~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/sound/soc/intel/skylake/skl-messages.c

Version: ~ [ linux-5.0-rc2 ] ~ [ linux-4.20.2 ] ~ [ linux-4.19.15 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.93 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.150 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.170 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.132 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.62 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
  3  *  configurations
  4  *
  5  *  Copyright (C) 2015 Intel Corp
  6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
  7  *         Jeeja KP <jeeja.kp@intel.com>
  8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  9  *
 10  * This program is free software; you can redistribute it and/or modify
 11  * it under the terms of the GNU General Public License as version 2, as
 12  * published by the Free Software Foundation.
 13  *
 14  * This program is distributed in the hope that it will be useful, but
 15  * WITHOUT ANY WARRANTY; without even the implied warranty of
 16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 17  * General Public License for more details.
 18  */
 19 
 20 #include <linux/slab.h>
 21 #include <linux/pci.h>
 22 #include <sound/core.h>
 23 #include <sound/pcm.h>
 24 #include "skl-sst-dsp.h"
 25 #include "cnl-sst-dsp.h"
 26 #include "skl-sst-ipc.h"
 27 #include "skl.h"
 28 #include "../common/sst-dsp.h"
 29 #include "../common/sst-dsp-priv.h"
 30 #include "skl-topology.h"
 31 #include "skl-tplg-interface.h"
 32 
 33 static int skl_alloc_dma_buf(struct device *dev,
 34                 struct snd_dma_buffer *dmab, size_t size)
 35 {
 36         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
 37         struct hdac_bus *bus = ebus_to_hbus(ebus);
 38 
 39         if (!bus)
 40                 return -ENODEV;
 41 
 42         return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
 43 }
 44 
 45 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
 46 {
 47         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
 48         struct hdac_bus *bus = ebus_to_hbus(ebus);
 49 
 50         if (!bus)
 51                 return -ENODEV;
 52 
 53         bus->io_ops->dma_free_pages(bus, dmab);
 54 
 55         return 0;
 56 }
 57 
 58 #define SKL_ASTATE_PARAM_ID     4
 59 
 60 void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
 61 {
 62         struct skl_ipc_large_config_msg msg = {0};
 63 
 64         msg.large_param_id = SKL_ASTATE_PARAM_ID;
 65         msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
 66                                 sizeof(cnt));
 67 
 68         skl_ipc_set_large_config(&ctx->ipc, &msg, data);
 69 }
 70 
 71 #define NOTIFICATION_PARAM_ID 3
 72 #define NOTIFICATION_MASK 0xf
 73 
 74 /* disable notfication for underruns/overruns from firmware module */
 75 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
 76 {
 77         struct notification_mask mask;
 78         struct skl_ipc_large_config_msg msg = {0};
 79 
 80         mask.notify = NOTIFICATION_MASK;
 81         mask.enable = enable;
 82 
 83         msg.large_param_id = NOTIFICATION_PARAM_ID;
 84         msg.param_data_size = sizeof(mask);
 85 
 86         skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
 87 }
 88 
 89 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
 90                                 int stream_tag, int enable)
 91 {
 92         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
 93         struct hdac_bus *bus = ebus_to_hbus(ebus);
 94         struct hdac_stream *stream = snd_hdac_get_stream(bus,
 95                         SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
 96         struct hdac_ext_stream *estream;
 97 
 98         if (!stream)
 99                 return -EINVAL;
100 
101         estream = stream_to_hdac_ext_stream(stream);
102         /* enable/disable SPIB for this hdac stream */
103         snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
104 
105         /* set the spib value */
106         snd_hdac_ext_stream_set_spib(ebus, estream, size);
107 
108         return 0;
109 }
110 
111 static int skl_dsp_prepare(struct device *dev, unsigned int format,
112                         unsigned int size, struct snd_dma_buffer *dmab)
113 {
114         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
115         struct hdac_bus *bus = ebus_to_hbus(ebus);
116         struct hdac_ext_stream *estream;
117         struct hdac_stream *stream;
118         struct snd_pcm_substream substream;
119         int ret;
120 
121         if (!bus)
122                 return -ENODEV;
123 
124         memset(&substream, 0, sizeof(substream));
125         substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
126 
127         estream = snd_hdac_ext_stream_assign(ebus, &substream,
128                                         HDAC_EXT_STREAM_TYPE_HOST);
129         if (!estream)
130                 return -ENODEV;
131 
132         stream = hdac_stream(estream);
133 
134         /* assign decouple host dma channel */
135         ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
136         if (ret < 0)
137                 return ret;
138 
139         skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
140 
141         return stream->stream_tag;
142 }
143 
144 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
145 {
146         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
147         struct hdac_stream *stream;
148         struct hdac_bus *bus = ebus_to_hbus(ebus);
149 
150         if (!bus)
151                 return -ENODEV;
152 
153         stream = snd_hdac_get_stream(bus,
154                 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
155         if (!stream)
156                 return -EINVAL;
157 
158         snd_hdac_dsp_trigger(stream, start);
159 
160         return 0;
161 }
162 
163 static int skl_dsp_cleanup(struct device *dev,
164                 struct snd_dma_buffer *dmab, int stream_tag)
165 {
166         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
167         struct hdac_stream *stream;
168         struct hdac_ext_stream *estream;
169         struct hdac_bus *bus = ebus_to_hbus(ebus);
170 
171         if (!bus)
172                 return -ENODEV;
173 
174         stream = snd_hdac_get_stream(bus,
175                 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
176         if (!stream)
177                 return -EINVAL;
178 
179         estream = stream_to_hdac_ext_stream(stream);
180         skl_dsp_setup_spib(dev, 0, stream_tag, false);
181         snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
182 
183         snd_hdac_dsp_cleanup(stream, dmab);
184 
185         return 0;
186 }
187 
188 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
189 {
190         struct skl_dsp_loader_ops loader_ops;
191 
192         memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
193 
194         loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
195         loader_ops.free_dma_buf = skl_free_dma_buf;
196 
197         return loader_ops;
198 };
199 
200 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
201 {
202         struct skl_dsp_loader_ops loader_ops;
203 
204         memset(&loader_ops, 0, sizeof(loader_ops));
205 
206         loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
207         loader_ops.free_dma_buf = skl_free_dma_buf;
208         loader_ops.prepare = skl_dsp_prepare;
209         loader_ops.trigger = skl_dsp_trigger;
210         loader_ops.cleanup = skl_dsp_cleanup;
211 
212         return loader_ops;
213 };
214 
215 static const struct skl_dsp_ops dsp_ops[] = {
216         {
217                 .id = 0x9d70,
218                 .num_cores = 2,
219                 .loader_ops = skl_get_loader_ops,
220                 .init = skl_sst_dsp_init,
221                 .init_fw = skl_sst_init_fw,
222                 .cleanup = skl_sst_dsp_cleanup
223         },
224         {
225                 .id = 0x9d71,
226                 .num_cores = 2,
227                 .loader_ops = skl_get_loader_ops,
228                 .init = kbl_sst_dsp_init,
229                 .init_fw = skl_sst_init_fw,
230                 .cleanup = skl_sst_dsp_cleanup
231         },
232         {
233                 .id = 0x5a98,
234                 .num_cores = 2,
235                 .loader_ops = bxt_get_loader_ops,
236                 .init = bxt_sst_dsp_init,
237                 .init_fw = bxt_sst_init_fw,
238                 .cleanup = bxt_sst_dsp_cleanup
239         },
240         {
241                 .id = 0x3198,
242                 .num_cores = 2,
243                 .loader_ops = bxt_get_loader_ops,
244                 .init = bxt_sst_dsp_init,
245                 .init_fw = bxt_sst_init_fw,
246                 .cleanup = bxt_sst_dsp_cleanup
247         },
248         {
249                 .id = 0x9dc8,
250                 .num_cores = 4,
251                 .loader_ops = bxt_get_loader_ops,
252                 .init = cnl_sst_dsp_init,
253                 .init_fw = cnl_sst_init_fw,
254                 .cleanup = cnl_sst_dsp_cleanup
255         },
256 };
257 
258 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
259 {
260         int i;
261 
262         for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
263                 if (dsp_ops[i].id == pci_id)
264                         return &dsp_ops[i];
265         }
266 
267         return NULL;
268 }
269 
270 int skl_init_dsp(struct skl *skl)
271 {
272         void __iomem *mmio_base;
273         struct hdac_ext_bus *ebus = &skl->ebus;
274         struct hdac_bus *bus = ebus_to_hbus(ebus);
275         struct skl_dsp_loader_ops loader_ops;
276         int irq = bus->irq;
277         const struct skl_dsp_ops *ops;
278         struct skl_dsp_cores *cores;
279         int ret;
280 
281         /* enable ppcap interrupt */
282         snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
283         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
284 
285         /* read the BAR of the ADSP MMIO */
286         mmio_base = pci_ioremap_bar(skl->pci, 4);
287         if (mmio_base == NULL) {
288                 dev_err(bus->dev, "ioremap error\n");
289                 return -ENXIO;
290         }
291 
292         ops = skl_get_dsp_ops(skl->pci->device);
293         if (!ops) {
294                 ret = -EIO;
295                 goto unmap_mmio;
296         }
297 
298         loader_ops = ops->loader_ops();
299         ret = ops->init(bus->dev, mmio_base, irq,
300                                 skl->fw_name, loader_ops,
301                                 &skl->skl_sst);
302 
303         if (ret < 0)
304                 goto unmap_mmio;
305 
306         skl->skl_sst->dsp_ops = ops;
307         cores = &skl->skl_sst->cores;
308         cores->count = ops->num_cores;
309 
310         cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
311         if (!cores->state) {
312                 ret = -ENOMEM;
313                 goto unmap_mmio;
314         }
315 
316         cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
317                                      GFP_KERNEL);
318         if (!cores->usage_count) {
319                 ret = -ENOMEM;
320                 goto free_core_state;
321         }
322 
323         dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
324 
325         return 0;
326 
327 free_core_state:
328         kfree(cores->state);
329 
330 unmap_mmio:
331         iounmap(mmio_base);
332 
333         return ret;
334 }
335 
336 int skl_free_dsp(struct skl *skl)
337 {
338         struct hdac_ext_bus *ebus = &skl->ebus;
339         struct hdac_bus *bus = ebus_to_hbus(ebus);
340         struct skl_sst *ctx = skl->skl_sst;
341 
342         /* disable  ppcap interrupt */
343         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
344 
345         ctx->dsp_ops->cleanup(bus->dev, ctx);
346 
347         kfree(ctx->cores.state);
348         kfree(ctx->cores.usage_count);
349 
350         if (ctx->dsp->addr.lpe)
351                 iounmap(ctx->dsp->addr.lpe);
352 
353         return 0;
354 }
355 
356 /*
357  * In the case of "suspend_active" i.e, the Audio IP being active
358  * during system suspend, immediately excecute any pending D0i3 work
359  * before suspending. This is needed for the IP to work in low power
360  * mode during system suspend. In the case of normal suspend, cancel
361  * any pending D0i3 work.
362  */
363 int skl_suspend_late_dsp(struct skl *skl)
364 {
365         struct skl_sst *ctx = skl->skl_sst;
366         struct delayed_work *dwork;
367 
368         if (!ctx)
369                 return 0;
370 
371         dwork = &ctx->d0i3.work;
372 
373         if (dwork->work.func) {
374                 if (skl->supend_active)
375                         flush_delayed_work(dwork);
376                 else
377                         cancel_delayed_work_sync(dwork);
378         }
379 
380         return 0;
381 }
382 
383 int skl_suspend_dsp(struct skl *skl)
384 {
385         struct skl_sst *ctx = skl->skl_sst;
386         int ret;
387 
388         /* if ppcap is not supported return 0 */
389         if (!skl->ebus.bus.ppcap)
390                 return 0;
391 
392         ret = skl_dsp_sleep(ctx->dsp);
393         if (ret < 0)
394                 return ret;
395 
396         /* disable ppcap interrupt */
397         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
398         snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
399 
400         return 0;
401 }
402 
403 int skl_resume_dsp(struct skl *skl)
404 {
405         struct skl_sst *ctx = skl->skl_sst;
406         int ret;
407 
408         /* if ppcap is not supported return 0 */
409         if (!skl->ebus.bus.ppcap)
410                 return 0;
411 
412         /* enable ppcap interrupt */
413         snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
414         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
415 
416         /* check if DSP 1st boot is done */
417         if (skl->skl_sst->is_first_boot == true)
418                 return 0;
419 
420         /* disable dynamic clock gating during fw and lib download */
421         ctx->enable_miscbdcge(ctx->dev, false);
422 
423         ret = skl_dsp_wake(ctx->dsp);
424         ctx->enable_miscbdcge(ctx->dev, true);
425         if (ret < 0)
426                 return ret;
427 
428         skl_dsp_enable_notification(skl->skl_sst, false);
429 
430         if (skl->cfg.astate_cfg != NULL) {
431                 skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
432                                         skl->cfg.astate_cfg);
433         }
434         return ret;
435 }
436 
437 enum skl_bitdepth skl_get_bit_depth(int params)
438 {
439         switch (params) {
440         case 8:
441                 return SKL_DEPTH_8BIT;
442 
443         case 16:
444                 return SKL_DEPTH_16BIT;
445 
446         case 24:
447                 return SKL_DEPTH_24BIT;
448 
449         case 32:
450                 return SKL_DEPTH_32BIT;
451 
452         default:
453                 return SKL_DEPTH_INVALID;
454 
455         }
456 }
457 
458 /*
459  * Each module in DSP expects a base module configuration, which consists of
460  * PCM format information, which we calculate in driver and resource values
461  * which are read from widget information passed through topology binary
462  * This is send when we create a module with INIT_INSTANCE IPC msg
463  */
464 static void skl_set_base_module_format(struct skl_sst *ctx,
465                         struct skl_module_cfg *mconfig,
466                         struct skl_base_cfg *base_cfg)
467 {
468         struct skl_module *module = mconfig->module;
469         struct skl_module_res *res = &module->resources[mconfig->res_idx];
470         struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
471         struct skl_module_fmt *format = &fmt->inputs[0].fmt;
472 
473         base_cfg->audio_fmt.number_of_channels = format->channels;
474 
475         base_cfg->audio_fmt.s_freq = format->s_freq;
476         base_cfg->audio_fmt.bit_depth = format->bit_depth;
477         base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
478         base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
479 
480         dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
481                         format->bit_depth, format->valid_bit_depth,
482                         format->ch_cfg);
483 
484         base_cfg->audio_fmt.channel_map = format->ch_map;
485 
486         base_cfg->audio_fmt.interleaving = format->interleaving_style;
487 
488         base_cfg->cps = res->cps;
489         base_cfg->ibs = res->ibs;
490         base_cfg->obs = res->obs;
491         base_cfg->is_pages = res->is_pages;
492 }
493 
494 /*
495  * Copies copier capabilities into copier module and updates copier module
496  * config size.
497  */
498 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
499                                 struct skl_cpr_cfg *cpr_mconfig)
500 {
501         if (mconfig->formats_config.caps_size == 0)
502                 return;
503 
504         memcpy(cpr_mconfig->gtw_cfg.config_data,
505                         mconfig->formats_config.caps,
506                         mconfig->formats_config.caps_size);
507 
508         cpr_mconfig->gtw_cfg.config_length =
509                         (mconfig->formats_config.caps_size) / 4;
510 }
511 
512 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
513 /*
514  * Calculate the gatewat settings required for copier module, type of
515  * gateway and index of gateway to use
516  */
517 static u32 skl_get_node_id(struct skl_sst *ctx,
518                         struct skl_module_cfg *mconfig)
519 {
520         union skl_connector_node_id node_id = {0};
521         union skl_ssp_dma_node ssp_node  = {0};
522         struct skl_pipe_params *params = mconfig->pipe->p_params;
523 
524         switch (mconfig->dev_type) {
525         case SKL_DEVICE_BT:
526                 node_id.node.dma_type =
527                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
528                         SKL_DMA_I2S_LINK_OUTPUT_CLASS :
529                         SKL_DMA_I2S_LINK_INPUT_CLASS;
530                 node_id.node.vindex = params->host_dma_id +
531                                         (mconfig->vbus_id << 3);
532                 break;
533 
534         case SKL_DEVICE_I2S:
535                 node_id.node.dma_type =
536                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
537                         SKL_DMA_I2S_LINK_OUTPUT_CLASS :
538                         SKL_DMA_I2S_LINK_INPUT_CLASS;
539                 ssp_node.dma_node.time_slot_index = mconfig->time_slot;
540                 ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
541                 node_id.node.vindex = ssp_node.val;
542                 break;
543 
544         case SKL_DEVICE_DMIC:
545                 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
546                 node_id.node.vindex = mconfig->vbus_id +
547                                          (mconfig->time_slot);
548                 break;
549 
550         case SKL_DEVICE_HDALINK:
551                 node_id.node.dma_type =
552                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
553                         SKL_DMA_HDA_LINK_OUTPUT_CLASS :
554                         SKL_DMA_HDA_LINK_INPUT_CLASS;
555                 node_id.node.vindex = params->link_dma_id;
556                 break;
557 
558         case SKL_DEVICE_HDAHOST:
559                 node_id.node.dma_type =
560                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
561                         SKL_DMA_HDA_HOST_OUTPUT_CLASS :
562                         SKL_DMA_HDA_HOST_INPUT_CLASS;
563                 node_id.node.vindex = params->host_dma_id;
564                 break;
565 
566         default:
567                 node_id.val = 0xFFFFFFFF;
568                 break;
569         }
570 
571         return node_id.val;
572 }
573 
574 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
575                         struct skl_module_cfg *mconfig,
576                         struct skl_cpr_cfg *cpr_mconfig)
577 {
578         u32 dma_io_buf;
579         struct skl_module_res *res;
580         int res_idx = mconfig->res_idx;
581         struct skl *skl = get_skl_ctx(ctx->dev);
582 
583         cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
584 
585         if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
586                 cpr_mconfig->cpr_feature_mask = 0;
587                 return;
588         }
589 
590         if (skl->nr_modules) {
591                 res = &mconfig->module->resources[mconfig->res_idx];
592                 cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
593                 goto skip_buf_size_calc;
594         } else {
595                 res = &mconfig->module->resources[res_idx];
596         }
597 
598         switch (mconfig->hw_conn_type) {
599         case SKL_CONN_SOURCE:
600                 if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
601                         dma_io_buf =  res->ibs;
602                 else
603                         dma_io_buf =  res->obs;
604                 break;
605 
606         case SKL_CONN_SINK:
607                 if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
608                         dma_io_buf =  res->obs;
609                 else
610                         dma_io_buf =  res->ibs;
611                 break;
612 
613         default:
614                 dev_warn(ctx->dev, "wrong connection type: %d\n",
615                                 mconfig->hw_conn_type);
616                 return;
617         }
618 
619         cpr_mconfig->gtw_cfg.dma_buffer_size =
620                                 mconfig->dma_buffer_size * dma_io_buf;
621 
622         /* fallback to 2ms default value */
623         if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
624                 if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
625                         cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
626                 else
627                         cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
628         }
629 
630 skip_buf_size_calc:
631         cpr_mconfig->cpr_feature_mask = 0;
632         cpr_mconfig->gtw_cfg.config_length  = 0;
633 
634         skl_copy_copier_caps(mconfig, cpr_mconfig);
635 }
636 
637 #define DMA_CONTROL_ID 5
638 #define DMA_I2S_BLOB_SIZE 21
639 
640 int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
641                                 u32 caps_size, u32 node_id)
642 {
643         struct skl_dma_control *dma_ctrl;
644         struct skl_ipc_large_config_msg msg = {0};
645         int err = 0;
646 
647 
648         /*
649          * if blob size zero, then return
650          */
651         if (caps_size == 0)
652                 return 0;
653 
654         msg.large_param_id = DMA_CONTROL_ID;
655         msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
656 
657         dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
658         if (dma_ctrl == NULL)
659                 return -ENOMEM;
660 
661         dma_ctrl->node_id = node_id;
662 
663         /*
664          * NHLT blob may contain additional configs along with i2s blob.
665          * firmware expects only the i2s blob size as the config_length.
666          * So fix to i2s blob size.
667          * size in dwords.
668          */
669         dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
670 
671         memcpy(dma_ctrl->config_data, caps, caps_size);
672 
673         err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
674 
675         kfree(dma_ctrl);
676         return err;
677 }
678 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
679 
680 static void skl_setup_out_format(struct skl_sst *ctx,
681                         struct skl_module_cfg *mconfig,
682                         struct skl_audio_data_format *out_fmt)
683 {
684         struct skl_module *module = mconfig->module;
685         struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
686         struct skl_module_fmt *format = &fmt->outputs[0].fmt;
687 
688         out_fmt->number_of_channels = (u8)format->channels;
689         out_fmt->s_freq = format->s_freq;
690         out_fmt->bit_depth = format->bit_depth;
691         out_fmt->valid_bit_depth = format->valid_bit_depth;
692         out_fmt->ch_cfg = format->ch_cfg;
693 
694         out_fmt->channel_map = format->ch_map;
695         out_fmt->interleaving = format->interleaving_style;
696         out_fmt->sample_type = format->sample_type;
697 
698         dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
699                 out_fmt->number_of_channels, format->s_freq, format->bit_depth);
700 }
701 
702 /*
703  * DSP needs SRC module for frequency conversion, SRC takes base module
704  * configuration and the target frequency as extra parameter passed as src
705  * config
706  */
707 static void skl_set_src_format(struct skl_sst *ctx,
708                         struct skl_module_cfg *mconfig,
709                         struct skl_src_module_cfg *src_mconfig)
710 {
711         struct skl_module *module = mconfig->module;
712         struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
713         struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
714 
715         skl_set_base_module_format(ctx, mconfig,
716                 (struct skl_base_cfg *)src_mconfig);
717 
718         src_mconfig->src_cfg = fmt->s_freq;
719 }
720 
721 /*
722  * DSP needs updown module to do channel conversion. updown module take base
723  * module configuration and channel configuration
724  * It also take coefficients and now we have defaults applied here
725  */
726 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
727                         struct skl_module_cfg *mconfig,
728                         struct skl_up_down_mixer_cfg *mixer_mconfig)
729 {
730         struct skl_module *module = mconfig->module;
731         struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
732         struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
733 
734         skl_set_base_module_format(ctx, mconfig,
735                 (struct skl_base_cfg *)mixer_mconfig);
736         mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
737         mixer_mconfig->ch_map = fmt->ch_map;
738 }
739 
740 /*
741  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
742  * dma) or link (hda link, SSP, PDM)
743  * Here we calculate the copier module parameters, like PCM format, output
744  * format, gateway settings
745  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
746  */
747 static void skl_set_copier_format(struct skl_sst *ctx,
748                         struct skl_module_cfg *mconfig,
749                         struct skl_cpr_cfg *cpr_mconfig)
750 {
751         struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
752         struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
753 
754         skl_set_base_module_format(ctx, mconfig, base_cfg);
755 
756         skl_setup_out_format(ctx, mconfig, out_fmt);
757         skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
758 }
759 
760 /*
761  * Algo module are DSP pre processing modules. Algo module take base module
762  * configuration and params
763  */
764 
765 static void skl_set_algo_format(struct skl_sst *ctx,
766                         struct skl_module_cfg *mconfig,
767                         struct skl_algo_cfg *algo_mcfg)
768 {
769         struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
770 
771         skl_set_base_module_format(ctx, mconfig, base_cfg);
772 
773         if (mconfig->formats_config.caps_size == 0)
774                 return;
775 
776         memcpy(algo_mcfg->params,
777                         mconfig->formats_config.caps,
778                         mconfig->formats_config.caps_size);
779 
780 }
781 
782 /*
783  * Mic select module allows selecting one or many input channels, thus
784  * acting as a demux.
785  *
786  * Mic select module take base module configuration and out-format
787  * configuration
788  */
789 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
790                         struct skl_module_cfg *mconfig,
791                         struct skl_base_outfmt_cfg *base_outfmt_mcfg)
792 {
793         struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
794         struct skl_base_cfg *base_cfg =
795                                 (struct skl_base_cfg *)base_outfmt_mcfg;
796 
797         skl_set_base_module_format(ctx, mconfig, base_cfg);
798         skl_setup_out_format(ctx, mconfig, out_fmt);
799 }
800 
801 static u16 skl_get_module_param_size(struct skl_sst *ctx,
802                         struct skl_module_cfg *mconfig)
803 {
804         u16 param_size;
805 
806         switch (mconfig->m_type) {
807         case SKL_MODULE_TYPE_COPIER:
808                 param_size = sizeof(struct skl_cpr_cfg);
809                 param_size += mconfig->formats_config.caps_size;
810                 return param_size;
811 
812         case SKL_MODULE_TYPE_SRCINT:
813                 return sizeof(struct skl_src_module_cfg);
814 
815         case SKL_MODULE_TYPE_UPDWMIX:
816                 return sizeof(struct skl_up_down_mixer_cfg);
817 
818         case SKL_MODULE_TYPE_ALGO:
819                 param_size = sizeof(struct skl_base_cfg);
820                 param_size += mconfig->formats_config.caps_size;
821                 return param_size;
822 
823         case SKL_MODULE_TYPE_BASE_OUTFMT:
824         case SKL_MODULE_TYPE_MIC_SELECT:
825         case SKL_MODULE_TYPE_KPB:
826                 return sizeof(struct skl_base_outfmt_cfg);
827 
828         default:
829                 /*
830                  * return only base cfg when no specific module type is
831                  * specified
832                  */
833                 return sizeof(struct skl_base_cfg);
834         }
835 
836         return 0;
837 }
838 
839 /*
840  * DSP firmware supports various modules like copier, SRC, updown etc.
841  * These modules required various parameters to be calculated and sent for
842  * the module initialization to DSP. By default a generic module needs only
843  * base module format configuration
844  */
845 
846 static int skl_set_module_format(struct skl_sst *ctx,
847                         struct skl_module_cfg *module_config,
848                         u16 *module_config_size,
849                         void **param_data)
850 {
851         u16 param_size;
852 
853         param_size  = skl_get_module_param_size(ctx, module_config);
854 
855         *param_data = kzalloc(param_size, GFP_KERNEL);
856         if (NULL == *param_data)
857                 return -ENOMEM;
858 
859         *module_config_size = param_size;
860 
861         switch (module_config->m_type) {
862         case SKL_MODULE_TYPE_COPIER:
863                 skl_set_copier_format(ctx, module_config, *param_data);
864                 break;
865 
866         case SKL_MODULE_TYPE_SRCINT:
867                 skl_set_src_format(ctx, module_config, *param_data);
868                 break;
869 
870         case SKL_MODULE_TYPE_UPDWMIX:
871                 skl_set_updown_mixer_format(ctx, module_config, *param_data);
872                 break;
873 
874         case SKL_MODULE_TYPE_ALGO:
875                 skl_set_algo_format(ctx, module_config, *param_data);
876                 break;
877 
878         case SKL_MODULE_TYPE_BASE_OUTFMT:
879         case SKL_MODULE_TYPE_MIC_SELECT:
880         case SKL_MODULE_TYPE_KPB:
881                 skl_set_base_outfmt_format(ctx, module_config, *param_data);
882                 break;
883 
884         default:
885                 skl_set_base_module_format(ctx, module_config, *param_data);
886                 break;
887 
888         }
889 
890         dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
891                         module_config->id.module_id, param_size);
892         print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
893                         *param_data, param_size, false);
894         return 0;
895 }
896 
897 static int skl_get_queue_index(struct skl_module_pin *mpin,
898                                 struct skl_module_inst_id id, int max)
899 {
900         int i;
901 
902         for (i = 0; i < max; i++)  {
903                 if (mpin[i].id.module_id == id.module_id &&
904                         mpin[i].id.instance_id == id.instance_id)
905                         return i;
906         }
907 
908         return -EINVAL;
909 }
910 
911 /*
912  * Allocates queue for each module.
913  * if dynamic, the pin_index is allocated 0 to max_pin.
914  * In static, the pin_index is fixed based on module_id and instance id
915  */
916 static int skl_alloc_queue(struct skl_module_pin *mpin,
917                         struct skl_module_cfg *tgt_cfg, int max)
918 {
919         int i;
920         struct skl_module_inst_id id = tgt_cfg->id;
921         /*
922          * if pin in dynamic, find first free pin
923          * otherwise find match module and instance id pin as topology will
924          * ensure a unique pin is assigned to this so no need to
925          * allocate/free
926          */
927         for (i = 0; i < max; i++)  {
928                 if (mpin[i].is_dynamic) {
929                         if (!mpin[i].in_use &&
930                                 mpin[i].pin_state == SKL_PIN_UNBIND) {
931 
932                                 mpin[i].in_use = true;
933                                 mpin[i].id.module_id = id.module_id;
934                                 mpin[i].id.instance_id = id.instance_id;
935                                 mpin[i].id.pvt_id = id.pvt_id;
936                                 mpin[i].tgt_mcfg = tgt_cfg;
937                                 return i;
938                         }
939                 } else {
940                         if (mpin[i].id.module_id == id.module_id &&
941                                 mpin[i].id.instance_id == id.instance_id &&
942                                 mpin[i].pin_state == SKL_PIN_UNBIND) {
943 
944                                 mpin[i].tgt_mcfg = tgt_cfg;
945                                 return i;
946                         }
947                 }
948         }
949 
950         return -EINVAL;
951 }
952 
953 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
954 {
955         if (mpin[q_index].is_dynamic) {
956                 mpin[q_index].in_use = false;
957                 mpin[q_index].id.module_id = 0;
958                 mpin[q_index].id.instance_id = 0;
959                 mpin[q_index].id.pvt_id = 0;
960         }
961         mpin[q_index].pin_state = SKL_PIN_UNBIND;
962         mpin[q_index].tgt_mcfg = NULL;
963 }
964 
965 /* Module state will be set to unint, if all the out pin state is UNBIND */
966 
967 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
968                                                 struct skl_module_cfg *mcfg)
969 {
970         int i;
971         bool found = false;
972 
973         for (i = 0; i < max; i++)  {
974                 if (mpin[i].pin_state == SKL_PIN_UNBIND)
975                         continue;
976                 found = true;
977                 break;
978         }
979 
980         if (!found)
981                 mcfg->m_state = SKL_MODULE_INIT_DONE;
982         return;
983 }
984 
985 /*
986  * A module needs to be instanataited in DSP. A mdoule is present in a
987  * collection of module referred as a PIPE.
988  * We first calculate the module format, based on module type and then
989  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
990  */
991 int skl_init_module(struct skl_sst *ctx,
992                         struct skl_module_cfg *mconfig)
993 {
994         u16 module_config_size = 0;
995         void *param_data = NULL;
996         int ret;
997         struct skl_ipc_init_instance_msg msg;
998 
999         dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
1000                  mconfig->id.module_id, mconfig->id.pvt_id);
1001 
1002         if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1003                 dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
1004                                  mconfig->pipe->state, mconfig->pipe->ppl_id);
1005                 return -EIO;
1006         }
1007 
1008         ret = skl_set_module_format(ctx, mconfig,
1009                         &module_config_size, &param_data);
1010         if (ret < 0) {
1011                 dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
1012                 return ret;
1013         }
1014 
1015         msg.module_id = mconfig->id.module_id;
1016         msg.instance_id = mconfig->id.pvt_id;
1017         msg.ppl_instance_id = mconfig->pipe->ppl_id;
1018         msg.param_data_size = module_config_size;
1019         msg.core_id = mconfig->core_id;
1020         msg.domain = mconfig->domain;
1021 
1022         ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1023         if (ret < 0) {
1024                 dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1025                 kfree(param_data);
1026                 return ret;
1027         }
1028         mconfig->m_state = SKL_MODULE_INIT_DONE;
1029         kfree(param_data);
1030         return ret;
1031 }
1032 
1033 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1034         *src_module, struct skl_module_cfg *dst_module)
1035 {
1036         dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1037                 __func__, src_module->id.module_id, src_module->id.pvt_id);
1038         dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1039                  dst_module->id.module_id, dst_module->id.pvt_id);
1040 
1041         dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1042                 src_module->m_state, dst_module->m_state);
1043 }
1044 
1045 /*
1046  * On module freeup, we need to unbind the module with modules
1047  * it is already bind.
1048  * Find the pin allocated and unbind then using bind_unbind IPC
1049  */
1050 int skl_unbind_modules(struct skl_sst *ctx,
1051                         struct skl_module_cfg *src_mcfg,
1052                         struct skl_module_cfg *dst_mcfg)
1053 {
1054         int ret;
1055         struct skl_ipc_bind_unbind_msg msg;
1056         struct skl_module_inst_id src_id = src_mcfg->id;
1057         struct skl_module_inst_id dst_id = dst_mcfg->id;
1058         int in_max = dst_mcfg->module->max_input_pins;
1059         int out_max = src_mcfg->module->max_output_pins;
1060         int src_index, dst_index, src_pin_state, dst_pin_state;
1061 
1062         skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1063 
1064         /* get src queue index */
1065         src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1066         if (src_index < 0)
1067                 return 0;
1068 
1069         msg.src_queue = src_index;
1070 
1071         /* get dst queue index */
1072         dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1073         if (dst_index < 0)
1074                 return 0;
1075 
1076         msg.dst_queue = dst_index;
1077 
1078         src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1079         dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1080 
1081         if (src_pin_state != SKL_PIN_BIND_DONE ||
1082                 dst_pin_state != SKL_PIN_BIND_DONE)
1083                 return 0;
1084 
1085         msg.module_id = src_mcfg->id.module_id;
1086         msg.instance_id = src_mcfg->id.pvt_id;
1087         msg.dst_module_id = dst_mcfg->id.module_id;
1088         msg.dst_instance_id = dst_mcfg->id.pvt_id;
1089         msg.bind = false;
1090 
1091         ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1092         if (!ret) {
1093                 /* free queue only if unbind is success */
1094                 skl_free_queue(src_mcfg->m_out_pin, src_index);
1095                 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1096 
1097                 /*
1098                  * check only if src module bind state, bind is
1099                  * always from src -> sink
1100                  */
1101                 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1102         }
1103 
1104         return ret;
1105 }
1106 
1107 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1108                                 struct skl_module_fmt *format)
1109 {
1110         pin_fmt->number_of_channels = format->channels;
1111         pin_fmt->s_freq = format->s_freq;
1112         pin_fmt->bit_depth = format->bit_depth;
1113         pin_fmt->valid_bit_depth = format->valid_bit_depth;
1114         pin_fmt->ch_cfg = format->ch_cfg;
1115         pin_fmt->sample_type = format->sample_type;
1116         pin_fmt->channel_map = format->ch_map;
1117         pin_fmt->interleaving = format->interleaving_style;
1118 }
1119 
1120 #define CPR_SINK_FMT_PARAM_ID 2
1121 
1122 /*
1123  * Once a module is instantiated it need to be 'bind' with other modules in
1124  * the pipeline. For binding we need to find the module pins which are bind
1125  * together
1126  * This function finds the pins and then sends bund_unbind IPC message to
1127  * DSP using IPC helper
1128  */
1129 int skl_bind_modules(struct skl_sst *ctx,
1130                         struct skl_module_cfg *src_mcfg,
1131                         struct skl_module_cfg *dst_mcfg)
1132 {
1133         int ret = 0;
1134         struct skl_ipc_bind_unbind_msg msg;
1135         int in_max = dst_mcfg->module->max_input_pins;
1136         int out_max = src_mcfg->module->max_output_pins;
1137         int src_index, dst_index;
1138         struct skl_module_fmt *format;
1139         struct skl_cpr_pin_fmt pin_fmt;
1140         struct skl_module *module;
1141         struct skl_module_iface *fmt;
1142 
1143         skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1144 
1145         if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1146                 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1147                 return 0;
1148 
1149         src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1150         if (src_index < 0)
1151                 return -EINVAL;
1152 
1153         msg.src_queue = src_index;
1154         dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1155         if (dst_index < 0) {
1156                 skl_free_queue(src_mcfg->m_out_pin, src_index);
1157                 return -EINVAL;
1158         }
1159 
1160         /*
1161          * Copier module requires the separate large_config_set_ipc to
1162          * configure the pins other than 0
1163          */
1164         if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1165                 pin_fmt.sink_id = src_index;
1166                 module = src_mcfg->module;
1167                 fmt = &module->formats[src_mcfg->fmt_idx];
1168 
1169                 /* Input fmt is same as that of src module input cfg */
1170                 format = &fmt->inputs[0].fmt;
1171                 fill_pin_params(&(pin_fmt.src_fmt), format);
1172 
1173                 format = &fmt->outputs[src_index].fmt;
1174                 fill_pin_params(&(pin_fmt.dst_fmt), format);
1175                 ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1176                                         sizeof(struct skl_cpr_pin_fmt),
1177                                         CPR_SINK_FMT_PARAM_ID, src_mcfg);
1178 
1179                 if (ret < 0)
1180                         goto out;
1181         }
1182 
1183         msg.dst_queue = dst_index;
1184 
1185         dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1186                          msg.src_queue, msg.dst_queue);
1187 
1188         msg.module_id = src_mcfg->id.module_id;
1189         msg.instance_id = src_mcfg->id.pvt_id;
1190         msg.dst_module_id = dst_mcfg->id.module_id;
1191         msg.dst_instance_id = dst_mcfg->id.pvt_id;
1192         msg.bind = true;
1193 
1194         ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1195 
1196         if (!ret) {
1197                 src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1198                 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1199                 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1200                 return ret;
1201         }
1202 out:
1203         /* error case , if IPC fails, clear the queue index */
1204         skl_free_queue(src_mcfg->m_out_pin, src_index);
1205         skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1206 
1207         return ret;
1208 }
1209 
1210 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1211         enum skl_ipc_pipeline_state state)
1212 {
1213         dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1214 
1215         return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1216 }
1217 
1218 /*
1219  * A pipeline is a collection of modules. Before a module in instantiated a
1220  * pipeline needs to be created for it.
1221  * This function creates pipeline, by sending create pipeline IPC messages
1222  * to FW
1223  */
1224 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1225 {
1226         int ret;
1227 
1228         dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1229 
1230         ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1231                                 pipe->pipe_priority, pipe->ppl_id,
1232                                 pipe->lp_mode);
1233         if (ret < 0) {
1234                 dev_err(ctx->dev, "Failed to create pipeline\n");
1235                 return ret;
1236         }
1237 
1238         pipe->state = SKL_PIPE_CREATED;
1239 
1240         return 0;
1241 }
1242 
1243 /*
1244  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1245  * pause the pipeline first and then delete it
1246  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1247  * DMA engines and releases resources
1248  */
1249 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1250 {
1251         int ret;
1252 
1253         dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1254 
1255         /* If pipe is started, do stop the pipe in FW. */
1256         if (pipe->state >= SKL_PIPE_STARTED) {
1257                 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1258                 if (ret < 0) {
1259                         dev_err(ctx->dev, "Failed to stop pipeline\n");
1260                         return ret;
1261                 }
1262 
1263                 pipe->state = SKL_PIPE_PAUSED;
1264         }
1265 
1266         /* If pipe was not created in FW, do not try to delete it */
1267         if (pipe->state < SKL_PIPE_CREATED)
1268                 return 0;
1269 
1270         ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1271         if (ret < 0) {
1272                 dev_err(ctx->dev, "Failed to delete pipeline\n");
1273                 return ret;
1274         }
1275 
1276         pipe->state = SKL_PIPE_INVALID;
1277 
1278         return ret;
1279 }
1280 
1281 /*
1282  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1283  * For processing data the pipe need to be run by sending IPC set pipe state
1284  * to DSP
1285  */
1286 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1287 {
1288         int ret;
1289 
1290         dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1291 
1292         /* If pipe was not created in FW, do not try to pause or delete */
1293         if (pipe->state < SKL_PIPE_CREATED)
1294                 return 0;
1295 
1296         /* Pipe has to be paused before it is started */
1297         ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1298         if (ret < 0) {
1299                 dev_err(ctx->dev, "Failed to pause pipe\n");
1300                 return ret;
1301         }
1302 
1303         pipe->state = SKL_PIPE_PAUSED;
1304 
1305         ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1306         if (ret < 0) {
1307                 dev_err(ctx->dev, "Failed to start pipe\n");
1308                 return ret;
1309         }
1310 
1311         pipe->state = SKL_PIPE_STARTED;
1312 
1313         return 0;
1314 }
1315 
1316 /*
1317  * Stop the pipeline by sending set pipe state IPC
1318  * DSP doesnt implement stop so we always send pause message
1319  */
1320 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1321 {
1322         int ret;
1323 
1324         dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1325 
1326         /* If pipe was not created in FW, do not try to pause or delete */
1327         if (pipe->state < SKL_PIPE_PAUSED)
1328                 return 0;
1329 
1330         ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1331         if (ret < 0) {
1332                 dev_dbg(ctx->dev, "Failed to stop pipe\n");
1333                 return ret;
1334         }
1335 
1336         pipe->state = SKL_PIPE_PAUSED;
1337 
1338         return 0;
1339 }
1340 
1341 /*
1342  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1343  * from the DSP side
1344  */
1345 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1346 {
1347         int ret;
1348 
1349         /* If pipe was not created in FW, do not try to pause or delete */
1350         if (pipe->state < SKL_PIPE_PAUSED)
1351                 return 0;
1352 
1353         ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1354         if (ret < 0) {
1355                 dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1356                 return ret;
1357         }
1358 
1359         pipe->state = SKL_PIPE_RESET;
1360 
1361         return 0;
1362 }
1363 
1364 /* Algo parameter set helper function */
1365 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1366                                 u32 param_id, struct skl_module_cfg *mcfg)
1367 {
1368         struct skl_ipc_large_config_msg msg;
1369 
1370         msg.module_id = mcfg->id.module_id;
1371         msg.instance_id = mcfg->id.pvt_id;
1372         msg.param_data_size = size;
1373         msg.large_param_id = param_id;
1374 
1375         return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1376 }
1377 
1378 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1379                           u32 param_id, struct skl_module_cfg *mcfg)
1380 {
1381         struct skl_ipc_large_config_msg msg;
1382 
1383         msg.module_id = mcfg->id.module_id;
1384         msg.instance_id = mcfg->id.pvt_id;
1385         msg.param_data_size = size;
1386         msg.large_param_id = param_id;
1387 
1388         return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1389 }
1390 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp