~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/pci/ymfpci/ymfpci_main.c

Version: ~ [ linux-6.0-rc1 ] ~ [ linux-5.19.1 ] ~ [ linux-5.18.17 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.60 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.136 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.210 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.255 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.290 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.325 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4  *  Routines for control of YMF724/740/744/754 chips
  5  */
  6 
  7 #include <linux/delay.h>
  8 #include <linux/firmware.h>
  9 #include <linux/init.h>
 10 #include <linux/interrupt.h>
 11 #include <linux/pci.h>
 12 #include <linux/sched.h>
 13 #include <linux/slab.h>
 14 #include <linux/mutex.h>
 15 #include <linux/module.h>
 16 #include <linux/io.h>
 17 
 18 #include <sound/core.h>
 19 #include <sound/control.h>
 20 #include <sound/info.h>
 21 #include <sound/tlv.h>
 22 #include "ymfpci.h"
 23 #include <sound/asoundef.h>
 24 #include <sound/mpu401.h>
 25 
 26 #include <asm/byteorder.h>
 27 
 28 /*
 29  *  common I/O routines
 30  */
 31 
 32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
 33 
 34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
 35 {
 36         return readb(chip->reg_area_virt + offset);
 37 }
 38 
 39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
 40 {
 41         writeb(val, chip->reg_area_virt + offset);
 42 }
 43 
 44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
 45 {
 46         return readw(chip->reg_area_virt + offset);
 47 }
 48 
 49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
 50 {
 51         writew(val, chip->reg_area_virt + offset);
 52 }
 53 
 54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
 55 {
 56         return readl(chip->reg_area_virt + offset);
 57 }
 58 
 59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
 60 {
 61         writel(val, chip->reg_area_virt + offset);
 62 }
 63 
 64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
 65 {
 66         unsigned long end_time;
 67         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
 68         
 69         end_time = jiffies + msecs_to_jiffies(750);
 70         do {
 71                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
 72                         return 0;
 73                 schedule_timeout_uninterruptible(1);
 74         } while (time_before(jiffies, end_time));
 75         dev_err(chip->card->dev,
 76                 "codec_ready: codec %i is not ready [0x%x]\n",
 77                 secondary, snd_ymfpci_readw(chip, reg));
 78         return -EBUSY;
 79 }
 80 
 81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
 82 {
 83         struct snd_ymfpci *chip = ac97->private_data;
 84         u32 cmd;
 85         
 86         snd_ymfpci_codec_ready(chip, 0);
 87         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
 88         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
 89 }
 90 
 91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
 92 {
 93         struct snd_ymfpci *chip = ac97->private_data;
 94 
 95         if (snd_ymfpci_codec_ready(chip, 0))
 96                 return ~0;
 97         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
 98         if (snd_ymfpci_codec_ready(chip, 0))
 99                 return ~0;
100         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
101                 int i;
102                 for (i = 0; i < 600; i++)
103                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
104         }
105         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
106 }
107 
108 /*
109  *  Misc routines
110  */
111 
112 static u32 snd_ymfpci_calc_delta(u32 rate)
113 {
114         switch (rate) {
115         case 8000:      return 0x02aaab00;
116         case 11025:     return 0x03accd00;
117         case 16000:     return 0x05555500;
118         case 22050:     return 0x07599a00;
119         case 32000:     return 0x0aaaab00;
120         case 44100:     return 0x0eb33300;
121         default:        return ((rate << 16) / 375) << 5;
122         }
123 }
124 
125 static const u32 def_rate[8] = {
126         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
127 };
128 
129 static u32 snd_ymfpci_calc_lpfK(u32 rate)
130 {
131         u32 i;
132         static const u32 val[8] = {
133                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
134                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
135         };
136         
137         if (rate == 44100)
138                 return 0x40000000;      /* FIXME: What's the right value? */
139         for (i = 0; i < 8; i++)
140                 if (rate <= def_rate[i])
141                         return val[i];
142         return val[0];
143 }
144 
145 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
146 {
147         u32 i;
148         static const u32 val[8] = {
149                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
150                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
151         };
152         
153         if (rate == 44100)
154                 return 0x370A0000;
155         for (i = 0; i < 8; i++)
156                 if (rate <= def_rate[i])
157                         return val[i];
158         return val[0];
159 }
160 
161 /*
162  *  Hardware start management
163  */
164 
165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
166 {
167         unsigned long flags;
168 
169         spin_lock_irqsave(&chip->reg_lock, flags);
170         if (chip->start_count++ > 0)
171                 goto __end;
172         snd_ymfpci_writel(chip, YDSXGR_MODE,
173                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
174         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
175       __end:
176         spin_unlock_irqrestore(&chip->reg_lock, flags);
177 }
178 
179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
180 {
181         unsigned long flags;
182         long timeout = 1000;
183 
184         spin_lock_irqsave(&chip->reg_lock, flags);
185         if (--chip->start_count > 0)
186                 goto __end;
187         snd_ymfpci_writel(chip, YDSXGR_MODE,
188                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
189         while (timeout-- > 0) {
190                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
191                         break;
192         }
193         if (atomic_read(&chip->interrupt_sleep_count)) {
194                 atomic_set(&chip->interrupt_sleep_count, 0);
195                 wake_up(&chip->interrupt_sleep);
196         }
197       __end:
198         spin_unlock_irqrestore(&chip->reg_lock, flags);
199 }
200 
201 /*
202  *  Playback voice management
203  */
204 
205 static int voice_alloc(struct snd_ymfpci *chip,
206                        enum snd_ymfpci_voice_type type, int pair,
207                        struct snd_ymfpci_voice **rvoice)
208 {
209         struct snd_ymfpci_voice *voice, *voice2;
210         int idx;
211         
212         *rvoice = NULL;
213         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
214                 voice = &chip->voices[idx];
215                 voice2 = pair ? &chip->voices[idx+1] : NULL;
216                 if (voice->use || (voice2 && voice2->use))
217                         continue;
218                 voice->use = 1;
219                 if (voice2)
220                         voice2->use = 1;
221                 switch (type) {
222                 case YMFPCI_PCM:
223                         voice->pcm = 1;
224                         if (voice2)
225                                 voice2->pcm = 1;
226                         break;
227                 case YMFPCI_SYNTH:
228                         voice->synth = 1;
229                         break;
230                 case YMFPCI_MIDI:
231                         voice->midi = 1;
232                         break;
233                 }
234                 snd_ymfpci_hw_start(chip);
235                 if (voice2)
236                         snd_ymfpci_hw_start(chip);
237                 *rvoice = voice;
238                 return 0;
239         }
240         return -ENOMEM;
241 }
242 
243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
244                                   enum snd_ymfpci_voice_type type, int pair,
245                                   struct snd_ymfpci_voice **rvoice)
246 {
247         unsigned long flags;
248         int result;
249         
250         if (snd_BUG_ON(!rvoice))
251                 return -EINVAL;
252         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
253                 return -EINVAL;
254         
255         spin_lock_irqsave(&chip->voice_lock, flags);
256         for (;;) {
257                 result = voice_alloc(chip, type, pair, rvoice);
258                 if (result == 0 || type != YMFPCI_PCM)
259                         break;
260                 /* TODO: synth/midi voice deallocation */
261                 break;
262         }
263         spin_unlock_irqrestore(&chip->voice_lock, flags);       
264         return result;          
265 }
266 
267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
268 {
269         unsigned long flags;
270         
271         if (snd_BUG_ON(!pvoice))
272                 return -EINVAL;
273         snd_ymfpci_hw_stop(chip);
274         spin_lock_irqsave(&chip->voice_lock, flags);
275         if (pvoice->number == chip->src441_used) {
276                 chip->src441_used = -1;
277                 pvoice->ypcm->use_441_slot = 0;
278         }
279         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
280         pvoice->ypcm = NULL;
281         pvoice->interrupt = NULL;
282         spin_unlock_irqrestore(&chip->voice_lock, flags);
283         return 0;
284 }
285 
286 /*
287  *  PCM part
288  */
289 
290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
291 {
292         struct snd_ymfpci_pcm *ypcm;
293         u32 pos, delta;
294         
295         ypcm = voice->ypcm;
296         if (!ypcm)
297                 return;
298         if (ypcm->substream == NULL)
299                 return;
300         spin_lock(&chip->reg_lock);
301         if (ypcm->running) {
302                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
303                 if (pos < ypcm->last_pos)
304                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
305                 else
306                         delta = pos - ypcm->last_pos;
307                 ypcm->period_pos += delta;
308                 ypcm->last_pos = pos;
309                 if (ypcm->period_pos >= ypcm->period_size) {
310                         /*
311                         dev_dbg(chip->card->dev,
312                                "done - active_bank = 0x%x, start = 0x%x\n",
313                                chip->active_bank,
314                                voice->bank[chip->active_bank].start);
315                         */
316                         ypcm->period_pos %= ypcm->period_size;
317                         spin_unlock(&chip->reg_lock);
318                         snd_pcm_period_elapsed(ypcm->substream);
319                         spin_lock(&chip->reg_lock);
320                 }
321 
322                 if (unlikely(ypcm->update_pcm_vol)) {
323                         unsigned int subs = ypcm->substream->number;
324                         unsigned int next_bank = 1 - chip->active_bank;
325                         struct snd_ymfpci_playback_bank *bank;
326                         __le32 volume;
327                         
328                         bank = &voice->bank[next_bank];
329                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
330                         bank->left_gain_end = volume;
331                         if (ypcm->output_rear)
332                                 bank->eff2_gain_end = volume;
333                         if (ypcm->voices[1])
334                                 bank = &ypcm->voices[1]->bank[next_bank];
335                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
336                         bank->right_gain_end = volume;
337                         if (ypcm->output_rear)
338                                 bank->eff3_gain_end = volume;
339                         ypcm->update_pcm_vol--;
340                 }
341         }
342         spin_unlock(&chip->reg_lock);
343 }
344 
345 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
346 {
347         struct snd_pcm_runtime *runtime = substream->runtime;
348         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
349         struct snd_ymfpci *chip = ypcm->chip;
350         u32 pos, delta;
351         
352         spin_lock(&chip->reg_lock);
353         if (ypcm->running) {
354                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
355                 if (pos < ypcm->last_pos)
356                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
357                 else
358                         delta = pos - ypcm->last_pos;
359                 ypcm->period_pos += delta;
360                 ypcm->last_pos = pos;
361                 if (ypcm->period_pos >= ypcm->period_size) {
362                         ypcm->period_pos %= ypcm->period_size;
363                         /*
364                         dev_dbg(chip->card->dev,
365                                "done - active_bank = 0x%x, start = 0x%x\n",
366                                chip->active_bank,
367                                voice->bank[chip->active_bank].start);
368                         */
369                         spin_unlock(&chip->reg_lock);
370                         snd_pcm_period_elapsed(substream);
371                         spin_lock(&chip->reg_lock);
372                 }
373         }
374         spin_unlock(&chip->reg_lock);
375 }
376 
377 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
378                                        int cmd)
379 {
380         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
381         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
382         struct snd_kcontrol *kctl = NULL;
383         int result = 0;
384 
385         spin_lock(&chip->reg_lock);
386         if (ypcm->voices[0] == NULL) {
387                 result = -EINVAL;
388                 goto __unlock;
389         }
390         switch (cmd) {
391         case SNDRV_PCM_TRIGGER_START:
392         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
393         case SNDRV_PCM_TRIGGER_RESUME:
394                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
395                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
396                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
397                 ypcm->running = 1;
398                 break;
399         case SNDRV_PCM_TRIGGER_STOP:
400                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
401                         kctl = chip->pcm_mixer[substream->number].ctl;
402                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
403                 }
404                 fallthrough;
405         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
406         case SNDRV_PCM_TRIGGER_SUSPEND:
407                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
408                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
409                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
410                 ypcm->running = 0;
411                 break;
412         default:
413                 result = -EINVAL;
414                 break;
415         }
416       __unlock:
417         spin_unlock(&chip->reg_lock);
418         if (kctl)
419                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
420         return result;
421 }
422 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
423                                       int cmd)
424 {
425         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
426         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
427         int result = 0;
428         u32 tmp;
429 
430         spin_lock(&chip->reg_lock);
431         switch (cmd) {
432         case SNDRV_PCM_TRIGGER_START:
433         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
434         case SNDRV_PCM_TRIGGER_RESUME:
435                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
436                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
437                 ypcm->running = 1;
438                 break;
439         case SNDRV_PCM_TRIGGER_STOP:
440         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
441         case SNDRV_PCM_TRIGGER_SUSPEND:
442                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
443                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
444                 ypcm->running = 0;
445                 break;
446         default:
447                 result = -EINVAL;
448                 break;
449         }
450         spin_unlock(&chip->reg_lock);
451         return result;
452 }
453 
454 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
455 {
456         int err;
457 
458         if (ypcm->voices[1] != NULL && voices < 2) {
459                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
460                 ypcm->voices[1] = NULL;
461         }
462         if (voices == 1 && ypcm->voices[0] != NULL)
463                 return 0;               /* already allocated */
464         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
465                 return 0;               /* already allocated */
466         if (voices > 1) {
467                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
468                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
469                         ypcm->voices[0] = NULL;
470                 }               
471         }
472         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
473         if (err < 0)
474                 return err;
475         ypcm->voices[0]->ypcm = ypcm;
476         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
477         if (voices > 1) {
478                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
479                 ypcm->voices[1]->ypcm = ypcm;
480         }
481         return 0;
482 }
483 
484 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
485                                       struct snd_pcm_runtime *runtime,
486                                       int has_pcm_volume)
487 {
488         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
489         u32 format;
490         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
491         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
492         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
493         struct snd_ymfpci_playback_bank *bank;
494         unsigned int nbank;
495         __le32 vol_left, vol_right;
496         u8 use_left, use_right;
497         unsigned long flags;
498 
499         if (snd_BUG_ON(!voice))
500                 return;
501         if (runtime->channels == 1) {
502                 use_left = 1;
503                 use_right = 1;
504         } else {
505                 use_left = (voiceidx & 1) == 0;
506                 use_right = !use_left;
507         }
508         if (has_pcm_volume) {
509                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
510                                        [ypcm->substream->number].left << 15);
511                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
512                                         [ypcm->substream->number].right << 15);
513         } else {
514                 vol_left = cpu_to_le32(0x40000000);
515                 vol_right = cpu_to_le32(0x40000000);
516         }
517         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
518         format = runtime->channels == 2 ? 0x00010000 : 0;
519         if (snd_pcm_format_width(runtime->format) == 8)
520                 format |= 0x80000000;
521         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
522                  runtime->rate == 44100 && runtime->channels == 2 &&
523                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
524                                    ypcm->chip->src441_used == voice->number)) {
525                 ypcm->chip->src441_used = voice->number;
526                 ypcm->use_441_slot = 1;
527                 format |= 0x10000000;
528         }
529         if (ypcm->chip->src441_used == voice->number &&
530             (format & 0x10000000) == 0) {
531                 ypcm->chip->src441_used = -1;
532                 ypcm->use_441_slot = 0;
533         }
534         if (runtime->channels == 2 && (voiceidx & 1) != 0)
535                 format |= 1;
536         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
537         for (nbank = 0; nbank < 2; nbank++) {
538                 bank = &voice->bank[nbank];
539                 memset(bank, 0, sizeof(*bank));
540                 bank->format = cpu_to_le32(format);
541                 bank->base = cpu_to_le32(runtime->dma_addr);
542                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
543                 bank->lpfQ = cpu_to_le32(lpfQ);
544                 bank->delta =
545                 bank->delta_end = cpu_to_le32(delta);
546                 bank->lpfK =
547                 bank->lpfK_end = cpu_to_le32(lpfK);
548                 bank->eg_gain =
549                 bank->eg_gain_end = cpu_to_le32(0x40000000);
550 
551                 if (ypcm->output_front) {
552                         if (use_left) {
553                                 bank->left_gain =
554                                 bank->left_gain_end = vol_left;
555                         }
556                         if (use_right) {
557                                 bank->right_gain =
558                                 bank->right_gain_end = vol_right;
559                         }
560                 }
561                 if (ypcm->output_rear) {
562                         if (!ypcm->swap_rear) {
563                                 if (use_left) {
564                                         bank->eff2_gain =
565                                         bank->eff2_gain_end = vol_left;
566                                 }
567                                 if (use_right) {
568                                         bank->eff3_gain =
569                                         bank->eff3_gain_end = vol_right;
570                                 }
571                         } else {
572                                 /* The SPDIF out channels seem to be swapped, so we have
573                                  * to swap them here, too.  The rear analog out channels
574                                  * will be wrong, but otherwise AC3 would not work.
575                                  */
576                                 if (use_left) {
577                                         bank->eff3_gain =
578                                         bank->eff3_gain_end = vol_left;
579                                 }
580                                 if (use_right) {
581                                         bank->eff2_gain =
582                                         bank->eff2_gain_end = vol_right;
583                                 }
584                         }
585                 }
586         }
587 }
588 
589 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
590 {
591         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
592                                 4096, &chip->ac3_tmp_base) < 0)
593                 return -ENOMEM;
594 
595         chip->bank_effect[3][0]->base =
596         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
597         chip->bank_effect[3][0]->loop_end =
598         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
599         chip->bank_effect[4][0]->base =
600         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
601         chip->bank_effect[4][0]->loop_end =
602         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
603 
604         spin_lock_irq(&chip->reg_lock);
605         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
606                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
607         spin_unlock_irq(&chip->reg_lock);
608         return 0;
609 }
610 
611 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
612 {
613         spin_lock_irq(&chip->reg_lock);
614         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
615                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
616         spin_unlock_irq(&chip->reg_lock);
617         // snd_ymfpci_irq_wait(chip);
618         if (chip->ac3_tmp_base.area) {
619                 snd_dma_free_pages(&chip->ac3_tmp_base);
620                 chip->ac3_tmp_base.area = NULL;
621         }
622         return 0;
623 }
624 
625 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
626                                          struct snd_pcm_hw_params *hw_params)
627 {
628         struct snd_pcm_runtime *runtime = substream->runtime;
629         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
630         int err;
631 
632         err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params));
633         if (err < 0)
634                 return err;
635         return 0;
636 }
637 
638 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
639 {
640         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
641         struct snd_pcm_runtime *runtime = substream->runtime;
642         struct snd_ymfpci_pcm *ypcm;
643         
644         if (runtime->private_data == NULL)
645                 return 0;
646         ypcm = runtime->private_data;
647 
648         /* wait, until the PCI operations are not finished */
649         snd_ymfpci_irq_wait(chip);
650         if (ypcm->voices[1]) {
651                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
652                 ypcm->voices[1] = NULL;
653         }
654         if (ypcm->voices[0]) {
655                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
656                 ypcm->voices[0] = NULL;
657         }
658         return 0;
659 }
660 
661 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
662 {
663         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
664         struct snd_pcm_runtime *runtime = substream->runtime;
665         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
666         struct snd_kcontrol *kctl;
667         unsigned int nvoice;
668 
669         ypcm->period_size = runtime->period_size;
670         ypcm->buffer_size = runtime->buffer_size;
671         ypcm->period_pos = 0;
672         ypcm->last_pos = 0;
673         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
674                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
675                                           substream->pcm == chip->pcm);
676 
677         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
678                 kctl = chip->pcm_mixer[substream->number].ctl;
679                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
680                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
681         }
682         return 0;
683 }
684 
685 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
686 {
687         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
688 
689         /* wait, until the PCI operations are not finished */
690         snd_ymfpci_irq_wait(chip);
691         return 0;
692 }
693 
694 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
695 {
696         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
697         struct snd_pcm_runtime *runtime = substream->runtime;
698         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
699         struct snd_ymfpci_capture_bank * bank;
700         int nbank;
701         u32 rate, format;
702 
703         ypcm->period_size = runtime->period_size;
704         ypcm->buffer_size = runtime->buffer_size;
705         ypcm->period_pos = 0;
706         ypcm->last_pos = 0;
707         ypcm->shift = 0;
708         rate = ((48000 * 4096) / runtime->rate) - 1;
709         format = 0;
710         if (runtime->channels == 2) {
711                 format |= 2;
712                 ypcm->shift++;
713         }
714         if (snd_pcm_format_width(runtime->format) == 8)
715                 format |= 1;
716         else
717                 ypcm->shift++;
718         switch (ypcm->capture_bank_number) {
719         case 0:
720                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
721                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
722                 break;
723         case 1:
724                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
725                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
726                 break;
727         }
728         for (nbank = 0; nbank < 2; nbank++) {
729                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
730                 bank->base = cpu_to_le32(runtime->dma_addr);
731                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
732                 bank->start = 0;
733                 bank->num_of_loops = 0;
734         }
735         return 0;
736 }
737 
738 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
739 {
740         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
741         struct snd_pcm_runtime *runtime = substream->runtime;
742         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
743         struct snd_ymfpci_voice *voice = ypcm->voices[0];
744 
745         if (!(ypcm->running && voice))
746                 return 0;
747         return le32_to_cpu(voice->bank[chip->active_bank].start);
748 }
749 
750 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
751 {
752         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
753         struct snd_pcm_runtime *runtime = substream->runtime;
754         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
755 
756         if (!ypcm->running)
757                 return 0;
758         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
759 }
760 
761 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
762 {
763         wait_queue_entry_t wait;
764         int loops = 4;
765 
766         while (loops-- > 0) {
767                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
768                         continue;
769                 init_waitqueue_entry(&wait, current);
770                 add_wait_queue(&chip->interrupt_sleep, &wait);
771                 atomic_inc(&chip->interrupt_sleep_count);
772                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
773                 remove_wait_queue(&chip->interrupt_sleep, &wait);
774         }
775 }
776 
777 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
778 {
779         struct snd_ymfpci *chip = dev_id;
780         u32 status, nvoice, mode;
781         struct snd_ymfpci_voice *voice;
782 
783         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
784         if (status & 0x80000000) {
785                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
786                 spin_lock(&chip->voice_lock);
787                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
788                         voice = &chip->voices[nvoice];
789                         if (voice->interrupt)
790                                 voice->interrupt(chip, voice);
791                 }
792                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
793                         if (chip->capture_substream[nvoice])
794                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
795                 }
796 #if 0
797                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
798                         if (chip->effect_substream[nvoice])
799                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
800                 }
801 #endif
802                 spin_unlock(&chip->voice_lock);
803                 spin_lock(&chip->reg_lock);
804                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
805                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
806                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
807                 spin_unlock(&chip->reg_lock);
808 
809                 if (atomic_read(&chip->interrupt_sleep_count)) {
810                         atomic_set(&chip->interrupt_sleep_count, 0);
811                         wake_up(&chip->interrupt_sleep);
812                 }
813         }
814 
815         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
816         if (status & 1) {
817                 if (chip->timer)
818                         snd_timer_interrupt(chip->timer, chip->timer_ticks);
819         }
820         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
821 
822         if (chip->rawmidi)
823                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
824         return IRQ_HANDLED;
825 }
826 
827 static const struct snd_pcm_hardware snd_ymfpci_playback =
828 {
829         .info =                 (SNDRV_PCM_INFO_MMAP |
830                                  SNDRV_PCM_INFO_MMAP_VALID | 
831                                  SNDRV_PCM_INFO_INTERLEAVED |
832                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
833                                  SNDRV_PCM_INFO_PAUSE |
834                                  SNDRV_PCM_INFO_RESUME),
835         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
836         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
837         .rate_min =             8000,
838         .rate_max =             48000,
839         .channels_min =         1,
840         .channels_max =         2,
841         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
842         .period_bytes_min =     64,
843         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
844         .periods_min =          3,
845         .periods_max =          1024,
846         .fifo_size =            0,
847 };
848 
849 static const struct snd_pcm_hardware snd_ymfpci_capture =
850 {
851         .info =                 (SNDRV_PCM_INFO_MMAP |
852                                  SNDRV_PCM_INFO_MMAP_VALID |
853                                  SNDRV_PCM_INFO_INTERLEAVED |
854                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
855                                  SNDRV_PCM_INFO_PAUSE |
856                                  SNDRV_PCM_INFO_RESUME),
857         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
858         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
859         .rate_min =             8000,
860         .rate_max =             48000,
861         .channels_min =         1,
862         .channels_max =         2,
863         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
864         .period_bytes_min =     64,
865         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
866         .periods_min =          3,
867         .periods_max =          1024,
868         .fifo_size =            0,
869 };
870 
871 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
872 {
873         kfree(runtime->private_data);
874 }
875 
876 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
877 {
878         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
879         struct snd_pcm_runtime *runtime = substream->runtime;
880         struct snd_ymfpci_pcm *ypcm;
881         int err;
882 
883         runtime->hw = snd_ymfpci_playback;
884         /* FIXME? True value is 256/48 = 5.33333 ms */
885         err = snd_pcm_hw_constraint_minmax(runtime,
886                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
887                                            5334, UINT_MAX);
888         if (err < 0)
889                 return err;
890         err = snd_pcm_hw_rule_noresample(runtime, 48000);
891         if (err < 0)
892                 return err;
893 
894         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
895         if (ypcm == NULL)
896                 return -ENOMEM;
897         ypcm->chip = chip;
898         ypcm->type = PLAYBACK_VOICE;
899         ypcm->substream = substream;
900         runtime->private_data = ypcm;
901         runtime->private_free = snd_ymfpci_pcm_free_substream;
902         return 0;
903 }
904 
905 /* call with spinlock held */
906 static void ymfpci_open_extension(struct snd_ymfpci *chip)
907 {
908         if (! chip->rear_opened) {
909                 if (! chip->spdif_opened) /* set AC3 */
910                         snd_ymfpci_writel(chip, YDSXGR_MODE,
911                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
912                 /* enable second codec (4CHEN) */
913                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
914                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
915         }
916 }
917 
918 /* call with spinlock held */
919 static void ymfpci_close_extension(struct snd_ymfpci *chip)
920 {
921         if (! chip->rear_opened) {
922                 if (! chip->spdif_opened)
923                         snd_ymfpci_writel(chip, YDSXGR_MODE,
924                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
925                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
926                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
927         }
928 }
929 
930 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
931 {
932         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
933         struct snd_pcm_runtime *runtime = substream->runtime;
934         struct snd_ymfpci_pcm *ypcm;
935         int err;
936         
937         err = snd_ymfpci_playback_open_1(substream);
938         if (err < 0)
939                 return err;
940         ypcm = runtime->private_data;
941         ypcm->output_front = 1;
942         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
943         ypcm->swap_rear = 0;
944         spin_lock_irq(&chip->reg_lock);
945         if (ypcm->output_rear) {
946                 ymfpci_open_extension(chip);
947                 chip->rear_opened++;
948         }
949         spin_unlock_irq(&chip->reg_lock);
950         return 0;
951 }
952 
953 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
954 {
955         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
956         struct snd_pcm_runtime *runtime = substream->runtime;
957         struct snd_ymfpci_pcm *ypcm;
958         int err;
959         
960         err = snd_ymfpci_playback_open_1(substream);
961         if (err < 0)
962                 return err;
963         ypcm = runtime->private_data;
964         ypcm->output_front = 0;
965         ypcm->output_rear = 1;
966         ypcm->swap_rear = 1;
967         spin_lock_irq(&chip->reg_lock);
968         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
969                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
970         ymfpci_open_extension(chip);
971         chip->spdif_pcm_bits = chip->spdif_bits;
972         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
973         chip->spdif_opened++;
974         spin_unlock_irq(&chip->reg_lock);
975 
976         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
977         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
978                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
979         return 0;
980 }
981 
982 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
983 {
984         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
985         struct snd_pcm_runtime *runtime = substream->runtime;
986         struct snd_ymfpci_pcm *ypcm;
987         int err;
988         
989         err = snd_ymfpci_playback_open_1(substream);
990         if (err < 0)
991                 return err;
992         ypcm = runtime->private_data;
993         ypcm->output_front = 0;
994         ypcm->output_rear = 1;
995         ypcm->swap_rear = 0;
996         spin_lock_irq(&chip->reg_lock);
997         ymfpci_open_extension(chip);
998         chip->rear_opened++;
999         spin_unlock_irq(&chip->reg_lock);
1000         return 0;
1001 }
1002 
1003 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1004                                    u32 capture_bank_number)
1005 {
1006         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1007         struct snd_pcm_runtime *runtime = substream->runtime;
1008         struct snd_ymfpci_pcm *ypcm;
1009         int err;
1010 
1011         runtime->hw = snd_ymfpci_capture;
1012         /* FIXME? True value is 256/48 = 5.33333 ms */
1013         err = snd_pcm_hw_constraint_minmax(runtime,
1014                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1015                                            5334, UINT_MAX);
1016         if (err < 0)
1017                 return err;
1018         err = snd_pcm_hw_rule_noresample(runtime, 48000);
1019         if (err < 0)
1020                 return err;
1021 
1022         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1023         if (ypcm == NULL)
1024                 return -ENOMEM;
1025         ypcm->chip = chip;
1026         ypcm->type = capture_bank_number + CAPTURE_REC;
1027         ypcm->substream = substream;    
1028         ypcm->capture_bank_number = capture_bank_number;
1029         chip->capture_substream[capture_bank_number] = substream;
1030         runtime->private_data = ypcm;
1031         runtime->private_free = snd_ymfpci_pcm_free_substream;
1032         snd_ymfpci_hw_start(chip);
1033         return 0;
1034 }
1035 
1036 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1037 {
1038         return snd_ymfpci_capture_open(substream, 0);
1039 }
1040 
1041 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1042 {
1043         return snd_ymfpci_capture_open(substream, 1);
1044 }
1045 
1046 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1047 {
1048         return 0;
1049 }
1050 
1051 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1052 {
1053         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1054         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1055 
1056         spin_lock_irq(&chip->reg_lock);
1057         if (ypcm->output_rear && chip->rear_opened > 0) {
1058                 chip->rear_opened--;
1059                 ymfpci_close_extension(chip);
1060         }
1061         spin_unlock_irq(&chip->reg_lock);
1062         return snd_ymfpci_playback_close_1(substream);
1063 }
1064 
1065 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1066 {
1067         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1068 
1069         spin_lock_irq(&chip->reg_lock);
1070         chip->spdif_opened = 0;
1071         ymfpci_close_extension(chip);
1072         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1073                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1074         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1075         spin_unlock_irq(&chip->reg_lock);
1076         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1077         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1078                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1079         return snd_ymfpci_playback_close_1(substream);
1080 }
1081 
1082 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1083 {
1084         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1085 
1086         spin_lock_irq(&chip->reg_lock);
1087         if (chip->rear_opened > 0) {
1088                 chip->rear_opened--;
1089                 ymfpci_close_extension(chip);
1090         }
1091         spin_unlock_irq(&chip->reg_lock);
1092         return snd_ymfpci_playback_close_1(substream);
1093 }
1094 
1095 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1096 {
1097         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1098         struct snd_pcm_runtime *runtime = substream->runtime;
1099         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1100 
1101         if (ypcm != NULL) {
1102                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1103                 snd_ymfpci_hw_stop(chip);
1104         }
1105         return 0;
1106 }
1107 
1108 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1109         .open =                 snd_ymfpci_playback_open,
1110         .close =                snd_ymfpci_playback_close,
1111         .hw_params =            snd_ymfpci_playback_hw_params,
1112         .hw_free =              snd_ymfpci_playback_hw_free,
1113         .prepare =              snd_ymfpci_playback_prepare,
1114         .trigger =              snd_ymfpci_playback_trigger,
1115         .pointer =              snd_ymfpci_playback_pointer,
1116 };
1117 
1118 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1119         .open =                 snd_ymfpci_capture_rec_open,
1120         .close =                snd_ymfpci_capture_close,
1121         .hw_free =              snd_ymfpci_capture_hw_free,
1122         .prepare =              snd_ymfpci_capture_prepare,
1123         .trigger =              snd_ymfpci_capture_trigger,
1124         .pointer =              snd_ymfpci_capture_pointer,
1125 };
1126 
1127 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1128 {
1129         struct snd_pcm *pcm;
1130         int err;
1131 
1132         err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm);
1133         if (err < 0)
1134                 return err;
1135         pcm->private_data = chip;
1136 
1137         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1138         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1139 
1140         /* global setup */
1141         pcm->info_flags = 0;
1142         strcpy(pcm->name, "YMFPCI");
1143         chip->pcm = pcm;
1144 
1145         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1146                                        &chip->pci->dev, 64*1024, 256*1024);
1147 
1148         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1149                                      snd_pcm_std_chmaps, 2, 0, NULL);
1150 }
1151 
1152 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1153         .open =                 snd_ymfpci_capture_ac97_open,
1154         .close =                snd_ymfpci_capture_close,
1155         .hw_free =              snd_ymfpci_capture_hw_free,
1156         .prepare =              snd_ymfpci_capture_prepare,
1157         .trigger =              snd_ymfpci_capture_trigger,
1158         .pointer =              snd_ymfpci_capture_pointer,
1159 };
1160 
1161 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1162 {
1163         struct snd_pcm *pcm;
1164         int err;
1165 
1166         err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm);
1167         if (err < 0)
1168                 return err;
1169         pcm->private_data = chip;
1170 
1171         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1172 
1173         /* global setup */
1174         pcm->info_flags = 0;
1175         sprintf(pcm->name, "YMFPCI - %s",
1176                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1177         chip->pcm2 = pcm;
1178 
1179         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1180                                        &chip->pci->dev, 64*1024, 256*1024);
1181 
1182         return 0;
1183 }
1184 
1185 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1186         .open =                 snd_ymfpci_playback_spdif_open,
1187         .close =                snd_ymfpci_playback_spdif_close,
1188         .hw_params =            snd_ymfpci_playback_hw_params,
1189         .hw_free =              snd_ymfpci_playback_hw_free,
1190         .prepare =              snd_ymfpci_playback_prepare,
1191         .trigger =              snd_ymfpci_playback_trigger,
1192         .pointer =              snd_ymfpci_playback_pointer,
1193 };
1194 
1195 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1196 {
1197         struct snd_pcm *pcm;
1198         int err;
1199 
1200         err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm);
1201         if (err < 0)
1202                 return err;
1203         pcm->private_data = chip;
1204 
1205         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1206 
1207         /* global setup */
1208         pcm->info_flags = 0;
1209         strcpy(pcm->name, "YMFPCI - IEC958");
1210         chip->pcm_spdif = pcm;
1211 
1212         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1213                                        &chip->pci->dev, 64*1024, 256*1024);
1214 
1215         return 0;
1216 }
1217 
1218 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1219         .open =                 snd_ymfpci_playback_4ch_open,
1220         .close =                snd_ymfpci_playback_4ch_close,
1221         .hw_params =            snd_ymfpci_playback_hw_params,
1222         .hw_free =              snd_ymfpci_playback_hw_free,
1223         .prepare =              snd_ymfpci_playback_prepare,
1224         .trigger =              snd_ymfpci_playback_trigger,
1225         .pointer =              snd_ymfpci_playback_pointer,
1226 };
1227 
1228 static const struct snd_pcm_chmap_elem surround_map[] = {
1229         { .channels = 1,
1230           .map = { SNDRV_CHMAP_MONO } },
1231         { .channels = 2,
1232           .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1233         { }
1234 };
1235 
1236 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1237 {
1238         struct snd_pcm *pcm;
1239         int err;
1240 
1241         err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm);
1242         if (err < 0)
1243                 return err;
1244         pcm->private_data = chip;
1245 
1246         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1247 
1248         /* global setup */
1249         pcm->info_flags = 0;
1250         strcpy(pcm->name, "YMFPCI - Rear PCM");
1251         chip->pcm_4ch = pcm;
1252 
1253         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1254                                        &chip->pci->dev, 64*1024, 256*1024);
1255 
1256         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1257                                      surround_map, 2, 0, NULL);
1258 }
1259 
1260 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1261 {
1262         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1263         uinfo->count = 1;
1264         return 0;
1265 }
1266 
1267 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1268                                         struct snd_ctl_elem_value *ucontrol)
1269 {
1270         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1271 
1272         spin_lock_irq(&chip->reg_lock);
1273         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1274         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1275         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1276         spin_unlock_irq(&chip->reg_lock);
1277         return 0;
1278 }
1279 
1280 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1281                                          struct snd_ctl_elem_value *ucontrol)
1282 {
1283         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1284         unsigned int val;
1285         int change;
1286 
1287         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1288               (ucontrol->value.iec958.status[1] << 8);
1289         spin_lock_irq(&chip->reg_lock);
1290         change = chip->spdif_bits != val;
1291         chip->spdif_bits = val;
1292         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1293                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1294         spin_unlock_irq(&chip->reg_lock);
1295         return change;
1296 }
1297 
1298 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1299 {
1300         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1301         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1302         .info =         snd_ymfpci_spdif_default_info,
1303         .get =          snd_ymfpci_spdif_default_get,
1304         .put =          snd_ymfpci_spdif_default_put
1305 };
1306 
1307 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1308 {
1309         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1310         uinfo->count = 1;
1311         return 0;
1312 }
1313 
1314 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1315                                       struct snd_ctl_elem_value *ucontrol)
1316 {
1317         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1318 
1319         spin_lock_irq(&chip->reg_lock);
1320         ucontrol->value.iec958.status[0] = 0x3e;
1321         ucontrol->value.iec958.status[1] = 0xff;
1322         spin_unlock_irq(&chip->reg_lock);
1323         return 0;
1324 }
1325 
1326 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1327 {
1328         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1329         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1330         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1331         .info =         snd_ymfpci_spdif_mask_info,
1332         .get =          snd_ymfpci_spdif_mask_get,
1333 };
1334 
1335 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1336 {
1337         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1338         uinfo->count = 1;
1339         return 0;
1340 }
1341 
1342 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1343                                         struct snd_ctl_elem_value *ucontrol)
1344 {
1345         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1346 
1347         spin_lock_irq(&chip->reg_lock);
1348         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1349         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1350         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1351         spin_unlock_irq(&chip->reg_lock);
1352         return 0;
1353 }
1354 
1355 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1356                                         struct snd_ctl_elem_value *ucontrol)
1357 {
1358         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1359         unsigned int val;
1360         int change;
1361 
1362         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1363               (ucontrol->value.iec958.status[1] << 8);
1364         spin_lock_irq(&chip->reg_lock);
1365         change = chip->spdif_pcm_bits != val;
1366         chip->spdif_pcm_bits = val;
1367         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1368                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1369         spin_unlock_irq(&chip->reg_lock);
1370         return change;
1371 }
1372 
1373 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1374 {
1375         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1376         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1377         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1378         .info =         snd_ymfpci_spdif_stream_info,
1379         .get =          snd_ymfpci_spdif_stream_get,
1380         .put =          snd_ymfpci_spdif_stream_put
1381 };
1382 
1383 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1384 {
1385         static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1386 
1387         return snd_ctl_enum_info(info, 1, 3, texts);
1388 }
1389 
1390 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1391 {
1392         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1393         u16 reg;
1394 
1395         spin_lock_irq(&chip->reg_lock);
1396         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1397         spin_unlock_irq(&chip->reg_lock);
1398         if (!(reg & 0x100))
1399                 value->value.enumerated.item[0] = 0;
1400         else
1401                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1402         return 0;
1403 }
1404 
1405 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1406 {
1407         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1408         u16 reg, old_reg;
1409 
1410         spin_lock_irq(&chip->reg_lock);
1411         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1412         if (value->value.enumerated.item[0] == 0)
1413                 reg = old_reg & ~0x100;
1414         else
1415                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1416         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1417         spin_unlock_irq(&chip->reg_lock);
1418         return reg != old_reg;
1419 }
1420 
1421 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1422         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1423         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1424         .name =         "Direct Recording Source",
1425         .info =         snd_ymfpci_drec_source_info,
1426         .get =          snd_ymfpci_drec_source_get,
1427         .put =          snd_ymfpci_drec_source_put
1428 };
1429 
1430 /*
1431  *  Mixer controls
1432  */
1433 
1434 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1435 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1436   .info = snd_ymfpci_info_single, \
1437   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1438   .private_value = ((reg) | ((shift) << 16)) }
1439 
1440 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1441 
1442 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1443                                  struct snd_ctl_elem_value *ucontrol)
1444 {
1445         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1446         int reg = kcontrol->private_value & 0xffff;
1447         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1448         unsigned int mask = 1;
1449         
1450         switch (reg) {
1451         case YDSXGR_SPDIFOUTCTRL: break;
1452         case YDSXGR_SPDIFINCTRL: break;
1453         default: return -EINVAL;
1454         }
1455         ucontrol->value.integer.value[0] =
1456                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1457         return 0;
1458 }
1459 
1460 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1461                                  struct snd_ctl_elem_value *ucontrol)
1462 {
1463         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1464         int reg = kcontrol->private_value & 0xffff;
1465         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1466         unsigned int mask = 1;
1467         int change;
1468         unsigned int val, oval;
1469         
1470         switch (reg) {
1471         case YDSXGR_SPDIFOUTCTRL: break;
1472         case YDSXGR_SPDIFINCTRL: break;
1473         default: return -EINVAL;
1474         }
1475         val = (ucontrol->value.integer.value[0] & mask);
1476         val <<= shift;
1477         spin_lock_irq(&chip->reg_lock);
1478         oval = snd_ymfpci_readl(chip, reg);
1479         val = (oval & ~(mask << shift)) | val;
1480         change = val != oval;
1481         snd_ymfpci_writel(chip, reg, val);
1482         spin_unlock_irq(&chip->reg_lock);
1483         return change;
1484 }
1485 
1486 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1487 
1488 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1489 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1490   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1491   .info = snd_ymfpci_info_double, \
1492   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1493   .private_value = reg, \
1494   .tlv = { .p = db_scale_native } }
1495 
1496 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1497 {
1498         unsigned int reg = kcontrol->private_value;
1499 
1500         if (reg < 0x80 || reg >= 0xc0)
1501                 return -EINVAL;
1502         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1503         uinfo->count = 2;
1504         uinfo->value.integer.min = 0;
1505         uinfo->value.integer.max = 16383;
1506         return 0;
1507 }
1508 
1509 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1510 {
1511         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1512         unsigned int reg = kcontrol->private_value;
1513         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1514         unsigned int val;
1515         
1516         if (reg < 0x80 || reg >= 0xc0)
1517                 return -EINVAL;
1518         spin_lock_irq(&chip->reg_lock);
1519         val = snd_ymfpci_readl(chip, reg);
1520         spin_unlock_irq(&chip->reg_lock);
1521         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1522         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1523         return 0;
1524 }
1525 
1526 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1527 {
1528         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1529         unsigned int reg = kcontrol->private_value;
1530         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1531         int change;
1532         unsigned int val1, val2, oval;
1533         
1534         if (reg < 0x80 || reg >= 0xc0)
1535                 return -EINVAL;
1536         val1 = ucontrol->value.integer.value[0] & mask;
1537         val2 = ucontrol->value.integer.value[1] & mask;
1538         val1 <<= shift_left;
1539         val2 <<= shift_right;
1540         spin_lock_irq(&chip->reg_lock);
1541         oval = snd_ymfpci_readl(chip, reg);
1542         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1543         change = val1 != oval;
1544         snd_ymfpci_writel(chip, reg, val1);
1545         spin_unlock_irq(&chip->reg_lock);
1546         return change;
1547 }
1548 
1549 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1550                                        struct snd_ctl_elem_value *ucontrol)
1551 {
1552         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1553         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1554         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1555         int change;
1556         unsigned int value, oval;
1557         
1558         value = ucontrol->value.integer.value[0] & 0x3fff;
1559         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1560         spin_lock_irq(&chip->reg_lock);
1561         oval = snd_ymfpci_readl(chip, reg);
1562         change = value != oval;
1563         snd_ymfpci_writel(chip, reg, value);
1564         snd_ymfpci_writel(chip, reg2, value);
1565         spin_unlock_irq(&chip->reg_lock);
1566         return change;
1567 }
1568 
1569 /*
1570  * 4ch duplication
1571  */
1572 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1573 
1574 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1575 {
1576         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1577         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1578         return 0;
1579 }
1580 
1581 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1582 {
1583         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1584         int change;
1585         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1586         if (change)
1587                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1588         return change;
1589 }
1590 
1591 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1592         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1593         .name = "4ch Duplication",
1594         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1595         .info = snd_ymfpci_info_dup4ch,
1596         .get = snd_ymfpci_get_dup4ch,
1597         .put = snd_ymfpci_put_dup4ch,
1598 };
1599 
1600 static const struct snd_kcontrol_new snd_ymfpci_controls[] = {
1601 {
1602         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1603         .name = "Wave Playback Volume",
1604         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1605                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1606         .info = snd_ymfpci_info_double,
1607         .get = snd_ymfpci_get_double,
1608         .put = snd_ymfpci_put_nativedacvol,
1609         .private_value = YDSXGR_NATIVEDACOUTVOL,
1610         .tlv = { .p = db_scale_native },
1611 },
1612 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1613 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1614 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1615 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1616 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1617 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1618 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1619 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1620 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1621 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1622 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1623 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1624 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1625 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1626 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1627 };
1628 
1629 
1630 /*
1631  * GPIO
1632  */
1633 
1634 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1635 {
1636         u16 reg, mode;
1637         unsigned long flags;
1638 
1639         spin_lock_irqsave(&chip->reg_lock, flags);
1640         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1641         reg &= ~(1 << (pin + 8));
1642         reg |= (1 << pin);
1643         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1644         /* set the level mode for input line */
1645         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1646         mode &= ~(3 << (pin * 2));
1647         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1648         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1649         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1650         spin_unlock_irqrestore(&chip->reg_lock, flags);
1651         return (mode >> pin) & 1;
1652 }
1653 
1654 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1655 {
1656         u16 reg;
1657         unsigned long flags;
1658 
1659         spin_lock_irqsave(&chip->reg_lock, flags);
1660         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1661         reg &= ~(1 << pin);
1662         reg &= ~(1 << (pin + 8));
1663         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1664         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1665         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1666         spin_unlock_irqrestore(&chip->reg_lock, flags);
1667 
1668         return 0;
1669 }
1670 
1671 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1672 
1673 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1674 {
1675         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1676         int pin = (int)kcontrol->private_value;
1677         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1678         return 0;
1679 }
1680 
1681 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1682 {
1683         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1684         int pin = (int)kcontrol->private_value;
1685 
1686         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1687                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1688                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1689                 return 1;
1690         }
1691         return 0;
1692 }
1693 
1694 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1695         .name = "Shared Rear/Line-In Switch",
1696         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1697         .info = snd_ymfpci_gpio_sw_info,
1698         .get = snd_ymfpci_gpio_sw_get,
1699         .put = snd_ymfpci_gpio_sw_put,
1700         .private_value = 2,
1701 };
1702 
1703 /*
1704  * PCM voice volume
1705  */
1706 
1707 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1708                                    struct snd_ctl_elem_info *uinfo)
1709 {
1710         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1711         uinfo->count = 2;
1712         uinfo->value.integer.min = 0;
1713         uinfo->value.integer.max = 0x8000;
1714         return 0;
1715 }
1716 
1717 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1718                                   struct snd_ctl_elem_value *ucontrol)
1719 {
1720         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1721         unsigned int subs = kcontrol->id.subdevice;
1722 
1723         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1724         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1725         return 0;
1726 }
1727 
1728 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1729                                   struct snd_ctl_elem_value *ucontrol)
1730 {
1731         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1732         unsigned int subs = kcontrol->id.subdevice;
1733         struct snd_pcm_substream *substream;
1734         unsigned long flags;
1735 
1736         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1737             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1738                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1739                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1740                 if (chip->pcm_mixer[subs].left > 0x8000)
1741                         chip->pcm_mixer[subs].left = 0x8000;
1742                 if (chip->pcm_mixer[subs].right > 0x8000)
1743                         chip->pcm_mixer[subs].right = 0x8000;
1744 
1745                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1746                 spin_lock_irqsave(&chip->voice_lock, flags);
1747                 if (substream->runtime && substream->runtime->private_data) {
1748                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1749                         if (!ypcm->use_441_slot)
1750                                 ypcm->update_pcm_vol = 2;
1751                 }
1752                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1753                 return 1;
1754         }
1755         return 0;
1756 }
1757 
1758 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1759         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1760         .name = "PCM Playback Volume",
1761         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1762                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1763         .info = snd_ymfpci_pcm_vol_info,
1764         .get = snd_ymfpci_pcm_vol_get,
1765         .put = snd_ymfpci_pcm_vol_put,
1766 };
1767 
1768 
1769 /*
1770  *  Mixer routines
1771  */
1772 
1773 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1774 {
1775         struct snd_ymfpci *chip = bus->private_data;
1776         chip->ac97_bus = NULL;
1777 }
1778 
1779 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1780 {
1781         struct snd_ymfpci *chip = ac97->private_data;
1782         chip->ac97 = NULL;
1783 }
1784 
1785 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1786 {
1787         struct snd_ac97_template ac97;
1788         struct snd_kcontrol *kctl;
1789         struct snd_pcm_substream *substream;
1790         unsigned int idx;
1791         int err;
1792         static const struct snd_ac97_bus_ops ops = {
1793                 .write = snd_ymfpci_codec_write,
1794                 .read = snd_ymfpci_codec_read,
1795         };
1796 
1797         err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus);
1798         if (err < 0)
1799                 return err;
1800         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1801         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1802 
1803         memset(&ac97, 0, sizeof(ac97));
1804         ac97.private_data = chip;
1805         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1806         err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97);
1807         if (err < 0)
1808                 return err;
1809 
1810         /* to be sure */
1811         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1812                              AC97_EA_VRA|AC97_EA_VRM, 0);
1813 
1814         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1815                 err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip));
1816                 if (err < 0)
1817                         return err;
1818         }
1819         if (chip->ac97->ext_id & AC97_EI_SDAC) {
1820                 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1821                 err = snd_ctl_add(chip->card, kctl);
1822                 if (err < 0)
1823                         return err;
1824         }
1825 
1826         /* add S/PDIF control */
1827         if (snd_BUG_ON(!chip->pcm_spdif))
1828                 return -ENXIO;
1829         kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip);
1830         err = snd_ctl_add(chip->card, kctl);
1831         if (err < 0)
1832                 return err;
1833         kctl->id.device = chip->pcm_spdif->device;
1834         kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip);
1835         err = snd_ctl_add(chip->card, kctl);
1836         if (err < 0)
1837                 return err;
1838         kctl->id.device = chip->pcm_spdif->device;
1839         kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip);
1840         err = snd_ctl_add(chip->card, kctl);
1841         if (err < 0)
1842                 return err;
1843         kctl->id.device = chip->pcm_spdif->device;
1844         chip->spdif_pcm_ctl = kctl;
1845 
1846         /* direct recording source */
1847         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754) {
1848                 kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip);
1849                 err = snd_ctl_add(chip->card, kctl);
1850                 if (err < 0)
1851                         return err;
1852         }
1853 
1854         /*
1855          * shared rear/line-in
1856          */
1857         if (rear_switch) {
1858                 err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip));
1859                 if (err < 0)
1860                         return err;
1861         }
1862 
1863         /* per-voice volume */
1864         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1865         for (idx = 0; idx < 32; ++idx) {
1866                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1867                 if (!kctl)
1868                         return -ENOMEM;
1869                 kctl->id.device = chip->pcm->device;
1870                 kctl->id.subdevice = idx;
1871                 kctl->private_value = (unsigned long)substream;
1872                 err = snd_ctl_add(chip->card, kctl);
1873                 if (err < 0)
1874                         return err;
1875                 chip->pcm_mixer[idx].left = 0x8000;
1876                 chip->pcm_mixer[idx].right = 0x8000;
1877                 chip->pcm_mixer[idx].ctl = kctl;
1878                 substream = substream->next;
1879         }
1880 
1881         return 0;
1882 }
1883 
1884 
1885 /*
1886  * timer
1887  */
1888 
1889 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1890 {
1891         struct snd_ymfpci *chip;
1892         unsigned long flags;
1893         unsigned int count;
1894 
1895         chip = snd_timer_chip(timer);
1896         spin_lock_irqsave(&chip->reg_lock, flags);
1897         if (timer->sticks > 1) {
1898                 chip->timer_ticks = timer->sticks;
1899                 count = timer->sticks - 1;
1900         } else {
1901                 /*
1902                  * Divisor 1 is not allowed; fake it by using divisor 2 and
1903                  * counting two ticks for each interrupt.
1904                  */
1905                 chip->timer_ticks = 2;
1906                 count = 2 - 1;
1907         }
1908         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1909         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1910         spin_unlock_irqrestore(&chip->reg_lock, flags);
1911         return 0;
1912 }
1913 
1914 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1915 {
1916         struct snd_ymfpci *chip;
1917         unsigned long flags;
1918 
1919         chip = snd_timer_chip(timer);
1920         spin_lock_irqsave(&chip->reg_lock, flags);
1921         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1922         spin_unlock_irqrestore(&chip->reg_lock, flags);
1923         return 0;
1924 }
1925 
1926 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1927                                                unsigned long *num, unsigned long *den)
1928 {
1929         *num = 1;
1930         *den = 96000;
1931         return 0;
1932 }
1933 
1934 static const struct snd_timer_hardware snd_ymfpci_timer_hw = {
1935         .flags = SNDRV_TIMER_HW_AUTO,
1936         .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1937         .ticks = 0x10000,
1938         .start = snd_ymfpci_timer_start,
1939         .stop = snd_ymfpci_timer_stop,
1940         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1941 };
1942 
1943 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1944 {
1945         struct snd_timer *timer = NULL;
1946         struct snd_timer_id tid;
1947         int err;
1948 
1949         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1950         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1951         tid.card = chip->card->number;
1952         tid.device = device;
1953         tid.subdevice = 0;
1954         err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer);
1955         if (err >= 0) {
1956                 strcpy(timer->name, "YMFPCI timer");
1957                 timer->private_data = chip;
1958                 timer->hw = snd_ymfpci_timer_hw;
1959         }
1960         chip->timer = timer;
1961         return err;
1962 }
1963 
1964 
1965 /*
1966  *  proc interface
1967  */
1968 
1969 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1970                                  struct snd_info_buffer *buffer)
1971 {
1972         struct snd_ymfpci *chip = entry->private_data;
1973         int i;
1974         
1975         snd_iprintf(buffer, "YMFPCI\n\n");
1976         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1977                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1978 }
1979 
1980 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1981 {
1982         return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1983 }
1984 
1985 /*
1986  *  initialization routines
1987  */
1988 
1989 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1990 {
1991         u8 cmd;
1992 
1993         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1994 #if 0 // force to reset
1995         if (cmd & 0x03) {
1996 #endif
1997                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1998                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1999                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2000                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2001                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2002 #if 0
2003         }
2004 #endif
2005 }
2006 
2007 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2008 {
2009         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2010 }
2011 
2012 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2013 {
2014         u32 val;
2015         int timeout = 1000;
2016 
2017         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2018         if (val)
2019                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2020         while (timeout-- > 0) {
2021                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2022                 if ((val & 0x00000002) == 0)
2023                         break;
2024         }
2025 }
2026 
2027 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2028 {
2029         int err, is_1e;
2030         const char *name;
2031 
2032         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2033                                &chip->pci->dev);
2034         if (err >= 0) {
2035                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2036                         dev_err(chip->card->dev,
2037                                 "DSP microcode has wrong size\n");
2038                         err = -EINVAL;
2039                 }
2040         }
2041         if (err < 0)
2042                 return err;
2043         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2044                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2045                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2046                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2047         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2048         err = request_firmware(&chip->controller_microcode, name,
2049                                &chip->pci->dev);
2050         if (err >= 0) {
2051                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2052                         dev_err(chip->card->dev,
2053                                 "controller microcode has wrong size\n");
2054                         err = -EINVAL;
2055                 }
2056         }
2057         if (err < 0)
2058                 return err;
2059         return 0;
2060 }
2061 
2062 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2063 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2064 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2065 
2066 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2067 {
2068         int i;
2069         u16 ctrl;
2070         const __le32 *inst;
2071 
2072         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2073         snd_ymfpci_disable_dsp(chip);
2074         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2075         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2076         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2077         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2078         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2079         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2080         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2081         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2082         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2083 
2084         /* setup DSP instruction code */
2085         inst = (const __le32 *)chip->dsp_microcode->data;
2086         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2087                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2088                                   le32_to_cpu(inst[i]));
2089 
2090         /* setup control instruction code */
2091         inst = (const __le32 *)chip->controller_microcode->data;
2092         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2093                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2094                                   le32_to_cpu(inst[i]));
2095 
2096         snd_ymfpci_enable_dsp(chip);
2097 }
2098 
2099 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2100 {
2101         long size, playback_ctrl_size;
2102         int voice, bank, reg;
2103         u8 *ptr;
2104         dma_addr_t ptr_addr;
2105 
2106         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2107         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2108         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2109         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2110         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2111         
2112         size = ALIGN(playback_ctrl_size, 0x100) +
2113                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2114                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2115                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2116                chip->work_size;
2117         /* work_ptr must be aligned to 256 bytes, but it's already
2118            covered with the kernel page allocation mechanism */
2119         chip->work_ptr = snd_devm_alloc_pages(&chip->pci->dev,
2120                                               SNDRV_DMA_TYPE_DEV, size);
2121         if (!chip->work_ptr)
2122                 return -ENOMEM;
2123         ptr = chip->work_ptr->area;
2124         ptr_addr = chip->work_ptr->addr;
2125         memset(ptr, 0, size);   /* for sure */
2126 
2127         chip->bank_base_playback = ptr;
2128         chip->bank_base_playback_addr = ptr_addr;
2129         chip->ctrl_playback = (__le32 *)ptr;
2130         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2131         ptr += ALIGN(playback_ctrl_size, 0x100);
2132         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2133         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2134                 chip->voices[voice].number = voice;
2135                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2136                 chip->voices[voice].bank_addr = ptr_addr;
2137                 for (bank = 0; bank < 2; bank++) {
2138                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2139                         ptr += chip->bank_size_playback;
2140                         ptr_addr += chip->bank_size_playback;
2141                 }
2142         }
2143         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2144         ptr_addr = ALIGN(ptr_addr, 0x100);
2145         chip->bank_base_capture = ptr;
2146         chip->bank_base_capture_addr = ptr_addr;
2147         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2148                 for (bank = 0; bank < 2; bank++) {
2149                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2150                         ptr += chip->bank_size_capture;
2151                         ptr_addr += chip->bank_size_capture;
2152                 }
2153         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2154         ptr_addr = ALIGN(ptr_addr, 0x100);
2155         chip->bank_base_effect = ptr;
2156         chip->bank_base_effect_addr = ptr_addr;
2157         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2158                 for (bank = 0; bank < 2; bank++) {
2159                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2160                         ptr += chip->bank_size_effect;
2161                         ptr_addr += chip->bank_size_effect;
2162                 }
2163         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2164         ptr_addr = ALIGN(ptr_addr, 0x100);
2165         chip->work_base = ptr;
2166         chip->work_base_addr = ptr_addr;
2167         
2168         snd_BUG_ON(ptr + chip->work_size !=
2169                    chip->work_ptr->area + chip->work_ptr->bytes);
2170 
2171         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2172         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2173         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2174         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2175         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2176 
2177         /* S/PDIF output initialization */
2178         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2179         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2180         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2181 
2182         /* S/PDIF input initialization */
2183         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2184 
2185         /* digital mixer setup */
2186         for (reg = 0x80; reg < 0xc0; reg += 4)
2187                 snd_ymfpci_writel(chip, reg, 0);
2188         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2189         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2190         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2191         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2192         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2193         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2194         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2195         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2196         
2197         return 0;
2198 }
2199 
2200 static void snd_ymfpci_free(struct snd_card *card)
2201 {
2202         struct snd_ymfpci *chip = card->private_data;
2203         u16 ctrl;
2204 
2205         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2206         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2207         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2208         snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2209         snd_ymfpci_disable_dsp(chip);
2210         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2211         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2212         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2213         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2214         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2215         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2216         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2217 
2218         snd_ymfpci_ac3_done(chip);
2219 
2220         snd_ymfpci_free_gameport(chip);
2221         
2222         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2223         
2224         release_firmware(chip->dsp_microcode);
2225         release_firmware(chip->controller_microcode);
2226 }
2227 
2228 #ifdef CONFIG_PM_SLEEP
2229 static const int saved_regs_index[] = {
2230         /* spdif */
2231         YDSXGR_SPDIFOUTCTRL,
2232         YDSXGR_SPDIFOUTSTATUS,
2233         YDSXGR_SPDIFINCTRL,
2234         /* volumes */
2235         YDSXGR_PRIADCLOOPVOL,
2236         YDSXGR_NATIVEDACINVOL,
2237         YDSXGR_NATIVEDACOUTVOL,
2238         YDSXGR_BUF441OUTVOL,
2239         YDSXGR_NATIVEADCINVOL,
2240         YDSXGR_SPDIFLOOPVOL,
2241         YDSXGR_SPDIFOUTVOL,
2242         YDSXGR_ZVOUTVOL,
2243         YDSXGR_LEGACYOUTVOL,
2244         /* address bases */
2245         YDSXGR_PLAYCTRLBASE,
2246         YDSXGR_RECCTRLBASE,
2247         YDSXGR_EFFCTRLBASE,
2248         YDSXGR_WORKBASE,
2249         /* capture set up */
2250         YDSXGR_MAPOFREC,
2251         YDSXGR_RECFORMAT,
2252         YDSXGR_RECSLOTSR,
2253         YDSXGR_ADCFORMAT,
2254         YDSXGR_ADCSLOTSR,
2255 };
2256 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2257 
2258 static int snd_ymfpci_suspend(struct device *dev)
2259 {
2260         struct snd_card *card = dev_get_drvdata(dev);
2261         struct snd_ymfpci *chip = card->private_data;
2262         unsigned int i;
2263         
2264         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2265         snd_ac97_suspend(chip->ac97);
2266         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2267                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2268         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2269         pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2270                              &chip->saved_dsxg_legacy);
2271         pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2272                              &chip->saved_dsxg_elegacy);
2273         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2274         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2275         snd_ymfpci_disable_dsp(chip);
2276         return 0;
2277 }
2278 
2279 static int snd_ymfpci_resume(struct device *dev)
2280 {
2281         struct pci_dev *pci = to_pci_dev(dev);
2282         struct snd_card *card = dev_get_drvdata(dev);
2283         struct snd_ymfpci *chip = card->private_data;
2284         unsigned int i;
2285 
2286         snd_ymfpci_aclink_reset(pci);
2287         snd_ymfpci_codec_ready(chip, 0);
2288         snd_ymfpci_download_image(chip);
2289         udelay(100);
2290 
2291         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2292                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2293 
2294         snd_ac97_resume(chip->ac97);
2295 
2296         pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2297                               chip->saved_dsxg_legacy);
2298         pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2299                               chip->saved_dsxg_elegacy);
2300 
2301         /* start hw again */
2302         if (chip->start_count > 0) {
2303                 spin_lock_irq(&chip->reg_lock);
2304                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2305                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2306                 spin_unlock_irq(&chip->reg_lock);
2307         }
2308         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2309         return 0;
2310 }
2311 
2312 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2313 #endif /* CONFIG_PM_SLEEP */
2314 
2315 int snd_ymfpci_create(struct snd_card *card,
2316                       struct pci_dev *pci,
2317                       unsigned short old_legacy_ctrl)
2318 {
2319         struct snd_ymfpci *chip = card->private_data;
2320         int err;
2321         
2322         /* enable PCI device */
2323         err = pcim_enable_device(pci);
2324         if (err < 0)
2325                 return err;
2326 
2327         chip->old_legacy_ctrl = old_legacy_ctrl;
2328         spin_lock_init(&chip->reg_lock);
2329         spin_lock_init(&chip->voice_lock);
2330         init_waitqueue_head(&chip->interrupt_sleep);
2331         atomic_set(&chip->interrupt_sleep_count, 0);
2332         chip->card = card;
2333         chip->pci = pci;
2334         chip->irq = -1;
2335         chip->device_id = pci->device;
2336         chip->rev = pci->revision;
2337 
2338         err = pci_request_regions(pci, "YMFPCI");
2339         if (err < 0)
2340                 return err;
2341 
2342         chip->reg_area_phys = pci_resource_start(pci, 0);
2343         chip->reg_area_virt = devm_ioremap(&pci->dev, chip->reg_area_phys, 0x8000);
2344         if (!chip->reg_area_virt) {
2345                 dev_err(chip->card->dev,
2346                         "unable to grab memory region 0x%lx-0x%lx\n",
2347                         chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2348                 return -EBUSY;
2349         }
2350         pci_set_master(pci);
2351         chip->src441_used = -1;
2352 
2353         if (devm_request_irq(&pci->dev, pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2354                         KBUILD_MODNAME, chip)) {
2355                 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2356                 return -EBUSY;
2357         }
2358         chip->irq = pci->irq;
2359         card->sync_irq = chip->irq;
2360         card->private_free = snd_ymfpci_free;
2361 
2362         snd_ymfpci_aclink_reset(pci);
2363         if (snd_ymfpci_codec_ready(chip, 0) < 0)
2364                 return -EIO;
2365 
2366         err = snd_ymfpci_request_firmware(chip);
2367         if (err < 0) {
2368                 dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2369                 return err;
2370         }
2371         snd_ymfpci_download_image(chip);
2372 
2373         udelay(100); /* seems we need a delay after downloading image.. */
2374 
2375         if (snd_ymfpci_memalloc(chip) < 0)
2376                 return -EIO;
2377 
2378         err = snd_ymfpci_ac3_init(chip);
2379         if (err < 0)
2380                 return err;
2381 
2382 #ifdef CONFIG_PM_SLEEP
2383         chip->saved_regs = devm_kmalloc_array(&pci->dev, YDSXGR_NUM_SAVED_REGS,
2384                                               sizeof(u32), GFP_KERNEL);
2385         if (!chip->saved_regs)
2386                 return -ENOMEM;
2387 #endif
2388 
2389         snd_ymfpci_proc_init(card, chip);
2390 
2391         return 0;
2392 }
2393 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp