1 /* 2 * Sound driver for Silicon Graphics 320 and 540 Visual Workstations' 3 * onboard audio. See notes in Documentation/sound/oss/vwsnd . 4 * 5 * Copyright 1999 Silicon Graphics, Inc. All rights reserved. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #undef VWSND_DEBUG /* define for debugging */ 23 24 /* 25 * XXX to do - 26 * 27 * External sync. 28 * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational. 29 * Bug - if select() called before read(), pcm_setup() not called. 30 * Bug - output doesn't stop soon enough if process killed. 31 */ 32 33 /* 34 * Things to test - 35 * 36 * Will readv/writev work? Write a test. 37 * 38 * insmod/rmmod 100 million times. 39 * 40 * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT 41 * rate). 42 * 43 * Concurrent threads banging on mixer simultaneously, both UP 44 * and SMP kernels. Especially, watch for thread A changing 45 * OUTSRC while thread B changes gain -- both write to the same 46 * ad1843 register. 47 * 48 * What happens if a client opens /dev/audio then forks? 49 * Do two procs have /dev/audio open? Test. 50 * 51 * Pump audio through the CD, MIC and line inputs and verify that 52 * they mix/mute into the output. 53 * 54 * Apps: 55 * amp 56 * mpg123 57 * x11amp 58 * mxv 59 * kmedia 60 * esound 61 * need more input apps 62 * 63 * Run tests while bombarding with signals. setitimer(2) will do it... */ 64 65 /* 66 * This driver is organized in nine sections. 67 * The nine sections are: 68 * 69 * debug stuff 70 * low level lithium access 71 * high level lithium access 72 * AD1843 access 73 * PCM I/O 74 * audio driver 75 * mixer driver 76 * probe/attach/unload 77 * initialization and loadable kernel module interface 78 * 79 * That is roughly the order of increasing abstraction, so forward 80 * dependencies are minimal. 81 */ 82 83 /* 84 * Locking Notes 85 * 86 * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of 87 * open descriptors to this driver. They store it in vwsnd_use_count. 88 * The global device list, vwsnd_dev_list, is immutable when the IN_USE 89 * is true. 90 * 91 * devc->open_lock is a semaphore that is used to enforce the 92 * single reader/single writer rule for /dev/audio. The rule is 93 * that each device may have at most one reader and one writer. 94 * Open will block until the previous client has closed the 95 * device, unless O_NONBLOCK is specified. 96 * 97 * The semaphore devc->io_mutex serializes PCM I/O syscalls. This 98 * is unnecessary in Linux 2.2, because the kernel lock 99 * serializes read, write, and ioctl globally, but it's there, 100 * ready for the brave, new post-kernel-lock world. 101 * 102 * Locking between interrupt and baselevel is handled by the 103 * "lock" spinlock in vwsnd_port (one lock each for read and 104 * write). Each half holds the lock just long enough to see what 105 * area it owns and update its pointers. See pcm_output() and 106 * pcm_input() for most of the gory stuff. 107 * 108 * devc->mix_mutex serializes all mixer ioctls. This is also 109 * redundant because of the kernel lock. 110 * 111 * The lowest level lock is lith->lithium_lock. It is a 112 * spinlock which is held during the two-register tango of 113 * reading/writing an AD1843 register. See 114 * li_{read,write}_ad1843_reg(). 115 */ 116 117 /* 118 * Sample Format Notes 119 * 120 * Lithium's DMA engine has two formats: 16-bit 2's complement 121 * and 8-bit unsigned . 16-bit transfers the data unmodified, 2 122 * bytes per sample. 8-bit unsigned transfers 1 byte per sample 123 * and XORs each byte with 0x80. Lithium can input or output 124 * either mono or stereo in either format. 125 * 126 * The AD1843 has four formats: 16-bit 2's complement, 8-bit 127 * unsigned, 8-bit mu-Law and 8-bit A-Law. 128 * 129 * This driver supports five formats: AFMT_S8, AFMT_U8, 130 * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE. 131 * 132 * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and 133 * rely on Lithium's XOR to translate between U8 and S8. 134 * 135 * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR 136 * the 0x80 bit in software to compensate for Lithium's XOR. 137 * This happens in pcm_copy_{in,out}(). 138 * 139 * Changes: 140 * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> 141 * Added some __init/__exit 142 */ 143 144 #include <linux/module.h> 145 #include <linux/init.h> 146 147 #include <linux/spinlock.h> 148 #include <linux/wait.h> 149 #include <linux/interrupt.h> 150 #include <linux/mutex.h> 151 #include <linux/slab.h> 152 #include <linux/delay.h> 153 154 #include <asm/visws/cobalt.h> 155 156 #include "sound_config.h" 157 158 static DEFINE_MUTEX(vwsnd_mutex); 159 160 /*****************************************************************************/ 161 /* debug stuff */ 162 163 #ifdef VWSND_DEBUG 164 165 static int shut_up = 1; 166 167 /* 168 * dbgassert - called when an assertion fails. 169 */ 170 171 static void dbgassert(const char *fcn, int line, const char *expr) 172 { 173 if (in_interrupt()) 174 panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n", 175 __FILE__, fcn, line, expr); 176 else { 177 int x; 178 printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n", 179 __FILE__, fcn, line, expr); 180 x = * (volatile int *) 0; /* force proc to exit */ 181 } 182 } 183 184 /* 185 * Bunch of useful debug macros: 186 * 187 * ASSERT - print unless e nonzero (panic if in interrupt) 188 * DBGDO - include arbitrary code if debugging 189 * DBGX - debug print raw (w/o function name) 190 * DBGP - debug print w/ function name 191 * DBGE - debug print function entry 192 * DBGC - debug print function call 193 * DBGR - debug print function return 194 * DBGXV - debug print raw when verbose 195 * DBGPV - debug print when verbose 196 * DBGEV - debug print function entry when verbose 197 * DBGRV - debug print function return when verbose 198 */ 199 200 #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e)) 201 #define DBGDO(x) x 202 #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args)) 203 #define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args)) 204 #define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args)) 205 #define DBGC(rtn) (DBGP("calling %s\n", rtn)) 206 #define DBGR() (DBGP("returning\n")) 207 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args)) 208 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args)) 209 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args)) 210 #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn)) 211 #define DBGRV() (shut_up ? 0 : DBGR()) 212 213 #else /* !VWSND_DEBUG */ 214 215 #define ASSERT(e) ((void) 0) 216 #define DBGDO(x) /* don't */ 217 #define DBGX(fmt, args...) ((void) 0) 218 #define DBGP(fmt, args...) ((void) 0) 219 #define DBGE(fmt, args...) ((void) 0) 220 #define DBGC(rtn) ((void) 0) 221 #define DBGR() ((void) 0) 222 #define DBGPV(fmt, args...) ((void) 0) 223 #define DBGXV(fmt, args...) ((void) 0) 224 #define DBGEV(fmt, args...) ((void) 0) 225 #define DBGCV(rtn) ((void) 0) 226 #define DBGRV() ((void) 0) 227 228 #endif /* !VWSND_DEBUG */ 229 230 /*****************************************************************************/ 231 /* low level lithium access */ 232 233 /* 234 * We need to talk to Lithium registers on three pages. Here are 235 * the pages' offsets from the base address (0xFF001000). 236 */ 237 238 enum { 239 LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */ 240 LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */ 241 LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */ 242 }; 243 244 /* low-level lithium data */ 245 246 typedef struct lithium { 247 void * page0; /* virtual addresses */ 248 void * page1; 249 void * page2; 250 spinlock_t lock; /* protects codec and UST/MSC access */ 251 } lithium_t; 252 253 /* 254 * li_destroy destroys the lithium_t structure and vm mappings. 255 */ 256 257 static void li_destroy(lithium_t *lith) 258 { 259 if (lith->page0) { 260 iounmap(lith->page0); 261 lith->page0 = NULL; 262 } 263 if (lith->page1) { 264 iounmap(lith->page1); 265 lith->page1 = NULL; 266 } 267 if (lith->page2) { 268 iounmap(lith->page2); 269 lith->page2 = NULL; 270 } 271 } 272 273 /* 274 * li_create initializes the lithium_t structure and sets up vm mappings 275 * to access the registers. 276 * Returns 0 on success, -errno on failure. 277 */ 278 279 static int __init li_create(lithium_t *lith, unsigned long baseaddr) 280 { 281 spin_lock_init(&lith->lock); 282 lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE); 283 lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE); 284 lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE); 285 if (!lith->page0 || !lith->page1 || !lith->page2) { 286 li_destroy(lith); 287 return -ENOMEM; 288 } 289 return 0; 290 } 291 292 /* 293 * basic register accessors - read/write long/byte 294 */ 295 296 static __inline__ unsigned long li_readl(lithium_t *lith, int off) 297 { 298 return * (volatile unsigned long *) (lith->page0 + off); 299 } 300 301 static __inline__ unsigned char li_readb(lithium_t *lith, int off) 302 { 303 return * (volatile unsigned char *) (lith->page0 + off); 304 } 305 306 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val) 307 { 308 * (volatile unsigned long *) (lith->page0 + off) = val; 309 } 310 311 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val) 312 { 313 * (volatile unsigned char *) (lith->page0 + off) = val; 314 } 315 316 /*****************************************************************************/ 317 /* High Level Lithium Access */ 318 319 /* 320 * Lithium DMA Notes 321 * 322 * Lithium has two dedicated DMA channels for audio. They are known 323 * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for 324 * input, and comm2 is for output. Each is controlled by three 325 * registers: BASE (base address), CFG (config) and CCTL 326 * (config/control). 327 * 328 * Each DMA channel points to a physically contiguous ring buffer in 329 * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.) 330 * There are three pointers into the ring buffer: read, write, and 331 * trigger. The pointers are 8 bits each. Each pointer points to 332 * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time, 333 * so there is no finer-granularity control. 334 * 335 * In comm1, the hardware updates the write ptr, and software updates 336 * the read ptr. In comm2, it's the opposite: hardware updates the 337 * read ptr, and software updates the write ptr. I designate the 338 * hardware-updated ptr as the hwptr, and the software-updated ptr as 339 * the swptr. 340 * 341 * The trigger ptr and trigger mask are used to trigger interrupts. 342 * From the Lithium spec, section 5.6.8, revision of 12/15/1998: 343 * 344 * Trigger Mask Value 345 * 346 * A three bit wide field that represents a power of two mask 347 * that is used whenever the trigger pointer is compared to its 348 * respective read or write pointer. A value of zero here 349 * implies a mask of 0xFF and a value of seven implies a mask 350 * 0x01. This value can be used to sub-divide the ring buffer 351 * into pie sections so that interrupts monitor the progress of 352 * hardware from section to section. 353 * 354 * My interpretation of that is, whenever the hw ptr is updated, it is 355 * compared with the trigger ptr, and the result is masked by the 356 * trigger mask. (Actually, by the complement of the trigger mask.) 357 * If the result is zero, an interrupt is triggered. I.e., interrupt 358 * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from 359 * the trigger register value as mask = (1 << (8 - tmreg)) - 1. 360 * 361 * In yet different words, setting tmreg to 0 causes an interrupt after 362 * every 256 DMA chunks (8192 bytes) or once per traversal of the 363 * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks 364 * (64 bytes) or 128 times per traversal of the ring buffer. 365 */ 366 367 /* Lithium register offsets and bit definitions */ 368 369 #define LI_HOST_CONTROLLER 0x000 370 # define LI_HC_RESET 0x00008000 371 # define LI_HC_LINK_ENABLE 0x00004000 372 # define LI_HC_LINK_FAILURE 0x00000004 373 # define LI_HC_LINK_CODEC 0x00000002 374 # define LI_HC_LINK_READY 0x00000001 375 376 #define LI_INTR_STATUS 0x010 377 #define LI_INTR_MASK 0x014 378 # define LI_INTR_LINK_ERR 0x00008000 379 # define LI_INTR_COMM2_TRIG 0x00000008 380 # define LI_INTR_COMM2_UNDERFLOW 0x00000004 381 # define LI_INTR_COMM1_TRIG 0x00000002 382 # define LI_INTR_COMM1_OVERFLOW 0x00000001 383 384 #define LI_CODEC_COMMAND 0x018 385 # define LI_CC_BUSY 0x00008000 386 # define LI_CC_DIR 0x00000080 387 # define LI_CC_DIR_RD LI_CC_DIR 388 # define LI_CC_DIR_WR (!LI_CC_DIR) 389 # define LI_CC_ADDR_MASK 0x0000007F 390 391 #define LI_CODEC_DATA 0x01C 392 393 #define LI_COMM1_BASE 0x100 394 #define LI_COMM1_CTL 0x104 395 # define LI_CCTL_RESET 0x80000000 396 # define LI_CCTL_SIZE 0x70000000 397 # define LI_CCTL_DMA_ENABLE 0x08000000 398 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */ 399 # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */ 400 # define LI_CCTL_RPTR 0x0000FF00 401 # define LI_CCTL_WPTR 0x000000FF 402 #define LI_COMM1_CFG 0x108 403 # define LI_CCFG_LOCK 0x00008000 404 # define LI_CCFG_SLOT 0x00000070 405 # define LI_CCFG_DIRECTION 0x00000008 406 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION) 407 # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION 408 # define LI_CCFG_MODE 0x00000004 409 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE) 410 # define LI_CCFG_MODE_STEREO LI_CCFG_MODE 411 # define LI_CCFG_FORMAT 0x00000003 412 # define LI_CCFG_FMT_8BIT 0x00000000 413 # define LI_CCFG_FMT_16BIT 0x00000001 414 #define LI_COMM2_BASE 0x10C 415 #define LI_COMM2_CTL 0x110 416 /* bit definitions are the same as LI_COMM1_CTL */ 417 #define LI_COMM2_CFG 0x114 418 /* bit definitions are the same as LI_COMM1_CFG */ 419 420 #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */ 421 #define LI_UST_HIGH 0x204 /* microseconds since boot */ 422 423 #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */ 424 #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */ 425 #define LI_AUDIO2_UST 0x308 /* counts samples actually */ 426 #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */ 427 428 /* 429 * Lithium's DMA engine operates on chunks of 32 bytes. We call that 430 * a DMACHUNK. 431 */ 432 433 #define DMACHUNK_SHIFT 5 434 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT) 435 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT) 436 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT) 437 438 /* 439 * Two convenient macros to shift bitfields into/out of position. 440 * 441 * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)). 442 * As long as mask is constant, we trust the compiler will change the 443 * multiply and divide into shifts. 444 */ 445 446 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask)) 447 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask))) 448 449 /* 450 * dma_chan_desc is invariant information about a Lithium 451 * DMA channel. There are two instances, li_comm1 and li_comm2. 452 * 453 * Note that the CCTL register fields are write ptr and read ptr, but what 454 * we care about are which pointer is updated by software and which by 455 * hardware. 456 */ 457 458 typedef struct dma_chan_desc { 459 int basereg; 460 int cfgreg; 461 int ctlreg; 462 int hwptrreg; 463 int swptrreg; 464 int ustreg; 465 int mscreg; 466 unsigned long swptrmask; 467 int ad1843_slot; 468 int direction; /* LI_CCTL_DIR_IN/OUT */ 469 } dma_chan_desc_t; 470 471 static const dma_chan_desc_t li_comm1 = { 472 LI_COMM1_BASE, /* base register offset */ 473 LI_COMM1_CFG, /* config register offset */ 474 LI_COMM1_CTL, /* control register offset */ 475 LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */ 476 LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */ 477 LI_AUDIO1_UST, /* ust reg offset */ 478 LI_AUDIO1_MSC, /* msc reg offset */ 479 LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */ 480 2, /* ad1843 serial slot */ 481 LI_CCFG_DIR_IN /* direction */ 482 }; 483 484 static const dma_chan_desc_t li_comm2 = { 485 LI_COMM2_BASE, /* base register offset */ 486 LI_COMM2_CFG, /* config register offset */ 487 LI_COMM2_CTL, /* control register offset */ 488 LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */ 489 LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */ 490 LI_AUDIO2_UST, /* ust reg offset */ 491 LI_AUDIO2_MSC, /* msc reg offset */ 492 LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */ 493 2, /* ad1843 serial slot */ 494 LI_CCFG_DIR_OUT /* direction */ 495 }; 496 497 /* 498 * dma_chan is variable information about a Lithium DMA channel. 499 * 500 * The desc field points to invariant information. 501 * The lith field points to a lithium_t which is passed 502 * to li_read* and li_write* to access the registers. 503 * The *val fields shadow the lithium registers' contents. 504 */ 505 506 typedef struct dma_chan { 507 const dma_chan_desc_t *desc; 508 lithium_t *lith; 509 unsigned long baseval; 510 unsigned long cfgval; 511 unsigned long ctlval; 512 } dma_chan_t; 513 514 /* 515 * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter). 516 * UST is time in microseconds since the system booted, and MSC is a 517 * counter that increments with every audio sample. 518 */ 519 520 typedef struct ustmsc { 521 unsigned long long ust; 522 unsigned long msc; 523 } ustmsc_t; 524 525 /* 526 * li_ad1843_wait waits until lithium says the AD1843 register 527 * exchange is not busy. Returns 0 on success, -EBUSY on timeout. 528 * 529 * Locking: must be called with lithium_lock held. 530 */ 531 532 static int li_ad1843_wait(lithium_t *lith) 533 { 534 unsigned long later = jiffies + 2; 535 while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY) 536 if (time_after_eq(jiffies, later)) 537 return -EBUSY; 538 return 0; 539 } 540 541 /* 542 * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register. 543 * 544 * Returns unsigned register value on success, -errno on failure. 545 */ 546 547 static int li_read_ad1843_reg(lithium_t *lith, int reg) 548 { 549 int val; 550 551 ASSERT(!in_interrupt()); 552 spin_lock(&lith->lock); 553 { 554 val = li_ad1843_wait(lith); 555 if (val == 0) { 556 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg); 557 val = li_ad1843_wait(lith); 558 } 559 if (val == 0) 560 val = li_readl(lith, LI_CODEC_DATA); 561 } 562 spin_unlock(&lith->lock); 563 564 DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n", 565 lith, reg, val); 566 567 return val; 568 } 569 570 /* 571 * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register. 572 */ 573 574 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval) 575 { 576 spin_lock(&lith->lock); 577 { 578 if (li_ad1843_wait(lith) == 0) { 579 li_writel(lith, LI_CODEC_DATA, newval); 580 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg); 581 } 582 } 583 spin_unlock(&lith->lock); 584 } 585 586 /* 587 * li_setup_dma calculates all the register settings for DMA in a particular 588 * mode. It takes too many arguments. 589 */ 590 591 static void li_setup_dma(dma_chan_t *chan, 592 const dma_chan_desc_t *desc, 593 lithium_t *lith, 594 unsigned long buffer_paddr, 595 int bufshift, 596 int fragshift, 597 int channels, 598 int sampsize) 599 { 600 unsigned long mode, format; 601 unsigned long size, tmask; 602 603 DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, " 604 "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n", 605 chan, desc, lith, buffer_paddr, 606 bufshift, fragshift, channels, sampsize); 607 608 /* Reset the channel first. */ 609 610 li_writel(lith, desc->ctlreg, LI_CCTL_RESET); 611 612 ASSERT(channels == 1 || channels == 2); 613 if (channels == 2) 614 mode = LI_CCFG_MODE_STEREO; 615 else 616 mode = LI_CCFG_MODE_MONO; 617 ASSERT(sampsize == 1 || sampsize == 2); 618 if (sampsize == 2) 619 format = LI_CCFG_FMT_16BIT; 620 else 621 format = LI_CCFG_FMT_8BIT; 622 chan->desc = desc; 623 chan->lith = lith; 624 625 /* 626 * Lithium DMA address register takes a 40-bit physical 627 * address, right-shifted by 8 so it fits in 32 bits. Bit 37 628 * must be set -- it enables cache coherence. 629 */ 630 631 ASSERT(!(buffer_paddr & 0xFF)); 632 chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8); 633 634 chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) | 635 SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) | 636 desc->direction | 637 mode | 638 format); 639 640 size = bufshift - 6; 641 tmask = 13 - fragshift; /* See Lithium DMA Notes above. */ 642 ASSERT(size >= 2 && size <= 7); 643 ASSERT(tmask >= 1 && tmask <= 7); 644 chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) | 645 SHIFT_FIELD(size, LI_CCTL_SIZE) | 646 (chan->ctlval & ~LI_CCTL_DMA_ENABLE) | 647 SHIFT_FIELD(tmask, LI_CCTL_TMASK) | 648 SHIFT_FIELD(0, LI_CCTL_TPTR)); 649 650 DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval); 651 DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval); 652 DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval); 653 654 li_writel(lith, desc->basereg, chan->baseval); 655 li_writel(lith, desc->cfgreg, chan->cfgval); 656 li_writel(lith, desc->ctlreg, chan->ctlval); 657 658 DBGRV(); 659 } 660 661 static void li_shutdown_dma(dma_chan_t *chan) 662 { 663 lithium_t *lith = chan->lith; 664 void * lith1 = lith->page1; 665 666 DBGEV("(chan=0x%p)\n", chan); 667 668 chan->ctlval &= ~LI_CCTL_DMA_ENABLE; 669 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); 670 li_writel(lith, chan->desc->ctlreg, chan->ctlval); 671 672 /* 673 * Offset 0x500 on Lithium page 1 is an undocumented, 674 * unsupported register that holds the zero sample value. 675 * Lithium is supposed to output zero samples when DMA is 676 * inactive, and repeat the last sample when DMA underflows. 677 * But it has a bug, where, after underflow occurs, the zero 678 * sample is not reset. 679 * 680 * I expect this to break in a future rev of Lithium. 681 */ 682 683 if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT) 684 * (volatile unsigned long *) (lith1 + 0x500) = 0; 685 } 686 687 /* 688 * li_activate_dma always starts dma at the beginning of the buffer. 689 * 690 * N.B., these may be called from interrupt. 691 */ 692 693 static __inline__ void li_activate_dma(dma_chan_t *chan) 694 { 695 chan->ctlval |= LI_CCTL_DMA_ENABLE; 696 DBGPV("ctlval = 0x%lx\n", chan->ctlval); 697 li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval); 698 } 699 700 static void li_deactivate_dma(dma_chan_t *chan) 701 { 702 lithium_t *lith = chan->lith; 703 void * lith2 = lith->page2; 704 705 chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR); 706 DBGPV("ctlval = 0x%lx\n", chan->ctlval); 707 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); 708 li_writel(lith, chan->desc->ctlreg, chan->ctlval); 709 710 /* 711 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented, 712 * unsupported registers that are internal copies of the DMA 713 * read and write pointers. Because of a Lithium bug, these 714 * registers aren't zeroed correctly when DMA is shut off. So 715 * we whack them directly. 716 * 717 * I expect this to break in a future rev of Lithium. 718 */ 719 720 if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) { 721 * (volatile unsigned long *) (lith2 + 0x98) = 0; 722 * (volatile unsigned long *) (lith2 + 0x9C) = 0; 723 } 724 } 725 726 /* 727 * read/write the ring buffer pointers. These routines' arguments and results 728 * are byte offsets from the beginning of the ring buffer. 729 */ 730 731 static __inline__ int li_read_swptr(dma_chan_t *chan) 732 { 733 const unsigned long mask = chan->desc->swptrmask; 734 735 return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask)); 736 } 737 738 static __inline__ int li_read_hwptr(dma_chan_t *chan) 739 { 740 return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg)); 741 } 742 743 static __inline__ void li_write_swptr(dma_chan_t *chan, int val) 744 { 745 const unsigned long mask = chan->desc->swptrmask; 746 747 ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF))); 748 val = BYTES_TO_CHUNKS(val); 749 chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask); 750 li_writeb(chan->lith, chan->desc->swptrreg, val); 751 } 752 753 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */ 754 755 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc) 756 { 757 lithium_t *lith = chan->lith; 758 const dma_chan_desc_t *desc = chan->desc; 759 unsigned long now_low, now_high0, now_high1, chan_ust; 760 761 spin_lock(&lith->lock); 762 { 763 /* 764 * retry until we do all five reads without the 765 * high word changing. (High word increments 766 * every 2^32 microseconds, i.e., not often) 767 */ 768 do { 769 now_high0 = li_readl(lith, LI_UST_HIGH); 770 now_low = li_readl(lith, LI_UST_LOW); 771 772 /* 773 * Lithium guarantees these two reads will be 774 * atomic -- ust will not increment after msc 775 * is read. 776 */ 777 778 ustmsc->msc = li_readl(lith, desc->mscreg); 779 chan_ust = li_readl(lith, desc->ustreg); 780 781 now_high1 = li_readl(lith, LI_UST_HIGH); 782 } while (now_high0 != now_high1); 783 } 784 spin_unlock(&lith->lock); 785 ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust); 786 } 787 788 static void li_enable_interrupts(lithium_t *lith, unsigned int mask) 789 { 790 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); 791 792 /* clear any already-pending interrupts. */ 793 794 li_writel(lith, LI_INTR_STATUS, mask); 795 796 /* enable the interrupts. */ 797 798 mask |= li_readl(lith, LI_INTR_MASK); 799 li_writel(lith, LI_INTR_MASK, mask); 800 } 801 802 static void li_disable_interrupts(lithium_t *lith, unsigned int mask) 803 { 804 unsigned int keepmask; 805 806 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); 807 808 /* disable the interrupts */ 809 810 keepmask = li_readl(lith, LI_INTR_MASK) & ~mask; 811 li_writel(lith, LI_INTR_MASK, keepmask); 812 813 /* clear any pending interrupts. */ 814 815 li_writel(lith, LI_INTR_STATUS, mask); 816 } 817 818 /* Get the interrupt status and clear all pending interrupts. */ 819 820 static unsigned int li_get_clear_intr_status(lithium_t *lith) 821 { 822 unsigned int status; 823 824 status = li_readl(lith, LI_INTR_STATUS); 825 li_writel(lith, LI_INTR_STATUS, ~0); 826 return status & li_readl(lith, LI_INTR_MASK); 827 } 828 829 static int li_init(lithium_t *lith) 830 { 831 /* 1. System power supplies stabilize. */ 832 833 /* 2. Assert the ~RESET signal. */ 834 835 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET); 836 udelay(1); 837 838 /* 3. Deassert the ~RESET signal and enter a wait period to allow 839 the AD1843 internal clocks and the external crystal oscillator 840 to stabilize. */ 841 842 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); 843 udelay(1); 844 845 return 0; 846 } 847 848 /*****************************************************************************/ 849 /* AD1843 access */ 850 851 /* 852 * AD1843 bitfield definitions. All are named as in the AD1843 data 853 * sheet, with ad1843_ prepended and individual bit numbers removed. 854 * 855 * E.g., bits LSS0 through LSS2 become ad1843_LSS. 856 * 857 * Only the bitfields we need are defined. 858 */ 859 860 typedef struct ad1843_bitfield { 861 char reg; 862 char lo_bit; 863 char nbits; 864 } ad1843_bitfield_t; 865 866 static const ad1843_bitfield_t 867 ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */ 868 ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */ 869 ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */ 870 ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */ 871 ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */ 872 ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */ 873 ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */ 874 ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */ 875 ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */ 876 ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */ 877 ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */ 878 ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */ 879 ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */ 880 ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */ 881 ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */ 882 ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */ 883 ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */ 884 ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */ 885 ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */ 886 ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */ 887 ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */ 888 ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */ 889 ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */ 890 ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */ 891 ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */ 892 ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */ 893 ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */ 894 ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */ 895 ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */ 896 ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */ 897 ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */ 898 ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */ 899 ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */ 900 ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */ 901 ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */ 902 ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */ 903 ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */ 904 ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */ 905 ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */ 906 ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */ 907 ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */ 908 ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */ 909 ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */ 910 ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */ 911 ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */ 912 ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */ 913 ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */ 914 ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */ 915 ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */ 916 ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */ 917 ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */ 918 919 /* 920 * The various registers of the AD1843 use three different formats for 921 * specifying gain. The ad1843_gain structure parameterizes the 922 * formats. 923 */ 924 925 typedef struct ad1843_gain { 926 927 int negative; /* nonzero if gain is negative. */ 928 const ad1843_bitfield_t *lfield; 929 const ad1843_bitfield_t *rfield; 930 931 } ad1843_gain_t; 932 933 static const ad1843_gain_t ad1843_gain_RECLEV 934 = { 0, &ad1843_LIG, &ad1843_RIG }; 935 static const ad1843_gain_t ad1843_gain_LINE 936 = { 1, &ad1843_LX1M, &ad1843_RX1M }; 937 static const ad1843_gain_t ad1843_gain_CD 938 = { 1, &ad1843_LX2M, &ad1843_RX2M }; 939 static const ad1843_gain_t ad1843_gain_MIC 940 = { 1, &ad1843_LMCM, &ad1843_RMCM }; 941 static const ad1843_gain_t ad1843_gain_PCM 942 = { 1, &ad1843_LDA1G, &ad1843_RDA1G }; 943 944 /* read the current value of an AD1843 bitfield. */ 945 946 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field) 947 { 948 int w = li_read_ad1843_reg(lith, field->reg); 949 int val = w >> field->lo_bit & ((1 << field->nbits) - 1); 950 951 DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n", 952 lith, field->reg, field->lo_bit, field->nbits, val); 953 954 return val; 955 } 956 957 /* 958 * write a new value to an AD1843 bitfield and return the old value. 959 */ 960 961 static int ad1843_write_bits(lithium_t *lith, 962 const ad1843_bitfield_t *field, 963 int newval) 964 { 965 int w = li_read_ad1843_reg(lith, field->reg); 966 int mask = ((1 << field->nbits) - 1) << field->lo_bit; 967 int oldval = (w & mask) >> field->lo_bit; 968 int newbits = (newval << field->lo_bit) & mask; 969 w = (w & ~mask) | newbits; 970 (void) li_write_ad1843_reg(lith, field->reg, w); 971 972 DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) " 973 "returns 0x%x\n", 974 lith, field->reg, field->lo_bit, field->nbits, newval, 975 oldval); 976 977 return oldval; 978 } 979 980 /* 981 * ad1843_read_multi reads multiple bitfields from the same AD1843 982 * register. It uses a single read cycle to do it. (Reading the 983 * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20 984 * microseconds.) 985 * 986 * Called ike this. 987 * 988 * ad1843_read_multi(lith, nfields, 989 * &ad1843_FIELD1, &val1, 990 * &ad1843_FIELD2, &val2, ...); 991 */ 992 993 static void ad1843_read_multi(lithium_t *lith, int argcount, ...) 994 { 995 va_list ap; 996 const ad1843_bitfield_t *fp; 997 int w = 0, mask, *value, reg = -1; 998 999 va_start(ap, argcount); 1000 while (--argcount >= 0) { 1001 fp = va_arg(ap, const ad1843_bitfield_t *); 1002 value = va_arg(ap, int *); 1003 if (reg == -1) { 1004 reg = fp->reg; 1005 w = li_read_ad1843_reg(lith, reg); 1006 } 1007 ASSERT(reg == fp->reg); 1008 mask = (1 << fp->nbits) - 1; 1009 *value = w >> fp->lo_bit & mask; 1010 } 1011 va_end(ap); 1012 } 1013 1014 /* 1015 * ad1843_write_multi stores multiple bitfields into the same AD1843 1016 * register. It uses one read and one write cycle to do it. 1017 * 1018 * Called like this. 1019 * 1020 * ad1843_write_multi(lith, nfields, 1021 * &ad1843_FIELD1, val1, 1022 * &ad1843_FIELF2, val2, ...); 1023 */ 1024 1025 static void ad1843_write_multi(lithium_t *lith, int argcount, ...) 1026 { 1027 va_list ap; 1028 int reg; 1029 const ad1843_bitfield_t *fp; 1030 int value; 1031 int w, m, mask, bits; 1032 1033 mask = 0; 1034 bits = 0; 1035 reg = -1; 1036 1037 va_start(ap, argcount); 1038 while (--argcount >= 0) { 1039 fp = va_arg(ap, const ad1843_bitfield_t *); 1040 value = va_arg(ap, int); 1041 if (reg == -1) 1042 reg = fp->reg; 1043 ASSERT(fp->reg == reg); 1044 m = ((1 << fp->nbits) - 1) << fp->lo_bit; 1045 mask |= m; 1046 bits |= (value << fp->lo_bit) & m; 1047 } 1048 va_end(ap); 1049 ASSERT(!(bits & ~mask)); 1050 if (~mask & 0xFFFF) 1051 w = li_read_ad1843_reg(lith, reg); 1052 else 1053 w = 0; 1054 w = (w & ~mask) | bits; 1055 (void) li_write_ad1843_reg(lith, reg, w); 1056 } 1057 1058 /* 1059 * ad1843_get_gain reads the specified register and extracts the gain value 1060 * using the supplied gain type. It returns the gain in OSS format. 1061 */ 1062 1063 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp) 1064 { 1065 int lg, rg; 1066 unsigned short mask = (1 << gp->lfield->nbits) - 1; 1067 1068 ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg); 1069 if (gp->negative) { 1070 lg = mask - lg; 1071 rg = mask - rg; 1072 } 1073 lg = (lg * 100 + (mask >> 1)) / mask; 1074 rg = (rg * 100 + (mask >> 1)) / mask; 1075 return lg << 0 | rg << 8; 1076 } 1077 1078 /* 1079 * Set an audio channel's gain. Converts from OSS format to AD1843's 1080 * format. 1081 * 1082 * Returns the new gain, which may be lower than the old gain. 1083 */ 1084 1085 static int ad1843_set_gain(lithium_t *lith, 1086 const ad1843_gain_t *gp, 1087 int newval) 1088 { 1089 unsigned short mask = (1 << gp->lfield->nbits) - 1; 1090 1091 int lg = newval >> 0 & 0xFF; 1092 int rg = newval >> 8; 1093 if (lg < 0 || lg > 100 || rg < 0 || rg > 100) 1094 return -EINVAL; 1095 lg = (lg * mask + (mask >> 1)) / 100; 1096 rg = (rg * mask + (mask >> 1)) / 100; 1097 if (gp->negative) { 1098 lg = mask - lg; 1099 rg = mask - rg; 1100 } 1101 ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg); 1102 return ad1843_get_gain(lith, gp); 1103 } 1104 1105 /* Returns the current recording source, in OSS format. */ 1106 1107 static int ad1843_get_recsrc(lithium_t *lith) 1108 { 1109 int ls = ad1843_read_bits(lith, &ad1843_LSS); 1110 1111 switch (ls) { 1112 case 1: 1113 return SOUND_MASK_MIC; 1114 case 2: 1115 return SOUND_MASK_LINE; 1116 case 3: 1117 return SOUND_MASK_CD; 1118 case 6: 1119 return SOUND_MASK_PCM; 1120 default: 1121 ASSERT(0); 1122 return -1; 1123 } 1124 } 1125 1126 /* 1127 * Enable/disable digital resample mode in the AD1843. 1128 * 1129 * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down 1130 * while switching modes. So we save DA1's state (DA2's state is not 1131 * interesting), power them down, switch into/out of resample mode, 1132 * power them up, and restore state. 1133 * 1134 * This will cause audible glitches if D/A or A/D is going on, so the 1135 * driver disallows that (in mixer_write_ioctl()). 1136 * 1137 * The open question is, is this worth doing? I'm leaving it in, 1138 * because it's written, but... 1139 */ 1140 1141 static void ad1843_set_resample_mode(lithium_t *lith, int onoff) 1142 { 1143 /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */ 1144 int save_da1 = li_read_ad1843_reg(lith, 9); 1145 1146 /* Power down A/D and D/A. */ 1147 ad1843_write_multi(lith, 4, 1148 &ad1843_DA1EN, 0, 1149 &ad1843_DA2EN, 0, 1150 &ad1843_ADLEN, 0, 1151 &ad1843_ADREN, 0); 1152 1153 /* Switch mode */ 1154 ASSERT(onoff == 0 || onoff == 1); 1155 ad1843_write_bits(lith, &ad1843_DRSFLT, onoff); 1156 1157 /* Power up A/D and D/A. */ 1158 ad1843_write_multi(lith, 3, 1159 &ad1843_DA1EN, 1, 1160 &ad1843_ADLEN, 1, 1161 &ad1843_ADREN, 1); 1162 1163 /* Restore DA1 mute and gain. */ 1164 li_write_ad1843_reg(lith, 9, save_da1); 1165 } 1166 1167 /* 1168 * Set recording source. Arg newsrc specifies an OSS channel mask. 1169 * 1170 * The complication is that when we switch into/out of loopback mode 1171 * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of 1172 * digital resampling mode. 1173 * 1174 * Returns newsrc on success, -errno on failure. 1175 */ 1176 1177 static int ad1843_set_recsrc(lithium_t *lith, int newsrc) 1178 { 1179 int bits; 1180 int oldbits; 1181 1182 switch (newsrc) { 1183 case SOUND_MASK_PCM: 1184 bits = 6; 1185 break; 1186 1187 case SOUND_MASK_MIC: 1188 bits = 1; 1189 break; 1190 1191 case SOUND_MASK_LINE: 1192 bits = 2; 1193 break; 1194 1195 case SOUND_MASK_CD: 1196 bits = 3; 1197 break; 1198 1199 default: 1200 return -EINVAL; 1201 } 1202 oldbits = ad1843_read_bits(lith, &ad1843_LSS); 1203 if (newsrc == SOUND_MASK_PCM && oldbits != 6) { 1204 DBGP("enabling digital resample mode\n"); 1205 ad1843_set_resample_mode(lith, 1); 1206 ad1843_write_multi(lith, 2, 1207 &ad1843_DAADL, 2, 1208 &ad1843_DAADR, 2); 1209 } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) { 1210 DBGP("disabling digital resample mode\n"); 1211 ad1843_set_resample_mode(lith, 0); 1212 ad1843_write_multi(lith, 2, 1213 &ad1843_DAADL, 0, 1214 &ad1843_DAADR, 0); 1215 } 1216 ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits); 1217 return newsrc; 1218 } 1219 1220 /* 1221 * Return current output sources, in OSS format. 1222 */ 1223 1224 static int ad1843_get_outsrc(lithium_t *lith) 1225 { 1226 int pcm, line, mic, cd; 1227 1228 pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM; 1229 line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE; 1230 cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD; 1231 mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC; 1232 1233 return pcm | line | cd | mic; 1234 } 1235 1236 /* 1237 * Set output sources. Arg is a mask of active sources in OSS format. 1238 * 1239 * Returns source mask on success, -errno on failure. 1240 */ 1241 1242 static int ad1843_set_outsrc(lithium_t *lith, int mask) 1243 { 1244 int pcm, line, mic, cd; 1245 1246 if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE | 1247 SOUND_MASK_CD | SOUND_MASK_MIC)) 1248 return -EINVAL; 1249 pcm = (mask & SOUND_MASK_PCM) ? 0 : 1; 1250 line = (mask & SOUND_MASK_LINE) ? 0 : 1; 1251 mic = (mask & SOUND_MASK_MIC) ? 0 : 1; 1252 cd = (mask & SOUND_MASK_CD) ? 0 : 1; 1253 1254 ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm); 1255 ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line); 1256 ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd); 1257 ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic); 1258 1259 return mask; 1260 } 1261 1262 /* Setup ad1843 for D/A conversion. */ 1263 1264 static void ad1843_setup_dac(lithium_t *lith, 1265 int framerate, 1266 int fmt, 1267 int channels) 1268 { 1269 int ad_fmt = 0, ad_mode = 0; 1270 1271 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", 1272 lith, framerate, fmt, channels); 1273 1274 switch (fmt) { 1275 case AFMT_S8: ad_fmt = 1; break; 1276 case AFMT_U8: ad_fmt = 1; break; 1277 case AFMT_S16_LE: ad_fmt = 1; break; 1278 case AFMT_MU_LAW: ad_fmt = 2; break; 1279 case AFMT_A_LAW: ad_fmt = 3; break; 1280 default: ASSERT(0); 1281 } 1282 1283 switch (channels) { 1284 case 2: ad_mode = 0; break; 1285 case 1: ad_mode = 1; break; 1286 default: ASSERT(0); 1287 } 1288 1289 DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt); 1290 ASSERT(framerate >= 4000 && framerate <= 49000); 1291 ad1843_write_bits(lith, &ad1843_C1C, framerate); 1292 ad1843_write_multi(lith, 2, 1293 &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt); 1294 } 1295 1296 static void ad1843_shutdown_dac(lithium_t *lith) 1297 { 1298 ad1843_write_bits(lith, &ad1843_DA1F, 1); 1299 } 1300 1301 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels) 1302 { 1303 int da_fmt = 0; 1304 1305 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", 1306 lith, framerate, fmt, channels); 1307 1308 switch (fmt) { 1309 case AFMT_S8: da_fmt = 1; break; 1310 case AFMT_U8: da_fmt = 1; break; 1311 case AFMT_S16_LE: da_fmt = 1; break; 1312 case AFMT_MU_LAW: da_fmt = 2; break; 1313 case AFMT_A_LAW: da_fmt = 3; break; 1314 default: ASSERT(0); 1315 } 1316 1317 DBGPV("da_fmt = %d\n", da_fmt); 1318 ASSERT(framerate >= 4000 && framerate <= 49000); 1319 ad1843_write_bits(lith, &ad1843_C2C, framerate); 1320 ad1843_write_multi(lith, 2, 1321 &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt); 1322 } 1323 1324 static void ad1843_shutdown_adc(lithium_t *lith) 1325 { 1326 /* nothing to do */ 1327 } 1328 1329 /* 1330 * Fully initialize the ad1843. As described in the AD1843 data 1331 * sheet, section "START-UP SEQUENCE". The numbered comments are 1332 * subsection headings from the data sheet. See the data sheet, pages 1333 * 52-54, for more info. 1334 * 1335 * return 0 on success, -errno on failure. */ 1336 1337 static int __init ad1843_init(lithium_t *lith) 1338 { 1339 unsigned long later; 1340 int err; 1341 1342 err = li_init(lith); 1343 if (err) 1344 return err; 1345 1346 if (ad1843_read_bits(lith, &ad1843_INIT) != 0) { 1347 printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n"); 1348 return -EIO; 1349 } 1350 1351 ad1843_write_bits(lith, &ad1843_SCF, 1); 1352 1353 /* 4. Put the conversion resources into standby. */ 1354 1355 ad1843_write_bits(lith, &ad1843_PDNI, 0); 1356 later = jiffies + HZ / 2; /* roughly half a second */ 1357 DBGDO(shut_up++); 1358 while (ad1843_read_bits(lith, &ad1843_PDNO)) { 1359 if (time_after(jiffies, later)) { 1360 printk(KERN_ERR 1361 "vwsnd audio: AD1843 won't power up\n"); 1362 return -EIO; 1363 } 1364 schedule(); 1365 } 1366 DBGDO(shut_up--); 1367 1368 /* 5. Power up the clock generators and enable clock output pins. */ 1369 1370 ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1); 1371 1372 /* 6. Configure conversion resources while they are in standby. */ 1373 1374 /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */ 1375 1376 ad1843_write_multi(lith, 3, 1377 &ad1843_DA1C, 1, 1378 &ad1843_ADLC, 2, 1379 &ad1843_ADRC, 2); 1380 1381 /* 7. Enable conversion resources. */ 1382 1383 ad1843_write_bits(lith, &ad1843_ADTLK, 1); 1384 ad1843_write_multi(lith, 5, 1385 &ad1843_ANAEN, 1, 1386 &ad1843_AAMEN, 1, 1387 &ad1843_DA1EN, 1, 1388 &ad1843_ADLEN, 1, 1389 &ad1843_ADREN, 1); 1390 1391 /* 8. Configure conversion resources while they are enabled. */ 1392 1393 ad1843_write_bits(lith, &ad1843_DA1C, 1); 1394 1395 /* Unmute all channels. */ 1396 1397 ad1843_set_outsrc(lith, 1398 (SOUND_MASK_PCM | SOUND_MASK_LINE | 1399 SOUND_MASK_MIC | SOUND_MASK_CD)); 1400 ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0); 1401 1402 /* Set default recording source to Line In and set 1403 * mic gain to +20 dB. 1404 */ 1405 1406 ad1843_set_recsrc(lith, SOUND_MASK_LINE); 1407 ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1); 1408 1409 /* Set Speaker Out level to +/- 4V and unmute it. */ 1410 1411 ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0); 1412 1413 return 0; 1414 } 1415 1416 /*****************************************************************************/ 1417 /* PCM I/O */ 1418 1419 #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW) 1420 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW) 1421 1422 typedef enum vwsnd_port_swstate { /* software state */ 1423 SW_OFF, 1424 SW_INITIAL, 1425 SW_RUN, 1426 SW_DRAIN, 1427 } vwsnd_port_swstate_t; 1428 1429 typedef enum vwsnd_port_hwstate { /* hardware state */ 1430 HW_STOPPED, 1431 HW_RUNNING, 1432 } vwsnd_port_hwstate_t; 1433 1434 /* 1435 * These flags are read by ISR, but only written at baseline. 1436 */ 1437 1438 typedef enum vwsnd_port_flags { 1439 DISABLED = 1 << 0, 1440 ERFLOWN = 1 << 1, /* overflown or underflown */ 1441 HW_BUSY = 1 << 2, 1442 } vwsnd_port_flags_t; 1443 1444 /* 1445 * vwsnd_port is the per-port data structure. Each device has two 1446 * ports, one for input and one for output. 1447 * 1448 * Locking: 1449 * 1450 * port->lock protects: hwstate, flags, swb_[iu]_avail. 1451 * 1452 * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx. 1453 * 1454 * everything else is only written by open/release or 1455 * pcm_{setup,shutdown}(), which are serialized by a 1456 * combination of devc->open_mutex and devc->io_mutex. 1457 */ 1458 1459 typedef struct vwsnd_port { 1460 1461 spinlock_t lock; 1462 wait_queue_head_t queue; 1463 vwsnd_port_swstate_t swstate; 1464 vwsnd_port_hwstate_t hwstate; 1465 vwsnd_port_flags_t flags; 1466 1467 int sw_channels; 1468 int sw_samplefmt; 1469 int sw_framerate; 1470 int sample_size; 1471 int frame_size; 1472 unsigned int zero_word; /* zero for the sample format */ 1473 1474 int sw_fragshift; 1475 int sw_fragcount; 1476 int sw_subdivshift; 1477 1478 unsigned int hw_fragshift; 1479 unsigned int hw_fragsize; 1480 unsigned int hw_fragcount; 1481 1482 int hwbuf_size; 1483 unsigned long hwbuf_paddr; 1484 unsigned long hwbuf_vaddr; 1485 void * hwbuf; /* hwbuf == hwbuf_vaddr */ 1486 int hwbuf_max; /* max bytes to preload */ 1487 1488 void * swbuf; 1489 unsigned int swbuf_size; /* size in bytes */ 1490 unsigned int swb_u_idx; /* index of next user byte */ 1491 unsigned int swb_i_idx; /* index of next intr byte */ 1492 unsigned int swb_u_avail; /* # bytes avail to user */ 1493 unsigned int swb_i_avail; /* # bytes avail to intr */ 1494 1495 dma_chan_t chan; 1496 1497 /* Accounting */ 1498 1499 int byte_count; 1500 int frag_count; 1501 int MSC_offset; 1502 1503 } vwsnd_port_t; 1504 1505 /* vwsnd_dev is the per-device data structure. */ 1506 1507 typedef struct vwsnd_dev { 1508 struct vwsnd_dev *next_dev; 1509 int audio_minor; /* minor number of audio device */ 1510 int mixer_minor; /* minor number of mixer device */ 1511 1512 struct mutex open_mutex; 1513 struct mutex io_mutex; 1514 struct mutex mix_mutex; 1515 fmode_t open_mode; 1516 wait_queue_head_t open_wait; 1517 1518 lithium_t lith; 1519 1520 vwsnd_port_t rport; 1521 vwsnd_port_t wport; 1522 } vwsnd_dev_t; 1523 1524 static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */ 1525 1526 static atomic_t vwsnd_use_count = ATOMIC_INIT(0); 1527 1528 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count)) 1529 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count)) 1530 # define IN_USE (atomic_read(&vwsnd_use_count) != 0) 1531 1532 /* 1533 * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may 1534 * be up to 8 Kb. This driver always uses 8 Kb. 1535 * 1536 * Memory bug workaround -- I'm not sure what's going on here, but 1537 * somehow pcm_copy_out() was triggering segv's going on to the next 1538 * page of the hw buffer. So, I make the hw buffer one size bigger 1539 * than we actually use. That way, the following page is allocated 1540 * and mapped, and no error. I suspect that something is broken 1541 * in Cobalt, but haven't really investigated. HBO is the actual 1542 * size of the buffer, and HWBUF_ORDER is what we allocate. 1543 */ 1544 1545 #define HWBUF_SHIFT 13 1546 #define HWBUF_SIZE (1 << HWBUF_SHIFT) 1547 # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0) 1548 # define HWBUF_ORDER (HBO + 1) /* next size bigger */ 1549 #define MIN_SPEED 4000 1550 #define MAX_SPEED 49000 1551 1552 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1) 1553 #define MAX_FRAGSHIFT (PAGE_SHIFT) 1554 #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT) 1555 #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT) 1556 #define MIN_FRAGCOUNT(fragsize) 3 1557 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize)) 1558 #define DEFAULT_FRAGSHIFT 12 1559 #define DEFAULT_FRAGCOUNT 16 1560 #define DEFAULT_SUBDIVSHIFT 0 1561 1562 /* 1563 * The software buffer (swbuf) is a ring buffer shared between user 1564 * level and interrupt level. Each level owns some of the bytes in 1565 * the buffer, and may give bytes away by calling swb_inc_{u,i}(). 1566 * User level calls _u for user, and interrupt level calls _i for 1567 * interrupt. 1568 * 1569 * port->swb_{u,i}_avail is the number of bytes available to that level. 1570 * 1571 * port->swb_{u,i}_idx is the index of the first available byte in the 1572 * buffer. 1573 * 1574 * Each level calls swb_inc_{u,i}() to atomically increment its index, 1575 * recalculate the number of bytes available for both sides, and 1576 * return the number of bytes available. Since each side can only 1577 * give away bytes, the other side can only increase the number of 1578 * bytes available to this side. Each side updates its own index 1579 * variable, swb_{u,i}_idx, so no lock is needed to read it. 1580 * 1581 * To query the number of bytes available, call swb_inc_{u,i} with an 1582 * increment of zero. 1583 */ 1584 1585 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc) 1586 { 1587 if (inc) { 1588 port->swb_u_idx += inc; 1589 port->swb_u_idx %= port->swbuf_size; 1590 port->swb_u_avail -= inc; 1591 port->swb_i_avail += inc; 1592 } 1593 return port->swb_u_avail; 1594 } 1595 1596 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc) 1597 { 1598 unsigned long flags; 1599 unsigned int ret; 1600 1601 spin_lock_irqsave(&port->lock, flags); 1602 { 1603 ret = __swb_inc_u(port, inc); 1604 } 1605 spin_unlock_irqrestore(&port->lock, flags); 1606 return ret; 1607 } 1608 1609 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc) 1610 { 1611 if (inc) { 1612 port->swb_i_idx += inc; 1613 port->swb_i_idx %= port->swbuf_size; 1614 port->swb_i_avail -= inc; 1615 port->swb_u_avail += inc; 1616 } 1617 return port->swb_i_avail; 1618 } 1619 1620 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc) 1621 { 1622 unsigned long flags; 1623 unsigned int ret; 1624 1625 spin_lock_irqsave(&port->lock, flags); 1626 { 1627 ret = __swb_inc_i(port, inc); 1628 } 1629 spin_unlock_irqrestore(&port->lock, flags); 1630 return ret; 1631 } 1632 1633 /* 1634 * pcm_setup - this routine initializes all port state after 1635 * mode-setting ioctls have been done, but before the first I/O is 1636 * done. 1637 * 1638 * Locking: called with devc->io_mutex held. 1639 * 1640 * Returns 0 on success, -errno on failure. 1641 */ 1642 1643 static int pcm_setup(vwsnd_dev_t *devc, 1644 vwsnd_port_t *rport, 1645 vwsnd_port_t *wport) 1646 { 1647 vwsnd_port_t *aport = rport ? rport : wport; 1648 int sample_size; 1649 unsigned int zero_word; 1650 1651 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); 1652 1653 ASSERT(aport != NULL); 1654 if (aport->swbuf != NULL) 1655 return 0; 1656 switch (aport->sw_samplefmt) { 1657 case AFMT_MU_LAW: 1658 sample_size = 1; 1659 zero_word = 0xFFFFFFFF ^ 0x80808080; 1660 break; 1661 1662 case AFMT_A_LAW: 1663 sample_size = 1; 1664 zero_word = 0xD5D5D5D5 ^ 0x80808080; 1665 break; 1666 1667 case AFMT_U8: 1668 sample_size = 1; 1669 zero_word = 0x80808080; 1670 break; 1671 1672 case AFMT_S8: 1673 sample_size = 1; 1674 zero_word = 0x00000000; 1675 break; 1676 1677 case AFMT_S16_LE: 1678 sample_size = 2; 1679 zero_word = 0x00000000; 1680 break; 1681 1682 default: 1683 sample_size = 0; /* prevent compiler warning */ 1684 zero_word = 0; 1685 ASSERT(0); 1686 } 1687 aport->sample_size = sample_size; 1688 aport->zero_word = zero_word; 1689 aport->frame_size = aport->sw_channels * aport->sample_size; 1690 aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift; 1691 aport->hw_fragsize = 1 << aport->hw_fragshift; 1692 aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift; 1693 ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE); 1694 ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE); 1695 ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize)); 1696 ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize)); 1697 if (rport) { 1698 int hwfrags, swfrags; 1699 rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; 1700 hwfrags = rport->hwbuf_max >> aport->hw_fragshift; 1701 swfrags = aport->hw_fragcount - hwfrags; 1702 if (swfrags < 2) 1703 swfrags = 2; 1704 rport->swbuf_size = swfrags * aport->hw_fragsize; 1705 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); 1706 DBGPV("read hwbuf_max = %d, swbuf_size = %d\n", 1707 rport->hwbuf_max, rport->swbuf_size); 1708 } 1709 if (wport) { 1710 int hwfrags, swfrags; 1711 int total_bytes = aport->hw_fragcount * aport->hw_fragsize; 1712 wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; 1713 if (wport->hwbuf_max > total_bytes) 1714 wport->hwbuf_max = total_bytes; 1715 hwfrags = wport->hwbuf_max >> aport->hw_fragshift; 1716 DBGPV("hwfrags = %d\n", hwfrags); 1717 swfrags = aport->hw_fragcount - hwfrags; 1718 if (swfrags < 2) 1719 swfrags = 2; 1720 wport->swbuf_size = swfrags * aport->hw_fragsize; 1721 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); 1722 DBGPV("write hwbuf_max = %d, swbuf_size = %d\n", 1723 wport->hwbuf_max, wport->swbuf_size); 1724 } 1725 1726 aport->swb_u_idx = 0; 1727 aport->swb_i_idx = 0; 1728 aport->byte_count = 0; 1729 1730 /* 1731 * Is this a Cobalt bug? We need to make this buffer extend 1732 * one page further than we actually use -- somehow memcpy 1733 * causes an exceptoin otherwise. I suspect there's a bug in 1734 * Cobalt (or somewhere) where it's generating a fault on a 1735 * speculative load or something. Obviously, I haven't taken 1736 * the time to track it down. 1737 */ 1738 1739 aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); 1740 if (!aport->swbuf) 1741 return -ENOMEM; 1742 if (rport && wport) { 1743 ASSERT(aport == rport); 1744 ASSERT(wport->swbuf == NULL); 1745 /* One extra page - see comment above. */ 1746 wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); 1747 if (!wport->swbuf) { 1748 vfree(aport->swbuf); 1749 aport->swbuf = NULL; 1750 return -ENOMEM; 1751 } 1752 wport->sample_size = rport->sample_size; 1753 wport->zero_word = rport->zero_word; 1754 wport->frame_size = rport->frame_size; 1755 wport->hw_fragshift = rport->hw_fragshift; 1756 wport->hw_fragsize = rport->hw_fragsize; 1757 wport->hw_fragcount = rport->hw_fragcount; 1758 wport->swbuf_size = rport->swbuf_size; 1759 wport->hwbuf_max = rport->hwbuf_max; 1760 wport->swb_u_idx = rport->swb_u_idx; 1761 wport->swb_i_idx = rport->swb_i_idx; 1762 wport->byte_count = rport->byte_count; 1763 } 1764 if (rport) { 1765 rport->swb_u_avail = 0; 1766 rport->swb_i_avail = rport->swbuf_size; 1767 rport->swstate = SW_RUN; 1768 li_setup_dma(&rport->chan, 1769 &li_comm1, 1770 &devc->lith, 1771 rport->hwbuf_paddr, 1772 HWBUF_SHIFT, 1773 rport->hw_fragshift, 1774 rport->sw_channels, 1775 rport->sample_size); 1776 ad1843_setup_adc(&devc->lith, 1777 rport->sw_framerate, 1778 rport->sw_samplefmt, 1779 rport->sw_channels); 1780 li_enable_interrupts(&devc->lith, READ_INTR_MASK); 1781 if (!(rport->flags & DISABLED)) { 1782 ustmsc_t ustmsc; 1783 rport->hwstate = HW_RUNNING; 1784 li_activate_dma(&rport->chan); 1785 li_read_USTMSC(&rport->chan, &ustmsc); 1786 rport->MSC_offset = ustmsc.msc; 1787 } 1788 } 1789 if (wport) { 1790 if (wport->hwbuf_max > wport->swbuf_size) 1791 wport->hwbuf_max = wport->swbuf_size; 1792 wport->flags &= ~ERFLOWN; 1793 wport->swb_u_avail = wport->swbuf_size; 1794 wport->swb_i_avail = 0; 1795 wport->swstate = SW_RUN; 1796 li_setup_dma(&wport->chan, 1797 &li_comm2, 1798 &devc->lith, 1799 wport->hwbuf_paddr, 1800 HWBUF_SHIFT, 1801 wport->hw_fragshift, 1802 wport->sw_channels, 1803 wport->sample_size); 1804 ad1843_setup_dac(&devc->lith, 1805 wport->sw_framerate, 1806 wport->sw_samplefmt, 1807 wport->sw_channels); 1808 li_enable_interrupts(&devc->lith, WRITE_INTR_MASK); 1809 } 1810 DBGRV(); 1811 return 0; 1812 } 1813 1814 /* 1815 * pcm_shutdown_port - shut down one port (direction) for PCM I/O. 1816 * Only called from pcm_shutdown. 1817 */ 1818 1819 static void pcm_shutdown_port(vwsnd_dev_t *devc, 1820 vwsnd_port_t *aport, 1821 unsigned int mask) 1822 { 1823 unsigned long flags; 1824 vwsnd_port_hwstate_t hwstate; 1825 DECLARE_WAITQUEUE(wait, current); 1826 1827 aport->swstate = SW_INITIAL; 1828 add_wait_queue(&aport->queue, &wait); 1829 while (1) { 1830 set_current_state(TASK_UNINTERRUPTIBLE); 1831 spin_lock_irqsave(&aport->lock, flags); 1832 { 1833 hwstate = aport->hwstate; 1834 } 1835 spin_unlock_irqrestore(&aport->lock, flags); 1836 if (hwstate == HW_STOPPED) 1837 break; 1838 schedule(); 1839 } 1840 current->state = TASK_RUNNING; 1841 remove_wait_queue(&aport->queue, &wait); 1842 li_disable_interrupts(&devc->lith, mask); 1843 if (aport == &devc->rport) 1844 ad1843_shutdown_adc(&devc->lith); 1845 else /* aport == &devc->wport) */ 1846 ad1843_shutdown_dac(&devc->lith); 1847 li_shutdown_dma(&aport->chan); 1848 vfree(aport->swbuf); 1849 aport->swbuf = NULL; 1850 aport->byte_count = 0; 1851 } 1852 1853 /* 1854 * pcm_shutdown undoes what pcm_setup did. 1855 * Also sets the ports' swstate to newstate. 1856 */ 1857 1858 static void pcm_shutdown(vwsnd_dev_t *devc, 1859 vwsnd_port_t *rport, 1860 vwsnd_port_t *wport) 1861 { 1862 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); 1863 1864 if (rport && rport->swbuf) { 1865 DBGPV("shutting down rport\n"); 1866 pcm_shutdown_port(devc, rport, READ_INTR_MASK); 1867 } 1868 if (wport && wport->swbuf) { 1869 DBGPV("shutting down wport\n"); 1870 pcm_shutdown_port(devc, wport, WRITE_INTR_MASK); 1871 } 1872 DBGRV(); 1873 } 1874 1875 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb) 1876 { 1877 char *src = rport->hwbuf + hwidx; 1878 char *dst = rport->swbuf + swidx; 1879 int fmt = rport->sw_samplefmt; 1880 1881 DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx); 1882 ASSERT(rport->hwbuf != NULL); 1883 ASSERT(rport->swbuf != NULL); 1884 ASSERT(nb > 0 && (nb % 32) == 0); 1885 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); 1886 ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size); 1887 ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size); 1888 1889 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { 1890 1891 /* See Sample Format Notes above. */ 1892 1893 char *end = src + nb; 1894 while (src < end) 1895 *dst++ = *src++ ^ 0x80; 1896 } else 1897 memcpy(dst, src, nb); 1898 } 1899 1900 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb) 1901 { 1902 char *src = wport->swbuf + swidx; 1903 char *dst = wport->hwbuf + hwidx; 1904 int fmt = wport->sw_samplefmt; 1905 1906 ASSERT(nb > 0 && (nb % 32) == 0); 1907 ASSERT(wport->hwbuf != NULL); 1908 ASSERT(wport->swbuf != NULL); 1909 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); 1910 ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size); 1911 ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size); 1912 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { 1913 1914 /* See Sample Format Notes above. */ 1915 1916 char *end = src + nb; 1917 while (src < end) 1918 *dst++ = *src++ ^ 0x80; 1919 } else 1920 memcpy(dst, src, nb); 1921 } 1922 1923 /* 1924 * pcm_output() is called both from baselevel and from interrupt level. 1925 * This is where audio frames are copied into the hardware-accessible 1926 * ring buffer. 1927 * 1928 * Locking note: The part of this routine that figures out what to do 1929 * holds wport->lock. The longer part releases wport->lock, but sets 1930 * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and 1931 * checks for more work to do. 1932 * 1933 * If another thread calls pcm_output() while HW_BUSY is set, it 1934 * returns immediately, knowing that the thread that set HW_BUSY will 1935 * look for more work to do before returning. 1936 * 1937 * This has the advantage that port->lock is held for several short 1938 * periods instead of one long period. Also, when pcm_output is 1939 * called from base level, it reenables interrupts. 1940 */ 1941 1942 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb) 1943 { 1944 vwsnd_port_t *wport = &devc->wport; 1945 const int hwmax = wport->hwbuf_max; 1946 const int hwsize = wport->hwbuf_size; 1947 const int swsize = wport->swbuf_size; 1948 const int fragsize = wport->hw_fragsize; 1949 unsigned long iflags; 1950 1951 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); 1952 spin_lock_irqsave(&wport->lock, iflags); 1953 if (erflown) 1954 wport->flags |= ERFLOWN; 1955 (void) __swb_inc_u(wport, nb); 1956 if (wport->flags & HW_BUSY) { 1957 spin_unlock_irqrestore(&wport->lock, iflags); 1958 DBGPV("returning: HW BUSY\n"); 1959 return; 1960 } 1961 if (wport->flags & DISABLED) { 1962 spin_unlock_irqrestore(&wport->lock, iflags); 1963 DBGPV("returning: DISABLED\n"); 1964 return; 1965 } 1966 wport->flags |= HW_BUSY; 1967 while (1) { 1968 int swptr, hwptr, hw_avail, sw_avail, swidx; 1969 vwsnd_port_hwstate_t hwstate = wport->hwstate; 1970 vwsnd_port_swstate_t swstate = wport->swstate; 1971 int hw_unavail; 1972 ustmsc_t ustmsc; 1973 1974 hwptr = li_read_hwptr(&wport->chan); 1975 swptr = li_read_swptr(&wport->chan); 1976 hw_unavail = (swptr - hwptr + hwsize) % hwsize; 1977 hw_avail = (hwmax - hw_unavail) & -fragsize; 1978 sw_avail = wport->swb_i_avail & -fragsize; 1979 if (sw_avail && swstate == SW_RUN) { 1980 if (wport->flags & ERFLOWN) { 1981 wport->flags &= ~ERFLOWN; 1982 } 1983 } else if (swstate == SW_INITIAL || 1984 swstate == SW_OFF || 1985 (swstate == SW_DRAIN && 1986 !sw_avail && 1987 (wport->flags & ERFLOWN))) { 1988 DBGP("stopping. hwstate = %d\n", hwstate); 1989 if (hwstate != HW_STOPPED) { 1990 li_deactivate_dma(&wport->chan); 1991 wport->hwstate = HW_STOPPED; 1992 } 1993 wake_up(&wport->queue); 1994 break; 1995 } 1996 if (!sw_avail || !hw_avail) 1997 break; 1998 spin_unlock_irqrestore(&wport->lock, iflags); 1999 2000 /* 2001 * We gave up the port lock, but we have the HW_BUSY flag. 2002 * Proceed without accessing any nonlocal state. 2003 * Do not exit the loop -- must check for more work. 2004 */ 2005 2006 swidx = wport->swb_i_idx; 2007 nb = hw_avail; 2008 if (nb > sw_avail) 2009 nb = sw_avail; 2010 if (nb > hwsize - swptr) 2011 nb = hwsize - swptr; /* don't overflow hwbuf */ 2012 if (nb > swsize - swidx) 2013 nb = swsize - swidx; /* don't overflow swbuf */ 2014 ASSERT(nb > 0); 2015 if (nb % fragsize) { 2016 DBGP("nb = %d, fragsize = %d\n", nb, fragsize); 2017 DBGP("hw_avail = %d\n", hw_avail); 2018 DBGP("sw_avail = %d\n", sw_avail); 2019 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); 2020 DBGP("swsize = %d, swidx = %d\n", swsize, swidx); 2021 } 2022 ASSERT(!(nb % fragsize)); 2023 DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n", 2024 swidx, swidx + nb, swptr, swptr + nb); 2025 pcm_copy_out(wport, swidx, swptr, nb); 2026 li_write_swptr(&wport->chan, (swptr + nb) % hwsize); 2027 spin_lock_irqsave(&wport->lock, iflags); 2028 if (hwstate == HW_STOPPED) { 2029 DBGPV("starting\n"); 2030 li_activate_dma(&wport->chan); 2031 wport->hwstate = HW_RUNNING; 2032 li_read_USTMSC(&wport->chan, &ustmsc); 2033 ASSERT(wport->byte_count % wport->frame_size == 0); 2034 wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size; 2035 } 2036 __swb_inc_i(wport, nb); 2037 wport->byte_count += nb; 2038 wport->frag_count += nb / fragsize; 2039 ASSERT(nb % fragsize == 0); 2040 wake_up(&wport->queue); 2041 } 2042 wport->flags &= ~HW_BUSY; 2043 spin_unlock_irqrestore(&wport->lock, iflags); 2044 DBGRV(); 2045 } 2046 2047 /* 2048 * pcm_input() is called both from baselevel and from interrupt level. 2049 * This is where audio frames are copied out of the hardware-accessible 2050 * ring buffer. 2051 * 2052 * Locking note: The part of this routine that figures out what to do 2053 * holds rport->lock. The longer part releases rport->lock, but sets 2054 * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and 2055 * checks for more work to do. 2056 * 2057 * If another thread calls pcm_input() while HW_BUSY is set, it 2058 * returns immediately, knowing that the thread that set HW_BUSY will 2059 * look for more work to do before returning. 2060 * 2061 * This has the advantage that port->lock is held for several short 2062 * periods instead of one long period. Also, when pcm_input is 2063 * called from base level, it reenables interrupts. 2064 */ 2065 2066 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb) 2067 { 2068 vwsnd_port_t *rport = &devc->rport; 2069 const int hwmax = rport->hwbuf_max; 2070 const int hwsize = rport->hwbuf_size; 2071 const int swsize = rport->swbuf_size; 2072 const int fragsize = rport->hw_fragsize; 2073 unsigned long iflags; 2074 2075 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); 2076 2077 spin_lock_irqsave(&rport->lock, iflags); 2078 if (erflown) 2079 rport->flags |= ERFLOWN; 2080 (void) __swb_inc_u(rport, nb); 2081 if (rport->flags & HW_BUSY || !rport->swbuf) { 2082 spin_unlock_irqrestore(&rport->lock, iflags); 2083 DBGPV("returning: HW BUSY or !swbuf\n"); 2084 return; 2085 } 2086 if (rport->flags & DISABLED) { 2087 spin_unlock_irqrestore(&rport->lock, iflags); 2088 DBGPV("returning: DISABLED\n"); 2089 return; 2090 } 2091 rport->flags |= HW_BUSY; 2092 while (1) { 2093 int swptr, hwptr, hw_avail, sw_avail, swidx; 2094 vwsnd_port_hwstate_t hwstate = rport->hwstate; 2095 vwsnd_port_swstate_t swstate = rport->swstate; 2096 2097 hwptr = li_read_hwptr(&rport->chan); 2098 swptr = li_read_swptr(&rport->chan); 2099 hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize; 2100 if (hw_avail > hwmax) 2101 hw_avail = hwmax; 2102 sw_avail = rport->swb_i_avail & -fragsize; 2103 if (swstate != SW_RUN) { 2104 DBGP("stopping. hwstate = %d\n", hwstate); 2105 if (hwstate != HW_STOPPED) { 2106 li_deactivate_dma(&rport->chan); 2107 rport->hwstate = HW_STOPPED; 2108 } 2109 wake_up(&rport->queue); 2110 break; 2111 } 2112 if (!sw_avail || !hw_avail) 2113 break; 2114 spin_unlock_irqrestore(&rport->lock, iflags); 2115 2116 /* 2117 * We gave up the port lock, but we have the HW_BUSY flag. 2118 * Proceed without accessing any nonlocal state. 2119 * Do not exit the loop -- must check for more work. 2120 */ 2121 2122 swidx = rport->swb_i_idx; 2123 nb = hw_avail; 2124 if (nb > sw_avail) 2125 nb = sw_avail; 2126 if (nb > hwsize - swptr) 2127 nb = hwsize - swptr; /* don't overflow hwbuf */ 2128 if (nb > swsize - swidx) 2129 nb = swsize - swidx; /* don't overflow swbuf */ 2130 ASSERT(nb > 0); 2131 if (nb % fragsize) { 2132 DBGP("nb = %d, fragsize = %d\n", nb, fragsize); 2133 DBGP("hw_avail = %d\n", hw_avail); 2134 DBGP("sw_avail = %d\n", sw_avail); 2135 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); 2136 DBGP("swsize = %d, swidx = %d\n", swsize, swidx); 2137 } 2138 ASSERT(!(nb % fragsize)); 2139 DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n", 2140 swptr, swptr + nb, swidx, swidx + nb); 2141 pcm_copy_in(rport, swidx, swptr, nb); 2142 li_write_swptr(&rport->chan, (swptr + nb) % hwsize); 2143 spin_lock_irqsave(&rport->lock, iflags); 2144 __swb_inc_i(rport, nb); 2145 rport->byte_count += nb; 2146 rport->frag_count += nb / fragsize; 2147 ASSERT(nb % fragsize == 0); 2148 wake_up(&rport->queue); 2149 } 2150 rport->flags &= ~HW_BUSY; 2151 spin_unlock_irqrestore(&rport->lock, iflags); 2152 DBGRV(); 2153 } 2154 2155 /* 2156 * pcm_flush_frag() writes zero samples to fill the current fragment, 2157 * then flushes it to the hardware. 2158 * 2159 * It is only meaningful to flush output, not input. 2160 */ 2161 2162 static void pcm_flush_frag(vwsnd_dev_t *devc) 2163 { 2164 vwsnd_port_t *wport = &devc->wport; 2165 2166 DBGPV("swstate = %d\n", wport->swstate); 2167 if (wport->swstate == SW_RUN) { 2168 int idx = wport->swb_u_idx; 2169 int end = (idx + wport->hw_fragsize - 1) 2170 >> wport->hw_fragshift 2171 << wport->hw_fragshift; 2172 int nb = end - idx; 2173 DBGPV("clearing %d bytes\n", nb); 2174 if (nb) 2175 memset(wport->swbuf + idx, 2176 (char) wport->zero_word, 2177 nb); 2178 wport->swstate = SW_DRAIN; 2179 pcm_output(devc, 0, nb); 2180 } 2181 DBGRV(); 2182 } 2183 2184 /* 2185 * Wait for output to drain. This sleeps uninterruptibly because 2186 * there is nothing intelligent we can do if interrupted. This 2187 * means the process will be delayed in responding to the signal. 2188 */ 2189 2190 static void pcm_write_sync(vwsnd_dev_t *devc) 2191 { 2192 vwsnd_port_t *wport = &devc->wport; 2193 DECLARE_WAITQUEUE(wait, current); 2194 unsigned long flags; 2195 vwsnd_port_hwstate_t hwstate; 2196 2197 DBGEV("(devc=0x%p)\n", devc); 2198 add_wait_queue(&wport->queue, &wait); 2199 while (1) { 2200 set_current_state(TASK_UNINTERRUPTIBLE); 2201 spin_lock_irqsave(&wport->lock, flags); 2202 { 2203 hwstate = wport->hwstate; 2204 } 2205 spin_unlock_irqrestore(&wport->lock, flags); 2206 if (hwstate == HW_STOPPED) 2207 break; 2208 schedule(); 2209 } 2210 current->state = TASK_RUNNING; 2211 remove_wait_queue(&wport->queue, &wait); 2212 DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate); 2213 DBGRV(); 2214 } 2215 2216 /*****************************************************************************/ 2217 /* audio driver */ 2218 2219 /* 2220 * seek on an audio device always fails. 2221 */ 2222 2223 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status) 2224 { 2225 int overflown = status & LI_INTR_COMM1_OVERFLOW; 2226 2227 if (status & READ_INTR_MASK) 2228 pcm_input(devc, overflown, 0); 2229 } 2230 2231 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status) 2232 { 2233 int underflown = status & LI_INTR_COMM2_UNDERFLOW; 2234 2235 if (status & WRITE_INTR_MASK) 2236 pcm_output(devc, underflown, 0); 2237 } 2238 2239 static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id) 2240 { 2241 vwsnd_dev_t *devc = dev_id; 2242 unsigned int status; 2243 2244 DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id); 2245 2246 status = li_get_clear_intr_status(&devc->lith); 2247 vwsnd_audio_read_intr(devc, status); 2248 vwsnd_audio_write_intr(devc, status); 2249 return IRQ_HANDLED; 2250 } 2251 2252 static ssize_t vwsnd_audio_do_read(struct file *file, 2253 char *buffer, 2254 size_t count, 2255 loff_t *ppos) 2256 { 2257 vwsnd_dev_t *devc = file->private_data; 2258 vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ? 2259 &devc->rport : NULL); 2260 int ret, nb; 2261 2262 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", 2263 file, buffer, count, ppos); 2264 2265 if (!rport) 2266 return -EINVAL; 2267 2268 if (rport->swbuf == NULL) { 2269 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? 2270 &devc->wport : NULL; 2271 ret = pcm_setup(devc, rport, wport); 2272 if (ret < 0) 2273 return ret; 2274 } 2275 2276 if (!access_ok(VERIFY_READ, buffer, count)) 2277 return -EFAULT; 2278 ret = 0; 2279 while (count) { 2280 DECLARE_WAITQUEUE(wait, current); 2281 add_wait_queue(&rport->queue, &wait); 2282 while ((nb = swb_inc_u(rport, 0)) == 0) { 2283 DBGPV("blocking\n"); 2284 set_current_state(TASK_INTERRUPTIBLE); 2285 if (rport->flags & DISABLED || 2286 file->f_flags & O_NONBLOCK) { 2287 current->state = TASK_RUNNING; 2288 remove_wait_queue(&rport->queue, &wait); 2289 return ret ? ret : -EAGAIN; 2290 } 2291 schedule(); 2292 if (signal_pending(current)) { 2293 current->state = TASK_RUNNING; 2294 remove_wait_queue(&rport->queue, &wait); 2295 return ret ? ret : -ERESTARTSYS; 2296 } 2297 } 2298 current->state = TASK_RUNNING; 2299 remove_wait_queue(&rport->queue, &wait); 2300 pcm_input(devc, 0, 0); 2301 /* nb bytes are available in userbuf. */ 2302 if (nb > count) 2303 nb = count; 2304 DBGPV("nb = %d\n", nb); 2305 if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb)) 2306 return -EFAULT; 2307 (void) swb_inc_u(rport, nb); 2308 buffer += nb; 2309 count -= nb; 2310 ret += nb; 2311 } 2312 DBGPV("returning %d\n", ret); 2313 return ret; 2314 } 2315 2316 static ssize_t vwsnd_audio_read(struct file *file, 2317 char *buffer, 2318 size_t count, 2319 loff_t *ppos) 2320 { 2321 vwsnd_dev_t *devc = file->private_data; 2322 ssize_t ret; 2323 2324 mutex_lock(&devc->io_mutex); 2325 ret = vwsnd_audio_do_read(file, buffer, count, ppos); 2326 mutex_unlock(&devc->io_mutex); 2327 return ret; 2328 } 2329 2330 static ssize_t vwsnd_audio_do_write(struct file *file, 2331 const char *buffer, 2332 size_t count, 2333 loff_t *ppos) 2334 { 2335 vwsnd_dev_t *devc = file->private_data; 2336 vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ? 2337 &devc->wport : NULL); 2338 int ret, nb; 2339 2340 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", 2341 file, buffer, count, ppos); 2342 2343 if (!wport) 2344 return -EINVAL; 2345 2346 if (wport->swbuf == NULL) { 2347 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? 2348 &devc->rport : NULL; 2349 ret = pcm_setup(devc, rport, wport); 2350 if (ret < 0) 2351 return ret; 2352 } 2353 if (!access_ok(VERIFY_WRITE, buffer, count)) 2354 return -EFAULT; 2355 ret = 0; 2356 while (count) { 2357 DECLARE_WAITQUEUE(wait, current); 2358 add_wait_queue(&wport->queue, &wait); 2359 while ((nb = swb_inc_u(wport, 0)) == 0) { 2360 set_current_state(TASK_INTERRUPTIBLE); 2361 if (wport->flags & DISABLED || 2362 file->f_flags & O_NONBLOCK) { 2363 current->state = TASK_RUNNING; 2364 remove_wait_queue(&wport->queue, &wait); 2365 return ret ? ret : -EAGAIN; 2366 } 2367 schedule(); 2368 if (signal_pending(current)) { 2369 current->state = TASK_RUNNING; 2370 remove_wait_queue(&wport->queue, &wait); 2371 return ret ? ret : -ERESTARTSYS; 2372 } 2373 } 2374 current->state = TASK_RUNNING; 2375 remove_wait_queue(&wport->queue, &wait); 2376 /* nb bytes are available in userbuf. */ 2377 if (nb > count) 2378 nb = count; 2379 DBGPV("nb = %d\n", nb); 2380 if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb)) 2381 return -EFAULT; 2382 pcm_output(devc, 0, nb); 2383 buffer += nb; 2384 count -= nb; 2385 ret += nb; 2386 } 2387 DBGPV("returning %d\n", ret); 2388 return ret; 2389 } 2390 2391 static ssize_t vwsnd_audio_write(struct file *file, 2392 const char *buffer, 2393 size_t count, 2394 loff_t *ppos) 2395 { 2396 vwsnd_dev_t *devc = file->private_data; 2397 ssize_t ret; 2398 2399 mutex_lock(&devc->io_mutex); 2400 ret = vwsnd_audio_do_write(file, buffer, count, ppos); 2401 mutex_unlock(&devc->io_mutex); 2402 return ret; 2403 } 2404 2405 /* No kernel lock - fine */ 2406 static unsigned int vwsnd_audio_poll(struct file *file, 2407 struct poll_table_struct *wait) 2408 { 2409 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; 2410 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? 2411 &devc->rport : NULL; 2412 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? 2413 &devc->wport : NULL; 2414 unsigned int mask = 0; 2415 2416 DBGEV("(file=0x%p, wait=0x%p)\n", file, wait); 2417 2418 ASSERT(rport || wport); 2419 if (rport) { 2420 poll_wait(file, &rport->queue, wait); 2421 if (swb_inc_u(rport, 0)) 2422 mask |= (POLLIN | POLLRDNORM); 2423 } 2424 if (wport) { 2425 poll_wait(file, &wport->queue, wait); 2426 if (wport->swbuf == NULL || swb_inc_u(wport, 0)) 2427 mask |= (POLLOUT | POLLWRNORM); 2428 } 2429 2430 DBGPV("returning 0x%x\n", mask); 2431 return mask; 2432 } 2433 2434 static int vwsnd_audio_do_ioctl(struct file *file, 2435 unsigned int cmd, 2436 unsigned long arg) 2437 { 2438 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; 2439 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? 2440 &devc->rport : NULL; 2441 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? 2442 &devc->wport : NULL; 2443 vwsnd_port_t *aport = rport ? rport : wport; 2444 struct audio_buf_info buf_info; 2445 struct count_info info; 2446 unsigned long flags; 2447 int ival; 2448 2449 2450 DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n", 2451 file, cmd, arg); 2452 switch (cmd) { 2453 case OSS_GETVERSION: /* _SIOR ('M', 118, int) */ 2454 DBGX("OSS_GETVERSION\n"); 2455 ival = SOUND_VERSION; 2456 return put_user(ival, (int *) arg); 2457 2458 case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */ 2459 DBGX("SNDCTL_DSP_GETCAPS\n"); 2460 ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER; 2461 return put_user(ival, (int *) arg); 2462 2463 case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */ 2464 DBGX("SNDCTL_DSP_GETFMTS\n"); 2465 ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | 2466 AFMT_U8 | AFMT_S8); 2467 return put_user(ival, (int *) arg); 2468 break; 2469 2470 case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */ 2471 DBGX("SOUND_PCM_READ_RATE\n"); 2472 ival = aport->sw_framerate; 2473 return put_user(ival, (int *) arg); 2474 2475 case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */ 2476 DBGX("SOUND_PCM_READ_CHANNELS\n"); 2477 ival = aport->sw_channels; 2478 return put_user(ival, (int *) arg); 2479 2480 case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */ 2481 if (get_user(ival, (int *) arg)) 2482 return -EFAULT; 2483 DBGX("SNDCTL_DSP_SPEED %d\n", ival); 2484 if (ival) { 2485 if (aport->swstate != SW_INITIAL) { 2486 DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n", 2487 aport->swstate); 2488 return -EINVAL; 2489 } 2490 if (ival < MIN_SPEED) 2491 ival = MIN_SPEED; 2492 if (ival > MAX_SPEED) 2493 ival = MAX_SPEED; 2494 if (rport) 2495 rport->sw_framerate = ival; 2496 if (wport) 2497 wport->sw_framerate = ival; 2498 } else 2499 ival = aport->sw_framerate; 2500 return put_user(ival, (int *) arg); 2501 2502 case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */ 2503 if (get_user(ival, (int *) arg)) 2504 return -EFAULT; 2505 DBGX("SNDCTL_DSP_STEREO %d\n", ival); 2506 if (ival != 0 && ival != 1) 2507 return -EINVAL; 2508 if (aport->swstate != SW_INITIAL) 2509 return -EINVAL; 2510 if (rport) 2511 rport->sw_channels = ival + 1; 2512 if (wport) 2513 wport->sw_channels = ival + 1; 2514 return put_user(ival, (int *) arg); 2515 2516 case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */ 2517 if (get_user(ival, (int *) arg)) 2518 return -EFAULT; 2519 DBGX("SNDCTL_DSP_CHANNELS %d\n", ival); 2520 if (ival != 1 && ival != 2) 2521 return -EINVAL; 2522 if (aport->swstate != SW_INITIAL) 2523 return -EINVAL; 2524 if (rport) 2525 rport->sw_channels = ival; 2526 if (wport) 2527 wport->sw_channels = ival; 2528 return put_user(ival, (int *) arg); 2529 2530 case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */ 2531 ival = pcm_setup(devc, rport, wport); 2532 if (ival < 0) { 2533 DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival); 2534 return ival; 2535 } 2536 ival = 1 << aport->sw_fragshift; 2537 DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival); 2538 return put_user(ival, (int *) arg); 2539 2540 case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */ 2541 if (get_user(ival, (int *) arg)) 2542 return -EFAULT; 2543 DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n", 2544 ival >> 16, ival & 0xFFFF); 2545 if (aport->swstate != SW_INITIAL) 2546 return -EINVAL; 2547 { 2548 int sw_fragshift = ival & 0xFFFF; 2549 int sw_subdivshift = aport->sw_subdivshift; 2550 int hw_fragshift = sw_fragshift - sw_subdivshift; 2551 int sw_fragcount = (ival >> 16) & 0xFFFF; 2552 int hw_fragsize; 2553 if (hw_fragshift < MIN_FRAGSHIFT) 2554 hw_fragshift = MIN_FRAGSHIFT; 2555 if (hw_fragshift > MAX_FRAGSHIFT) 2556 hw_fragshift = MAX_FRAGSHIFT; 2557 sw_fragshift = hw_fragshift + aport->sw_subdivshift; 2558 hw_fragsize = 1 << hw_fragshift; 2559 if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize)) 2560 sw_fragcount = MIN_FRAGCOUNT(hw_fragsize); 2561 if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) 2562 sw_fragcount = MAX_FRAGCOUNT(hw_fragsize); 2563 DBGPV("sw_fragshift = %d\n", sw_fragshift); 2564 DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport); 2565 if (rport) { 2566 rport->sw_fragshift = sw_fragshift; 2567 rport->sw_fragcount = sw_fragcount; 2568 } 2569 if (wport) { 2570 wport->sw_fragshift = sw_fragshift; 2571 wport->sw_fragcount = sw_fragcount; 2572 } 2573 ival = sw_fragcount << 16 | sw_fragshift; 2574 } 2575 DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n", 2576 ival >> 16, ival & 0xFFFF); 2577 return put_user(ival, (int *) arg); 2578 2579 case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */ 2580 if (get_user(ival, (int *) arg)) 2581 return -EFAULT; 2582 DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival); 2583 if (aport->swstate != SW_INITIAL) 2584 return -EINVAL; 2585 { 2586 int subdivshift; 2587 int hw_fragshift, hw_fragsize, hw_fragcount; 2588 switch (ival) { 2589 case 1: subdivshift = 0; break; 2590 case 2: subdivshift = 1; break; 2591 case 4: subdivshift = 2; break; 2592 default: return -EINVAL; 2593 } 2594 hw_fragshift = aport->sw_fragshift - subdivshift; 2595 if (hw_fragshift < MIN_FRAGSHIFT || 2596 hw_fragshift > MAX_FRAGSHIFT) 2597 return -EINVAL; 2598 hw_fragsize = 1 << hw_fragshift; 2599 hw_fragcount = aport->sw_fragcount >> subdivshift; 2600 if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) || 2601 hw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) 2602 return -EINVAL; 2603 if (rport) 2604 rport->sw_subdivshift = subdivshift; 2605 if (wport) 2606 wport->sw_subdivshift = subdivshift; 2607 } 2608 return 0; 2609 2610 case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */ 2611 if (get_user(ival, (int *) arg)) 2612 return -EFAULT; 2613 DBGX("SNDCTL_DSP_SETFMT %d\n", ival); 2614 if (ival != AFMT_QUERY) { 2615 if (aport->swstate != SW_INITIAL) { 2616 DBGP("SETFMT failed, swstate = %d\n", 2617 aport->swstate); 2618 return -EINVAL; 2619 } 2620 switch (ival) { 2621 case AFMT_MU_LAW: 2622 case AFMT_A_LAW: 2623 case AFMT_U8: 2624 case AFMT_S8: 2625 case AFMT_S16_LE: 2626 if (rport) 2627 rport->sw_samplefmt = ival; 2628 if (wport) 2629 wport->sw_samplefmt = ival; 2630 break; 2631 default: 2632 return -EINVAL; 2633 } 2634 } 2635 ival = aport->sw_samplefmt; 2636 return put_user(ival, (int *) arg); 2637 2638 case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */ 2639 DBGXV("SNDCTL_DSP_GETOSPACE\n"); 2640 if (!wport) 2641 return -EINVAL; 2642 ival = pcm_setup(devc, rport, wport); 2643 if (ival < 0) 2644 return ival; 2645 ival = swb_inc_u(wport, 0); 2646 buf_info.fragments = ival >> wport->sw_fragshift; 2647 buf_info.fragstotal = wport->sw_fragcount; 2648 buf_info.fragsize = 1 << wport->sw_fragshift; 2649 buf_info.bytes = ival; 2650 DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n", 2651 buf_info.fragments, buf_info.fragstotal, 2652 buf_info.fragsize, buf_info.bytes); 2653 if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) 2654 return -EFAULT; 2655 return 0; 2656 2657 case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */ 2658 DBGX("SNDCTL_DSP_GETISPACE\n"); 2659 if (!rport) 2660 return -EINVAL; 2661 ival = pcm_setup(devc, rport, wport); 2662 if (ival < 0) 2663 return ival; 2664 ival = swb_inc_u(rport, 0); 2665 buf_info.fragments = ival >> rport->sw_fragshift; 2666 buf_info.fragstotal = rport->sw_fragcount; 2667 buf_info.fragsize = 1 << rport->sw_fragshift; 2668 buf_info.bytes = ival; 2669 DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n", 2670 buf_info.fragments, buf_info.fragstotal, 2671 buf_info.fragsize, buf_info.bytes); 2672 if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) 2673 return -EFAULT; 2674 return 0; 2675 2676 case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */ 2677 DBGX("SNDCTL_DSP_NONBLOCK\n"); 2678 spin_lock(&file->f_lock); 2679 file->f_flags |= O_NONBLOCK; 2680 spin_unlock(&file->f_lock); 2681 return 0; 2682 2683 case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */ 2684 DBGX("SNDCTL_DSP_RESET\n"); 2685 /* 2686 * Nothing special needs to be done for input. Input 2687 * samples sit in swbuf, but it will be reinitialized 2688 * to empty when pcm_setup() is called. 2689 */ 2690 if (wport && wport->swbuf) { 2691 wport->swstate = SW_INITIAL; 2692 pcm_output(devc, 0, 0); 2693 pcm_write_sync(devc); 2694 } 2695 pcm_shutdown(devc, rport, wport); 2696 return 0; 2697 2698 case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */ 2699 DBGX("SNDCTL_DSP_SYNC\n"); 2700 if (wport) { 2701 pcm_flush_frag(devc); 2702 pcm_write_sync(devc); 2703 } 2704 pcm_shutdown(devc, rport, wport); 2705 return 0; 2706 2707 case SNDCTL_DSP_POST: /* _SIO ('P', 8) */ 2708 DBGX("SNDCTL_DSP_POST\n"); 2709 if (!wport) 2710 return -EINVAL; 2711 pcm_flush_frag(devc); 2712 return 0; 2713 2714 case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */ 2715 DBGX("SNDCTL_DSP_GETIPTR\n"); 2716 if (!rport) 2717 return -EINVAL; 2718 spin_lock_irqsave(&rport->lock, flags); 2719 { 2720 ustmsc_t ustmsc; 2721 if (rport->hwstate == HW_RUNNING) { 2722 ASSERT(rport->swstate == SW_RUN); 2723 li_read_USTMSC(&rport->chan, &ustmsc); 2724 info.bytes = ustmsc.msc - rport->MSC_offset; 2725 info.bytes *= rport->frame_size; 2726 } else { 2727 info.bytes = rport->byte_count; 2728 } 2729 info.blocks = rport->frag_count; 2730 info.ptr = 0; /* not implemented */ 2731 rport->frag_count = 0; 2732 } 2733 spin_unlock_irqrestore(&rport->lock, flags); 2734 if (copy_to_user((void *) arg, &info, sizeof info)) 2735 return -EFAULT; 2736 return 0; 2737 2738 case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */ 2739 DBGX("SNDCTL_DSP_GETOPTR\n"); 2740 if (!wport) 2741 return -EINVAL; 2742 spin_lock_irqsave(&wport->lock, flags); 2743 { 2744 ustmsc_t ustmsc; 2745 if (wport->hwstate == HW_RUNNING) { 2746 ASSERT(wport->swstate == SW_RUN); 2747 li_read_USTMSC(&wport->chan, &ustmsc); 2748 info.bytes = ustmsc.msc - wport->MSC_offset; 2749 info.bytes *= wport->frame_size; 2750 } else { 2751 info.bytes = wport->byte_count; 2752 } 2753 info.blocks = wport->frag_count; 2754 info.ptr = 0; /* not implemented */ 2755 wport->frag_count = 0; 2756 } 2757 spin_unlock_irqrestore(&wport->lock, flags); 2758 if (copy_to_user((void *) arg, &info, sizeof info)) 2759 return -EFAULT; 2760 return 0; 2761 2762 case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */ 2763 DBGX("SNDCTL_DSP_GETODELAY\n"); 2764 if (!wport) 2765 return -EINVAL; 2766 spin_lock_irqsave(&wport->lock, flags); 2767 { 2768 int fsize = wport->frame_size; 2769 ival = wport->swb_i_avail / fsize; 2770 if (wport->hwstate == HW_RUNNING) { 2771 int swptr, hwptr, hwframes, hwbytes, hwsize; 2772 int totalhwbytes; 2773 ustmsc_t ustmsc; 2774 2775 hwsize = wport->hwbuf_size; 2776 swptr = li_read_swptr(&wport->chan); 2777 li_read_USTMSC(&wport->chan, &ustmsc); 2778 hwframes = ustmsc.msc - wport->MSC_offset; 2779 totalhwbytes = hwframes * fsize; 2780 hwptr = totalhwbytes % hwsize; 2781 hwbytes = (swptr - hwptr + hwsize) % hwsize; 2782 ival += hwbytes / fsize; 2783 } 2784 } 2785 spin_unlock_irqrestore(&wport->lock, flags); 2786 return put_user(ival, (int *) arg); 2787 2788 case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */ 2789 DBGX("SNDCTL_DSP_PROFILE\n"); 2790 2791 /* 2792 * Thomas Sailer explains SNDCTL_DSP_PROFILE 2793 * (private email, March 24, 1999): 2794 * 2795 * This gives the sound driver a hint on what it 2796 * should do with partial fragments 2797 * (i.e. fragments partially filled with write). 2798 * This can direct the driver to zero them or 2799 * leave them alone. But don't ask me what this 2800 * is good for, my driver just zeroes the last 2801 * fragment before the receiver stops, no idea 2802 * what good for any other behaviour could 2803 * be. Implementing it as NOP seems safe. 2804 */ 2805 2806 break; 2807 2808 case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */ 2809 DBGX("SNDCTL_DSP_GETTRIGGER\n"); 2810 ival = 0; 2811 if (rport) { 2812 spin_lock_irqsave(&rport->lock, flags); 2813 { 2814 if (!(rport->flags & DISABLED)) 2815 ival |= PCM_ENABLE_INPUT; 2816 } 2817 spin_unlock_irqrestore(&rport->lock, flags); 2818 } 2819 if (wport) { 2820 spin_lock_irqsave(&wport->lock, flags); 2821 { 2822 if (!(wport->flags & DISABLED)) 2823 ival |= PCM_ENABLE_OUTPUT; 2824 } 2825 spin_unlock_irqrestore(&wport->lock, flags); 2826 } 2827 return put_user(ival, (int *) arg); 2828 2829 case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */ 2830 if (get_user(ival, (int *) arg)) 2831 return -EFAULT; 2832 DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival); 2833 2834 /* 2835 * If user is disabling I/O and port is not in initial 2836 * state, fail with EINVAL. 2837 */ 2838 2839 if (((rport && !(ival & PCM_ENABLE_INPUT)) || 2840 (wport && !(ival & PCM_ENABLE_OUTPUT))) && 2841 aport->swstate != SW_INITIAL) 2842 return -EINVAL; 2843 2844 if (rport) { 2845 vwsnd_port_hwstate_t hwstate; 2846 spin_lock_irqsave(&rport->lock, flags); 2847 { 2848 hwstate = rport->hwstate; 2849 if (ival & PCM_ENABLE_INPUT) 2850 rport->flags &= ~DISABLED; 2851 else 2852 rport->flags |= DISABLED; 2853 } 2854 spin_unlock_irqrestore(&rport->lock, flags); 2855 if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) { 2856 2857 if (rport->swstate == SW_INITIAL) 2858 pcm_setup(devc, rport, wport); 2859 else 2860 li_activate_dma(&rport->chan); 2861 } 2862 } 2863 if (wport) { 2864 vwsnd_port_flags_t pflags; 2865 spin_lock_irqsave(&wport->lock, flags); 2866 { 2867 pflags = wport->flags; 2868 if (ival & PCM_ENABLE_OUTPUT) 2869 wport->flags &= ~DISABLED; 2870 else 2871 wport->flags |= DISABLED; 2872 } 2873 spin_unlock_irqrestore(&wport->lock, flags); 2874 if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) { 2875 if (wport->swstate == SW_RUN) 2876 pcm_output(devc, 0, 0); 2877 } 2878 } 2879 return 0; 2880 2881 default: 2882 DBGP("unknown ioctl 0x%x\n", cmd); 2883 return -EINVAL; 2884 } 2885 DBGP("unimplemented ioctl 0x%x\n", cmd); 2886 return -EINVAL; 2887 } 2888 2889 static long vwsnd_audio_ioctl(struct file *file, 2890 unsigned int cmd, 2891 unsigned long arg) 2892 { 2893 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; 2894 int ret; 2895 2896 mutex_lock(&vwsnd_mutex); 2897 mutex_lock(&devc->io_mutex); 2898 ret = vwsnd_audio_do_ioctl(file, cmd, arg); 2899 mutex_unlock(&devc->io_mutex); 2900 mutex_unlock(&vwsnd_mutex); 2901 2902 return ret; 2903 } 2904 2905 /* No mmap. */ 2906 2907 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma) 2908 { 2909 DBGE("(file=0x%p, vma=0x%p)\n", file, vma); 2910 return -ENODEV; 2911 } 2912 2913 /* 2914 * Open the audio device for read and/or write. 2915 * 2916 * Returns 0 on success, -errno on failure. 2917 */ 2918 2919 static int vwsnd_audio_open(struct inode *inode, struct file *file) 2920 { 2921 vwsnd_dev_t *devc; 2922 int minor = iminor(inode); 2923 int sw_samplefmt; 2924 2925 DBGE("(inode=0x%p, file=0x%p)\n", inode, file); 2926 2927 mutex_lock(&vwsnd_mutex); 2928 INC_USE_COUNT; 2929 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) 2930 if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F)) 2931 break; 2932 2933 if (devc == NULL) { 2934 DEC_USE_COUNT; 2935 mutex_unlock(&vwsnd_mutex); 2936 return -ENODEV; 2937 } 2938 2939 mutex_lock(&devc->open_mutex); 2940 while (devc->open_mode & file->f_mode) { 2941 mutex_unlock(&devc->open_mutex); 2942 if (file->f_flags & O_NONBLOCK) { 2943 DEC_USE_COUNT; 2944 mutex_unlock(&vwsnd_mutex); 2945 return -EBUSY; 2946 } 2947 interruptible_sleep_on(&devc->open_wait); 2948 if (signal_pending(current)) { 2949 DEC_USE_COUNT; 2950 mutex_unlock(&vwsnd_mutex); 2951 return -ERESTARTSYS; 2952 } 2953 mutex_lock(&devc->open_mutex); 2954 } 2955 devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); 2956 mutex_unlock(&devc->open_mutex); 2957 2958 /* get default sample format from minor number. */ 2959 2960 sw_samplefmt = 0; 2961 if ((minor & 0xF) == SND_DEV_DSP) 2962 sw_samplefmt = AFMT_U8; 2963 else if ((minor & 0xF) == SND_DEV_AUDIO) 2964 sw_samplefmt = AFMT_MU_LAW; 2965 else if ((minor & 0xF) == SND_DEV_DSP16) 2966 sw_samplefmt = AFMT_S16_LE; 2967 else 2968 ASSERT(0); 2969 2970 /* Initialize vwsnd_ports. */ 2971 2972 mutex_lock(&devc->io_mutex); 2973 { 2974 if (file->f_mode & FMODE_READ) { 2975 devc->rport.swstate = SW_INITIAL; 2976 devc->rport.flags = 0; 2977 devc->rport.sw_channels = 1; 2978 devc->rport.sw_samplefmt = sw_samplefmt; 2979 devc->rport.sw_framerate = 8000; 2980 devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT; 2981 devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT; 2982 devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; 2983 devc->rport.byte_count = 0; 2984 devc->rport.frag_count = 0; 2985 } 2986 if (file->f_mode & FMODE_WRITE) { 2987 devc->wport.swstate = SW_INITIAL; 2988 devc->wport.flags = 0; 2989 devc->wport.sw_channels = 1; 2990 devc->wport.sw_samplefmt = sw_samplefmt; 2991 devc->wport.sw_framerate = 8000; 2992 devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT; 2993 devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT; 2994 devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; 2995 devc->wport.byte_count = 0; 2996 devc->wport.frag_count = 0; 2997 } 2998 } 2999 mutex_unlock(&devc->io_mutex); 3000 3001 file->private_data = devc; 3002 DBGRV(); 3003 mutex_unlock(&vwsnd_mutex); 3004 return 0; 3005 } 3006 3007 /* 3008 * Release (close) the audio device. 3009 */ 3010 3011 static int vwsnd_audio_release(struct inode *inode, struct file *file) 3012 { 3013 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; 3014 vwsnd_port_t *wport = NULL, *rport = NULL; 3015 int err = 0; 3016 3017 mutex_lock(&vwsnd_mutex); 3018 mutex_lock(&devc->io_mutex); 3019 { 3020 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); 3021 3022 if (file->f_mode & FMODE_READ) 3023 rport = &devc->rport; 3024 if (file->f_mode & FMODE_WRITE) { 3025 wport = &devc->wport; 3026 pcm_flush_frag(devc); 3027 pcm_write_sync(devc); 3028 } 3029 pcm_shutdown(devc, rport, wport); 3030 if (rport) 3031 rport->swstate = SW_OFF; 3032 if (wport) 3033 wport->swstate = SW_OFF; 3034 } 3035 mutex_unlock(&devc->io_mutex); 3036 3037 mutex_lock(&devc->open_mutex); 3038 { 3039 devc->open_mode &= ~file->f_mode; 3040 } 3041 mutex_unlock(&devc->open_mutex); 3042 wake_up(&devc->open_wait); 3043 DEC_USE_COUNT; 3044 DBGR(); 3045 mutex_unlock(&vwsnd_mutex); 3046 return err; 3047 } 3048 3049 static const struct file_operations vwsnd_audio_fops = { 3050 .owner = THIS_MODULE, 3051 .llseek = no_llseek, 3052 .read = vwsnd_audio_read, 3053 .write = vwsnd_audio_write, 3054 .poll = vwsnd_audio_poll, 3055 .unlocked_ioctl = vwsnd_audio_ioctl, 3056 .mmap = vwsnd_audio_mmap, 3057 .open = vwsnd_audio_open, 3058 .release = vwsnd_audio_release, 3059 }; 3060 3061 /*****************************************************************************/ 3062 /* mixer driver */ 3063 3064 /* open the mixer device. */ 3065 3066 static int vwsnd_mixer_open(struct inode *inode, struct file *file) 3067 { 3068 vwsnd_dev_t *devc; 3069 3070 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); 3071 3072 INC_USE_COUNT; 3073 mutex_lock(&vwsnd_mutex); 3074 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) 3075 if (devc->mixer_minor == iminor(inode)) 3076 break; 3077 3078 if (devc == NULL) { 3079 DEC_USE_COUNT; 3080 mutex_unlock(&vwsnd_mutex); 3081 return -ENODEV; 3082 } 3083 file->private_data = devc; 3084 mutex_unlock(&vwsnd_mutex); 3085 return 0; 3086 } 3087 3088 /* release (close) the mixer device. */ 3089 3090 static int vwsnd_mixer_release(struct inode *inode, struct file *file) 3091 { 3092 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); 3093 DEC_USE_COUNT; 3094 return 0; 3095 } 3096 3097 /* mixer_read_ioctl handles all read ioctls on the mixer device. */ 3098 3099 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) 3100 { 3101 int val = -1; 3102 3103 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); 3104 3105 switch (nr) { 3106 case SOUND_MIXER_CAPS: 3107 val = SOUND_CAP_EXCL_INPUT; 3108 break; 3109 3110 case SOUND_MIXER_DEVMASK: 3111 val = (SOUND_MASK_PCM | SOUND_MASK_LINE | 3112 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); 3113 break; 3114 3115 case SOUND_MIXER_STEREODEVS: 3116 val = (SOUND_MASK_PCM | SOUND_MASK_LINE | 3117 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); 3118 break; 3119 3120 case SOUND_MIXER_OUTMASK: 3121 val = (SOUND_MASK_PCM | SOUND_MASK_LINE | 3122 SOUND_MASK_MIC | SOUND_MASK_CD); 3123 break; 3124 3125 case SOUND_MIXER_RECMASK: 3126 val = (SOUND_MASK_PCM | SOUND_MASK_LINE | 3127 SOUND_MASK_MIC | SOUND_MASK_CD); 3128 break; 3129 3130 case SOUND_MIXER_PCM: 3131 val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM); 3132 break; 3133 3134 case SOUND_MIXER_LINE: 3135 val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE); 3136 break; 3137 3138 case SOUND_MIXER_MIC: 3139 val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC); 3140 break; 3141 3142 case SOUND_MIXER_CD: 3143 val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD); 3144 break; 3145 3146 case SOUND_MIXER_RECLEV: 3147 val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV); 3148 break; 3149 3150 case SOUND_MIXER_RECSRC: 3151 val = ad1843_get_recsrc(&devc->lith); 3152 break; 3153 3154 case SOUND_MIXER_OUTSRC: 3155 val = ad1843_get_outsrc(&devc->lith); 3156 break; 3157 3158 default: 3159 return -EINVAL; 3160 } 3161 return put_user(val, (int __user *) arg); 3162 } 3163 3164 /* mixer_write_ioctl handles all write ioctls on the mixer device. */ 3165 3166 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) 3167 { 3168 int val; 3169 int err; 3170 3171 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); 3172 3173 err = get_user(val, (int __user *) arg); 3174 if (err) 3175 return -EFAULT; 3176 switch (nr) { 3177 case SOUND_MIXER_PCM: 3178 val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val); 3179 break; 3180 3181 case SOUND_MIXER_LINE: 3182 val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val); 3183 break; 3184 3185 case SOUND_MIXER_MIC: 3186 val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val); 3187 break; 3188 3189 case SOUND_MIXER_CD: 3190 val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val); 3191 break; 3192 3193 case SOUND_MIXER_RECLEV: 3194 val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val); 3195 break; 3196 3197 case SOUND_MIXER_RECSRC: 3198 if (devc->rport.swbuf || devc->wport.swbuf) 3199 return -EBUSY; /* can't change recsrc while running */ 3200 val = ad1843_set_recsrc(&devc->lith, val); 3201 break; 3202 3203 case SOUND_MIXER_OUTSRC: 3204 val = ad1843_set_outsrc(&devc->lith, val); 3205 break; 3206 3207 default: 3208 return -EINVAL; 3209 } 3210 if (val < 0) 3211 return val; 3212 return put_user(val, (int __user *) arg); 3213 } 3214 3215 /* This is the ioctl entry to the mixer driver. */ 3216 3217 static long vwsnd_mixer_ioctl(struct file *file, 3218 unsigned int cmd, 3219 unsigned long arg) 3220 { 3221 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; 3222 const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT; 3223 const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT; 3224 int retval; 3225 3226 DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg); 3227 3228 mutex_lock(&vwsnd_mutex); 3229 mutex_lock(&devc->mix_mutex); 3230 { 3231 if ((cmd & ~nrmask) == MIXER_READ(0)) 3232 retval = mixer_read_ioctl(devc, nr, (void __user *) arg); 3233 else if ((cmd & ~nrmask) == MIXER_WRITE(0)) 3234 retval = mixer_write_ioctl(devc, nr, (void __user *) arg); 3235 else 3236 retval = -EINVAL; 3237 } 3238 mutex_unlock(&devc->mix_mutex); 3239 mutex_unlock(&vwsnd_mutex); 3240 return retval; 3241 } 3242 3243 static const struct file_operations vwsnd_mixer_fops = { 3244 .owner = THIS_MODULE, 3245 .llseek = no_llseek, 3246 .unlocked_ioctl = vwsnd_mixer_ioctl, 3247 .open = vwsnd_mixer_open, 3248 .release = vwsnd_mixer_release, 3249 }; 3250 3251 /*****************************************************************************/ 3252 /* probe/attach/unload */ 3253 3254 /* driver probe routine. Return nonzero if hardware is found. */ 3255 3256 static int __init probe_vwsnd(struct address_info *hw_config) 3257 { 3258 lithium_t lith; 3259 int w; 3260 unsigned long later; 3261 3262 DBGEV("(hw_config=0x%p)\n", hw_config); 3263 3264 /* XXX verify lithium present (to prevent crash on non-vw) */ 3265 3266 if (li_create(&lith, hw_config->io_base) != 0) { 3267 printk(KERN_WARNING "probe_vwsnd: can't map lithium\n"); 3268 return 0; 3269 } 3270 later = jiffies + 2; 3271 li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); 3272 do { 3273 w = li_readl(&lith, LI_HOST_CONTROLLER); 3274 } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later)); 3275 3276 li_destroy(&lith); 3277 3278 DBGPV("HC = 0x%04x\n", w); 3279 3280 if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) { 3281 3282 /* This may indicate a beta machine with no audio, 3283 * or a future machine with different audio. 3284 * On beta-release 320 w/ no audio, HC == 0x4000 */ 3285 3286 printk(KERN_WARNING "probe_vwsnd: audio codec not found\n"); 3287 return 0; 3288 } 3289 3290 if (w & LI_HC_LINK_FAILURE) { 3291 printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n"); 3292 return 0; 3293 } 3294 3295 printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n", 3296 hw_config->io_base, hw_config->irq); 3297 3298 return 1; 3299 } 3300 3301 /* 3302 * driver attach routine. Initialize driver data structures and 3303 * initialize hardware. A new vwsnd_dev_t is allocated and put 3304 * onto the global list, vwsnd_dev_list. 3305 * 3306 * Return +minor_dev on success, -errno on failure. 3307 */ 3308 3309 static int __init attach_vwsnd(struct address_info *hw_config) 3310 { 3311 vwsnd_dev_t *devc = NULL; 3312 int err = -ENOMEM; 3313 3314 DBGEV("(hw_config=0x%p)\n", hw_config); 3315 3316 devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL); 3317 if (devc == NULL) 3318 goto fail0; 3319 3320 err = li_create(&devc->lith, hw_config->io_base); 3321 if (err) 3322 goto fail1; 3323 3324 init_waitqueue_head(&devc->open_wait); 3325 3326 devc->rport.hwbuf_size = HWBUF_SIZE; 3327 devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); 3328 if (!devc->rport.hwbuf_vaddr) 3329 goto fail2; 3330 devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr; 3331 devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf); 3332 3333 /* 3334 * Quote from the NT driver: 3335 * 3336 * // WARNING!!! HACK to setup output dma!!! 3337 * // This is required because even on output there is some data 3338 * // trickling into the input DMA channel. This is a bug in the 3339 * // Lithium microcode. 3340 * // --sde 3341 * 3342 * We set the input side's DMA base address here. It will remain 3343 * valid until the driver is unloaded. 3344 */ 3345 3346 li_writel(&devc->lith, LI_COMM1_BASE, 3347 devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8)); 3348 3349 devc->wport.hwbuf_size = HWBUF_SIZE; 3350 devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); 3351 if (!devc->wport.hwbuf_vaddr) 3352 goto fail3; 3353 devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr; 3354 devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf); 3355 DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf); 3356 3357 DBGDO(shut_up++); 3358 err = ad1843_init(&devc->lith); 3359 DBGDO(shut_up--); 3360 if (err) 3361 goto fail4; 3362 3363 /* install interrupt handler */ 3364 3365 err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc); 3366 if (err) 3367 goto fail5; 3368 3369 /* register this device's drivers. */ 3370 3371 devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1); 3372 if ((err = devc->audio_minor) < 0) { 3373 DBGDO(printk(KERN_WARNING 3374 "attach_vwsnd: register_sound_dsp error %d\n", 3375 err)); 3376 goto fail6; 3377 } 3378 devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops, 3379 devc->audio_minor >> 4); 3380 if ((err = devc->mixer_minor) < 0) { 3381 DBGDO(printk(KERN_WARNING 3382 "attach_vwsnd: register_sound_mixer error %d\n", 3383 err)); 3384 goto fail7; 3385 } 3386 3387 /* Squirrel away device indices for unload routine. */ 3388 3389 hw_config->slots[0] = devc->audio_minor; 3390 3391 /* Initialize as much of *devc as possible */ 3392 3393 mutex_init(&devc->open_mutex); 3394 mutex_init(&devc->io_mutex); 3395 mutex_init(&devc->mix_mutex); 3396 devc->open_mode = 0; 3397 spin_lock_init(&devc->rport.lock); 3398 init_waitqueue_head(&devc->rport.queue); 3399 devc->rport.swstate = SW_OFF; 3400 devc->rport.hwstate = HW_STOPPED; 3401 devc->rport.flags = 0; 3402 devc->rport.swbuf = NULL; 3403 spin_lock_init(&devc->wport.lock); 3404 init_waitqueue_head(&devc->wport.queue); 3405 devc->wport.swstate = SW_OFF; 3406 devc->wport.hwstate = HW_STOPPED; 3407 devc->wport.flags = 0; 3408 devc->wport.swbuf = NULL; 3409 3410 /* Success. Link us onto the local device list. */ 3411 3412 devc->next_dev = vwsnd_dev_list; 3413 vwsnd_dev_list = devc; 3414 return devc->audio_minor; 3415 3416 /* So many ways to fail. Undo what we did. */ 3417 3418 fail7: 3419 unregister_sound_dsp(devc->audio_minor); 3420 fail6: 3421 free_irq(hw_config->irq, devc); 3422 fail5: 3423 fail4: 3424 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); 3425 fail3: 3426 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); 3427 fail2: 3428 li_destroy(&devc->lith); 3429 fail1: 3430 kfree(devc); 3431 fail0: 3432 return err; 3433 } 3434 3435 static int __exit unload_vwsnd(struct address_info *hw_config) 3436 { 3437 vwsnd_dev_t *devc, **devcp; 3438 3439 DBGE("()\n"); 3440 3441 devcp = &vwsnd_dev_list; 3442 while ((devc = *devcp)) { 3443 if (devc->audio_minor == hw_config->slots[0]) { 3444 *devcp = devc->next_dev; 3445 break; 3446 } 3447 devcp = &devc->next_dev; 3448 } 3449 3450 if (!devc) 3451 return -ENODEV; 3452 3453 unregister_sound_mixer(devc->mixer_minor); 3454 unregister_sound_dsp(devc->audio_minor); 3455 free_irq(hw_config->irq, devc); 3456 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); 3457 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); 3458 li_destroy(&devc->lith); 3459 kfree(devc); 3460 3461 return 0; 3462 } 3463 3464 /*****************************************************************************/ 3465 /* initialization and loadable kernel module interface */ 3466 3467 static struct address_info the_hw_config = { 3468 0xFF001000, /* lithium phys addr */ 3469 CO_IRQ(CO_APIC_LI_AUDIO) /* irq */ 3470 }; 3471 3472 MODULE_DESCRIPTION("SGI Visual Workstation sound module"); 3473 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>"); 3474 MODULE_LICENSE("GPL"); 3475 3476 static int __init init_vwsnd(void) 3477 { 3478 int err; 3479 3480 DBGXV("\n"); 3481 DBGXV("sound::vwsnd::init_module()\n"); 3482 3483 if (!probe_vwsnd(&the_hw_config)) 3484 return -ENODEV; 3485 3486 err = attach_vwsnd(&the_hw_config); 3487 if (err < 0) 3488 return err; 3489 return 0; 3490 } 3491 3492 static void __exit cleanup_vwsnd(void) 3493 { 3494 DBGX("sound::vwsnd::cleanup_module()\n"); 3495 3496 unload_vwsnd(&the_hw_config); 3497 } 3498 3499 module_init(init_vwsnd); 3500 module_exit(cleanup_vwsnd); 3501
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.