~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/pci/sis7019.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *  Driver for SiS7019 Audio Accelerator
  3  *
  4  *  Copyright (C) 2004-2007, David Dillow
  5  *  Written by David Dillow <dave@thedillows.org>
  6  *  Inspired by the Trident 4D-WaveDX/NX driver.
  7  *
  8  *  All rights reserved.
  9  *
 10  *  This program is free software; you can redistribute it and/or modify
 11  *  it under the terms of the GNU General Public License as published by
 12  *  the Free Software Foundation, version 2.
 13  *
 14  *  This program is distributed in the hope that it will be useful,
 15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17  *  GNU General Public License for more details.
 18  *
 19  *  You should have received a copy of the GNU General Public License
 20  *  along with this program; if not, write to the Free Software
 21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 22  */
 23 
 24 #include <linux/init.h>
 25 #include <linux/pci.h>
 26 #include <linux/time.h>
 27 #include <linux/moduleparam.h>
 28 #include <linux/interrupt.h>
 29 #include <linux/delay.h>
 30 #include <sound/core.h>
 31 #include <sound/ac97_codec.h>
 32 #include <sound/initval.h>
 33 #include "sis7019.h"
 34 
 35 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
 36 MODULE_DESCRIPTION("SiS7019");
 37 MODULE_LICENSE("GPL");
 38 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
 39 
 40 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
 41 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
 42 static int enable = 1;
 43 static int codecs = 1;
 44 
 45 module_param(index, int, 0444);
 46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
 47 module_param(id, charp, 0444);
 48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
 49 module_param(enable, bool, 0444);
 50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
 51 module_param(codecs, int, 0444);
 52 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
 53 
 54 static struct pci_device_id snd_sis7019_ids[] = {
 55         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
 56         { 0, }
 57 };
 58 
 59 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
 60 
 61 /* There are three timing modes for the voices.
 62  *
 63  * For both playback and capture, when the buffer is one or two periods long,
 64  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
 65  * to let us know when the periods have ended.
 66  *
 67  * When performing playback with more than two periods per buffer, we set
 68  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
 69  * reach it. We then update the offset and continue on until we are
 70  * interrupted for the next period.
 71  *
 72  * Capture channels do not have a SSO, so we allocate a playback channel to
 73  * use as a timer for the capture periods. We use the SSO on the playback
 74  * channel to clock out virtual periods, and adjust the virtual period length
 75  * to maintain synchronization. This algorithm came from the Trident driver.
 76  *
 77  * FIXME: It'd be nice to make use of some of the synth features in the
 78  * hardware, but a woeful lack of documentation is a significant roadblock.
 79  */
 80 struct voice {
 81         u16 flags;
 82 #define         VOICE_IN_USE            1
 83 #define         VOICE_CAPTURE           2
 84 #define         VOICE_SSO_TIMING        4
 85 #define         VOICE_SYNC_TIMING       8
 86         u16 sync_cso;
 87         u16 period_size;
 88         u16 buffer_size;
 89         u16 sync_period_size;
 90         u16 sync_buffer_size;
 91         u32 sso;
 92         u32 vperiod;
 93         struct snd_pcm_substream *substream;
 94         struct voice *timing;
 95         void __iomem *ctrl_base;
 96         void __iomem *wave_base;
 97         void __iomem *sync_base;
 98         int num;
 99 };
100 
101 /* We need four pages to store our wave parameters during a suspend. If
102  * we're not doing power management, we still need to allocate a page
103  * for the silence buffer.
104  */
105 #ifdef CONFIG_PM
106 #define SIS_SUSPEND_PAGES       4
107 #else
108 #define SIS_SUSPEND_PAGES       1
109 #endif
110 
111 struct sis7019 {
112         unsigned long ioport;
113         void __iomem *ioaddr;
114         int irq;
115         int codecs_present;
116 
117         struct pci_dev *pci;
118         struct snd_pcm *pcm;
119         struct snd_card *card;
120         struct snd_ac97 *ac97[3];
121 
122         /* Protect against more than one thread hitting the AC97
123          * registers (in a more polite manner than pounding the hardware
124          * semaphore)
125          */
126         struct mutex ac97_mutex;
127 
128         /* voice_lock protects allocation/freeing of the voice descriptions
129          */
130         spinlock_t voice_lock;
131 
132         struct voice voices[64];
133         struct voice capture_voice;
134 
135         /* Allocate pages to store the internal wave state during
136          * suspends. When we're operating, this can be used as a silence
137          * buffer for a timing channel.
138          */
139         void *suspend_state[SIS_SUSPEND_PAGES];
140 
141         int silence_users;
142         dma_addr_t silence_dma_addr;
143 };
144 
145 /* These values are also used by the module param 'codecs' to indicate
146  * which codecs should be present.
147  */
148 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
149 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
150 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
151 
152 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
153  * documented range of 8-0xfff8 samples. Given that they are 0-based,
154  * that places our period/buffer range at 9-0xfff9 samples. That makes the
155  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
156  * max samples / min samples gives us the max periods in a buffer.
157  *
158  * We'll add a constraint upon open that limits the period and buffer sample
159  * size to values that are legal for the hardware.
160  */
161 static struct snd_pcm_hardware sis_playback_hw_info = {
162         .info = (SNDRV_PCM_INFO_MMAP |
163                  SNDRV_PCM_INFO_MMAP_VALID |
164                  SNDRV_PCM_INFO_INTERLEAVED |
165                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
166                  SNDRV_PCM_INFO_SYNC_START |
167                  SNDRV_PCM_INFO_RESUME),
168         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
169                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
170         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
171         .rate_min = 4000,
172         .rate_max = 48000,
173         .channels_min = 1,
174         .channels_max = 2,
175         .buffer_bytes_max = (0xfff9 * 4),
176         .period_bytes_min = 9,
177         .period_bytes_max = (0xfff9 * 4),
178         .periods_min = 1,
179         .periods_max = (0xfff9 / 9),
180 };
181 
182 static struct snd_pcm_hardware sis_capture_hw_info = {
183         .info = (SNDRV_PCM_INFO_MMAP |
184                  SNDRV_PCM_INFO_MMAP_VALID |
185                  SNDRV_PCM_INFO_INTERLEAVED |
186                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
187                  SNDRV_PCM_INFO_SYNC_START |
188                  SNDRV_PCM_INFO_RESUME),
189         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
190                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
191         .rates = SNDRV_PCM_RATE_48000,
192         .rate_min = 4000,
193         .rate_max = 48000,
194         .channels_min = 1,
195         .channels_max = 2,
196         .buffer_bytes_max = (0xfff9 * 4),
197         .period_bytes_min = 9,
198         .period_bytes_max = (0xfff9 * 4),
199         .periods_min = 1,
200         .periods_max = (0xfff9 / 9),
201 };
202 
203 static void sis_update_sso(struct voice *voice, u16 period)
204 {
205         void __iomem *base = voice->ctrl_base;
206 
207         voice->sso += period;
208         if (voice->sso >= voice->buffer_size)
209                 voice->sso -= voice->buffer_size;
210 
211         /* Enforce the documented hardware minimum offset */
212         if (voice->sso < 8)
213                 voice->sso = 8;
214 
215         /* The SSO is in the upper 16 bits of the register. */
216         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
217 }
218 
219 static void sis_update_voice(struct voice *voice)
220 {
221         if (voice->flags & VOICE_SSO_TIMING) {
222                 sis_update_sso(voice, voice->period_size);
223         } else if (voice->flags & VOICE_SYNC_TIMING) {
224                 int sync;
225 
226                 /* If we've not hit the end of the virtual period, update
227                  * our records and keep going.
228                  */
229                 if (voice->vperiod > voice->period_size) {
230                         voice->vperiod -= voice->period_size;
231                         if (voice->vperiod < voice->period_size)
232                                 sis_update_sso(voice, voice->vperiod);
233                         else
234                                 sis_update_sso(voice, voice->period_size);
235                         return;
236                 }
237 
238                 /* Calculate our relative offset between the target and
239                  * the actual CSO value. Since we're operating in a loop,
240                  * if the value is more than half way around, we can
241                  * consider ourselves wrapped.
242                  */
243                 sync = voice->sync_cso;
244                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
245                 if (sync > (voice->sync_buffer_size / 2))
246                         sync -= voice->sync_buffer_size;
247 
248                 /* If sync is positive, then we interrupted too early, and
249                  * we'll need to come back in a few samples and try again.
250                  * There's a minimum wait, as it takes some time for the DMA
251                  * engine to startup, etc...
252                  */
253                 if (sync > 0) {
254                         if (sync < 16)
255                                 sync = 16;
256                         sis_update_sso(voice, sync);
257                         return;
258                 }
259 
260                 /* Ok, we interrupted right on time, or (hopefully) just
261                  * a bit late. We'll adjst our next waiting period based
262                  * on how close we got.
263                  *
264                  * We need to stay just behind the actual channel to ensure
265                  * it really is past a period when we get our interrupt --
266                  * otherwise we'll fall into the early code above and have
267                  * a minimum wait time, which makes us quite late here,
268                  * eating into the user's time to refresh the buffer, esp.
269                  * if using small periods.
270                  *
271                  * If we're less than 9 samples behind, we're on target.
272                  */
273                 if (sync > -9)
274                         voice->vperiod = voice->sync_period_size + 1;
275                 else
276                         voice->vperiod = voice->sync_period_size - 4;
277 
278                 if (voice->vperiod < voice->buffer_size) {
279                         sis_update_sso(voice, voice->vperiod);
280                         voice->vperiod = 0;
281                 } else
282                         sis_update_sso(voice, voice->period_size);
283 
284                 sync = voice->sync_cso + voice->sync_period_size;
285                 if (sync >= voice->sync_buffer_size)
286                         sync -= voice->sync_buffer_size;
287                 voice->sync_cso = sync;
288         }
289 
290         snd_pcm_period_elapsed(voice->substream);
291 }
292 
293 static void sis_voice_irq(u32 status, struct voice *voice)
294 {
295         int bit;
296 
297         while (status) {
298                 bit = __ffs(status);
299                 status >>= bit + 1;
300                 voice += bit;
301                 sis_update_voice(voice);
302                 voice++;
303         }
304 }
305 
306 static irqreturn_t sis_interrupt(int irq, void *dev)
307 {
308         struct sis7019 *sis = dev;
309         unsigned long io = sis->ioport;
310         struct voice *voice;
311         u32 intr, status;
312 
313         /* We only use the DMA interrupts, and we don't enable any other
314          * source of interrupts. But, it is possible to see an interupt
315          * status that didn't actually interrupt us, so eliminate anything
316          * we're not expecting to avoid falsely claiming an IRQ, and an
317          * ensuing endless loop.
318          */
319         intr = inl(io + SIS_GISR);
320         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
321                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
322         if (!intr)
323                 return IRQ_NONE;
324 
325         do {
326                 status = inl(io + SIS_PISR_A);
327                 if (status) {
328                         sis_voice_irq(status, sis->voices);
329                         outl(status, io + SIS_PISR_A);
330                 }
331 
332                 status = inl(io + SIS_PISR_B);
333                 if (status) {
334                         sis_voice_irq(status, &sis->voices[32]);
335                         outl(status, io + SIS_PISR_B);
336                 }
337 
338                 status = inl(io + SIS_RISR);
339                 if (status) {
340                         voice = &sis->capture_voice;
341                         if (!voice->timing)
342                                 snd_pcm_period_elapsed(voice->substream);
343 
344                         outl(status, io + SIS_RISR);
345                 }
346 
347                 outl(intr, io + SIS_GISR);
348                 intr = inl(io + SIS_GISR);
349                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
350                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
351         } while (intr);
352 
353         return IRQ_HANDLED;
354 }
355 
356 static u32 sis_rate_to_delta(unsigned int rate)
357 {
358         u32 delta;
359 
360         /* This was copied from the trident driver, but it seems its gotten
361          * around a bit... nevertheless, it works well.
362          *
363          * We special case 44100 and 8000 since rounding with the equation
364          * does not give us an accurate enough value. For 11025 and 22050
365          * the equation gives us the best answer. All other frequencies will
366          * also use the equation. JDW
367          */
368         if (rate == 44100)
369                 delta = 0xeb3;
370         else if (rate == 8000)
371                 delta = 0x2ab;
372         else if (rate == 48000)
373                 delta = 0x1000;
374         else
375                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
376         return delta;
377 }
378 
379 static void __sis_map_silence(struct sis7019 *sis)
380 {
381         /* Helper function: must hold sis->voice_lock on entry */
382         if (!sis->silence_users)
383                 sis->silence_dma_addr = pci_map_single(sis->pci,
384                                                 sis->suspend_state[0],
385                                                 4096, PCI_DMA_TODEVICE);
386         sis->silence_users++;
387 }
388 
389 static void __sis_unmap_silence(struct sis7019 *sis)
390 {
391         /* Helper function: must hold sis->voice_lock on entry */
392         sis->silence_users--;
393         if (!sis->silence_users)
394                 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
395                                         PCI_DMA_TODEVICE);
396 }
397 
398 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
399 {
400         unsigned long flags;
401 
402         spin_lock_irqsave(&sis->voice_lock, flags);
403         if (voice->timing) {
404                 __sis_unmap_silence(sis);
405                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
406                                                 VOICE_SYNC_TIMING);
407                 voice->timing = NULL;
408         }
409         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
410         spin_unlock_irqrestore(&sis->voice_lock, flags);
411 }
412 
413 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
414 {
415         /* Must hold the voice_lock on entry */
416         struct voice *voice;
417         int i;
418 
419         for (i = 0; i < 64; i++) {
420                 voice = &sis->voices[i];
421                 if (voice->flags & VOICE_IN_USE)
422                         continue;
423                 voice->flags |= VOICE_IN_USE;
424                 goto found_one;
425         }
426         voice = NULL;
427 
428 found_one:
429         return voice;
430 }
431 
432 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
433 {
434         struct voice *voice;
435         unsigned long flags;
436 
437         spin_lock_irqsave(&sis->voice_lock, flags);
438         voice = __sis_alloc_playback_voice(sis);
439         spin_unlock_irqrestore(&sis->voice_lock, flags);
440 
441         return voice;
442 }
443 
444 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
445                                         struct snd_pcm_hw_params *hw_params)
446 {
447         struct sis7019 *sis = snd_pcm_substream_chip(substream);
448         struct snd_pcm_runtime *runtime = substream->runtime;
449         struct voice *voice = runtime->private_data;
450         unsigned int period_size, buffer_size;
451         unsigned long flags;
452         int needed;
453 
454         /* If there are one or two periods per buffer, we don't need a
455          * timing voice, as we can use the capture channel's interrupts
456          * to clock out the periods.
457          */
458         period_size = params_period_size(hw_params);
459         buffer_size = params_buffer_size(hw_params);
460         needed = (period_size != buffer_size &&
461                         period_size != (buffer_size / 2));
462 
463         if (needed && !voice->timing) {
464                 spin_lock_irqsave(&sis->voice_lock, flags);
465                 voice->timing = __sis_alloc_playback_voice(sis);
466                 if (voice->timing)
467                         __sis_map_silence(sis);
468                 spin_unlock_irqrestore(&sis->voice_lock, flags);
469                 if (!voice->timing)
470                         return -ENOMEM;
471                 voice->timing->substream = substream;
472         } else if (!needed && voice->timing) {
473                 sis_free_voice(sis, voice);
474                 voice->timing = NULL;
475         }
476 
477         return 0;
478 }
479 
480 static int sis_playback_open(struct snd_pcm_substream *substream)
481 {
482         struct sis7019 *sis = snd_pcm_substream_chip(substream);
483         struct snd_pcm_runtime *runtime = substream->runtime;
484         struct voice *voice;
485 
486         voice = sis_alloc_playback_voice(sis);
487         if (!voice)
488                 return -EAGAIN;
489 
490         voice->substream = substream;
491         runtime->private_data = voice;
492         runtime->hw = sis_playback_hw_info;
493         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
494                                                 9, 0xfff9);
495         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
496                                                 9, 0xfff9);
497         snd_pcm_set_sync(substream);
498         return 0;
499 }
500 
501 static int sis_substream_close(struct snd_pcm_substream *substream)
502 {
503         struct sis7019 *sis = snd_pcm_substream_chip(substream);
504         struct snd_pcm_runtime *runtime = substream->runtime;
505         struct voice *voice = runtime->private_data;
506 
507         sis_free_voice(sis, voice);
508         return 0;
509 }
510 
511 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
512                                         struct snd_pcm_hw_params *hw_params)
513 {
514         return snd_pcm_lib_malloc_pages(substream,
515                                         params_buffer_bytes(hw_params));
516 }
517 
518 static int sis_hw_free(struct snd_pcm_substream *substream)
519 {
520         return snd_pcm_lib_free_pages(substream);
521 }
522 
523 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
524 {
525         struct snd_pcm_runtime *runtime = substream->runtime;
526         struct voice *voice = runtime->private_data;
527         void __iomem *ctrl_base = voice->ctrl_base;
528         void __iomem *wave_base = voice->wave_base;
529         u32 format, dma_addr, control, sso_eso, delta, reg;
530         u16 leo;
531 
532         /* We rely on the PCM core to ensure that the parameters for this
533          * substream do not change on us while we're programming the HW.
534          */
535         format = 0;
536         if (snd_pcm_format_width(runtime->format) == 8)
537                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
538         if (!snd_pcm_format_signed(runtime->format))
539                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
540         if (runtime->channels == 1)
541                 format |= SIS_PLAY_DMA_FORMAT_MONO;
542 
543         /* The baseline setup is for a single period per buffer, and
544          * we add bells and whistles as needed from there.
545          */
546         dma_addr = runtime->dma_addr;
547         leo = runtime->buffer_size - 1;
548         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
549         sso_eso = leo;
550 
551         if (runtime->period_size == (runtime->buffer_size / 2)) {
552                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
553         } else if (runtime->period_size != runtime->buffer_size) {
554                 voice->flags |= VOICE_SSO_TIMING;
555                 voice->sso = runtime->period_size - 1;
556                 voice->period_size = runtime->period_size;
557                 voice->buffer_size = runtime->buffer_size;
558 
559                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
560                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
561                 sso_eso |= (runtime->period_size - 1) << 16;
562         }
563 
564         delta = sis_rate_to_delta(runtime->rate);
565 
566         /* Ok, we're ready to go, set up the channel.
567          */
568         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
569         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
570         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
571         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
572 
573         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
574                 writel(0, wave_base + reg);
575 
576         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
577         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
578         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
579                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
580                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
581                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
582 
583         /* Force PCI writes to post. */
584         readl(ctrl_base);
585 
586         return 0;
587 }
588 
589 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
590 {
591         struct sis7019 *sis = snd_pcm_substream_chip(substream);
592         unsigned long io = sis->ioport;
593         struct snd_pcm_substream *s;
594         struct voice *voice;
595         void *chip;
596         int starting;
597         u32 record = 0;
598         u32 play[2] = { 0, 0 };
599 
600         /* No locks needed, as the PCM core will hold the locks on the
601          * substreams, and the HW will only start/stop the indicated voices
602          * without changing the state of the others.
603          */
604         switch (cmd) {
605         case SNDRV_PCM_TRIGGER_START:
606         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
607         case SNDRV_PCM_TRIGGER_RESUME:
608                 starting = 1;
609                 break;
610         case SNDRV_PCM_TRIGGER_STOP:
611         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
612         case SNDRV_PCM_TRIGGER_SUSPEND:
613                 starting = 0;
614                 break;
615         default:
616                 return -EINVAL;
617         }
618 
619         snd_pcm_group_for_each_entry(s, substream) {
620                 /* Make sure it is for us... */
621                 chip = snd_pcm_substream_chip(s);
622                 if (chip != sis)
623                         continue;
624 
625                 voice = s->runtime->private_data;
626                 if (voice->flags & VOICE_CAPTURE) {
627                         record |= 1 << voice->num;
628                         voice = voice->timing;
629                 }
630 
631                 /* voice could be NULL if this a recording stream, and it
632                  * doesn't have an external timing channel.
633                  */
634                 if (voice)
635                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
636 
637                 snd_pcm_trigger_done(s, substream);
638         }
639 
640         if (starting) {
641                 if (record)
642                         outl(record, io + SIS_RECORD_START_REG);
643                 if (play[0])
644                         outl(play[0], io + SIS_PLAY_START_A_REG);
645                 if (play[1])
646                         outl(play[1], io + SIS_PLAY_START_B_REG);
647         } else {
648                 if (record)
649                         outl(record, io + SIS_RECORD_STOP_REG);
650                 if (play[0])
651                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
652                 if (play[1])
653                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
654         }
655         return 0;
656 }
657 
658 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
659 {
660         struct snd_pcm_runtime *runtime = substream->runtime;
661         struct voice *voice = runtime->private_data;
662         u32 cso;
663 
664         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
665         cso &= 0xffff;
666         return cso;
667 }
668 
669 static int sis_capture_open(struct snd_pcm_substream *substream)
670 {
671         struct sis7019 *sis = snd_pcm_substream_chip(substream);
672         struct snd_pcm_runtime *runtime = substream->runtime;
673         struct voice *voice = &sis->capture_voice;
674         unsigned long flags;
675 
676         /* FIXME: The driver only supports recording from one channel
677          * at the moment, but it could support more.
678          */
679         spin_lock_irqsave(&sis->voice_lock, flags);
680         if (voice->flags & VOICE_IN_USE)
681                 voice = NULL;
682         else
683                 voice->flags |= VOICE_IN_USE;
684         spin_unlock_irqrestore(&sis->voice_lock, flags);
685 
686         if (!voice)
687                 return -EAGAIN;
688 
689         voice->substream = substream;
690         runtime->private_data = voice;
691         runtime->hw = sis_capture_hw_info;
692         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
693         snd_pcm_limit_hw_rates(runtime);
694         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
695                                                 9, 0xfff9);
696         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
697                                                 9, 0xfff9);
698         snd_pcm_set_sync(substream);
699         return 0;
700 }
701 
702 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
703                                         struct snd_pcm_hw_params *hw_params)
704 {
705         struct sis7019 *sis = snd_pcm_substream_chip(substream);
706         int rc;
707 
708         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
709                                                 params_rate(hw_params));
710         if (rc)
711                 goto out;
712 
713         rc = snd_pcm_lib_malloc_pages(substream,
714                                         params_buffer_bytes(hw_params));
715         if (rc < 0)
716                 goto out;
717 
718         rc = sis_alloc_timing_voice(substream, hw_params);
719 
720 out:
721         return rc;
722 }
723 
724 static void sis_prepare_timing_voice(struct voice *voice,
725                                         struct snd_pcm_substream *substream)
726 {
727         struct sis7019 *sis = snd_pcm_substream_chip(substream);
728         struct snd_pcm_runtime *runtime = substream->runtime;
729         struct voice *timing = voice->timing;
730         void __iomem *play_base = timing->ctrl_base;
731         void __iomem *wave_base = timing->wave_base;
732         u16 buffer_size, period_size;
733         u32 format, control, sso_eso, delta;
734         u32 vperiod, sso, reg;
735 
736         /* Set our initial buffer and period as large as we can given a
737          * single page of silence.
738          */
739         buffer_size = 4096 / runtime->channels;
740         buffer_size /= snd_pcm_format_size(runtime->format, 1);
741         period_size = buffer_size;
742 
743         /* Initially, we want to interrupt just a bit behind the end of
744          * the period we're clocking out. 10 samples seems to give a good
745          * delay.
746          *
747          * We want to spread our interrupts throughout the virtual period,
748          * so that we don't end up with two interrupts back to back at the
749          * end -- this helps minimize the effects of any jitter. Adjust our
750          * clocking period size so that the last period is at least a fourth
751          * of a full period.
752          *
753          * This is all moot if we don't need to use virtual periods.
754          */
755         vperiod = runtime->period_size + 10;
756         if (vperiod > period_size) {
757                 u16 tail = vperiod % period_size;
758                 u16 quarter_period = period_size / 4;
759 
760                 if (tail && tail < quarter_period) {
761                         u16 loops = vperiod / period_size;
762 
763                         tail = quarter_period - tail;
764                         tail += loops - 1;
765                         tail /= loops;
766                         period_size -= tail;
767                 }
768 
769                 sso = period_size - 1;
770         } else {
771                 /* The initial period will fit inside the buffer, so we
772                  * don't need to use virtual periods -- disable them.
773                  */
774                 period_size = runtime->period_size;
775                 sso = vperiod - 1;
776                 vperiod = 0;
777         }
778 
779         /* The interrupt handler implements the timing syncronization, so
780          * setup its state.
781          */
782         timing->flags |= VOICE_SYNC_TIMING;
783         timing->sync_base = voice->ctrl_base;
784         timing->sync_cso = runtime->period_size - 1;
785         timing->sync_period_size = runtime->period_size;
786         timing->sync_buffer_size = runtime->buffer_size;
787         timing->period_size = period_size;
788         timing->buffer_size = buffer_size;
789         timing->sso = sso;
790         timing->vperiod = vperiod;
791 
792         /* Using unsigned samples with the all-zero silence buffer
793          * forces the output to the lower rail, killing playback.
794          * So ignore unsigned vs signed -- it doesn't change the timing.
795          */
796         format = 0;
797         if (snd_pcm_format_width(runtime->format) == 8)
798                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
799         if (runtime->channels == 1)
800                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
801 
802         control = timing->buffer_size - 1;
803         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
804         sso_eso = timing->buffer_size - 1;
805         sso_eso |= timing->sso << 16;
806 
807         delta = sis_rate_to_delta(runtime->rate);
808 
809         /* We've done the math, now configure the channel.
810          */
811         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
812         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
813         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
814         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
815 
816         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
817                 writel(0, wave_base + reg);
818 
819         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
820         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
821         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
822                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
823                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
824                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
825 }
826 
827 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
828 {
829         struct snd_pcm_runtime *runtime = substream->runtime;
830         struct voice *voice = runtime->private_data;
831         void __iomem *rec_base = voice->ctrl_base;
832         u32 format, dma_addr, control;
833         u16 leo;
834 
835         /* We rely on the PCM core to ensure that the parameters for this
836          * substream do not change on us while we're programming the HW.
837          */
838         format = 0;
839         if (snd_pcm_format_width(runtime->format) == 8)
840                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
841         if (!snd_pcm_format_signed(runtime->format))
842                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
843         if (runtime->channels == 1)
844                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
845 
846         dma_addr = runtime->dma_addr;
847         leo = runtime->buffer_size - 1;
848         control = leo | SIS_CAPTURE_DMA_LOOP;
849 
850         /* If we've got more than two periods per buffer, then we have
851          * use a timing voice to clock out the periods. Otherwise, we can
852          * use the capture channel's interrupts.
853          */
854         if (voice->timing) {
855                 sis_prepare_timing_voice(voice, substream);
856         } else {
857                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
858                 if (runtime->period_size != runtime->buffer_size)
859                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
860         }
861 
862         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
863         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
864         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
865 
866         /* Force the writes to post. */
867         readl(rec_base);
868 
869         return 0;
870 }
871 
872 static struct snd_pcm_ops sis_playback_ops = {
873         .open = sis_playback_open,
874         .close = sis_substream_close,
875         .ioctl = snd_pcm_lib_ioctl,
876         .hw_params = sis_playback_hw_params,
877         .hw_free = sis_hw_free,
878         .prepare = sis_pcm_playback_prepare,
879         .trigger = sis_pcm_trigger,
880         .pointer = sis_pcm_pointer,
881 };
882 
883 static struct snd_pcm_ops sis_capture_ops = {
884         .open = sis_capture_open,
885         .close = sis_substream_close,
886         .ioctl = snd_pcm_lib_ioctl,
887         .hw_params = sis_capture_hw_params,
888         .hw_free = sis_hw_free,
889         .prepare = sis_pcm_capture_prepare,
890         .trigger = sis_pcm_trigger,
891         .pointer = sis_pcm_pointer,
892 };
893 
894 static int __devinit sis_pcm_create(struct sis7019 *sis)
895 {
896         struct snd_pcm *pcm;
897         int rc;
898 
899         /* We have 64 voices, and the driver currently records from
900          * only one channel, though that could change in the future.
901          */
902         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
903         if (rc)
904                 return rc;
905 
906         pcm->private_data = sis;
907         strcpy(pcm->name, "SiS7019");
908         sis->pcm = pcm;
909 
910         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
911         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
912 
913         /* Try to preallocate some memory, but it's not the end of the
914          * world if this fails.
915          */
916         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
917                                 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
918 
919         return 0;
920 }
921 
922 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
923 {
924         unsigned long io = sis->ioport;
925         unsigned short val = 0xffff;
926         u16 status;
927         u16 rdy;
928         int count;
929         static const u16 codec_ready[3] = {
930                 SIS_AC97_STATUS_CODEC_READY,
931                 SIS_AC97_STATUS_CODEC2_READY,
932                 SIS_AC97_STATUS_CODEC3_READY,
933         };
934 
935         rdy = codec_ready[codec];
936 
937 
938         /* Get the AC97 semaphore -- software first, so we don't spin
939          * pounding out IO reads on the hardware semaphore...
940          */
941         mutex_lock(&sis->ac97_mutex);
942 
943         count = 0xffff;
944         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
945                 udelay(1);
946 
947         if (!count)
948                 goto timeout;
949 
950         /* ... and wait for any outstanding commands to complete ...
951          */
952         count = 0xffff;
953         do {
954                 status = inw(io + SIS_AC97_STATUS);
955                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
956                         break;
957 
958                 udelay(1);
959         } while (--count);
960 
961         if (!count)
962                 goto timeout_sema;
963 
964         /* ... before sending our command and waiting for it to finish ...
965          */
966         outl(cmd, io + SIS_AC97_CMD);
967         udelay(10);
968 
969         count = 0xffff;
970         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
971                 udelay(1);
972 
973         /* ... and reading the results (if any).
974          */
975         val = inl(io + SIS_AC97_CMD) >> 16;
976 
977 timeout_sema:
978         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
979 timeout:
980         mutex_unlock(&sis->ac97_mutex);
981 
982         if (!count) {
983                 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
984                                         codec, cmd);
985         }
986 
987         return val;
988 }
989 
990 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
991                                 unsigned short val)
992 {
993         static const u32 cmd[3] = {
994                 SIS_AC97_CMD_CODEC_WRITE,
995                 SIS_AC97_CMD_CODEC2_WRITE,
996                 SIS_AC97_CMD_CODEC3_WRITE,
997         };
998         sis_ac97_rw(ac97->private_data, ac97->num,
999                         (val << 16) | (reg << 8) | cmd[ac97->num]);
1000 }
1001 
1002 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1003 {
1004         static const u32 cmd[3] = {
1005                 SIS_AC97_CMD_CODEC_READ,
1006                 SIS_AC97_CMD_CODEC2_READ,
1007                 SIS_AC97_CMD_CODEC3_READ,
1008         };
1009         return sis_ac97_rw(ac97->private_data, ac97->num,
1010                                         (reg << 8) | cmd[ac97->num]);
1011 }
1012 
1013 static int __devinit sis_mixer_create(struct sis7019 *sis)
1014 {
1015         struct snd_ac97_bus *bus;
1016         struct snd_ac97_template ac97;
1017         static struct snd_ac97_bus_ops ops = {
1018                 .write = sis_ac97_write,
1019                 .read = sis_ac97_read,
1020         };
1021         int rc;
1022 
1023         memset(&ac97, 0, sizeof(ac97));
1024         ac97.private_data = sis;
1025 
1026         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1027         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1028                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1029         ac97.num = 1;
1030         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1031                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1032         ac97.num = 2;
1033         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1034                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1035 
1036         /* If we return an error here, then snd_card_free() should
1037          * free up any ac97 codecs that got created, as well as the bus.
1038          */
1039         return rc;
1040 }
1041 
1042 static void sis_free_suspend(struct sis7019 *sis)
1043 {
1044         int i;
1045 
1046         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1047                 kfree(sis->suspend_state[i]);
1048 }
1049 
1050 static int sis_chip_free(struct sis7019 *sis)
1051 {
1052         /* Reset the chip, and disable all interrputs.
1053          */
1054         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1055         udelay(10);
1056         outl(0, sis->ioport + SIS_GCR);
1057         outl(0, sis->ioport + SIS_GIER);
1058 
1059         /* Now, free everything we allocated.
1060          */
1061         if (sis->irq >= 0)
1062                 free_irq(sis->irq, sis);
1063 
1064         if (sis->ioaddr)
1065                 iounmap(sis->ioaddr);
1066 
1067         pci_release_regions(sis->pci);
1068         pci_disable_device(sis->pci);
1069 
1070         sis_free_suspend(sis);
1071         return 0;
1072 }
1073 
1074 static int sis_dev_free(struct snd_device *dev)
1075 {
1076         struct sis7019 *sis = dev->device_data;
1077         return sis_chip_free(sis);
1078 }
1079 
1080 static int sis_chip_init(struct sis7019 *sis)
1081 {
1082         unsigned long io = sis->ioport;
1083         void __iomem *ioaddr = sis->ioaddr;
1084         unsigned long timeout;
1085         u16 status;
1086         int count;
1087         int i;
1088 
1089         /* Reset the audio controller
1090          */
1091         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1092         udelay(10);
1093         outl(0, io + SIS_GCR);
1094 
1095         /* Get the AC-link semaphore, and reset the codecs
1096          */
1097         count = 0xffff;
1098         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1099                 udelay(1);
1100 
1101         if (!count)
1102                 return -EIO;
1103 
1104         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1105         udelay(10);
1106 
1107         count = 0xffff;
1108         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1109                 udelay(1);
1110 
1111         /* Command complete, we can let go of the semaphore now.
1112          */
1113         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1114         if (!count)
1115                 return -EIO;
1116 
1117         /* Now that we've finished the reset, find out what's attached.
1118          * There are some codec/board combinations that take an extremely
1119          * long time to come up. 350+ ms has been observed in the field,
1120          * so we'll give them up to 500ms.
1121          */
1122         sis->codecs_present = 0;
1123         timeout = msecs_to_jiffies(500) + jiffies;
1124         while (time_before_eq(jiffies, timeout)) {
1125                 status = inl(io + SIS_AC97_STATUS);
1126                 if (status & SIS_AC97_STATUS_CODEC_READY)
1127                         sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1128                 if (status & SIS_AC97_STATUS_CODEC2_READY)
1129                         sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1130                 if (status & SIS_AC97_STATUS_CODEC3_READY)
1131                         sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1132 
1133                 if (sis->codecs_present == codecs)
1134                         break;
1135 
1136                 msleep(1);
1137         }
1138 
1139         /* All done, check for errors.
1140          */
1141         if (!sis->codecs_present) {
1142                 printk(KERN_ERR "sis7019: could not find any codecs\n");
1143                 return -EIO;
1144         }
1145 
1146         if (sis->codecs_present != codecs) {
1147                 printk(KERN_WARNING "sis7019: missing codecs, found %0x, expected %0x\n",
1148                        sis->codecs_present, codecs);
1149         }
1150 
1151         /* Let the hardware know that the audio driver is alive,
1152          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1153          * record channels. We're going to want to use Variable Rate Audio
1154          * for recording, to avoid needlessly resampling from 48kHZ.
1155          */
1156         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1157         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1158                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1159                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1160                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1161 
1162         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1163          */
1164         outl(0, io + SIS_AC97_PSR);
1165 
1166         /* There is only one valid DMA setup for a PCI environment.
1167          */
1168         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1169 
1170         /* Reset the syncronization groups for all of the channels
1171          * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1172          * we'll need to change how we handle these. Until then, we just
1173          * assign sub-mixer 0 to all playback channels, and avoid any
1174          * attenuation on the audio.
1175          */
1176         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1177         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1178         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1179         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1180         outl(0, io + SIS_MIXER_SYNC_GROUP);
1181 
1182         for (i = 0; i < 64; i++) {
1183                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1184                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1185                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1186         }
1187 
1188         /* Don't attenuate any audio set for the wave amplifier.
1189          *
1190          * FIXME: Maximum attenuation is set for the music amp, which will
1191          * need to change if we start using the synth engine.
1192          */
1193         outl(0xffff0000, io + SIS_WEVCR);
1194 
1195         /* Ensure that the wave engine is in normal operating mode.
1196          */
1197         outl(0, io + SIS_WECCR);
1198 
1199         /* Go ahead and enable the DMA interrupts. They won't go live
1200          * until we start a channel.
1201          */
1202         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1203                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1204 
1205         return 0;
1206 }
1207 
1208 #ifdef CONFIG_PM
1209 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1210 {
1211         struct snd_card *card = pci_get_drvdata(pci);
1212         struct sis7019 *sis = card->private_data;
1213         void __iomem *ioaddr = sis->ioaddr;
1214         int i;
1215 
1216         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1217         snd_pcm_suspend_all(sis->pcm);
1218         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1219                 snd_ac97_suspend(sis->ac97[0]);
1220         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1221                 snd_ac97_suspend(sis->ac97[1]);
1222         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1223                 snd_ac97_suspend(sis->ac97[2]);
1224 
1225         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1226          */
1227         if (sis->irq >= 0) {
1228                 free_irq(sis->irq, sis);
1229                 sis->irq = -1;
1230         }
1231 
1232         /* Save the internal state away
1233          */
1234         for (i = 0; i < 4; i++) {
1235                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1236                 ioaddr += 4096;
1237         }
1238 
1239         pci_disable_device(pci);
1240         pci_save_state(pci);
1241         pci_set_power_state(pci, pci_choose_state(pci, state));
1242         return 0;
1243 }
1244 
1245 static int sis_resume(struct pci_dev *pci)
1246 {
1247         struct snd_card *card = pci_get_drvdata(pci);
1248         struct sis7019 *sis = card->private_data;
1249         void __iomem *ioaddr = sis->ioaddr;
1250         int i;
1251 
1252         pci_set_power_state(pci, PCI_D0);
1253         pci_restore_state(pci);
1254 
1255         if (pci_enable_device(pci) < 0) {
1256                 printk(KERN_ERR "sis7019: unable to re-enable device\n");
1257                 goto error;
1258         }
1259 
1260         if (sis_chip_init(sis)) {
1261                 printk(KERN_ERR "sis7019: unable to re-init controller\n");
1262                 goto error;
1263         }
1264 
1265         if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1266                                 card->shortname, sis)) {
1267                 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1268                 goto error;
1269         }
1270 
1271         /* Restore saved state, then clear out the page we use for the
1272          * silence buffer.
1273          */
1274         for (i = 0; i < 4; i++) {
1275                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1276                 ioaddr += 4096;
1277         }
1278 
1279         memset(sis->suspend_state[0], 0, 4096);
1280 
1281         sis->irq = pci->irq;
1282         pci_set_master(pci);
1283 
1284         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1285                 snd_ac97_resume(sis->ac97[0]);
1286         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1287                 snd_ac97_resume(sis->ac97[1]);
1288         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1289                 snd_ac97_resume(sis->ac97[2]);
1290 
1291         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1292         return 0;
1293 
1294 error:
1295         snd_card_disconnect(card);
1296         return -EIO;
1297 }
1298 #endif /* CONFIG_PM */
1299 
1300 static int sis_alloc_suspend(struct sis7019 *sis)
1301 {
1302         int i;
1303 
1304         /* We need 16K to store the internal wave engine state during a
1305          * suspend, but we don't need it to be contiguous, so play nice
1306          * with the memory system. We'll also use this area for a silence
1307          * buffer.
1308          */
1309         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1310                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1311                 if (!sis->suspend_state[i])
1312                         return -ENOMEM;
1313         }
1314         memset(sis->suspend_state[0], 0, 4096);
1315 
1316         return 0;
1317 }
1318 
1319 static int __devinit sis_chip_create(struct snd_card *card,
1320                                         struct pci_dev *pci)
1321 {
1322         struct sis7019 *sis = card->private_data;
1323         struct voice *voice;
1324         static struct snd_device_ops ops = {
1325                 .dev_free = sis_dev_free,
1326         };
1327         int rc;
1328         int i;
1329 
1330         rc = pci_enable_device(pci);
1331         if (rc)
1332                 goto error_out;
1333 
1334         if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1335                 printk(KERN_ERR "sis7019: architecture does not support "
1336                                         "30-bit PCI busmaster DMA");
1337                 goto error_out_enabled;
1338         }
1339 
1340         memset(sis, 0, sizeof(*sis));
1341         mutex_init(&sis->ac97_mutex);
1342         spin_lock_init(&sis->voice_lock);
1343         sis->card = card;
1344         sis->pci = pci;
1345         sis->irq = -1;
1346         sis->ioport = pci_resource_start(pci, 0);
1347 
1348         rc = pci_request_regions(pci, "SiS7019");
1349         if (rc) {
1350                 printk(KERN_ERR "sis7019: unable request regions\n");
1351                 goto error_out_enabled;
1352         }
1353 
1354         rc = -EIO;
1355         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1356         if (!sis->ioaddr) {
1357                 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1358                 goto error_out_cleanup;
1359         }
1360 
1361         rc = sis_alloc_suspend(sis);
1362         if (rc < 0) {
1363                 printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1364                 goto error_out_cleanup;
1365         }
1366 
1367         rc = sis_chip_init(sis);
1368         if (rc)
1369                 goto error_out_cleanup;
1370 
1371         if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1372                                 card->shortname, sis)) {
1373                 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1374                 goto error_out_cleanup;
1375         }
1376 
1377         sis->irq = pci->irq;
1378         pci_set_master(pci);
1379 
1380         for (i = 0; i < 64; i++) {
1381                 voice = &sis->voices[i];
1382                 voice->num = i;
1383                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1384                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1385         }
1386 
1387         voice = &sis->capture_voice;
1388         voice->flags = VOICE_CAPTURE;
1389         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1390         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1391 
1392         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1393         if (rc)
1394                 goto error_out_cleanup;
1395 
1396         snd_card_set_dev(card, &pci->dev);
1397 
1398         return 0;
1399 
1400 error_out_cleanup:
1401         sis_chip_free(sis);
1402 
1403 error_out_enabled:
1404         pci_disable_device(pci);
1405 
1406 error_out:
1407         return rc;
1408 }
1409 
1410 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1411                                         const struct pci_device_id *pci_id)
1412 {
1413         struct snd_card *card;
1414         struct sis7019 *sis;
1415         int rc;
1416 
1417         rc = -ENOENT;
1418         if (!enable)
1419                 goto error_out;
1420 
1421         /* The user can specify which codecs should be present so that we
1422          * can wait for them to show up if they are slow to recover from
1423          * the AC97 cold reset. We default to a single codec, the primary.
1424          *
1425          * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1426          */
1427         codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1428                   SIS_TERTIARY_CODEC_PRESENT;
1429         if (!codecs)
1430                 codecs = SIS_PRIMARY_CODEC_PRESENT;
1431 
1432         rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1433         if (rc < 0)
1434                 goto error_out;
1435 
1436         strcpy(card->driver, "SiS7019");
1437         strcpy(card->shortname, "SiS7019");
1438         rc = sis_chip_create(card, pci);
1439         if (rc)
1440                 goto card_error_out;
1441 
1442         sis = card->private_data;
1443 
1444         rc = sis_mixer_create(sis);
1445         if (rc)
1446                 goto card_error_out;
1447 
1448         rc = sis_pcm_create(sis);
1449         if (rc)
1450                 goto card_error_out;
1451 
1452         snprintf(card->longname, sizeof(card->longname),
1453                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1454                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1455                         sis->ioport, sis->irq);
1456 
1457         rc = snd_card_register(card);
1458         if (rc)
1459                 goto card_error_out;
1460 
1461         pci_set_drvdata(pci, card);
1462         return 0;
1463 
1464 card_error_out:
1465         snd_card_free(card);
1466 
1467 error_out:
1468         return rc;
1469 }
1470 
1471 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1472 {
1473         snd_card_free(pci_get_drvdata(pci));
1474         pci_set_drvdata(pci, NULL);
1475 }
1476 
1477 static struct pci_driver sis7019_driver = {
1478         .name = "SiS7019",
1479         .id_table = snd_sis7019_ids,
1480         .probe = snd_sis7019_probe,
1481         .remove = __devexit_p(snd_sis7019_remove),
1482 
1483 #ifdef CONFIG_PM
1484         .suspend = sis_suspend,
1485         .resume = sis_resume,
1486 #endif
1487 };
1488 
1489 static int __init sis7019_init(void)
1490 {
1491         return pci_register_driver(&sis7019_driver);
1492 }
1493 
1494 static void __exit sis7019_exit(void)
1495 {
1496         pci_unregister_driver(&sis7019_driver);
1497 }
1498 
1499 module_init(sis7019_init);
1500 module_exit(sis7019_exit);
1501 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp