry *new_dentry)
1121 {
1122         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123                 return 0;
1124         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125 }
1126 
1127 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128 {
1129         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130                 return 0;
1131         return call_int_hook(inode_unlink, 0, dir, dentry);
1132 }
1133 
1134 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135                             const char *old_name)
1136 {
1137         if (unlikely(IS_PRIVATE(dir)))
1138                 return 0;
1139         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140 }
1141 
1142 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143 {
1144         if (unlikely(IS_PRIVATE(dir)))
1145                 return 0;
1146         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147 }
1148 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149 
1150 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151 {
1152         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153                 return 0;
1154         return call_int_hook(inode_rmdir, 0, dir, dentry);
1155 }
1156 
1157 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158 {
1159         if (unlikely(IS_PRIVATE(dir)))
1160                 return 0;
1161         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162 }
1163 
1164 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165                            struct inode *new_dir, struct dentry *new_dentry,
1166                            unsigned int flags)
1167 {
1168         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170                 return 0;
1171 
1172         if (flags & RENAME_EXCHANGE) {
1173                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174                                                      old_dir, old_dentry);
1175                 if (err)
1176                         return err;
1177         }
1178 
1179         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180                                            new_dir, new_dentry);
1181 }
1182 
1183 int security_inode_readlink(struct dentry *dentry)
1184 {
1185         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186                 return 0;
1187         return call_int_hook(inode_readlink, 0, dentry);
1188 }
1189 
1190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191                                bool rcu)
1192 {
1193         if (unlikely(IS_PRIVATE(inode)))
1194                 return 0;
1195         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196 }
1197 
1198 int security_inode_permission(struct inode *inode, int mask)
1199 {
1200         if (unlikely(IS_PRIVATE(inode)))
1201                 return 0;
1202         return call_int_hook(inode_permission, 0, inode, mask);
1203 }
1204 
1205 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206 {
1207         int ret;
1208 
1209         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210                 return 0;
1211         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212         if (ret)
1213                 return ret;
1214         return evm_inode_setattr(dentry, attr);
1215 }
1216 EXPORT_SYMBOL_GPL(security_inode_setattr);
1217 
1218 int security_inode_getattr(const struct path *path)
1219 {
1220         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221                 return 0;
1222         return call_int_hook(inode_getattr, 0, path);
1223 }
1224 
1225 int security_inode_setxattr(struct dentry *dentry, const char *name,
1226                             const void *value, size_t size, int flags)
1227 {
1228         int ret;
1229 
1230         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231                 return 0;
1232         /*
1233          * SELinux and Smack integrate the cap call,
1234          * so assume that all LSMs supplying this call do so.
1235          */
1236         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237                                 flags);
1238 
1239         if (ret == 1)
1240                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241         if (ret)
1242                 return ret;
1243         ret = ima_inode_setxattr(dentry, name, value, size);
1244         if (ret)
1245                 return ret;
1246         return evm_inode_setxattr(dentry, name, value, size);
1247 }
1248 
1249 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250                                   const void *value, size_t size, int flags)
1251 {
1252         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253                 return;
1254         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255         evm_inode_post_setxattr(dentry, name, value, size);
1256 }
1257 
1258 int security_inode_getxattr(struct dentry *dentry, const char *name)
1259 {
1260         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261                 return 0;
1262         return call_int_hook(inode_getxattr, 0, dentry, name);
1263 }
1264 
1265 int security_inode_listxattr(struct dentry *dentry)
1266 {
1267         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268                 return 0;
1269         return call_int_hook(inode_listxattr, 0, dentry);
1270 }
1271 
1272 int security_inode_removexattr(struct dentry *dentry, const char *name)
1273 {
1274         int ret;
1275 
1276         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277                 return 0;
1278         /*
1279          * SELinux and Smack integrate the cap call,
1280          * so assume that all LSMs supplying this call do so.
1281          */
1282         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283         if (ret == 1)
1284                 ret = cap_inode_removexattr(dentry, name);
1285         if (ret)
1286                 return ret;
1287         ret = ima_inode_removexattr(dentry, name);
1288         if (ret)
1289                 return ret;
1290         return evm_inode_removexattr(dentry, name);
1291 }
1292 
1293 int security_inode_need_killpriv(struct dentry *dentry)
1294 {
1295         return call_int_hook(inode_need_killpriv, 0, dentry);
1296 }
1297 
1298 int security_inode_killpriv(struct dentry *dentry)
1299 {
1300         return call_int_hook(inode_killpriv, 0, dentry);
1301 }
1302 
1303 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304 {
1305         struct security_hook_list *hp;
1306         int rc;
1307 
1308         if (unlikely(IS_PRIVATE(inode)))
1309                 return -EOPNOTSUPP;
1310         /*
1311          * Only one module will provide an attribute with a given name.
1312          */
1313         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315                 if (rc != -EOPNOTSUPP)
1316                         return rc;
1317         }
1318         return -EOPNOTSUPP;
1319 }
1320 
1321 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322 {
1323         struct security_hook_list *hp;
1324         int rc;
1325 
1326         if (unlikely(IS_PRIVATE(inode)))
1327                 return -EOPNOTSUPP;
1328         /*
1329          * Only one module will provide an attribute with a given name.
1330          */
1331         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333                                                                 flags);
1334                 if (rc != -EOPNOTSUPP)
1335                         return rc;
1336         }
1337         return -EOPNOTSUPP;
1338 }
1339 
1340 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341 {
1342         if (unlikely(IS_PRIVATE(inode)))
1343                 return 0;
1344         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345 }
1346 EXPORT_SYMBOL(security_inode_listsecurity);
1347 
1348 void security_inode_getsecid(struct inode *inode, u32 *secid)
1349 {
1350         call_void_hook(inode_getsecid, inode, secid);
1351 }
1352 
1353 int security_inode_copy_up(struct dentry *src, struct cred **new)
1354 {
1355         return call_int_hook(inode_copy_up, 0, src, new);
1356 }
1357 EXPORT_SYMBOL(security_inode_copy_up);
1358 
1359 int security_inode_copy_up_xattr(const char *name)
1360 {
1361         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362 }
1363 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364 
1365 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366                                   struct kernfs_node *kn)
1367 {
1368         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369 }
1370 
1371 int security_file_permission(struct file *file, int mask)
1372 {
1373         int ret;
1374 
1375         ret = call_int_hook(file_permission, 0, file, mask);
1376         if (ret)
1377                 return ret;
1378 
1379         return fsnotify_perm(file, mask);
1380 }
1381 
1382 int security_file_alloc(struct file *file)
1383 {
1384         int rc = lsm_file_alloc(file);
1385 
1386         if (rc)
1387                 return rc;
1388         rc = call_int_hook(file_alloc_security, 0, file);
1389         if (unlikely(rc))
1390                 security_file_free(file);
1391         return rc;
1392 }
1393 
1394 void security_file_free(struct file *file)
1395 {
1396         void *blob;
1397 
1398         call_void_hook(file_free_security, file);
1399 
1400         blob = file->f_security;
1401         if (blob) {
1402                 file->f_security = NULL;
1403                 kmem_cache_free(lsm_file_cache, blob);
1404         }
1405 }
1406 
1407 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408 {
1409         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410 }
1411 
1412 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413 {
1414         /*
1415          * Does we have PROT_READ and does the application expect
1416          * it to imply PROT_EXEC?  If not, nothing to talk about...
1417          */
1418         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419                 return prot;
1420         if (!(current->personality & READ_IMPLIES_EXEC))
1421                 return prot;
1422         /*
1423          * if that's an anonymous mapping, let it.
1424          */
1425         if (!file)
1426                 return prot | PROT_EXEC;
1427         /*
1428          * ditto if it's not on noexec mount, except that on !MMU we need
1429          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430          */
1431         if (!path_noexec(&file->f_path)) {
1432 #ifndef CONFIG_MMU
1433                 if (file->f_op->mmap_capabilities) {
1434                         unsigned caps = file->f_op->mmap_capabilities(file);
1435                         if (!(caps & NOMMU_MAP_EXEC))
1436                                 return prot;
1437                 }
1438 #endif
1439                 return prot | PROT_EXEC;
1440         }
1441         /* anything on noexec mount won't get PROT_EXEC */
1442         return prot;
1443 }
1444 
1445 int security_mmap_file(struct file *file, unsigned long prot,
1446                         unsigned long flags)
1447 {
1448         int ret;
1449         ret = call_int_hook(mmap_file, 0, file, prot,
1450                                         mmap_prot(file, prot), flags);
1451         if (ret)
1452                 return ret;
1453         return ima_file_mmap(file, prot);
1454 }
1455 
1456 int security_mmap_addr(unsigned long addr)
1457 {
1458         return call_int_hook(mmap_addr, 0, addr);
1459 }
1460 
1461 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462                             unsigned long prot)
1463 {
1464         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465 }
1466 
1467 int security_file_lock(struct file *file, unsigned int cmd)
1468 {
1469         return call_int_hook(file_lock, 0, file, cmd);
1470 }
1471 
1472 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473 {
1474         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475 }
1476 
1477 void security_file_set_fowner(struct file *file)
1478 {
1479         call_void_hook(file_set_fowner, file);
1480 }
1481 
1482 int security_file_send_sigiotask(struct task_struct *tsk,
1483                                   struct fown_struct *fown, int sig)
1484 {
1485         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486 }
1487 
1488 int security_file_receive(struct file *file)
1489 {
1490         return call_int_hook(file_receive, 0, file);
1491 }
1492 
1493 int security_file_open(struct file *file)
1494 {
1495         int ret;
1496 
1497         ret = call_int_hook(file_open, 0, file);
1498         if (ret)
1499                 return ret;
1500 
1501         return fsnotify_perm(file, MAY_OPEN);
1502 }
1503 
1504 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505 {
1506         int rc = lsm_task_alloc(task);
1507 
1508         if (rc)
1509                 return rc;
1510         rc = ccs_alloc_task_security(task);
1511         if (likely(!rc))
1512                 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1513         if (unlikely(rc))
1514                 security_task_free(task);
1515         return rc;
1516 }
1517 
1518 void security_task_free(struct task_struct *task)
1519 {
1520         call_void_hook(task_free, task);
1521         ccs_free_task_security(task);
1522 
1523         kfree(task->security);
1524         task->security = NULL;
1525 }
1526 
1527 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1528 {
1529         int rc = lsm_cred_alloc(cred, gfp);
1530 
1531         if (rc)
1532                 return rc;
1533 
1534         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1535         if (unlikely(rc))
1536                 security_cred_free(cred);
1537         return rc;
1538 }
1539 
1540 void security_cred_free(struct cred *cred)
1541 {
1542         /*
1543          * There is a failure case in prepare_creds() that
1544          * may result in a call here with ->security being NULL.
1545          */
1546         if (unlikely(cred->security == NULL))
1547                 return;
1548 
1549         call_void_hook(cred_free, cred);
1550 
1551         kfree(cred->security);
1552         cred->security = NULL;
1553 }
1554 
1555 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1556 {
1557         int rc = lsm_cred_alloc(new, gfp);
1558 
1559         if (rc)
1560                 return rc;
1561 
1562         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1563         if (unlikely(rc))
1564                 security_cred_free(new);
1565         return rc;
1566 }
1567 
1568 void security_transfer_creds(struct cred *new, const struct cred *old)
1569 {
1570         call_void_hook(cred_transfer, new, old);
1571 }
1572 
1573 void security_cred_getsecid(const struct cred *c, u32 *secid)
1574 {
1575         *secid = 0;
1576         call_void_hook(cred_getsecid, c, secid);
1577 }
1578 EXPORT_SYMBOL(security_cred_getsecid);
1579 
1580 int security_kernel_act_as(struct cred *new, u32 secid)
1581 {
1582         return call_int_hook(kernel_act_as, 0, new, secid);
1583 }
1584 
1585 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1586 {
1587         return call_int_hook(kernel_create_files_as, 0, new, inode);
1588 }
1589 
1590 int security_kernel_module_request(char *kmod_name)
1591 {
1592         int ret;
1593 
1594         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1595         if (ret)
1596                 return ret;
1597         return integrity_kernel_module_request(kmod_name);
1598 }
1599 
1600 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1601 {
1602         int ret;
1603 
1604         ret = call_int_hook(kernel_read_file, 0, file, id);
1605         if (ret)
1606                 return ret;
1607         return ima_read_file(file, id);
1608 }
1609 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1610 
1611 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1612                                    enum kernel_read_file_id id)
1613 {
1614         int ret;
1615 
1616         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1617         if (ret)
1618                 return ret;
1619         return ima_post_read_file(file, buf, size, id);
1620 }
1621 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1622 
1623 int security_kernel_load_data(enum kernel_load_data_id id)
1624 {
1625         int ret;
1626 
1627         ret = call_int_hook(kernel_load_data, 0, id);
1628         if (ret)
1629                 return ret;
1630         return ima_load_data(id);
1631 }
1632 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1633 
1634 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1635                              int flags)
1636 {
1637         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1638 }
1639 
1640 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1641 {
1642         return call_int_hook(task_setpgid, 0, p, pgid);
1643 }
1644 
1645 int security_task_getpgid(struct task_struct *p)
1646 {
1647         return call_int_hook(task_getpgid, 0, p);
1648 }
1649 
1650 int security_task_getsid(struct task_struct *p)
1651 {
1652         return call_int_hook(task_getsid, 0, p);
1653 }
1654 
1655 void security_task_getsecid(struct task_struct *p, u32 *secid)
1656 {
1657         *secid = 0;
1658         call_void_hook(task_getsecid, p, secid);
1659 }
1660 EXPORT_SYMBOL(security_task_getsecid);
1661 
1662 int security_task_setnice(struct task_struct *p, int nice)
1663 {
1664         return call_int_hook(task_setnice, 0, p, nice);
1665 }
1666 
1667 int security_task_setioprio(struct task_struct *p, int ioprio)
1668 {
1669         return call_int_hook(task_setioprio, 0, p, ioprio);
1670 }
1671 
1672 int security_task_getioprio(struct task_struct *p)
1673 {
1674         return call_int_hook(task_getioprio, 0, p);
1675 }
1676 
1677 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1678                           unsigned int flags)
1679 {
1680         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1681 }
1682 
1683 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1684                 struct rlimit *new_rlim)
1685 {
1686         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1687 }
1688 
1689 int security_task_setscheduler(struct task_struct *p)
1690 {
1691         return call_int_hook(task_setscheduler, 0, p);
1692 }
1693 
1694 int security_task_getscheduler(struct task_struct *p)
1695 {
1696         return call_int_hook(task_getscheduler, 0, p);
1697 }
1698 
1699 int security_task_movememory(struct task_struct *p)
1700 {
1701         return call_int_hook(task_movememory, 0, p);
1702 }
1703 
1704 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1705                         int sig, const struct cred *cred)
1706 {
1707         return call_int_hook(task_kill, 0, p, info, sig, cred);
1708 }
1709 
1710 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1711                          unsigned long arg4, unsigned long arg5)
1712 {
1713         int thisrc;
1714         int rc = -ENOSYS;
1715         struct security_hook_list *hp;
1716 
1717         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1718                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1719                 if (thisrc != -ENOSYS) {
1720                         rc = thisrc;
1721                         if (thisrc != 0)
1722                                 break;
1723                 }
1724         }
1725         return rc;
1726 }
1727 
1728 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1729 {
1730         call_void_hook(task_to_inode, p, inode);
1731 }
1732 
1733 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1734 {
1735         return call_int_hook(ipc_permission, 0, ipcp, flag);
1736 }
1737 
1738 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1739 {
1740         *secid = 0;
1741         call_void_hook(ipc_getsecid, ipcp, secid);
1742 }
1743 
1744 int security_msg_msg_alloc(struct msg_msg *msg)
1745 {
1746         int rc = lsm_msg_msg_alloc(msg);
1747 
1748         if (unlikely(rc))
1749                 return rc;
1750         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1751         if (unlikely(rc))
1752                 security_msg_msg_free(msg);
1753         return rc;
1754 }
1755 
1756 void security_msg_msg_free(struct msg_msg *msg)
1757 {
1758         call_void_hook(msg_msg_free_security, msg);
1759         kfree(msg->security);
1760         msg->security = NULL;
1761 }
1762 
1763 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1764 {
1765         int rc = lsm_ipc_alloc(msq);
1766 
1767         if (unlikely(rc))
1768                 return rc;
1769         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1770         if (unlikely(rc))
1771                 security_msg_queue_free(msq);
1772         return rc;
1773 }
1774 
1775 void security_msg_queue_free(struct kern_ipc_perm *msq)
1776 {
1777         call_void_hook(msg_queue_free_security, msq);
1778         kfree(msq->security);
1779         msq->security = NULL;
1780 }
1781 
1782 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1783 {
1784         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1785 }
1786 
1787 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1788 {
1789         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1790 }
1791 
1792 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1793                                struct msg_msg *msg, int msqflg)
1794 {
1795         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1796 }
1797 
1798 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1799                                struct task_struct *target, long type, int mode)
1800 {
1801         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1802 }
1803 
1804 int security_shm_alloc(struct kern_ipc_perm *shp)
1805 {
1806         int rc = lsm_ipc_alloc(shp);
1807 
1808         if (unlikely(rc))
1809                 return rc;
1810         rc = call_int_hook(shm_alloc_security, 0, shp);
1811         if (unlikely(rc))
1812                 security_shm_free(shp);
1813         return rc;
1814 }
1815 
1816 void security_shm_free(struct kern_ipc_perm *shp)
1817 {
1818         call_void_hook(shm_free_security, shp);
1819         kfree(shp->security);
1820         shp->security = NULL;
1821 }
1822 
1823 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1824 {
1825         return call_int_hook(shm_associate, 0, shp, shmflg);
1826 }
1827 
1828 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1829 {
1830         return call_int_hook(shm_shmctl, 0, shp, cmd);
1831 }
1832 
1833 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1834 {
1835         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1836 }
1837 
1838 int security_sem_alloc(struct kern_ipc_perm *sma)
1839 {
1840         int rc = lsm_ipc_alloc(sma);
1841 
1842         if (unlikely(rc))
1843                 return rc;
1844         rc = call_int_hook(sem_alloc_security, 0, sma);
1845         if (unlikely(rc))
1846                 security_sem_free(sma);
1847         return rc;
1848 }
1849 
1850 void security_sem_free(struct kern_ipc_perm *sma)
1851 {
1852         call_void_hook(sem_free_security, sma);
1853         kfree(sma->security);
1854         sma->security = NULL;
1855 }
1856 
1857 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1858 {
1859         return call_int_hook(sem_associate, 0, sma, semflg);
1860 }
1861 
1862 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1863 {
1864         return call_int_hook(sem_semctl, 0, sma, cmd);
1865 }
1866 
1867 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1868                         unsigned nsops, int alter)
1869 {
1870         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1871 }
1872 
1873 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1874 {
1875         if (unlikely(inode && IS_PRIVATE(inode)))
1876                 return;
1877         call_void_hook(d_instantiate, dentry, inode);
1878 }
1879 EXPORT_SYMBOL(security_d_instantiate);
1880 
1881 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1882                                 char **value)
1883 {
1884         struct security_hook_list *hp;
1885 
1886         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1887                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1888                         continue;
1889                 return hp->hook.getprocattr(p, name, value);
1890         }
1891         return -EINVAL;
1892 }
1893 
1894 int security_setprocattr(const char *lsm, const char *name, void *value,
1895                          size_t size)
1896 {
1897         struct security_hook_list *hp;
1898 
1899         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1900                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1901                         continue;
1902                 return hp->hook.setprocattr(name, value, size);
1903         }
1904         return -EINVAL;
1905 }
1906 
1907 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1908 {
1909         return call_int_hook(netlink_send, 0, sk, skb);
1910 }
1911 
1912 int security_ismaclabel(const char *name)
1913 {
1914         return call_int_hook(ismaclabel, 0, name);
1915 }
1916 EXPORT_SYMBOL(security_ismaclabel);
1917 
1918 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1919 {
1920         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1921                                 seclen);
1922 }
1923 EXPORT_SYMBOL(security_secid_to_secctx);
1924 
1925 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1926 {
1927         *secid = 0;
1928         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1929 }
1930 EXPORT_SYMBOL(security_secctx_to_secid);
1931 
1932 void security_release_secctx(char *secdata, u32 seclen)
1933 {
1934         call_void_hook(release_secctx, secdata, seclen);
1935 }
1936 EXPORT_SYMBOL(security_release_secctx);
1937 
1938 void security_inode_invalidate_secctx(struct inode *inode)
1939 {
1940         call_void_hook(inode_invalidate_secctx, inode);
1941 }
1942 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1943 
1944 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1945 {
1946         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1947 }
1948 EXPORT_SYMBOL(security_inode_notifysecctx);
1949 
1950 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1951 {
1952         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1953 }
1954 EXPORT_SYMBOL(security_inode_setsecctx);
1955 
1956 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1957 {
1958         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1959 }
1960 EXPORT_SYMBOL(security_inode_getsecctx);
1961 
1962 #ifdef CONFIG_SECURITY_NETWORK
1963 
1964 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1965 {
1966         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1967 }
1968 EXPORT_SYMBOL(security_unix_stream_connect);
1969 
1970 int security_unix_may_send(struct socket *sock,  struct socket *other)
1971 {
1972         return call_int_hook(unix_may_send, 0, sock, other);
1973 }
1974 EXPORT_SYMBOL(security_unix_may_send);
1975 
1976 int security_socket_create(int family, int type, int protocol, int kern)
1977 {
1978         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1979 }
1980 
1981 int security_socket_post_create(struct socket *sock, int family,
1982                                 int type, int protocol, int kern)
1983 {
1984         return call_int_hook(socket_post_create, 0, sock, family, type,
1985                                                 protocol, kern);
1986 }
1987 
1988 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1989 {
1990         return call_int_hook(socket_socketpair, 0, socka, sockb);
1991 }
1992 EXPORT_SYMBOL(security_socket_socketpair);
1993 
1994 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1995 {
1996         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1997 }
1998 
1999 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2000 {
2001         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2002 }
2003 
2004 int security_socket_listen(struct socket *sock, int backlog)
2005 {
2006         return call_int_hook(socket_listen, 0, sock, backlog);
2007 }
2008 
2009 int security_socket_accept(struct socket *sock, struct socket *newsock)
2010 {
2011         return call_int_hook(socket_accept, 0, sock, newsock);
2012 }
2013 
2014 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2015 {
2016         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2017 }
2018 
2019 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2020                             int size, int flags)
2021 {
2022         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2023 }
2024 
2025 int security_socket_getsockname(struct socket *sock)
2026 {
2027         return call_int_hook(socket_getsockname, 0, sock);
2028 }
2029 
2030 int security_socket_getpeername(struct socket *sock)
2031 {
2032         return call_int_hook(socket_getpeername, 0, sock);
2033 }
2034 
2035 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2036 {
2037         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2038 }
2039 
2040 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2041 {
2042         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2043 }
2044 
2045 int security_socket_shutdown(struct socket *sock, int how)
2046 {
2047         return call_int_hook(socket_shutdown, 0, sock, how);
2048 }
2049 
2050 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2051 {
2052         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2053 }
2054 EXPORT_SYMBOL(security_sock_rcv_skb);
2055 
2056 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2057                                       int __user *optlen, unsigned len)
2058 {
2059         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2060                                 optval, optlen, len);
2061 }
2062 
2063 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2064 {
2065         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2066                              skb, secid);
2067 }
2068 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2069 
2070 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2071 {
2072         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2073 }
2074 
2075 void security_sk_free(struct sock *sk)
2076 {
2077         call_void_hook(sk_free_security, sk);
2078 }
2079 
2080 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2081 {
2082         call_void_hook(sk_clone_security, sk, newsk);
2083 }
2084 EXPORT_SYMBOL(security_sk_clone);
2085 
2086 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2087 {
2088         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2089 }
2090 EXPORT_SYMBOL(security_sk_classify_flow);
2091 
2092 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2093 {
2094         call_void_hook(req_classify_flow, req, fl);
2095 }
2096 EXPORT_SYMBOL(security_req_classify_flow);
2097 
2098 void security_sock_graft(struct sock *sk, struct socket *parent)
2099 {
2100         call_void_hook(sock_graft, sk, parent);
2101 }
2102 EXPORT_SYMBOL(security_sock_graft);
2103 
2104 int security_inet_conn_request(struct sock *sk,
2105                         struct sk_buff *skb, struct request_sock *req)
2106 {
2107         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2108 }
2109 EXPORT_SYMBOL(security_inet_conn_request);
2110 
2111 void security_inet_csk_clone(struct sock *newsk,
2112                         const struct request_sock *req)
2113 {
2114         call_void_hook(inet_csk_clone, newsk, req);
2115 }
2116 
2117 void security_inet_conn_established(struct sock *sk,
2118                         struct sk_buff *skb)
2119 {
2120         call_void_hook(inet_conn_established, sk, skb);
2121 }
2122 EXPORT_SYMBOL(security_inet_conn_established);
2123 
2124 int security_secmark_relabel_packet(u32 secid)
2125 {
2126         return call_int_hook(secmark_relabel_packet, 0, secid);
2127 }
2128 EXPORT_SYMBOL(security_secmark_relabel_packet);
2129 
2130 void security_secmark_refcount_inc(void)
2131 {
2132         call_void_hook(secmark_refcount_inc);
2133 }
2134 EXPORT_SYMBOL(security_secmark_refcount_inc);
2135 
2136 void security_secmark_refcount_dec(void)
2137 {
2138         call_void_hook(secmark_refcount_dec);
2139 }
2140 EXPORT_SYMBOL(security_secmark_refcount_dec);
2141 
2142 int security_tun_dev_alloc_security(void **security)
2143 {
2144         return call_int_hook(tun_dev_alloc_security, 0, security);
2145 }
2146 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2147 
2148 void security_tun_dev_free_security(void *security)
2149 {
2150         call_void_hook(tun_dev_free_security, security);
2151 }
2152 EXPORT_SYMBOL(security_tun_dev_free_security);
2153 
2154 int security_tun_dev_create(void)
2155 {
2156         return call_int_hook(tun_dev_create, 0);
2157 }
2158 EXPORT_SYMBOL(security_tun_dev_create);
2159 
2160 int security_tun_dev_attach_queue(void *security)
2161 {
2162         return call_int_hook(tun_dev_attach_queue, 0, security);
2163 }
2164 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2165 
2166 int security_tun_dev_attach(struct sock *sk, void *security)
2167 {
2168         return call_int_hook(tun_dev_attach, 0, sk, security);
2169 }
2170 EXPORT_SYMBOL(security_tun_dev_attach);
2171 
2172 int security_tun_dev_open(void *security)
2173 {
2174         return call_int_hook(tun_dev_open, 0, security);
2175 }
2176 EXPORT_SYMBOL(security_tun_dev_open);
2177 
2178 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2179 {
2180         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2181 }
2182 EXPORT_SYMBOL(security_sctp_assoc_request);
2183 
2184 int security_sctp_bind_connect(struct sock *sk, int optname,
2185                                struct sockaddr *address, int addrlen)
2186 {
2187         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2188                              address, addrlen);
2189 }
2190 EXPORT_SYMBOL(security_sctp_bind_connect);
2191 
2192 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2193                             struct sock *newsk)
2194 {
2195         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2196 }
2197 EXPORT_SYMBOL(security_sctp_sk_clone);
2198 
2199 #endif  /* CONFIG_SECURITY_NETWORK */
2200 
2201 #ifdef CONFIG_SECURITY_INFINIBAND
2202 
2203 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2204 {
2205         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2206 }
2207 EXPORT_SYMBOL(security_ib_pkey_access);
2208 
2209 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2210 {
2211         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2212 }
2213 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2214 
2215 int security_ib_alloc_security(void **sec)
2216 {
2217         return call_int_hook(ib_alloc_security, 0, sec);
2218 }
2219 EXPORT_SYMBOL(security_ib_alloc_security);
2220 
2221 void security_ib_free_security(void *sec)
2222 {
2223         call_void_hook(ib_free_security, sec);
2224 }
2225 EXPORT_SYMBOL(security_ib_free_security);
2226 #endif  /* CONFIG_SECURITY_INFINIBAND */
2227 
2228 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2229 
2230 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2231                                struct xfrm_user_sec_ctx *sec_ctx,
2232                                gfp_t gfp)
2233 {
2234         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2235 }
2236 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2237 
2238 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2239                               struct xfrm_sec_ctx **new_ctxp)
2240 {
2241         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2242 }
2243 
2244 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2245 {
2246         call_void_hook(xfrm_policy_free_security, ctx);
2247 }
2248 EXPORT_SYMBOL(security_xfrm_policy_free);
2249 
2250 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2251 {
2252         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2253 }
2254 
2255 int security_xfrm_state_alloc(struct xfrm_state *x,
2256                               struct xfrm_user_sec_ctx *sec_ctx)
2257 {
2258         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2259 }
2260 EXPORT_SYMBOL(security_xfrm_state_alloc);
2261 
2262 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2263                                       struct xfrm_sec_ctx *polsec, u32 secid)
2264 {
2265         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2266 }
2267 
2268 int security_xfrm_state_delete(struct xfrm_state *x)
2269 {
2270         return call_int_hook(xfrm_state_delete_security, 0, x);
2271 }
2272 EXPORT_SYMBOL(security_xfrm_state_delete);
2273 
2274 void security_xfrm_state_free(struct xfrm_state *x)
2275 {
2276         call_void_hook(xfrm_state_free_security, x);
2277 }
2278 
2279 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2280 {
2281         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2282 }
2283 
2284 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2285                                        struct xfrm_policy *xp,
2286                                        const struct flowi *fl)
2287 {
2288         struct security_hook_list *hp;
2289         int rc = 1;
2290 
2291         /*
2292          * Since this function is expected to return 0 or 1, the judgment
2293          * becomes difficult if multiple LSMs supply this call. Fortunately,
2294          * we can use the first LSM's judgment because currently only SELinux
2295          * supplies this call.
2296          *
2297          * For speed optimization, we explicitly break the loop rather than
2298          * using the macro
2299          */
2300         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2301                                 list) {
2302                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2303                 break;
2304         }
2305         return rc;
2306 }
2307 
2308 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2309 {
2310         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2311 }
2312 
2313 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2314 {
2315         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2316                                 0);
2317 
2318         BUG_ON(rc);
2319 }
2320 EXPORT_SYMBOL(security_skb_classify_flow);
2321 
2322 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2323 
2324 #ifdef CONFIG_KEYS
2325 
2326 int security_key_alloc(struct key *key, const struct cred *cred,
2327                        unsigned long flags)
2328 {
2329         return call_int_hook(key_alloc, 0, key, cred, flags);
2330 }
2331 
2332 void security_key_free(struct key *key)
2333 {
2334         call_void_hook(key_free, key);
2335 }
2336 
2337 int security_key_permission(key_ref_t key_ref,
2338                             const struct cred *cred, unsigned perm)
2339 {
2340         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2341 }
2342 
2343 int security_key_getsecurity(struct key *key, char **_buffer)
2344 {
2345         *_buffer = NULL;
2346         return call_int_hook(key_getsecurity, 0, key, _buffer);
2347 }
2348 
2349 #endif  /* CONFIG_KEYS */
2350 
2351 #ifdef CONFIG_AUDIT
2352 
2353 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2354 {
2355         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2356 }
2357 
2358 int security_audit_rule_known(struct audit_krule *krule)
2359 {
2360         return call_int_hook(audit_rule_known, 0, krule);
2361 }
2362 
2363 void security_audit_rule_free(void *lsmrule)
2364 {
2365         call_void_hook(audit_rule_free, lsmrule);
2366 }
2367 
2368 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2369 {
2370         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2371 }
2372 #endif /* CONFIG_AUDIT */
2373 
2374 #ifdef CONFIG_BPF_SYSCALL
2375 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2376 {
2377         return call_int_hook(bpf, 0, cmd, attr, size);
2378 }
2379 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2380 {
2381         return call_int_hook(bpf_map, 0, map, fmode);
2382 }
2383 int security_bpf_prog(struct bpf_prog *prog)
2384 {
2385         return call_int_hook(bpf_prog, 0, prog);
2386 }
2387 int security_bpf_map_alloc(struct bpf_map *map)
2388 {
2389         return call_int_hook(bpf_map_alloc_security, 0, map);
2390 }
2391 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2392 {
2393         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2394 }
2395 void security_bpf_map_free(struct bpf_map *map)
2396 {
2397         call_void_hook(bpf_map_free_security, map);
2398 }
2399 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2400 {
2401         call_void_hook(bpf_prog_free_security, aux);
2402 }
2403 #endif /* CONFIG_BPF_SYSCALL */
2404 
2405 int security_locked_down(enum lockdown_reason what)
2406 {
2407         return call_int_hook(locked_down, 0, what);
2408 }
2409 EXPORT_SYMBOL(security_locked_down);
2410 
2411 #ifdef CONFIG_PERF_EVENTS
2412 int security_perf_event_open(struct perf_event_attr *attr, int type)
2413 {
2414         return call_int_hook(perf_event_open, 0, attr, type);
2415 }
2416 
2417 int security_perf_event_alloc(struct perf_event *event)
2418 {
2419         return call_int_hook(perf_event_alloc, 0, event);
2420 }
2421 
2422 void security_perf_event_free(struct perf_event *event)
2423 {
2424         call_void_hook(perf_event_free, event);
2425 }
2426 
2427 int security_perf_event_read(struct perf_event *event)
2428 {
2429         return call_int_hook(perf_event_read, 0, event);
2430 }
2431 
2432 int security_perf_event_write(struct perf_event *event)
2433 {
2434         return call_int_hook(perf_event_write, 0, event);
2435 }
2436 #endif /* CONFIG_PERF_EVENTS */
2437 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp