1 /*P:100 2 * This is the Launcher code, a simple program which lays out the "physical" 3 * memory for the new Guest by mapping the kernel image and the virtual 4 * devices, then opens /dev/lguest to tell the kernel about the Guest and 5 * control it. 6 :*/ 7 #define _LARGEFILE64_SOURCE 8 #define _GNU_SOURCE 9 #include <stdio.h> 10 #include <string.h> 11 #include <unistd.h> 12 #include <err.h> 13 #include <stdint.h> 14 #include <stdlib.h> 15 #include <elf.h> 16 #include <sys/mman.h> 17 #include <sys/param.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <sys/wait.h> 21 #include <sys/eventfd.h> 22 #include <fcntl.h> 23 #include <stdbool.h> 24 #include <errno.h> 25 #include <ctype.h> 26 #include <sys/socket.h> 27 #include <sys/ioctl.h> 28 #include <sys/time.h> 29 #include <time.h> 30 #include <netinet/in.h> 31 #include <net/if.h> 32 #include <linux/sockios.h> 33 #include <linux/if_tun.h> 34 #include <sys/uio.h> 35 #include <termios.h> 36 #include <getopt.h> 37 #include <assert.h> 38 #include <sched.h> 39 #include <limits.h> 40 #include <stddef.h> 41 #include <signal.h> 42 #include <pwd.h> 43 #include <grp.h> 44 #include <sys/user.h> 45 #include <linux/pci_regs.h> 46 47 #ifndef VIRTIO_F_ANY_LAYOUT 48 #define VIRTIO_F_ANY_LAYOUT 27 49 #endif 50 51 /*L:110 52 * We can ignore the 43 include files we need for this program, but I do want 53 * to draw attention to the use of kernel-style types. 54 * 55 * As Linus said, "C is a Spartan language, and so should your naming be." I 56 * like these abbreviations, so we define them here. Note that u64 is always 57 * unsigned long long, which works on all Linux systems: this means that we can 58 * use %llu in printf for any u64. 59 */ 60 typedef unsigned long long u64; 61 typedef uint32_t u32; 62 typedef uint16_t u16; 63 typedef uint8_t u8; 64 /*:*/ 65 66 #define VIRTIO_CONFIG_NO_LEGACY 67 #define VIRTIO_PCI_NO_LEGACY 68 #define VIRTIO_BLK_NO_LEGACY 69 #define VIRTIO_NET_NO_LEGACY 70 71 /* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */ 72 #include "../../include/uapi/linux/virtio_config.h" 73 #include "../../include/uapi/linux/virtio_net.h" 74 #include "../../include/uapi/linux/virtio_blk.h" 75 #include "../../include/uapi/linux/virtio_console.h" 76 #include "../../include/uapi/linux/virtio_rng.h" 77 #include <linux/virtio_ring.h> 78 #include "../../include/uapi/linux/virtio_pci.h" 79 #include <asm/bootparam.h> 80 #include "../../include/linux/lguest_launcher.h" 81 82 #define BRIDGE_PFX "bridge:" 83 #ifndef SIOCBRADDIF 84 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */ 85 #endif 86 /* We can have up to 256 pages for devices. */ 87 #define DEVICE_PAGES 256 88 /* This will occupy 3 pages: it must be a power of 2. */ 89 #define VIRTQUEUE_NUM 256 90 91 /*L:120 92 * verbose is both a global flag and a macro. The C preprocessor allows 93 * this, and although I wouldn't recommend it, it works quite nicely here. 94 */ 95 static bool verbose; 96 #define verbose(args...) \ 97 do { if (verbose) printf(args); } while(0) 98 /*:*/ 99 100 /* The pointer to the start of guest memory. */ 101 static void *guest_base; 102 /* The maximum guest physical address allowed, and maximum possible. */ 103 static unsigned long guest_limit, guest_max, guest_mmio; 104 /* The /dev/lguest file descriptor. */ 105 static int lguest_fd; 106 107 /* a per-cpu variable indicating whose vcpu is currently running */ 108 static unsigned int __thread cpu_id; 109 110 /* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */ 111 #define MAX_PCI_DEVICES 32 112 113 /* This is our list of devices. */ 114 struct device_list { 115 /* Counter to assign interrupt numbers. */ 116 unsigned int next_irq; 117 118 /* Counter to print out convenient device numbers. */ 119 unsigned int device_num; 120 121 /* PCI devices. */ 122 struct device *pci[MAX_PCI_DEVICES]; 123 }; 124 125 /* The list of Guest devices, based on command line arguments. */ 126 static struct device_list devices; 127 128 /* 129 * Just like struct virtio_pci_cfg_cap in uapi/linux/virtio_pci.h, 130 * but uses a u32 explicitly for the data. 131 */ 132 struct virtio_pci_cfg_cap_u32 { 133 struct virtio_pci_cap cap; 134 u32 pci_cfg_data; /* Data for BAR access. */ 135 }; 136 137 struct virtio_pci_mmio { 138 struct virtio_pci_common_cfg cfg; 139 u16 notify; 140 u8 isr; 141 u8 padding; 142 /* Device-specific configuration follows this. */ 143 }; 144 145 /* This is the layout (little-endian) of the PCI config space. */ 146 struct pci_config { 147 u16 vendor_id, device_id; 148 u16 command, status; 149 u8 revid, prog_if, subclass, class; 150 u8 cacheline_size, lat_timer, header_type, bist; 151 u32 bar[6]; 152 u32 cardbus_cis_ptr; 153 u16 subsystem_vendor_id, subsystem_device_id; 154 u32 expansion_rom_addr; 155 u8 capabilities, reserved1[3]; 156 u32 reserved2; 157 u8 irq_line, irq_pin, min_grant, max_latency; 158 159 /* Now, this is the linked capability list. */ 160 struct virtio_pci_cap common; 161 struct virtio_pci_notify_cap notify; 162 struct virtio_pci_cap isr; 163 struct virtio_pci_cap device; 164 struct virtio_pci_cfg_cap_u32 cfg_access; 165 }; 166 167 /* The device structure describes a single device. */ 168 struct device { 169 /* The name of this device, for --verbose. */ 170 const char *name; 171 172 /* Any queues attached to this device */ 173 struct virtqueue *vq; 174 175 /* Is it operational */ 176 bool running; 177 178 /* Has it written FEATURES_OK but not re-checked it? */ 179 bool wrote_features_ok; 180 181 /* PCI configuration */ 182 union { 183 struct pci_config config; 184 u32 config_words[sizeof(struct pci_config) / sizeof(u32)]; 185 }; 186 187 /* Features we offer, and those accepted. */ 188 u64 features, features_accepted; 189 190 /* Device-specific config hangs off the end of this. */ 191 struct virtio_pci_mmio *mmio; 192 193 /* PCI MMIO resources (all in BAR0) */ 194 size_t mmio_size; 195 u32 mmio_addr; 196 197 /* Device-specific data. */ 198 void *priv; 199 }; 200 201 /* The virtqueue structure describes a queue attached to a device. */ 202 struct virtqueue { 203 struct virtqueue *next; 204 205 /* Which device owns me. */ 206 struct device *dev; 207 208 /* Name for printing errors. */ 209 const char *name; 210 211 /* The actual ring of buffers. */ 212 struct vring vring; 213 214 /* The information about this virtqueue (we only use queue_size on) */ 215 struct virtio_pci_common_cfg pci_config; 216 217 /* Last available index we saw. */ 218 u16 last_avail_idx; 219 220 /* How many are used since we sent last irq? */ 221 unsigned int pending_used; 222 223 /* Eventfd where Guest notifications arrive. */ 224 int eventfd; 225 226 /* Function for the thread which is servicing this virtqueue. */ 227 void (*service)(struct virtqueue *vq); 228 pid_t thread; 229 }; 230 231 /* Remember the arguments to the program so we can "reboot" */ 232 static char **main_args; 233 234 /* The original tty settings to restore on exit. */ 235 static struct termios orig_term; 236 237 /* 238 * We have to be careful with barriers: our devices are all run in separate 239 * threads and so we need to make sure that changes visible to the Guest happen 240 * in precise order. 241 */ 242 #define wmb() __asm__ __volatile__("" : : : "memory") 243 #define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory") 244 #define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory") 245 246 /* Wrapper for the last available index. Makes it easier to change. */ 247 #define lg_last_avail(vq) ((vq)->last_avail_idx) 248 249 /* 250 * The virtio configuration space is defined to be little-endian. x86 is 251 * little-endian too, but it's nice to be explicit so we have these helpers. 252 */ 253 #define cpu_to_le16(v16) (v16) 254 #define cpu_to_le32(v32) (v32) 255 #define cpu_to_le64(v64) (v64) 256 #define le16_to_cpu(v16) (v16) 257 #define le32_to_cpu(v32) (v32) 258 #define le64_to_cpu(v64) (v64) 259 260 /* 261 * A real device would ignore weird/non-compliant driver behaviour. We 262 * stop and flag it, to help debugging Linux problems. 263 */ 264 #define bad_driver(d, fmt, ...) \ 265 errx(1, "%s: bad driver: " fmt, (d)->name, ## __VA_ARGS__) 266 #define bad_driver_vq(vq, fmt, ...) \ 267 errx(1, "%s vq %s: bad driver: " fmt, (vq)->dev->name, \ 268 vq->name, ## __VA_ARGS__) 269 270 /* Is this iovec empty? */ 271 static bool iov_empty(const struct iovec iov[], unsigned int num_iov) 272 { 273 unsigned int i; 274 275 for (i = 0; i < num_iov; i++) 276 if (iov[i].iov_len) 277 return false; 278 return true; 279 } 280 281 /* Take len bytes from the front of this iovec. */ 282 static void iov_consume(struct device *d, 283 struct iovec iov[], unsigned num_iov, 284 void *dest, unsigned len) 285 { 286 unsigned int i; 287 288 for (i = 0; i < num_iov; i++) { 289 unsigned int used; 290 291 used = iov[i].iov_len < len ? iov[i].iov_len : len; 292 if (dest) { 293 memcpy(dest, iov[i].iov_base, used); 294 dest += used; 295 } 296 iov[i].iov_base += used; 297 iov[i].iov_len -= used; 298 len -= used; 299 } 300 if (len != 0) 301 bad_driver(d, "iovec too short!"); 302 } 303 304 /*L:100 305 * The Launcher code itself takes us out into userspace, that scary place where 306 * pointers run wild and free! Unfortunately, like most userspace programs, 307 * it's quite boring (which is why everyone likes to hack on the kernel!). 308 * Perhaps if you make up an Lguest Drinking Game at this point, it will get 309 * you through this section. Or, maybe not. 310 * 311 * The Launcher sets up a big chunk of memory to be the Guest's "physical" 312 * memory and stores it in "guest_base". In other words, Guest physical == 313 * Launcher virtual with an offset. 314 * 315 * This can be tough to get your head around, but usually it just means that we 316 * use these trivial conversion functions when the Guest gives us its 317 * "physical" addresses: 318 */ 319 static void *from_guest_phys(unsigned long addr) 320 { 321 return guest_base + addr; 322 } 323 324 static unsigned long to_guest_phys(const void *addr) 325 { 326 return (addr - guest_base); 327 } 328 329 /*L:130 330 * Loading the Kernel. 331 * 332 * We start with couple of simple helper routines. open_or_die() avoids 333 * error-checking code cluttering the callers: 334 */ 335 static int open_or_die(const char *name, int flags) 336 { 337 int fd = open(name, flags); 338 if (fd < 0) 339 err(1, "Failed to open %s", name); 340 return fd; 341 } 342 343 /* map_zeroed_pages() takes a number of pages. */ 344 static void *map_zeroed_pages(unsigned int num) 345 { 346 int fd = open_or_die("/dev/zero", O_RDONLY); 347 void *addr; 348 349 /* 350 * We use a private mapping (ie. if we write to the page, it will be 351 * copied). We allocate an extra two pages PROT_NONE to act as guard 352 * pages against read/write attempts that exceed allocated space. 353 */ 354 addr = mmap(NULL, getpagesize() * (num+2), 355 PROT_NONE, MAP_PRIVATE, fd, 0); 356 357 if (addr == MAP_FAILED) 358 err(1, "Mmapping %u pages of /dev/zero", num); 359 360 if (mprotect(addr + getpagesize(), getpagesize() * num, 361 PROT_READ|PROT_WRITE) == -1) 362 err(1, "mprotect rw %u pages failed", num); 363 364 /* 365 * One neat mmap feature is that you can close the fd, and it 366 * stays mapped. 367 */ 368 close(fd); 369 370 /* Return address after PROT_NONE page */ 371 return addr + getpagesize(); 372 } 373 374 /* Get some bytes which won't be mapped into the guest. */ 375 static unsigned long get_mmio_region(size_t size) 376 { 377 unsigned long addr = guest_mmio; 378 size_t i; 379 380 if (!size) 381 return addr; 382 383 /* Size has to be a power of 2 (and multiple of 16) */ 384 for (i = 1; i < size; i <<= 1); 385 386 guest_mmio += i; 387 388 return addr; 389 } 390 391 /* 392 * This routine is used to load the kernel or initrd. It tries mmap, but if 393 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries), 394 * it falls back to reading the memory in. 395 */ 396 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len) 397 { 398 ssize_t r; 399 400 /* 401 * We map writable even though for some segments are marked read-only. 402 * The kernel really wants to be writable: it patches its own 403 * instructions. 404 * 405 * MAP_PRIVATE means that the page won't be copied until a write is 406 * done to it. This allows us to share untouched memory between 407 * Guests. 408 */ 409 if (mmap(addr, len, PROT_READ|PROT_WRITE, 410 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED) 411 return; 412 413 /* pread does a seek and a read in one shot: saves a few lines. */ 414 r = pread(fd, addr, len, offset); 415 if (r != len) 416 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r); 417 } 418 419 /* 420 * This routine takes an open vmlinux image, which is in ELF, and maps it into 421 * the Guest memory. ELF = Embedded Linking Format, which is the format used 422 * by all modern binaries on Linux including the kernel. 423 * 424 * The ELF headers give *two* addresses: a physical address, and a virtual 425 * address. We use the physical address; the Guest will map itself to the 426 * virtual address. 427 * 428 * We return the starting address. 429 */ 430 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr) 431 { 432 Elf32_Phdr phdr[ehdr->e_phnum]; 433 unsigned int i; 434 435 /* 436 * Sanity checks on the main ELF header: an x86 executable with a 437 * reasonable number of correctly-sized program headers. 438 */ 439 if (ehdr->e_type != ET_EXEC 440 || ehdr->e_machine != EM_386 441 || ehdr->e_phentsize != sizeof(Elf32_Phdr) 442 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr)) 443 errx(1, "Malformed elf header"); 444 445 /* 446 * An ELF executable contains an ELF header and a number of "program" 447 * headers which indicate which parts ("segments") of the program to 448 * load where. 449 */ 450 451 /* We read in all the program headers at once: */ 452 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0) 453 err(1, "Seeking to program headers"); 454 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr)) 455 err(1, "Reading program headers"); 456 457 /* 458 * Try all the headers: there are usually only three. A read-only one, 459 * a read-write one, and a "note" section which we don't load. 460 */ 461 for (i = 0; i < ehdr->e_phnum; i++) { 462 /* If this isn't a loadable segment, we ignore it */ 463 if (phdr[i].p_type != PT_LOAD) 464 continue; 465 466 verbose("Section %i: size %i addr %p\n", 467 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr); 468 469 /* We map this section of the file at its physical address. */ 470 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr), 471 phdr[i].p_offset, phdr[i].p_filesz); 472 } 473 474 /* The entry point is given in the ELF header. */ 475 return ehdr->e_entry; 476 } 477 478 /*L:150 479 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed 480 * to jump into it and it will unpack itself. We used to have to perform some 481 * hairy magic because the unpacking code scared me. 482 * 483 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote 484 * a small patch to jump over the tricky bits in the Guest, so now we just read 485 * the funky header so we know where in the file to load, and away we go! 486 */ 487 static unsigned long load_bzimage(int fd) 488 { 489 struct boot_params boot; 490 int r; 491 /* Modern bzImages get loaded at 1M. */ 492 void *p = from_guest_phys(0x100000); 493 494 /* 495 * Go back to the start of the file and read the header. It should be 496 * a Linux boot header (see Documentation/x86/boot.txt) 497 */ 498 lseek(fd, 0, SEEK_SET); 499 read(fd, &boot, sizeof(boot)); 500 501 /* Inside the setup_hdr, we expect the magic "HdrS" */ 502 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0) 503 errx(1, "This doesn't look like a bzImage to me"); 504 505 /* Skip over the extra sectors of the header. */ 506 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET); 507 508 /* Now read everything into memory. in nice big chunks. */ 509 while ((r = read(fd, p, 65536)) > 0) 510 p += r; 511 512 /* Finally, code32_start tells us where to enter the kernel. */ 513 return boot.hdr.code32_start; 514 } 515 516 /*L:140 517 * Loading the kernel is easy when it's a "vmlinux", but most kernels 518 * come wrapped up in the self-decompressing "bzImage" format. With a little 519 * work, we can load those, too. 520 */ 521 static unsigned long load_kernel(int fd) 522 { 523 Elf32_Ehdr hdr; 524 525 /* Read in the first few bytes. */ 526 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) 527 err(1, "Reading kernel"); 528 529 /* If it's an ELF file, it starts with "\177ELF" */ 530 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0) 531 return map_elf(fd, &hdr); 532 533 /* Otherwise we assume it's a bzImage, and try to load it. */ 534 return load_bzimage(fd); 535 } 536 537 /* 538 * This is a trivial little helper to align pages. Andi Kleen hated it because 539 * it calls getpagesize() twice: "it's dumb code." 540 * 541 * Kernel guys get really het up about optimization, even when it's not 542 * necessary. I leave this code as a reaction against that. 543 */ 544 static inline unsigned long page_align(unsigned long addr) 545 { 546 /* Add upwards and truncate downwards. */ 547 return ((addr + getpagesize()-1) & ~(getpagesize()-1)); 548 } 549 550 /*L:180 551 * An "initial ram disk" is a disk image loaded into memory along with the 552 * kernel which the kernel can use to boot from without needing any drivers. 553 * Most distributions now use this as standard: the initrd contains the code to 554 * load the appropriate driver modules for the current machine. 555 * 556 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its 557 * kernels. He sent me this (and tells me when I break it). 558 */ 559 static unsigned long load_initrd(const char *name, unsigned long mem) 560 { 561 int ifd; 562 struct stat st; 563 unsigned long len; 564 565 ifd = open_or_die(name, O_RDONLY); 566 /* fstat() is needed to get the file size. */ 567 if (fstat(ifd, &st) < 0) 568 err(1, "fstat() on initrd '%s'", name); 569 570 /* 571 * We map the initrd at the top of memory, but mmap wants it to be 572 * page-aligned, so we round the size up for that. 573 */ 574 len = page_align(st.st_size); 575 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size); 576 /* 577 * Once a file is mapped, you can close the file descriptor. It's a 578 * little odd, but quite useful. 579 */ 580 close(ifd); 581 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len); 582 583 /* We return the initrd size. */ 584 return len; 585 } 586 /*:*/ 587 588 /* 589 * Simple routine to roll all the commandline arguments together with spaces 590 * between them. 591 */ 592 static void concat(char *dst, char *args[]) 593 { 594 unsigned int i, len = 0; 595 596 for (i = 0; args[i]; i++) { 597 if (i) { 598 strcat(dst+len, " "); 599 len++; 600 } 601 strcpy(dst+len, args[i]); 602 len += strlen(args[i]); 603 } 604 /* In case it's empty. */ 605 dst[len] = '\0'; 606 } 607 608 /*L:185 609 * This is where we actually tell the kernel to initialize the Guest. We 610 * saw the arguments it expects when we looked at initialize() in lguest_user.c: 611 * the base of Guest "physical" memory, the top physical page to allow and the 612 * entry point for the Guest. 613 */ 614 static void tell_kernel(unsigned long start) 615 { 616 unsigned long args[] = { LHREQ_INITIALIZE, 617 (unsigned long)guest_base, 618 guest_limit / getpagesize(), start, 619 (guest_mmio+getpagesize()-1) / getpagesize() }; 620 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n", 621 guest_base, guest_base + guest_limit, 622 guest_limit, guest_mmio); 623 lguest_fd = open_or_die("/dev/lguest", O_RDWR); 624 if (write(lguest_fd, args, sizeof(args)) < 0) 625 err(1, "Writing to /dev/lguest"); 626 } 627 /*:*/ 628 629 /*L:200 630 * Device Handling. 631 * 632 * When the Guest gives us a buffer, it sends an array of addresses and sizes. 633 * We need to make sure it's not trying to reach into the Launcher itself, so 634 * we have a convenient routine which checks it and exits with an error message 635 * if something funny is going on: 636 */ 637 static void *_check_pointer(struct device *d, 638 unsigned long addr, unsigned int size, 639 unsigned int line) 640 { 641 /* 642 * Check if the requested address and size exceeds the allocated memory, 643 * or addr + size wraps around. 644 */ 645 if ((addr + size) > guest_limit || (addr + size) < addr) 646 bad_driver(d, "%s:%i: Invalid address %#lx", 647 __FILE__, line, addr); 648 /* 649 * We return a pointer for the caller's convenience, now we know it's 650 * safe to use. 651 */ 652 return from_guest_phys(addr); 653 } 654 /* A macro which transparently hands the line number to the real function. */ 655 #define check_pointer(d,addr,size) _check_pointer(d, addr, size, __LINE__) 656 657 /* 658 * Each buffer in the virtqueues is actually a chain of descriptors. This 659 * function returns the next descriptor in the chain, or vq->vring.num if we're 660 * at the end. 661 */ 662 static unsigned next_desc(struct device *d, struct vring_desc *desc, 663 unsigned int i, unsigned int max) 664 { 665 unsigned int next; 666 667 /* If this descriptor says it doesn't chain, we're done. */ 668 if (!(desc[i].flags & VRING_DESC_F_NEXT)) 669 return max; 670 671 /* Check they're not leading us off end of descriptors. */ 672 next = desc[i].next; 673 /* Make sure compiler knows to grab that: we don't want it changing! */ 674 wmb(); 675 676 if (next >= max) 677 bad_driver(d, "Desc next is %u", next); 678 679 return next; 680 } 681 682 /* 683 * This actually sends the interrupt for this virtqueue, if we've used a 684 * buffer. 685 */ 686 static void trigger_irq(struct virtqueue *vq) 687 { 688 unsigned long buf[] = { LHREQ_IRQ, vq->dev->config.irq_line }; 689 690 /* Don't inform them if nothing used. */ 691 if (!vq->pending_used) 692 return; 693 vq->pending_used = 0; 694 695 /* 696 * 2.4.7.1: 697 * 698 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated: 699 * The driver MUST set flags to 0 or 1. 700 */ 701 if (vq->vring.avail->flags > 1) 702 bad_driver_vq(vq, "avail->flags = %u\n", vq->vring.avail->flags); 703 704 /* 705 * 2.4.7.2: 706 * 707 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated: 708 * 709 * - The device MUST ignore the used_event value. 710 * - After the device writes a descriptor index into the used ring: 711 * - If flags is 1, the device SHOULD NOT send an interrupt. 712 * - If flags is 0, the device MUST send an interrupt. 713 */ 714 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) { 715 return; 716 } 717 718 /* 719 * 4.1.4.5.1: 720 * 721 * If MSI-X capability is disabled, the device MUST set the Queue 722 * Interrupt bit in ISR status before sending a virtqueue notification 723 * to the driver. 724 */ 725 vq->dev->mmio->isr = 0x1; 726 727 /* Send the Guest an interrupt tell them we used something up. */ 728 if (write(lguest_fd, buf, sizeof(buf)) != 0) 729 err(1, "Triggering irq %i", vq->dev->config.irq_line); 730 } 731 732 /* 733 * This looks in the virtqueue for the first available buffer, and converts 734 * it to an iovec for convenient access. Since descriptors consist of some 735 * number of output then some number of input descriptors, it's actually two 736 * iovecs, but we pack them into one and note how many of each there were. 737 * 738 * This function waits if necessary, and returns the descriptor number found. 739 */ 740 static unsigned wait_for_vq_desc(struct virtqueue *vq, 741 struct iovec iov[], 742 unsigned int *out_num, unsigned int *in_num) 743 { 744 unsigned int i, head, max; 745 struct vring_desc *desc; 746 u16 last_avail = lg_last_avail(vq); 747 748 /* 749 * 2.4.7.1: 750 * 751 * The driver MUST handle spurious interrupts from the device. 752 * 753 * That's why this is a while loop. 754 */ 755 756 /* There's nothing available? */ 757 while (last_avail == vq->vring.avail->idx) { 758 u64 event; 759 760 /* 761 * Since we're about to sleep, now is a good time to tell the 762 * Guest about what we've used up to now. 763 */ 764 trigger_irq(vq); 765 766 /* OK, now we need to know about added descriptors. */ 767 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY; 768 769 /* 770 * They could have slipped one in as we were doing that: make 771 * sure it's written, then check again. 772 */ 773 mb(); 774 if (last_avail != vq->vring.avail->idx) { 775 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY; 776 break; 777 } 778 779 /* Nothing new? Wait for eventfd to tell us they refilled. */ 780 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event)) 781 errx(1, "Event read failed?"); 782 783 /* We don't need to be notified again. */ 784 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY; 785 } 786 787 /* Check it isn't doing very strange things with descriptor numbers. */ 788 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num) 789 bad_driver_vq(vq, "Guest moved used index from %u to %u", 790 last_avail, vq->vring.avail->idx); 791 792 /* 793 * Make sure we read the descriptor number *after* we read the ring 794 * update; don't let the cpu or compiler change the order. 795 */ 796 rmb(); 797 798 /* 799 * Grab the next descriptor number they're advertising, and increment 800 * the index we've seen. 801 */ 802 head = vq->vring.avail->ring[last_avail % vq->vring.num]; 803 lg_last_avail(vq)++; 804 805 /* If their number is silly, that's a fatal mistake. */ 806 if (head >= vq->vring.num) 807 bad_driver_vq(vq, "Guest says index %u is available", head); 808 809 /* When we start there are none of either input nor output. */ 810 *out_num = *in_num = 0; 811 812 max = vq->vring.num; 813 desc = vq->vring.desc; 814 i = head; 815 816 /* 817 * We have to read the descriptor after we read the descriptor number, 818 * but there's a data dependency there so the CPU shouldn't reorder 819 * that: no rmb() required. 820 */ 821 822 do { 823 /* 824 * If this is an indirect entry, then this buffer contains a 825 * descriptor table which we handle as if it's any normal 826 * descriptor chain. 827 */ 828 if (desc[i].flags & VRING_DESC_F_INDIRECT) { 829 /* 2.4.5.3.1: 830 * 831 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT 832 * flag unless the VIRTIO_F_INDIRECT_DESC feature was 833 * negotiated. 834 */ 835 if (!(vq->dev->features_accepted & 836 (1<<VIRTIO_RING_F_INDIRECT_DESC))) 837 bad_driver_vq(vq, "vq indirect not negotiated"); 838 839 /* 840 * 2.4.5.3.1: 841 * 842 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT 843 * flag within an indirect descriptor (ie. only one 844 * table per descriptor). 845 */ 846 if (desc != vq->vring.desc) 847 bad_driver_vq(vq, "Indirect within indirect"); 848 849 /* 850 * Proposed update VIRTIO-134 spells this out: 851 * 852 * A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT 853 * and VIRTQ_DESC_F_NEXT in flags. 854 */ 855 if (desc[i].flags & VRING_DESC_F_NEXT) 856 bad_driver_vq(vq, "indirect and next together"); 857 858 if (desc[i].len % sizeof(struct vring_desc)) 859 bad_driver_vq(vq, 860 "Invalid size for indirect table"); 861 /* 862 * 2.4.5.3.2: 863 * 864 * The device MUST ignore the write-only flag 865 * (flags&VIRTQ_DESC_F_WRITE) in the descriptor that 866 * refers to an indirect table. 867 * 868 * We ignore it here: :) 869 */ 870 871 max = desc[i].len / sizeof(struct vring_desc); 872 desc = check_pointer(vq->dev, desc[i].addr, desc[i].len); 873 i = 0; 874 875 /* 2.4.5.3.1: 876 * 877 * A driver MUST NOT create a descriptor chain longer 878 * than the Queue Size of the device. 879 */ 880 if (max > vq->pci_config.queue_size) 881 bad_driver_vq(vq, 882 "indirect has too many entries"); 883 } 884 885 /* Grab the first descriptor, and check it's OK. */ 886 iov[*out_num + *in_num].iov_len = desc[i].len; 887 iov[*out_num + *in_num].iov_base 888 = check_pointer(vq->dev, desc[i].addr, desc[i].len); 889 /* If this is an input descriptor, increment that count. */ 890 if (desc[i].flags & VRING_DESC_F_WRITE) 891 (*in_num)++; 892 else { 893 /* 894 * If it's an output descriptor, they're all supposed 895 * to come before any input descriptors. 896 */ 897 if (*in_num) 898 bad_driver_vq(vq, 899 "Descriptor has out after in"); 900 (*out_num)++; 901 } 902 903 /* If we've got too many, that implies a descriptor loop. */ 904 if (*out_num + *in_num > max) 905 bad_driver_vq(vq, "Looped descriptor"); 906 } while ((i = next_desc(vq->dev, desc, i, max)) != max); 907 908 return head; 909 } 910 911 /* 912 * After we've used one of their buffers, we tell the Guest about it. Sometime 913 * later we'll want to send them an interrupt using trigger_irq(); note that 914 * wait_for_vq_desc() does that for us if it has to wait. 915 */ 916 static void add_used(struct virtqueue *vq, unsigned int head, int len) 917 { 918 struct vring_used_elem *used; 919 920 /* 921 * The virtqueue contains a ring of used buffers. Get a pointer to the 922 * next entry in that used ring. 923 */ 924 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num]; 925 used->id = head; 926 used->len = len; 927 /* Make sure buffer is written before we update index. */ 928 wmb(); 929 vq->vring.used->idx++; 930 vq->pending_used++; 931 } 932 933 /* And here's the combo meal deal. Supersize me! */ 934 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len) 935 { 936 add_used(vq, head, len); 937 trigger_irq(vq); 938 } 939 940 /* 941 * The Console 942 * 943 * We associate some data with the console for our exit hack. 944 */ 945 struct console_abort { 946 /* How many times have they hit ^C? */ 947 int count; 948 /* When did they start? */ 949 struct timeval start; 950 }; 951 952 /* This is the routine which handles console input (ie. stdin). */ 953 static void console_input(struct virtqueue *vq) 954 { 955 int len; 956 unsigned int head, in_num, out_num; 957 struct console_abort *abort = vq->dev->priv; 958 struct iovec iov[vq->vring.num]; 959 960 /* Make sure there's a descriptor available. */ 961 head = wait_for_vq_desc(vq, iov, &out_num, &in_num); 962 if (out_num) 963 bad_driver_vq(vq, "Output buffers in console in queue?"); 964 965 /* Read into it. This is where we usually wait. */ 966 len = readv(STDIN_FILENO, iov, in_num); 967 if (len <= 0) { 968 /* Ran out of input? */ 969 warnx("Failed to get console input, ignoring console."); 970 /* 971 * For simplicity, dying threads kill the whole Launcher. So 972 * just nap here. 973 */ 974 for (;;) 975 pause(); 976 } 977 978 /* Tell the Guest we used a buffer. */ 979 add_used_and_trigger(vq, head, len); 980 981 /* 982 * Three ^C within one second? Exit. 983 * 984 * This is such a hack, but works surprisingly well. Each ^C has to 985 * be in a buffer by itself, so they can't be too fast. But we check 986 * that we get three within about a second, so they can't be too 987 * slow. 988 */ 989 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) { 990 abort->count = 0; 991 return; 992 } 993 994 abort->count++; 995 if (abort->count == 1) 996 gettimeofday(&abort->start, NULL); 997 else if (abort->count == 3) { 998 struct timeval now; 999 gettimeofday(&now, NULL); 1000 /* Kill all Launcher processes with SIGINT, like normal ^C */ 1001 if (now.tv_sec <= abort->start.tv_sec+1) 1002 kill(0, SIGINT); 1003 abort->count = 0; 1004 } 1005 } 1006 1007 /* This is the routine which handles console output (ie. stdout). */ 1008 static void console_output(struct virtqueue *vq) 1009 { 1010 unsigned int head, out, in; 1011 struct iovec iov[vq->vring.num]; 1012 1013 /* We usually wait in here, for the Guest to give us something. */ 1014 head = wait_for_vq_desc(vq, iov, &out, &in); 1015 if (in) 1016 bad_driver_vq(vq, "Input buffers in console output queue?"); 1017 1018 /* writev can return a partial write, so we loop here. */ 1019 while (!iov_empty(iov, out)) { 1020 int len = writev(STDOUT_FILENO, iov, out); 1021 if (len <= 0) { 1022 warn("Write to stdout gave %i (%d)", len, errno); 1023 break; 1024 } 1025 iov_consume(vq->dev, iov, out, NULL, len); 1026 } 1027 1028 /* 1029 * We're finished with that buffer: if we're going to sleep, 1030 * wait_for_vq_desc() will prod the Guest with an interrupt. 1031 */ 1032 add_used(vq, head, 0); 1033 } 1034 1035 /* 1036 * The Network 1037 * 1038 * Handling output for network is also simple: we get all the output buffers 1039 * and write them to /dev/net/tun. 1040 */ 1041 struct net_info { 1042 int tunfd; 1043 }; 1044 1045 static void net_output(struct virtqueue *vq) 1046 { 1047 struct net_info *net_info = vq->dev->priv; 1048 unsigned int head, out, in; 1049 struct iovec iov[vq->vring.num]; 1050 1051 /* We usually wait in here for the Guest to give us a packet. */ 1052 head = wait_for_vq_desc(vq, iov, &out, &in); 1053 if (in) 1054 bad_driver_vq(vq, "Input buffers in net output queue?"); 1055 /* 1056 * Send the whole thing through to /dev/net/tun. It expects the exact 1057 * same format: what a coincidence! 1058 */ 1059 if (writev(net_info->tunfd, iov, out) < 0) 1060 warnx("Write to tun failed (%d)?", errno); 1061 1062 /* 1063 * Done with that one; wait_for_vq_desc() will send the interrupt if 1064 * all packets are processed. 1065 */ 1066 add_used(vq, head, 0); 1067 } 1068 1069 /* 1070 * Handling network input is a bit trickier, because I've tried to optimize it. 1071 * 1072 * First we have a helper routine which tells is if from this file descriptor 1073 * (ie. the /dev/net/tun device) will block: 1074 */ 1075 static bool will_block(int fd) 1076 { 1077 fd_set fdset; 1078 struct timeval zero = { 0, 0 }; 1079 FD_ZERO(&fdset); 1080 FD_SET(fd, &fdset); 1081 return select(fd+1, &fdset, NULL, NULL, &zero) != 1; 1082 } 1083 1084 /* 1085 * This handles packets coming in from the tun device to our Guest. Like all 1086 * service routines, it gets called again as soon as it returns, so you don't 1087 * see a while(1) loop here. 1088 */ 1089 static void net_input(struct virtqueue *vq) 1090 { 1091 int len; 1092 unsigned int head, out, in; 1093 struct iovec iov[vq->vring.num]; 1094 struct net_info *net_info = vq->dev->priv; 1095 1096 /* 1097 * Get a descriptor to write an incoming packet into. This will also 1098 * send an interrupt if they're out of descriptors. 1099 */ 1100 head = wait_for_vq_desc(vq, iov, &out, &in); 1101 if (out) 1102 bad_driver_vq(vq, "Output buffers in net input queue?"); 1103 1104 /* 1105 * If it looks like we'll block reading from the tun device, send them 1106 * an interrupt. 1107 */ 1108 if (vq->pending_used && will_block(net_info->tunfd)) 1109 trigger_irq(vq); 1110 1111 /* 1112 * Read in the packet. This is where we normally wait (when there's no 1113 * incoming network traffic). 1114 */ 1115 len = readv(net_info->tunfd, iov, in); 1116 if (len <= 0) 1117 warn("Failed to read from tun (%d).", errno); 1118 1119 /* 1120 * Mark that packet buffer as used, but don't interrupt here. We want 1121 * to wait until we've done as much work as we can. 1122 */ 1123 add_used(vq, head, len); 1124 } 1125 /*:*/ 1126 1127 /* This is the helper to create threads: run the service routine in a loop. */ 1128 static int do_thread(void *_vq) 1129 { 1130 struct virtqueue *vq = _vq; 1131 1132 for (;;) 1133 vq->service(vq); 1134 return 0; 1135 } 1136 1137 /* 1138 * When a child dies, we kill our entire process group with SIGTERM. This 1139 * also has the side effect that the shell restores the console for us! 1140 */ 1141 static void kill_launcher(int signal) 1142 { 1143 kill(0, SIGTERM); 1144 } 1145 1146 static void reset_vq_pci_config(struct virtqueue *vq) 1147 { 1148 vq->pci_config.queue_size = VIRTQUEUE_NUM; 1149 vq->pci_config.queue_enable = 0; 1150 } 1151 1152 static void reset_device(struct device *dev) 1153 { 1154 struct virtqueue *vq; 1155 1156 verbose("Resetting device %s\n", dev->name); 1157 1158 /* Clear any features they've acked. */ 1159 dev->features_accepted = 0; 1160 1161 /* We're going to be explicitly killing threads, so ignore them. */ 1162 signal(SIGCHLD, SIG_IGN); 1163 1164 /* 1165 * 4.1.4.3.1: 1166 * 1167 * The device MUST present a 0 in queue_enable on reset. 1168 * 1169 * This means we set it here, and reset the saved ones in every vq. 1170 */ 1171 dev->mmio->cfg.queue_enable = 0; 1172 1173 /* Get rid of the virtqueue threads */ 1174 for (vq = dev->vq; vq; vq = vq->next) { 1175 vq->last_avail_idx = 0; 1176 reset_vq_pci_config(vq); 1177 if (vq->thread != (pid_t)-1) { 1178 kill(vq->thread, SIGTERM); 1179 waitpid(vq->thread, NULL, 0); 1180 vq->thread = (pid_t)-1; 1181 } 1182 } 1183 dev->running = false; 1184 dev->wrote_features_ok = false; 1185 1186 /* Now we care if threads die. */ 1187 signal(SIGCHLD, (void *)kill_launcher); 1188 } 1189 1190 static void cleanup_devices(void) 1191 { 1192 unsigned int i; 1193 1194 for (i = 1; i < MAX_PCI_DEVICES; i++) { 1195 struct device *d = devices.pci[i]; 1196 if (!d) 1197 continue; 1198 reset_device(d); 1199 } 1200 1201 /* If we saved off the original terminal settings, restore them now. */ 1202 if (orig_term.c_lflag & (ISIG|ICANON|ECHO)) 1203 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term); 1204 } 1205 1206 /*L:217 1207 * We do PCI. This is mainly done to let us test the kernel virtio PCI 1208 * code. 1209 */ 1210 1211 /* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */ 1212 static struct device pci_host_bridge; 1213 1214 static void init_pci_host_bridge(void) 1215 { 1216 pci_host_bridge.name = "PCI Host Bridge"; 1217 pci_host_bridge.config.class = 0x06; /* bridge */ 1218 pci_host_bridge.config.subclass = 0; /* host bridge */ 1219 devices.pci[0] = &pci_host_bridge; 1220 } 1221 1222 /* The IO ports used to read the PCI config space. */ 1223 #define PCI_CONFIG_ADDR 0xCF8 1224 #define PCI_CONFIG_DATA 0xCFC 1225 1226 /* 1227 * Not really portable, but does help readability: this is what the Guest 1228 * writes to the PCI_CONFIG_ADDR IO port. 1229 */ 1230 union pci_config_addr { 1231 struct { 1232 unsigned mbz: 2; 1233 unsigned offset: 6; 1234 unsigned funcnum: 3; 1235 unsigned devnum: 5; 1236 unsigned busnum: 8; 1237 unsigned reserved: 7; 1238 unsigned enabled : 1; 1239 } bits; 1240 u32 val; 1241 }; 1242 1243 /* 1244 * We cache what they wrote to the address port, so we know what they're 1245 * talking about when they access the data port. 1246 */ 1247 static union pci_config_addr pci_config_addr; 1248 1249 static struct device *find_pci_device(unsigned int index) 1250 { 1251 return devices.pci[index]; 1252 } 1253 1254 /* PCI can do 1, 2 and 4 byte reads; we handle that here. */ 1255 static void ioread(u16 off, u32 v, u32 mask, u32 *val) 1256 { 1257 assert(off < 4); 1258 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF); 1259 *val = (v >> (off * 8)) & mask; 1260 } 1261 1262 /* PCI can do 1, 2 and 4 byte writes; we handle that here. */ 1263 static void iowrite(u16 off, u32 v, u32 mask, u32 *dst) 1264 { 1265 assert(off < 4); 1266 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF); 1267 *dst &= ~(mask << (off * 8)); 1268 *dst |= (v & mask) << (off * 8); 1269 } 1270 1271 /* 1272 * Where PCI_CONFIG_DATA accesses depends on the previous write to 1273 * PCI_CONFIG_ADDR. 1274 */ 1275 static struct device *dev_and_reg(u32 *reg) 1276 { 1277 if (!pci_config_addr.bits.enabled) 1278 return NULL; 1279 1280 if (pci_config_addr.bits.funcnum != 0) 1281 return NULL; 1282 1283 if (pci_config_addr.bits.busnum != 0) 1284 return NULL; 1285 1286 if (pci_config_addr.bits.offset * 4 >= sizeof(struct pci_config)) 1287 return NULL; 1288 1289 *reg = pci_config_addr.bits.offset; 1290 return find_pci_device(pci_config_addr.bits.devnum); 1291 } 1292 1293 /* 1294 * We can get invalid combinations of values while they're writing, so we 1295 * only fault if they try to write with some invalid bar/offset/length. 1296 */ 1297 static bool valid_bar_access(struct device *d, 1298 struct virtio_pci_cfg_cap_u32 *cfg_access) 1299 { 1300 /* We only have 1 bar (BAR0) */ 1301 if (cfg_access->cap.bar != 0) 1302 return false; 1303 1304 /* Check it's within BAR0. */ 1305 if (cfg_access->cap.offset >= d->mmio_size 1306 || cfg_access->cap.offset + cfg_access->cap.length > d->mmio_size) 1307 return false; 1308 1309 /* Check length is 1, 2 or 4. */ 1310 if (cfg_access->cap.length != 1 1311 && cfg_access->cap.length != 2 1312 && cfg_access->cap.length != 4) 1313 return false; 1314 1315 /* 1316 * 4.1.4.7.2: 1317 * 1318 * The driver MUST NOT write a cap.offset which is not a multiple of 1319 * cap.length (ie. all accesses MUST be aligned). 1320 */ 1321 if (cfg_access->cap.offset % cfg_access->cap.length != 0) 1322 return false; 1323 1324 /* Return pointer into word in BAR0. */ 1325 return true; 1326 } 1327 1328 /* Is this accessing the PCI config address port?. */ 1329 static bool is_pci_addr_port(u16 port) 1330 { 1331 return port >= PCI_CONFIG_ADDR && port < PCI_CONFIG_ADDR + 4; 1332 } 1333 1334 static bool pci_addr_iowrite(u16 port, u32 mask, u32 val) 1335 { 1336 iowrite(port - PCI_CONFIG_ADDR, val, mask, 1337 &pci_config_addr.val); 1338 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n", 1339 pci_config_addr.bits.enabled ? "" : " DISABLED", 1340 val, mask, 1341 pci_config_addr.bits.busnum, 1342 pci_config_addr.bits.devnum, 1343 pci_config_addr.bits.funcnum, 1344 pci_config_addr.bits.offset); 1345 return true; 1346 } 1347 1348 static void pci_addr_ioread(u16 port, u32 mask, u32 *val) 1349 { 1350 ioread(port - PCI_CONFIG_ADDR, pci_config_addr.val, mask, val); 1351 } 1352 1353 /* Is this accessing the PCI config data port?. */ 1354 static bool is_pci_data_port(u16 port) 1355 { 1356 return port >= PCI_CONFIG_DATA && port < PCI_CONFIG_DATA + 4; 1357 } 1358 1359 static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask); 1360 1361 static bool pci_data_iowrite(u16 port, u32 mask, u32 val) 1362 { 1363 u32 reg, portoff; 1364 struct device *d = dev_and_reg(®); 1365 1366 /* Complain if they don't belong to a device. */ 1367 if (!d) 1368 return false; 1369 1370 /* They can do 1 byte writes, etc. */ 1371 portoff = port - PCI_CONFIG_DATA; 1372 1373 /* 1374 * PCI uses a weird way to determine the BAR size: the OS 1375 * writes all 1's, and sees which ones stick. 1376 */ 1377 if (&d->config_words[reg] == &d->config.bar[0]) { 1378 int i; 1379 1380 iowrite(portoff, val, mask, &d->config.bar[0]); 1381 for (i = 0; (1 << i) < d->mmio_size; i++) 1382 d->config.bar[0] &= ~(1 << i); 1383 return true; 1384 } else if ((&d->config_words[reg] > &d->config.bar[0] 1385 && &d->config_words[reg] <= &d->config.bar[6]) 1386 || &d->config_words[reg] == &d->config.expansion_rom_addr) { 1387 /* Allow writing to any other BAR, or expansion ROM */ 1388 iowrite(portoff, val, mask, &d->config_words[reg]); 1389 return true; 1390 /* We let them override latency timer and cacheline size */ 1391 } else if (&d->config_words[reg] == (void *)&d->config.cacheline_size) { 1392 /* Only let them change the first two fields. */ 1393 if (mask == 0xFFFFFFFF) 1394 mask = 0xFFFF; 1395 iowrite(portoff, val, mask, &d->config_words[reg]); 1396 return true; 1397 } else if (&d->config_words[reg] == (void *)&d->config.command 1398 && mask == 0xFFFF) { 1399 /* Ignore command writes. */ 1400 return true; 1401 } else if (&d->config_words[reg] 1402 == (void *)&d->config.cfg_access.cap.bar 1403 || &d->config_words[reg] 1404 == &d->config.cfg_access.cap.length 1405 || &d->config_words[reg] 1406 == &d->config.cfg_access.cap.offset) { 1407 1408 /* 1409 * The VIRTIO_PCI_CAP_PCI_CFG capability 1410 * provides a backdoor to access the MMIO 1411 * regions without mapping them. Weird, but 1412 * useful. 1413 */ 1414 iowrite(portoff, val, mask, &d->config_words[reg]); 1415 return true; 1416 } else if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) { 1417 u32 write_mask; 1418 1419 /* 1420 * 4.1.4.7.1: 1421 * 1422 * Upon detecting driver write access to pci_cfg_data, the 1423 * device MUST execute a write access at offset cap.offset at 1424 * BAR selected by cap.bar using the first cap.length bytes 1425 * from pci_cfg_data. 1426 */ 1427 1428 /* Must be bar 0 */ 1429 if (!valid_bar_access(d, &d->config.cfg_access)) 1430 return false; 1431 1432 iowrite(portoff, val, mask, &d->config.cfg_access.pci_cfg_data); 1433 1434 /* 1435 * Now emulate a write. The mask we use is set by 1436 * len, *not* this write! 1437 */ 1438 write_mask = (1ULL<<(8*d->config.cfg_access.cap.length)) - 1; 1439 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n", 1440 d->config.cfg_access.pci_cfg_data, write_mask, 1441 d->config.cfg_access.cap.bar, 1442 d->config.cfg_access.cap.offset, 1443 d->config.cfg_access.cap.length); 1444 1445 emulate_mmio_write(d, d->config.cfg_access.cap.offset, 1446 d->config.cfg_access.pci_cfg_data, 1447 write_mask); 1448 return true; 1449 } 1450 1451 /* 1452 * 4.1.4.1: 1453 * 1454 * The driver MUST NOT write into any field of the capability 1455 * structure, with the exception of those with cap_type 1456 * VIRTIO_PCI_CAP_PCI_CFG... 1457 */ 1458 return false; 1459 } 1460 1461 static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask); 1462 1463 static void pci_data_ioread(u16 port, u32 mask, u32 *val) 1464 { 1465 u32 reg; 1466 struct device *d = dev_and_reg(®); 1467 1468 if (!d) 1469 return; 1470 1471 /* Read through the PCI MMIO access window is special */ 1472 if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) { 1473 u32 read_mask; 1474 1475 /* 1476 * 4.1.4.7.1: 1477 * 1478 * Upon detecting driver read access to pci_cfg_data, the 1479 * device MUST execute a read access of length cap.length at 1480 * offset cap.offset at BAR selected by cap.bar and store the 1481 * first cap.length bytes in pci_cfg_data. 1482 */ 1483 /* Must be bar 0 */ 1484 if (!valid_bar_access(d, &d->config.cfg_access)) 1485 bad_driver(d, 1486 "Invalid cfg_access to bar%u, offset %u len %u", 1487 d->config.cfg_access.cap.bar, 1488 d->config.cfg_access.cap.offset, 1489 d->config.cfg_access.cap.length); 1490 1491 /* 1492 * Read into the window. The mask we use is set by 1493 * len, *not* this read! 1494 */ 1495 read_mask = (1ULL<<(8*d->config.cfg_access.cap.length))-1; 1496 d->config.cfg_access.pci_cfg_data 1497 = emulate_mmio_read(d, 1498 d->config.cfg_access.cap.offset, 1499 read_mask); 1500 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n", 1501 d->config.cfg_access.pci_cfg_data, read_mask, 1502 d->config.cfg_access.cap.bar, 1503 d->config.cfg_access.cap.offset, 1504 d->config.cfg_access.cap.length); 1505 } 1506 ioread(port - PCI_CONFIG_DATA, d->config_words[reg], mask, val); 1507 } 1508 1509 /*L:216 1510 * This is where we emulate a handful of Guest instructions. It's ugly 1511 * and we used to do it in the kernel but it grew over time. 1512 */ 1513 1514 /* 1515 * We use the ptrace syscall's pt_regs struct to talk about registers 1516 * to lguest: these macros convert the names to the offsets. 1517 */ 1518 #define getreg(name) getreg_off(offsetof(struct user_regs_struct, name)) 1519 #define setreg(name, val) \ 1520 setreg_off(offsetof(struct user_regs_struct, name), (val)) 1521 1522 static u32 getreg_off(size_t offset) 1523 { 1524 u32 r; 1525 unsigned long args[] = { LHREQ_GETREG, offset }; 1526 1527 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0) 1528 err(1, "Getting register %u", offset); 1529 if (pread(lguest_fd, &r, sizeof(r), cpu_id) != sizeof(r)) 1530 err(1, "Reading register %u", offset); 1531 1532 return r; 1533 } 1534 1535 static void setreg_off(size_t offset, u32 val) 1536 { 1537 unsigned long args[] = { LHREQ_SETREG, offset, val }; 1538 1539 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0) 1540 err(1, "Setting register %u", offset); 1541 } 1542 1543 /* Get register by instruction encoding */ 1544 static u32 getreg_num(unsigned regnum, u32 mask) 1545 { 1546 /* 8 bit ops use regnums 4-7 for high parts of word */ 1547 if (mask == 0xFF && (regnum & 0x4)) 1548 return getreg_num(regnum & 0x3, 0xFFFF) >> 8; 1549 1550 switch (regnum) { 1551 case 0: return getreg(eax) & mask; 1552 case 1: return getreg(ecx) & mask; 1553 case 2: return getreg(edx) & mask; 1554 case 3: return getreg(ebx) & mask; 1555 case 4: return getreg(esp) & mask; 1556 case 5: return getreg(ebp) & mask; 1557 case 6: return getreg(esi) & mask; 1558 case 7: return getreg(edi) & mask; 1559 } 1560 abort(); 1561 } 1562 1563 /* Set register by instruction encoding */ 1564 static void setreg_num(unsigned regnum, u32 val, u32 mask) 1565 { 1566 /* Don't try to set bits out of range */ 1567 assert(~(val & ~mask)); 1568 1569 /* 8 bit ops use regnums 4-7 for high parts of word */ 1570 if (mask == 0xFF && (regnum & 0x4)) { 1571 /* Construct the 16 bits we want. */ 1572 val = (val << 8) | getreg_num(regnum & 0x3, 0xFF); 1573 setreg_num(regnum & 0x3, val, 0xFFFF); 1574 return; 1575 } 1576 1577 switch (regnum) { 1578 case 0: setreg(eax, val | (getreg(eax) & ~mask)); return; 1579 case 1: setreg(ecx, val | (getreg(ecx) & ~mask)); return; 1580 case 2: setreg(edx, val | (getreg(edx) & ~mask)); return; 1581 case 3: setreg(ebx, val | (getreg(ebx) & ~mask)); return; 1582 case 4: setreg(esp, val | (getreg(esp) & ~mask)); return; 1583 case 5: setreg(ebp, val | (getreg(ebp) & ~mask)); return; 1584 case 6: setreg(esi, val | (getreg(esi) & ~mask)); return; 1585 case 7: setreg(edi, val | (getreg(edi) & ~mask)); return; 1586 } 1587 abort(); 1588 } 1589 1590 /* Get bytes of displacement appended to instruction, from r/m encoding */ 1591 static u32 insn_displacement_len(u8 mod_reg_rm) 1592 { 1593 /* Switch on the mod bits */ 1594 switch (mod_reg_rm >> 6) { 1595 case 0: 1596 /* If mod == 0, and r/m == 101, 16-bit displacement follows */ 1597 if ((mod_reg_rm & 0x7) == 0x5) 1598 return 2; 1599 /* Normally, mod == 0 means no literal displacement */ 1600 return 0; 1601 case 1: 1602 /* One byte displacement */ 1603 return 1; 1604 case 2: 1605 /* Four byte displacement */ 1606 return 4; 1607 case 3: 1608 /* Register mode */ 1609 return 0; 1610 } 1611 abort(); 1612 } 1613 1614 static void emulate_insn(const u8 insn[]) 1615 { 1616 unsigned long args[] = { LHREQ_TRAP, 13 }; 1617 unsigned int insnlen = 0, in = 0, small_operand = 0, byte_access; 1618 unsigned int eax, port, mask; 1619 /* 1620 * Default is to return all-ones on IO port reads, which traditionally 1621 * means "there's nothing there". 1622 */ 1623 u32 val = 0xFFFFFFFF; 1624 1625 /* 1626 * This must be the Guest kernel trying to do something, not userspace! 1627 * The bottom two bits of the CS segment register are the privilege 1628 * level. 1629 */ 1630 if ((getreg(xcs) & 3) != 0x1) 1631 goto no_emulate; 1632 1633 /* Decoding x86 instructions is icky. */ 1634 1635 /* 1636 * Around 2.6.33, the kernel started using an emulation for the 1637 * cmpxchg8b instruction in early boot on many configurations. This 1638 * code isn't paravirtualized, and it tries to disable interrupts. 1639 * Ignore it, which will Mostly Work. 1640 */ 1641 if (insn[insnlen] == 0xfa) { 1642 /* "cli", or Clear Interrupt Enable instruction. Skip it. */ 1643 insnlen = 1; 1644 goto skip_insn; 1645 } 1646 1647 /* 1648 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out. 1649 */ 1650 if (insn[insnlen] == 0x66) { 1651 small_operand = 1; 1652 /* The instruction is 1 byte so far, read the next byte. */ 1653 insnlen = 1; 1654 } 1655 1656 /* If the lower bit isn't set, it's a single byte access */ 1657 byte_access = !(insn[insnlen] & 1); 1658 1659 /* 1660 * Now we can ignore the lower bit and decode the 4 opcodes 1661 * we need to emulate. 1662 */ 1663 switch (insn[insnlen] & 0xFE) { 1664 case 0xE4: /* in <next byte>,%al */ 1665 port = insn[insnlen+1]; 1666 insnlen += 2; 1667 in = 1; 1668 break; 1669 case 0xEC: /* in (%dx),%al */ 1670 port = getreg(edx) & 0xFFFF; 1671 insnlen += 1; 1672 in = 1; 1673 break; 1674 case 0xE6: /* out %al,<next byte> */ 1675 port = insn[insnlen+1]; 1676 insnlen += 2; 1677 break; 1678 case 0xEE: /* out %al,(%dx) */ 1679 port = getreg(edx) & 0xFFFF; 1680 insnlen += 1; 1681 break; 1682 default: 1683 /* OK, we don't know what this is, can't emulate. */ 1684 goto no_emulate; 1685 } 1686 1687 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */ 1688 if (byte_access) 1689 mask = 0xFF; 1690 else if (small_operand) 1691 mask = 0xFFFF; 1692 else 1693 mask = 0xFFFFFFFF; 1694 1695 /* 1696 * If it was an "IN" instruction, they expect the result to be read 1697 * into %eax, so we change %eax. 1698 */ 1699 eax = getreg(eax); 1700 1701 if (in) { 1702 /* This is the PS/2 keyboard status; 1 means ready for output */ 1703 if (port == 0x64) 1704 val = 1; 1705 else if (is_pci_addr_port(port)) 1706 pci_addr_ioread(port, mask, &val); 1707 else if (is_pci_data_port(port)) 1708 pci_data_ioread(port, mask, &val); 1709 1710 /* Clear the bits we're about to read */ 1711 eax &= ~mask; 1712 /* Copy bits in from val. */ 1713 eax |= val & mask; 1714 /* Now update the register. */ 1715 setreg(eax, eax); 1716 } else { 1717 if (is_pci_addr_port(port)) { 1718 if (!pci_addr_iowrite(port, mask, eax)) 1719 goto bad_io; 1720 } else if (is_pci_data_port(port)) { 1721 if (!pci_data_iowrite(port, mask, eax)) 1722 goto bad_io; 1723 } 1724 /* There are many other ports, eg. CMOS clock, serial 1725 * and parallel ports, so we ignore them all. */ 1726 } 1727 1728 verbose("IO %s of %x to %u: %#08x\n", 1729 in ? "IN" : "OUT", mask, port, eax); 1730 skip_insn: 1731 /* Finally, we've "done" the instruction, so move past it. */ 1732 setreg(eip, getreg(eip) + insnlen); 1733 return; 1734 1735 bad_io: 1736 warnx("Attempt to %s port %u (%#x mask)", 1737 in ? "read from" : "write to", port, mask); 1738 1739 no_emulate: 1740 /* Inject trap into Guest. */ 1741 if (write(lguest_fd, args, sizeof(args)) < 0) 1742 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip)); 1743 } 1744 1745 static struct device *find_mmio_region(unsigned long paddr, u32 *off) 1746 { 1747 unsigned int i; 1748 1749 for (i = 1; i < MAX_PCI_DEVICES; i++) { 1750 struct device *d = devices.pci[i]; 1751 1752 if (!d) 1753 continue; 1754 if (paddr < d->mmio_addr) 1755 continue; 1756 if (paddr >= d->mmio_addr + d->mmio_size) 1757 continue; 1758 *off = paddr - d->mmio_addr; 1759 return d; 1760 } 1761 return NULL; 1762 } 1763 1764 /* FIXME: Use vq array. */ 1765 static struct virtqueue *vq_by_num(struct device *d, u32 num) 1766 { 1767 struct virtqueue *vq = d->vq; 1768 1769 while (num-- && vq) 1770 vq = vq->next; 1771 1772 return vq; 1773 } 1774 1775 static void save_vq_config(const struct virtio_pci_common_cfg *cfg, 1776 struct virtqueue *vq) 1777 { 1778 vq->pci_config = *cfg; 1779 } 1780 1781 static void restore_vq_config(struct virtio_pci_common_cfg *cfg, 1782 struct virtqueue *vq) 1783 { 1784 /* Only restore the per-vq part */ 1785 size_t off = offsetof(struct virtio_pci_common_cfg, queue_size); 1786 1787 memcpy((void *)cfg + off, (void *)&vq->pci_config + off, 1788 sizeof(*cfg) - off); 1789 } 1790 1791 /* 1792 * 4.1.4.3.2: 1793 * 1794 * The driver MUST configure the other virtqueue fields before 1795 * enabling the virtqueue with queue_enable. 1796 * 1797 * When they enable the virtqueue, we check that their setup is valid. 1798 */ 1799 static void check_virtqueue(struct device *d, struct virtqueue *vq) 1800 { 1801 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */ 1802 if (vq->pci_config.queue_desc_hi 1803 || vq->pci_config.queue_avail_hi 1804 || vq->pci_config.queue_used_hi) 1805 bad_driver_vq(vq, "invalid 64-bit queue address"); 1806 1807 /* 1808 * 2.4.1: 1809 * 1810 * The driver MUST ensure that the physical address of the first byte 1811 * of each virtqueue part is a multiple of the specified alignment 1812 * value in the above table. 1813 */ 1814 if (vq->pci_config.queue_desc_lo % 16 1815 || vq->pci_config.queue_avail_lo % 2 1816 || vq->pci_config.queue_used_lo % 4) 1817 bad_driver_vq(vq, "invalid alignment in queue addresses"); 1818 1819 /* Initialize the virtqueue and check they're all in range. */ 1820 vq->vring.num = vq->pci_config.queue_size; 1821 vq->vring.desc = check_pointer(vq->dev, 1822 vq->pci_config.queue_desc_lo, 1823 sizeof(*vq->vring.desc) * vq->vring.num); 1824 vq->vring.avail = check_pointer(vq->dev, 1825 vq->pci_config.queue_avail_lo, 1826 sizeof(*vq->vring.avail) 1827 + (sizeof(vq->vring.avail->ring[0]) 1828 * vq->vring.num)); 1829 vq->vring.used = check_pointer(vq->dev, 1830 vq->pci_config.queue_used_lo, 1831 sizeof(*vq->vring.used) 1832 + (sizeof(vq->vring.used->ring[0]) 1833 * vq->vring.num)); 1834 1835 /* 1836 * 2.4.9.1: 1837 * 1838 * The driver MUST initialize flags in the used ring to 0 1839 * when allocating the used ring. 1840 */ 1841 if (vq->vring.used->flags != 0) 1842 bad_driver_vq(vq, "invalid initial used.flags %#x", 1843 vq->vring.used->flags); 1844 } 1845 1846 static void start_virtqueue(struct virtqueue *vq) 1847 { 1848 /* 1849 * Create stack for thread. Since the stack grows upwards, we point 1850 * the stack pointer to the end of this region. 1851 */ 1852 char *stack = malloc(32768); 1853 1854 /* Create a zero-initialized eventfd. */ 1855 vq->eventfd = eventfd(0, 0); 1856 if (vq->eventfd < 0) 1857 err(1, "Creating eventfd"); 1858 1859 /* 1860 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so 1861 * we get a signal if it dies. 1862 */ 1863 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq); 1864 if (vq->thread == (pid_t)-1) 1865 err(1, "Creating clone"); 1866 } 1867 1868 static void start_virtqueues(struct device *d) 1869 { 1870 struct virtqueue *vq; 1871 1872 for (vq = d->vq; vq; vq = vq->next) { 1873 if (vq->pci_config.queue_enable) 1874 start_virtqueue(vq); 1875 } 1876 } 1877 1878 static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask) 1879 { 1880 struct virtqueue *vq; 1881 1882 switch (off) { 1883 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select): 1884 /* 1885 * 4.1.4.3.1: 1886 * 1887 * The device MUST present the feature bits it is offering in 1888 * device_feature, starting at bit device_feature_select ∗ 32 1889 * for any device_feature_select written by the driver 1890 */ 1891 if (val == 0) 1892 d->mmio->cfg.device_feature = d->features; 1893 else if (val == 1) 1894 d->mmio->cfg.device_feature = (d->features >> 32); 1895 else 1896 d->mmio->cfg.device_feature = 0; 1897 goto feature_write_through32; 1898 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select): 1899 if (val > 1) 1900 bad_driver(d, "Unexpected driver select %u", val); 1901 goto feature_write_through32; 1902 case offsetof(struct virtio_pci_mmio, cfg.guest_feature): 1903 if (d->mmio->cfg.guest_feature_select == 0) { 1904 d->features_accepted &= ~((u64)0xFFFFFFFF); 1905 d->features_accepted |= val; 1906 } else { 1907 assert(d->mmio->cfg.guest_feature_select == 1); 1908 d->features_accepted &= 0xFFFFFFFF; 1909 d->features_accepted |= ((u64)val) << 32; 1910 } 1911 /* 1912 * 2.2.1: 1913 * 1914 * The driver MUST NOT accept a feature which the device did 1915 * not offer 1916 */ 1917 if (d->features_accepted & ~d->features) 1918 bad_driver(d, "over-accepted features %#llx of %#llx", 1919 d->features_accepted, d->features); 1920 goto feature_write_through32; 1921 case offsetof(struct virtio_pci_mmio, cfg.device_status): { 1922 u8 prev; 1923 1924 verbose("%s: device status -> %#x\n", d->name, val); 1925 /* 1926 * 4.1.4.3.1: 1927 * 1928 * The device MUST reset when 0 is written to device_status, 1929 * and present a 0 in device_status once that is done. 1930 */ 1931 if (val == 0) { 1932 reset_device(d); 1933 goto write_through8; 1934 } 1935 1936 /* 2.1.1: The driver MUST NOT clear a device status bit. */ 1937 if (d->mmio->cfg.device_status & ~val) 1938 bad_driver(d, "unset of device status bit %#x -> %#x", 1939 d->mmio->cfg.device_status, val); 1940 1941 /* 1942 * 2.1.2: 1943 * 1944 * The device MUST NOT consume buffers or notify the driver 1945 * before DRIVER_OK. 1946 */ 1947 if (val & VIRTIO_CONFIG_S_DRIVER_OK 1948 && !(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK)) 1949 start_virtqueues(d); 1950 1951 /* 1952 * 3.1.1: 1953 * 1954 * The driver MUST follow this sequence to initialize a device: 1955 * - Reset the device. 1956 * - Set the ACKNOWLEDGE status bit: the guest OS has 1957 * notice the device. 1958 * - Set the DRIVER status bit: the guest OS knows how 1959 * to drive the device. 1960 * - Read device feature bits, and write the subset 1961 * of feature bits understood by the OS and driver 1962 * to the device. During this step the driver MAY 1963 * read (but MUST NOT write) the device-specific 1964 * configuration fields to check that it can 1965 * support the device before accepting it. 1966 * - Set the FEATURES_OK status bit. The driver 1967 * MUST not accept new feature bits after this 1968 * step. 1969 * - Re-read device status to ensure the FEATURES_OK 1970 * bit is still set: otherwise, the device does 1971 * not support our subset of features and the 1972 * device is unusable. 1973 * - Perform device-specific setup, including 1974 * discovery of virtqueues for the device, 1975 * optional per-bus setup, reading and possibly 1976 * writing the device’s virtio configuration 1977 * space, and population of virtqueues. 1978 * - Set the DRIVER_OK status bit. At this point the 1979 * device is “live”. 1980 */ 1981 prev = 0; 1982 switch (val & ~d->mmio->cfg.device_status) { 1983 case VIRTIO_CONFIG_S_DRIVER_OK: 1984 prev |= VIRTIO_CONFIG_S_FEATURES_OK; /* fall thru */ 1985 case VIRTIO_CONFIG_S_FEATURES_OK: 1986 prev |= VIRTIO_CONFIG_S_DRIVER; /* fall thru */ 1987 case VIRTIO_CONFIG_S_DRIVER: 1988 prev |= VIRTIO_CONFIG_S_ACKNOWLEDGE; /* fall thru */ 1989 case VIRTIO_CONFIG_S_ACKNOWLEDGE: 1990 break; 1991 default: 1992 bad_driver(d, "unknown device status bit %#x -> %#x", 1993 d->mmio->cfg.device_status, val); 1994 } 1995 if (d->mmio->cfg.device_status != prev) 1996 bad_driver(d, "unexpected status transition %#x -> %#x", 1997 d->mmio->cfg.device_status, val); 1998 1999 /* If they just wrote FEATURES_OK, we make sure they read */ 2000 switch (val & ~d->mmio->cfg.device_status) { 2001 case VIRTIO_CONFIG_S_FEATURES_OK: 2002 d->wrote_features_ok = true; 2003 break; 2004 case VIRTIO_CONFIG_S_DRIVER_OK: 2005 if (d->wrote_features_ok) 2006 bad_driver(d, "did not re-read FEATURES_OK"); 2007 break; 2008 } 2009 goto write_through8; 2010 } 2011 case offsetof(struct virtio_pci_mmio, cfg.queue_select): 2012 vq = vq_by_num(d, val); 2013 /* 2014 * 4.1.4.3.1: 2015 * 2016 * The device MUST present a 0 in queue_size if the virtqueue 2017 * corresponding to the current queue_select is unavailable. 2018 */ 2019 if (!vq) { 2020 d->mmio->cfg.queue_size = 0; 2021 goto write_through16; 2022 } 2023 /* Save registers for old vq, if it was a valid vq */ 2024 if (d->mmio->cfg.queue_size) 2025 save_vq_config(&d->mmio->cfg, 2026 vq_by_num(d, d->mmio->cfg.queue_select)); 2027 /* Restore the registers for the queue they asked for */ 2028 restore_vq_config(&d->mmio->cfg, vq); 2029 goto write_through16; 2030 case offsetof(struct virtio_pci_mmio, cfg.queue_size): 2031 /* 2032 * 4.1.4.3.2: 2033 * 2034 * The driver MUST NOT write a value which is not a power of 2 2035 * to queue_size. 2036 */ 2037 if (val & (val-1)) 2038 bad_driver(d, "invalid queue size %u", val); 2039 if (d->mmio->cfg.queue_enable) 2040 bad_driver(d, "changing queue size on live device"); 2041 goto write_through16; 2042 case offsetof(struct virtio_pci_mmio, cfg.queue_msix_vector): 2043 bad_driver(d, "attempt to set MSIX vector to %u", val); 2044 case offsetof(struct virtio_pci_mmio, cfg.queue_enable): { 2045 struct virtqueue *vq = vq_by_num(d, d->mmio->cfg.queue_select); 2046 2047 /* 2048 * 4.1.4.3.2: 2049 * 2050 * The driver MUST NOT write a 0 to queue_enable. 2051 */ 2052 if (val != 1) 2053 bad_driver(d, "setting queue_enable to %u", val); 2054 2055 /* 2056 * 3.1.1: 2057 * 2058 * 7. Perform device-specific setup, including discovery of 2059 * virtqueues for the device, optional per-bus setup, 2060 * reading and possibly writing the device’s virtio 2061 * configuration space, and population of virtqueues. 2062 * 8. Set the DRIVER_OK status bit. 2063 * 2064 * All our devices require all virtqueues to be enabled, so 2065 * they should have done that before setting DRIVER_OK. 2066 */ 2067 if (d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK) 2068 bad_driver(d, "enabling vq after DRIVER_OK"); 2069 2070 d->mmio->cfg.queue_enable = val; 2071 save_vq_config(&d->mmio->cfg, vq); 2072 check_virtqueue(d, vq); 2073 goto write_through16; 2074 } 2075 case offsetof(struct virtio_pci_mmio, cfg.queue_notify_off): 2076 bad_driver(d, "attempt to write to queue_notify_off"); 2077 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_lo): 2078 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_hi): 2079 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_lo): 2080 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_hi): 2081 case offsetof(struct virtio_pci_mmio, cfg.queue_used_lo): 2082 case offsetof(struct virtio_pci_mmio, cfg.queue_used_hi): 2083 /* 2084 * 4.1.4.3.2: 2085 * 2086 * The driver MUST configure the other virtqueue fields before 2087 * enabling the virtqueue with queue_enable. 2088 */ 2089 if (d->mmio->cfg.queue_enable) 2090 bad_driver(d, "changing queue on live device"); 2091 2092 /* 2093 * 3.1.1: 2094 * 2095 * The driver MUST follow this sequence to initialize a device: 2096 *... 2097 * 5. Set the FEATURES_OK status bit. The driver MUST not 2098 * accept new feature bits after this step. 2099 */ 2100 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_FEATURES_OK)) 2101 bad_driver(d, "setting up vq before FEATURES_OK"); 2102 2103 /* 2104 * 6. Re-read device status to ensure the FEATURES_OK bit is 2105 * still set... 2106 */ 2107 if (d->wrote_features_ok) 2108 bad_driver(d, "didn't re-read FEATURES_OK before setup"); 2109 2110 goto write_through32; 2111 case offsetof(struct virtio_pci_mmio, notify): 2112 vq = vq_by_num(d, val); 2113 if (!vq) 2114 bad_driver(d, "Invalid vq notification on %u", val); 2115 /* Notify the process handling this vq by adding 1 to eventfd */ 2116 write(vq->eventfd, "\1\0\0\0\0\0\0\0", 8); 2117 goto write_through16; 2118 case offsetof(struct virtio_pci_mmio, isr): 2119 bad_driver(d, "Unexpected write to isr"); 2120 /* Weird corner case: write to emerg_wr of console */ 2121 case sizeof(struct virtio_pci_mmio) 2122 + offsetof(struct virtio_console_config, emerg_wr): 2123 if (strcmp(d->name, "console") == 0) { 2124 char c = val; 2125 write(STDOUT_FILENO, &c, 1); 2126 goto write_through32; 2127 } 2128 /* Fall through... */ 2129 default: 2130 /* 2131 * 4.1.4.3.2: 2132 * 2133 * The driver MUST NOT write to device_feature, num_queues, 2134 * config_generation or queue_notify_off. 2135 */ 2136 bad_driver(d, "Unexpected write to offset %u", off); 2137 } 2138 2139 feature_write_through32: 2140 /* 2141 * 3.1.1: 2142 * 2143 * The driver MUST follow this sequence to initialize a device: 2144 *... 2145 * - Set the DRIVER status bit: the guest OS knows how 2146 * to drive the device. 2147 * - Read device feature bits, and write the subset 2148 * of feature bits understood by the OS and driver 2149 * to the device. 2150 *... 2151 * - Set the FEATURES_OK status bit. The driver MUST not 2152 * accept new feature bits after this step. 2153 */ 2154 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER)) 2155 bad_driver(d, "feature write before VIRTIO_CONFIG_S_DRIVER"); 2156 if (d->mmio->cfg.device_status & VIRTIO_CONFIG_S_FEATURES_OK) 2157 bad_driver(d, "feature write after VIRTIO_CONFIG_S_FEATURES_OK"); 2158 2159 /* 2160 * 4.1.3.1: 2161 * 2162 * The driver MUST access each field using the “natural” access 2163 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for 2164 * 16-bit fields and 8-bit accesses for 8-bit fields. 2165 */ 2166 write_through32: 2167 if (mask != 0xFFFFFFFF) { 2168 bad_driver(d, "non-32-bit write to offset %u (%#x)", 2169 off, getreg(eip)); 2170 return; 2171 } 2172 memcpy((char *)d->mmio + off, &val, 4); 2173 return; 2174 2175 write_through16: 2176 if (mask != 0xFFFF) 2177 bad_driver(d, "non-16-bit write to offset %u (%#x)", 2178 off, getreg(eip)); 2179 memcpy((char *)d->mmio + off, &val, 2); 2180 return; 2181 2182 write_through8: 2183 if (mask != 0xFF) 2184 bad_driver(d, "non-8-bit write to offset %u (%#x)", 2185 off, getreg(eip)); 2186 memcpy((char *)d->mmio + off, &val, 1); 2187 return; 2188 } 2189 2190 static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask) 2191 { 2192 u8 isr; 2193 u32 val = 0; 2194 2195 switch (off) { 2196 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select): 2197 case offsetof(struct virtio_pci_mmio, cfg.device_feature): 2198 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select): 2199 case offsetof(struct virtio_pci_mmio, cfg.guest_feature): 2200 /* 2201 * 3.1.1: 2202 * 2203 * The driver MUST follow this sequence to initialize a device: 2204 *... 2205 * - Set the DRIVER status bit: the guest OS knows how 2206 * to drive the device. 2207 * - Read device feature bits, and write the subset 2208 * of feature bits understood by the OS and driver 2209 * to the device. 2210 */ 2211 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER)) 2212 bad_driver(d, 2213 "feature read before VIRTIO_CONFIG_S_DRIVER"); 2214 goto read_through32; 2215 case offsetof(struct virtio_pci_mmio, cfg.msix_config): 2216 bad_driver(d, "read of msix_config"); 2217 case offsetof(struct virtio_pci_mmio, cfg.num_queues): 2218 goto read_through16; 2219 case offsetof(struct virtio_pci_mmio, cfg.device_status): 2220 /* As they did read, any write of FEATURES_OK is now fine. */ 2221 d->wrote_features_ok = false; 2222 goto read_through8; 2223 case offsetof(struct virtio_pci_mmio, cfg.config_generation): 2224 /* 2225 * 4.1.4.3.1: 2226 * 2227 * The device MUST present a changed config_generation after 2228 * the driver has read a device-specific configuration value 2229 * which has changed since any part of the device-specific 2230 * configuration was last read. 2231 * 2232 * This is simple: none of our devices change config, so this 2233 * is always 0. 2234 */ 2235 goto read_through8; 2236 case offsetof(struct virtio_pci_mmio, notify): 2237 /* 2238 * 3.1.1: 2239 * 2240 * The driver MUST NOT notify the device before setting 2241 * DRIVER_OK. 2242 */ 2243 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK)) 2244 bad_driver(d, "notify before VIRTIO_CONFIG_S_DRIVER_OK"); 2245 goto read_through16; 2246 case offsetof(struct virtio_pci_mmio, isr): 2247 if (mask != 0xFF) 2248 bad_driver(d, "non-8-bit read from offset %u (%#x)", 2249 off, getreg(eip)); 2250 isr = d->mmio->isr; 2251 /* 2252 * 4.1.4.5.1: 2253 * 2254 * The device MUST reset ISR status to 0 on driver read. 2255 */ 2256 d->mmio->isr = 0; 2257 return isr; 2258 case offsetof(struct virtio_pci_mmio, padding): 2259 bad_driver(d, "read from padding (%#x)", getreg(eip)); 2260 default: 2261 /* Read from device config space, beware unaligned overflow */ 2262 if (off > d->mmio_size - 4) 2263 bad_driver(d, "read past end (%#x)", getreg(eip)); 2264 2265 /* 2266 * 3.1.1: 2267 * The driver MUST follow this sequence to initialize a device: 2268 *... 2269 * 3. Set the DRIVER status bit: the guest OS knows how to 2270 * drive the device. 2271 * 4. Read device feature bits, and write the subset of 2272 * feature bits understood by the OS and driver to the 2273 * device. During this step the driver MAY read (but MUST NOT 2274 * write) the device-specific configuration fields to check 2275 * that it can support the device before accepting it. 2276 */ 2277 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER)) 2278 bad_driver(d, 2279 "config read before VIRTIO_CONFIG_S_DRIVER"); 2280 2281 if (mask == 0xFFFFFFFF) 2282 goto read_through32; 2283 else if (mask == 0xFFFF) 2284 goto read_through16; 2285 else 2286 goto read_through8; 2287 } 2288 2289 /* 2290 * 4.1.3.1: 2291 * 2292 * The driver MUST access each field using the “natural” access 2293 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for 2294 * 16-bit fields and 8-bit accesses for 8-bit fields. 2295 */ 2296 read_through32: 2297 if (mask != 0xFFFFFFFF) 2298 bad_driver(d, "non-32-bit read to offset %u (%#x)", 2299 off, getreg(eip)); 2300 memcpy(&val, (char *)d->mmio + off, 4); 2301 return val; 2302 2303 read_through16: 2304 if (mask != 0xFFFF) 2305 bad_driver(d, "non-16-bit read to offset %u (%#x)", 2306 off, getreg(eip)); 2307 memcpy(&val, (char *)d->mmio + off, 2); 2308 return val; 2309 2310 read_through8: 2311 if (mask != 0xFF) 2312 bad_driver(d, "non-8-bit read to offset %u (%#x)", 2313 off, getreg(eip)); 2314 memcpy(&val, (char *)d->mmio + off, 1); 2315 return val; 2316 } 2317 2318 static void emulate_mmio(unsigned long paddr, const u8 *insn) 2319 { 2320 u32 val, off, mask = 0xFFFFFFFF, insnlen = 0; 2321 struct device *d = find_mmio_region(paddr, &off); 2322 unsigned long args[] = { LHREQ_TRAP, 14 }; 2323 2324 if (!d) { 2325 warnx("MMIO touching %#08lx (not a device)", paddr); 2326 goto reinject; 2327 } 2328 2329 /* Prefix makes it a 16 bit op */ 2330 if (insn[0] == 0x66) { 2331 mask = 0xFFFF; 2332 insnlen++; 2333 } 2334 2335 /* iowrite */ 2336 if (insn[insnlen] == 0x89) { 2337 /* Next byte is r/m byte: bits 3-5 are register. */ 2338 val = getreg_num((insn[insnlen+1] >> 3) & 0x7, mask); 2339 emulate_mmio_write(d, off, val, mask); 2340 insnlen += 2 + insn_displacement_len(insn[insnlen+1]); 2341 } else if (insn[insnlen] == 0x8b) { /* ioread */ 2342 /* Next byte is r/m byte: bits 3-5 are register. */ 2343 val = emulate_mmio_read(d, off, mask); 2344 setreg_num((insn[insnlen+1] >> 3) & 0x7, val, mask); 2345 insnlen += 2 + insn_displacement_len(insn[insnlen+1]); 2346 } else if (insn[0] == 0x88) { /* 8-bit iowrite */ 2347 mask = 0xff; 2348 /* Next byte is r/m byte: bits 3-5 are register. */ 2349 val = getreg_num((insn[1] >> 3) & 0x7, mask); 2350 emulate_mmio_write(d, off, val, mask); 2351 insnlen = 2 + insn_displacement_len(insn[1]); 2352 } else if (insn[0] == 0x8a) { /* 8-bit ioread */ 2353 mask = 0xff; 2354 val = emulate_mmio_read(d, off, mask); 2355 setreg_num((insn[1] >> 3) & 0x7, val, mask); 2356 insnlen = 2 + insn_displacement_len(insn[1]); 2357 } else { 2358 warnx("Unknown MMIO instruction touching %#08lx:" 2359 " %02x %02x %02x %02x at %u", 2360 paddr, insn[0], insn[1], insn[2], insn[3], getreg(eip)); 2361 reinject: 2362 /* Inject trap into Guest. */ 2363 if (write(lguest_fd, args, sizeof(args)) < 0) 2364 err(1, "Reinjecting trap 14 for fault at %#x", 2365 getreg(eip)); 2366 return; 2367 } 2368 2369 /* Finally, we've "done" the instruction, so move past it. */ 2370 setreg(eip, getreg(eip) + insnlen); 2371 } 2372 2373 /*L:190 2374 * Device Setup 2375 * 2376 * All devices need a descriptor so the Guest knows it exists, and a "struct 2377 * device" so the Launcher can keep track of it. We have common helper 2378 * routines to allocate and manage them. 2379 */ 2380 static void add_pci_virtqueue(struct device *dev, 2381 void (*service)(struct virtqueue *), 2382 const char *name) 2383 { 2384 struct virtqueue **i, *vq = malloc(sizeof(*vq)); 2385 2386 /* Initialize the virtqueue */ 2387 vq->next = NULL; 2388 vq->last_avail_idx = 0; 2389 vq->dev = dev; 2390 vq->name = name; 2391 2392 /* 2393 * This is the routine the service thread will run, and its Process ID 2394 * once it's running. 2395 */ 2396 vq->service = service; 2397 vq->thread = (pid_t)-1; 2398 2399 /* Initialize the configuration. */ 2400 reset_vq_pci_config(vq); 2401 vq->pci_config.queue_notify_off = 0; 2402 2403 /* Add one to the number of queues */ 2404 vq->dev->mmio->cfg.num_queues++; 2405 2406 /* 2407 * Add to tail of list, so dev->vq is first vq, dev->vq->next is 2408 * second. 2409 */ 2410 for (i = &dev->vq; *i; i = &(*i)->next); 2411 *i = vq; 2412 } 2413 2414 /* The Guest accesses the feature bits via the PCI common config MMIO region */ 2415 static void add_pci_feature(struct device *dev, unsigned bit) 2416 { 2417 dev->features |= (1ULL << bit); 2418 } 2419 2420 /* For devices with no config. */ 2421 static void no_device_config(struct device *dev) 2422 { 2423 dev->mmio_addr = get_mmio_region(dev->mmio_size); 2424 2425 dev->config.bar[0] = dev->mmio_addr; 2426 /* Bottom 4 bits must be zero */ 2427 assert(~(dev->config.bar[0] & 0xF)); 2428 } 2429 2430 /* This puts the device config into BAR0 */ 2431 static void set_device_config(struct device *dev, const void *conf, size_t len) 2432 { 2433 /* Set up BAR 0 */ 2434 dev->mmio_size += len; 2435 dev->mmio = realloc(dev->mmio, dev->mmio_size); 2436 memcpy(dev->mmio + 1, conf, len); 2437 2438 /* 2439 * 4.1.4.6: 2440 * 2441 * The device MUST present at least one VIRTIO_PCI_CAP_DEVICE_CFG 2442 * capability for any device type which has a device-specific 2443 * configuration. 2444 */ 2445 /* Hook up device cfg */ 2446 dev->config.cfg_access.cap.cap_next 2447 = offsetof(struct pci_config, device); 2448 2449 /* 2450 * 4.1.4.6.1: 2451 * 2452 * The offset for the device-specific configuration MUST be 4-byte 2453 * aligned. 2454 */ 2455 assert(dev->config.cfg_access.cap.cap_next % 4 == 0); 2456 2457 /* Fix up device cfg field length. */ 2458 dev->config.device.length = len; 2459 2460 /* The rest is the same as the no-config case */ 2461 no_device_config(dev); 2462 } 2463 2464 static void init_cap(struct virtio_pci_cap *cap, size_t caplen, int type, 2465 size_t bar_offset, size_t bar_bytes, u8 next) 2466 { 2467 cap->cap_vndr = PCI_CAP_ID_VNDR; 2468 cap->cap_next = next; 2469 cap->cap_len = caplen; 2470 cap->cfg_type = type; 2471 cap->bar = 0; 2472 memset(cap->padding, 0, sizeof(cap->padding)); 2473 cap->offset = bar_offset; 2474 cap->length = bar_bytes; 2475 } 2476 2477 /* 2478 * This sets up the pci_config structure, as defined in the virtio 1.0 2479 * standard (and PCI standard). 2480 */ 2481 static void init_pci_config(struct pci_config *pci, u16 type, 2482 u8 class, u8 subclass) 2483 { 2484 size_t bar_offset, bar_len; 2485 2486 /* 2487 * 4.1.4.4.1: 2488 * 2489 * The device MUST either present notify_off_multiplier as an even 2490 * power of 2, or present notify_off_multiplier as 0. 2491 * 2492 * 2.1.2: 2493 * 2494 * The device MUST initialize device status to 0 upon reset. 2495 */ 2496 memset(pci, 0, sizeof(*pci)); 2497 2498 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */ 2499 pci->vendor_id = 0x1AF4; 2500 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */ 2501 pci->device_id = 0x1040 + type; 2502 2503 /* 2504 * PCI have specific codes for different types of devices. 2505 * Linux doesn't care, but it's a good clue for people looking 2506 * at the device. 2507 */ 2508 pci->class = class; 2509 pci->subclass = subclass; 2510 2511 /* 2512 * 4.1.2.1: 2513 * 2514 * Non-transitional devices SHOULD have a PCI Revision ID of 1 or 2515 * higher 2516 */ 2517 pci->revid = 1; 2518 2519 /* 2520 * 4.1.2.1: 2521 * 2522 * Non-transitional devices SHOULD have a PCI Subsystem Device ID of 2523 * 0x40 or higher. 2524 */ 2525 pci->subsystem_device_id = 0x40; 2526 2527 /* We use our dummy interrupt controller, and irq_line is the irq */ 2528 pci->irq_line = devices.next_irq++; 2529 pci->irq_pin = 0; 2530 2531 /* Support for extended capabilities. */ 2532 pci->status = (1 << 4); 2533 2534 /* Link them in. */ 2535 /* 2536 * 4.1.4.3.1: 2537 * 2538 * The device MUST present at least one common configuration 2539 * capability. 2540 */ 2541 pci->capabilities = offsetof(struct pci_config, common); 2542 2543 /* 4.1.4.3.1 ... offset MUST be 4-byte aligned. */ 2544 assert(pci->capabilities % 4 == 0); 2545 2546 bar_offset = offsetof(struct virtio_pci_mmio, cfg); 2547 bar_len = sizeof(((struct virtio_pci_mmio *)0)->cfg); 2548 init_cap(&pci->common, sizeof(pci->common), VIRTIO_PCI_CAP_COMMON_CFG, 2549 bar_offset, bar_len, 2550 offsetof(struct pci_config, notify)); 2551 2552 /* 2553 * 4.1.4.4.1: 2554 * 2555 * The device MUST present at least one notification capability. 2556 */ 2557 bar_offset += bar_len; 2558 bar_len = sizeof(((struct virtio_pci_mmio *)0)->notify); 2559 2560 /* 2561 * 4.1.4.4.1: 2562 * 2563 * The cap.offset MUST be 2-byte aligned. 2564 */ 2565 assert(pci->common.cap_next % 2 == 0); 2566 2567 /* FIXME: Use a non-zero notify_off, for per-queue notification? */ 2568 /* 2569 * 4.1.4.4.1: 2570 * 2571 * The value cap.length presented by the device MUST be at least 2 and 2572 * MUST be large enough to support queue notification offsets for all 2573 * supported queues in all possible configurations. 2574 */ 2575 assert(bar_len >= 2); 2576 2577 init_cap(&pci->notify.cap, sizeof(pci->notify), 2578 VIRTIO_PCI_CAP_NOTIFY_CFG, 2579 bar_offset, bar_len, 2580 offsetof(struct pci_config, isr)); 2581 2582 bar_offset += bar_len; 2583 bar_len = sizeof(((struct virtio_pci_mmio *)0)->isr); 2584 /* 2585 * 4.1.4.5.1: 2586 * 2587 * The device MUST present at least one VIRTIO_PCI_CAP_ISR_CFG 2588 * capability. 2589 */ 2590 init_cap(&pci->isr, sizeof(pci->isr), 2591 VIRTIO_PCI_CAP_ISR_CFG, 2592 bar_offset, bar_len, 2593 offsetof(struct pci_config, cfg_access)); 2594 2595 /* 2596 * 4.1.4.7.1: 2597 * 2598 * The device MUST present at least one VIRTIO_PCI_CAP_PCI_CFG 2599 * capability. 2600 */ 2601 /* This doesn't have any presence in the BAR */ 2602 init_cap(&pci->cfg_access.cap, sizeof(pci->cfg_access), 2603 VIRTIO_PCI_CAP_PCI_CFG, 2604 0, 0, 0); 2605 2606 bar_offset += bar_len + sizeof(((struct virtio_pci_mmio *)0)->padding); 2607 assert(bar_offset == sizeof(struct virtio_pci_mmio)); 2608 2609 /* 2610 * This gets sewn in and length set in set_device_config(). 2611 * Some devices don't have a device configuration interface, so 2612 * we never expose this if we don't call set_device_config(). 2613 */ 2614 init_cap(&pci->device, sizeof(pci->device), VIRTIO_PCI_CAP_DEVICE_CFG, 2615 bar_offset, 0, 0); 2616 } 2617 2618 /* 2619 * This routine does all the creation and setup of a new device, but we don't 2620 * actually place the MMIO region until we know the size (if any) of the 2621 * device-specific config. And we don't actually start the service threads 2622 * until later. 2623 * 2624 * See what I mean about userspace being boring? 2625 */ 2626 static struct device *new_pci_device(const char *name, u16 type, 2627 u8 class, u8 subclass) 2628 { 2629 struct device *dev = malloc(sizeof(*dev)); 2630 2631 /* Now we populate the fields one at a time. */ 2632 dev->name = name; 2633 dev->vq = NULL; 2634 dev->running = false; 2635 dev->wrote_features_ok = false; 2636 dev->mmio_size = sizeof(struct virtio_pci_mmio); 2637 dev->mmio = calloc(1, dev->mmio_size); 2638 dev->features = (u64)1 << VIRTIO_F_VERSION_1; 2639 dev->features_accepted = 0; 2640 2641 if (devices.device_num + 1 >= MAX_PCI_DEVICES) 2642 errx(1, "Can only handle 31 PCI devices"); 2643 2644 init_pci_config(&dev->config, type, class, subclass); 2645 assert(!devices.pci[devices.device_num+1]); 2646 devices.pci[++devices.device_num] = dev; 2647 2648 return dev; 2649 } 2650 2651 /* 2652 * Our first setup routine is the console. It's a fairly simple device, but 2653 * UNIX tty handling makes it uglier than it could be. 2654 */ 2655 static void setup_console(void) 2656 { 2657 struct device *dev; 2658 struct virtio_console_config conf; 2659 2660 /* If we can save the initial standard input settings... */ 2661 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) { 2662 struct termios term = orig_term; 2663 /* 2664 * Then we turn off echo, line buffering and ^C etc: We want a 2665 * raw input stream to the Guest. 2666 */ 2667 term.c_lflag &= ~(ISIG|ICANON|ECHO); 2668 tcsetattr(STDIN_FILENO, TCSANOW, &term); 2669 } 2670 2671 dev = new_pci_device("console", VIRTIO_ID_CONSOLE, 0x07, 0x00); 2672 2673 /* We store the console state in dev->priv, and initialize it. */ 2674 dev->priv = malloc(sizeof(struct console_abort)); 2675 ((struct console_abort *)dev->priv)->count = 0; 2676 2677 /* 2678 * The console needs two virtqueues: the input then the output. When 2679 * they put something the input queue, we make sure we're listening to 2680 * stdin. When they put something in the output queue, we write it to 2681 * stdout. 2682 */ 2683 add_pci_virtqueue(dev, console_input, "input"); 2684 add_pci_virtqueue(dev, console_output, "output"); 2685 2686 /* We need a configuration area for the emerg_wr early writes. */ 2687 add_pci_feature(dev, VIRTIO_CONSOLE_F_EMERG_WRITE); 2688 set_device_config(dev, &conf, sizeof(conf)); 2689 2690 verbose("device %u: console\n", devices.device_num); 2691 } 2692 /*:*/ 2693 2694 /*M:010 2695 * Inter-guest networking is an interesting area. Simplest is to have a 2696 * --sharenet=<name> option which opens or creates a named pipe. This can be 2697 * used to send packets to another guest in a 1:1 manner. 2698 * 2699 * More sophisticated is to use one of the tools developed for project like UML 2700 * to do networking. 2701 * 2702 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be 2703 * completely generic ("here's my vring, attach to your vring") and would work 2704 * for any traffic. Of course, namespace and permissions issues need to be 2705 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide 2706 * multiple inter-guest channels behind one interface, although it would 2707 * require some manner of hotplugging new virtio channels. 2708 * 2709 * Finally, we could use a virtio network switch in the kernel, ie. vhost. 2710 :*/ 2711 2712 static u32 str2ip(const char *ipaddr) 2713 { 2714 unsigned int b[4]; 2715 2716 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4) 2717 errx(1, "Failed to parse IP address '%s'", ipaddr); 2718 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; 2719 } 2720 2721 static void str2mac(const char *macaddr, unsigned char mac[6]) 2722 { 2723 unsigned int m[6]; 2724 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x", 2725 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6) 2726 errx(1, "Failed to parse mac address '%s'", macaddr); 2727 mac[0] = m[0]; 2728 mac[1] = m[1]; 2729 mac[2] = m[2]; 2730 mac[3] = m[3]; 2731 mac[4] = m[4]; 2732 mac[5] = m[5]; 2733 } 2734 2735 /* 2736 * This code is "adapted" from libbridge: it attaches the Host end of the 2737 * network device to the bridge device specified by the command line. 2738 * 2739 * This is yet another James Morris contribution (I'm an IP-level guy, so I 2740 * dislike bridging), and I just try not to break it. 2741 */ 2742 static void add_to_bridge(int fd, const char *if_name, const char *br_name) 2743 { 2744 int ifidx; 2745 struct ifreq ifr; 2746 2747 if (!*br_name) 2748 errx(1, "must specify bridge name"); 2749 2750 ifidx = if_nametoindex(if_name); 2751 if (!ifidx) 2752 errx(1, "interface %s does not exist!", if_name); 2753 2754 strncpy(ifr.ifr_name, br_name, IFNAMSIZ); 2755 ifr.ifr_name[IFNAMSIZ-1] = '\0'; 2756 ifr.ifr_ifindex = ifidx; 2757 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0) 2758 err(1, "can't add %s to bridge %s", if_name, br_name); 2759 } 2760 2761 /* 2762 * This sets up the Host end of the network device with an IP address, brings 2763 * it up so packets will flow, the copies the MAC address into the hwaddr 2764 * pointer. 2765 */ 2766 static void configure_device(int fd, const char *tapif, u32 ipaddr) 2767 { 2768 struct ifreq ifr; 2769 struct sockaddr_in sin; 2770 2771 memset(&ifr, 0, sizeof(ifr)); 2772 strcpy(ifr.ifr_name, tapif); 2773 2774 /* Don't read these incantations. Just cut & paste them like I did! */ 2775 sin.sin_family = AF_INET; 2776 sin.sin_addr.s_addr = htonl(ipaddr); 2777 memcpy(&ifr.ifr_addr, &sin, sizeof(sin)); 2778 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0) 2779 err(1, "Setting %s interface address", tapif); 2780 ifr.ifr_flags = IFF_UP; 2781 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) 2782 err(1, "Bringing interface %s up", tapif); 2783 } 2784 2785 static int get_tun_device(char tapif[IFNAMSIZ]) 2786 { 2787 struct ifreq ifr; 2788 int vnet_hdr_sz; 2789 int netfd; 2790 2791 /* Start with this zeroed. Messy but sure. */ 2792 memset(&ifr, 0, sizeof(ifr)); 2793 2794 /* 2795 * We open the /dev/net/tun device and tell it we want a tap device. A 2796 * tap device is like a tun device, only somehow different. To tell 2797 * the truth, I completely blundered my way through this code, but it 2798 * works now! 2799 */ 2800 netfd = open_or_die("/dev/net/tun", O_RDWR); 2801 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR; 2802 strcpy(ifr.ifr_name, "tap%d"); 2803 if (ioctl(netfd, TUNSETIFF, &ifr) != 0) 2804 err(1, "configuring /dev/net/tun"); 2805 2806 if (ioctl(netfd, TUNSETOFFLOAD, 2807 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0) 2808 err(1, "Could not set features for tun device"); 2809 2810 /* 2811 * We don't need checksums calculated for packets coming in this 2812 * device: trust us! 2813 */ 2814 ioctl(netfd, TUNSETNOCSUM, 1); 2815 2816 /* 2817 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit 2818 * field at the end of the network header iff 2819 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0, 2820 * that became the norm, but we need to tell the tun device 2821 * about our expanded header (which is called 2822 * virtio_net_hdr_mrg_rxbuf in the legacy system). 2823 */ 2824 vnet_hdr_sz = sizeof(struct virtio_net_hdr_v1); 2825 if (ioctl(netfd, TUNSETVNETHDRSZ, &vnet_hdr_sz) != 0) 2826 err(1, "Setting tun header size to %u", vnet_hdr_sz); 2827 2828 memcpy(tapif, ifr.ifr_name, IFNAMSIZ); 2829 return netfd; 2830 } 2831 2832 /*L:195 2833 * Our network is a Host<->Guest network. This can either use bridging or 2834 * routing, but the principle is the same: it uses the "tun" device to inject 2835 * packets into the Host as if they came in from a normal network card. We 2836 * just shunt packets between the Guest and the tun device. 2837 */ 2838 static void setup_tun_net(char *arg) 2839 { 2840 struct device *dev; 2841 struct net_info *net_info = malloc(sizeof(*net_info)); 2842 int ipfd; 2843 u32 ip = INADDR_ANY; 2844 bool bridging = false; 2845 char tapif[IFNAMSIZ], *p; 2846 struct virtio_net_config conf; 2847 2848 net_info->tunfd = get_tun_device(tapif); 2849 2850 /* First we create a new network device. */ 2851 dev = new_pci_device("net", VIRTIO_ID_NET, 0x02, 0x00); 2852 dev->priv = net_info; 2853 2854 /* Network devices need a recv and a send queue, just like console. */ 2855 add_pci_virtqueue(dev, net_input, "rx"); 2856 add_pci_virtqueue(dev, net_output, "tx"); 2857 2858 /* 2859 * We need a socket to perform the magic network ioctls to bring up the 2860 * tap interface, connect to the bridge etc. Any socket will do! 2861 */ 2862 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); 2863 if (ipfd < 0) 2864 err(1, "opening IP socket"); 2865 2866 /* If the command line was --tunnet=bridge:<name> do bridging. */ 2867 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { 2868 arg += strlen(BRIDGE_PFX); 2869 bridging = true; 2870 } 2871 2872 /* A mac address may follow the bridge name or IP address */ 2873 p = strchr(arg, ':'); 2874 if (p) { 2875 str2mac(p+1, conf.mac); 2876 add_pci_feature(dev, VIRTIO_NET_F_MAC); 2877 *p = '\0'; 2878 } 2879 2880 /* arg is now either an IP address or a bridge name */ 2881 if (bridging) 2882 add_to_bridge(ipfd, tapif, arg); 2883 else 2884 ip = str2ip(arg); 2885 2886 /* Set up the tun device. */ 2887 configure_device(ipfd, tapif, ip); 2888 2889 /* Expect Guest to handle everything except UFO */ 2890 add_pci_feature(dev, VIRTIO_NET_F_CSUM); 2891 add_pci_feature(dev, VIRTIO_NET_F_GUEST_CSUM); 2892 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO4); 2893 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO6); 2894 add_pci_feature(dev, VIRTIO_NET_F_GUEST_ECN); 2895 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO4); 2896 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO6); 2897 add_pci_feature(dev, VIRTIO_NET_F_HOST_ECN); 2898 /* We handle indirect ring entries */ 2899 add_pci_feature(dev, VIRTIO_RING_F_INDIRECT_DESC); 2900 set_device_config(dev, &conf, sizeof(conf)); 2901 2902 /* We don't need the socket any more; setup is done. */ 2903 close(ipfd); 2904 2905 if (bridging) 2906 verbose("device %u: tun %s attached to bridge: %s\n", 2907 devices.device_num, tapif, arg); 2908 else 2909 verbose("device %u: tun %s: %s\n", 2910 devices.device_num, tapif, arg); 2911 } 2912 /*:*/ 2913 2914 /* This hangs off device->priv. */ 2915 struct vblk_info { 2916 /* The size of the file. */ 2917 off64_t len; 2918 2919 /* The file descriptor for the file. */ 2920 int fd; 2921 2922 }; 2923 2924 /*L:210 2925 * The Disk 2926 * 2927 * The disk only has one virtqueue, so it only has one thread. It is really 2928 * simple: the Guest asks for a block number and we read or write that position 2929 * in the file. 2930 * 2931 * Before we serviced each virtqueue in a separate thread, that was unacceptably 2932 * slow: the Guest waits until the read is finished before running anything 2933 * else, even if it could have been doing useful work. 2934 * 2935 * We could have used async I/O, except it's reputed to suck so hard that 2936 * characters actually go missing from your code when you try to use it. 2937 */ 2938 static void blk_request(struct virtqueue *vq) 2939 { 2940 struct vblk_info *vblk = vq->dev->priv; 2941 unsigned int head, out_num, in_num, wlen; 2942 int ret, i; 2943 u8 *in; 2944 struct virtio_blk_outhdr out; 2945 struct iovec iov[vq->vring.num]; 2946 off64_t off; 2947 2948 /* 2949 * Get the next request, where we normally wait. It triggers the 2950 * interrupt to acknowledge previously serviced requests (if any). 2951 */ 2952 head = wait_for_vq_desc(vq, iov, &out_num, &in_num); 2953 2954 /* Copy the output header from the front of the iov (adjusts iov) */ 2955 iov_consume(vq->dev, iov, out_num, &out, sizeof(out)); 2956 2957 /* Find and trim end of iov input array, for our status byte. */ 2958 in = NULL; 2959 for (i = out_num + in_num - 1; i >= out_num; i--) { 2960 if (iov[i].iov_len > 0) { 2961 in = iov[i].iov_base + iov[i].iov_len - 1; 2962 iov[i].iov_len--; 2963 break; 2964 } 2965 } 2966 if (!in) 2967 bad_driver_vq(vq, "Bad virtblk cmd with no room for status"); 2968 2969 /* 2970 * For historical reasons, block operations are expressed in 512 byte 2971 * "sectors". 2972 */ 2973 off = out.sector * 512; 2974 2975 if (out.type & VIRTIO_BLK_T_OUT) { 2976 /* 2977 * Write 2978 * 2979 * Move to the right location in the block file. This can fail 2980 * if they try to write past end. 2981 */ 2982 if (lseek64(vblk->fd, off, SEEK_SET) != off) 2983 err(1, "Bad seek to sector %llu", out.sector); 2984 2985 ret = writev(vblk->fd, iov, out_num); 2986 verbose("WRITE to sector %llu: %i\n", out.sector, ret); 2987 2988 /* 2989 * Grr... Now we know how long the descriptor they sent was, we 2990 * make sure they didn't try to write over the end of the block 2991 * file (possibly extending it). 2992 */ 2993 if (ret > 0 && off + ret > vblk->len) { 2994 /* Trim it back to the correct length */ 2995 ftruncate64(vblk->fd, vblk->len); 2996 /* Die, bad Guest, die. */ 2997 bad_driver_vq(vq, "Write past end %llu+%u", off, ret); 2998 } 2999 3000 wlen = sizeof(*in); 3001 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR); 3002 } else if (out.type & VIRTIO_BLK_T_FLUSH) { 3003 /* Flush */ 3004 ret = fdatasync(vblk->fd); 3005 verbose("FLUSH fdatasync: %i\n", ret); 3006 wlen = sizeof(*in); 3007 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR); 3008 } else { 3009 /* 3010 * Read 3011 * 3012 * Move to the right location in the block file. This can fail 3013 * if they try to read past end. 3014 */ 3015 if (lseek64(vblk->fd, off, SEEK_SET) != off) 3016 err(1, "Bad seek to sector %llu", out.sector); 3017 3018 ret = readv(vblk->fd, iov + out_num, in_num); 3019 if (ret >= 0) { 3020 wlen = sizeof(*in) + ret; 3021 *in = VIRTIO_BLK_S_OK; 3022 } else { 3023 wlen = sizeof(*in); 3024 *in = VIRTIO_BLK_S_IOERR; 3025 } 3026 } 3027 3028 /* Finished that request. */ 3029 add_used(vq, head, wlen); 3030 } 3031 3032 /*L:198 This actually sets up a virtual block device. */ 3033 static void setup_block_file(const char *filename) 3034 { 3035 struct device *dev; 3036 struct vblk_info *vblk; 3037 struct virtio_blk_config conf; 3038 3039 /* Create the device. */ 3040 dev = new_pci_device("block", VIRTIO_ID_BLOCK, 0x01, 0x80); 3041 3042 /* The device has one virtqueue, where the Guest places requests. */ 3043 add_pci_virtqueue(dev, blk_request, "request"); 3044 3045 /* Allocate the room for our own bookkeeping */ 3046 vblk = dev->priv = malloc(sizeof(*vblk)); 3047 3048 /* First we open the file and store the length. */ 3049 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE); 3050 vblk->len = lseek64(vblk->fd, 0, SEEK_END); 3051 3052 /* Tell Guest how many sectors this device has. */ 3053 conf.capacity = cpu_to_le64(vblk->len / 512); 3054 3055 /* 3056 * Tell Guest not to put in too many descriptors at once: two are used 3057 * for the in and out elements. 3058 */ 3059 add_pci_feature(dev, VIRTIO_BLK_F_SEG_MAX); 3060 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2); 3061 3062 set_device_config(dev, &conf, sizeof(struct virtio_blk_config)); 3063 3064 verbose("device %u: virtblock %llu sectors\n", 3065 devices.device_num, le64_to_cpu(conf.capacity)); 3066 } 3067 3068 /*L:211 3069 * Our random number generator device reads from /dev/urandom into the Guest's 3070 * input buffers. The usual case is that the Guest doesn't want random numbers 3071 * and so has no buffers although /dev/urandom is still readable, whereas 3072 * console is the reverse. 3073 * 3074 * The same logic applies, however. 3075 */ 3076 struct rng_info { 3077 int rfd; 3078 }; 3079 3080 static void rng_input(struct virtqueue *vq) 3081 { 3082 int len; 3083 unsigned int head, in_num, out_num, totlen = 0; 3084 struct rng_info *rng_info = vq->dev->priv; 3085 struct iovec iov[vq->vring.num]; 3086 3087 /* First we need a buffer from the Guests's virtqueue. */ 3088 head = wait_for_vq_desc(vq, iov, &out_num, &in_num); 3089 if (out_num) 3090 bad_driver_vq(vq, "Output buffers in rng?"); 3091 3092 /* 3093 * Just like the console write, we loop to cover the whole iovec. 3094 * In this case, short reads actually happen quite a bit. 3095 */ 3096 while (!iov_empty(iov, in_num)) { 3097 len = readv(rng_info->rfd, iov, in_num); 3098 if (len <= 0) 3099 err(1, "Read from /dev/urandom gave %i", len); 3100 iov_consume(vq->dev, iov, in_num, NULL, len); 3101 totlen += len; 3102 } 3103 3104 /* Tell the Guest about the new input. */ 3105 add_used(vq, head, totlen); 3106 } 3107 3108 /*L:199 3109 * This creates a "hardware" random number device for the Guest. 3110 */ 3111 static void setup_rng(void) 3112 { 3113 struct device *dev; 3114 struct rng_info *rng_info = malloc(sizeof(*rng_info)); 3115 3116 /* Our device's private info simply contains the /dev/urandom fd. */ 3117 rng_info->rfd = open_or_die("/dev/urandom", O_RDONLY); 3118 3119 /* Create the new device. */ 3120 dev = new_pci_device("rng", VIRTIO_ID_RNG, 0xff, 0); 3121 dev->priv = rng_info; 3122 3123 /* The device has one virtqueue, where the Guest places inbufs. */ 3124 add_pci_virtqueue(dev, rng_input, "input"); 3125 3126 /* We don't have any configuration space */ 3127 no_device_config(dev); 3128 3129 verbose("device %u: rng\n", devices.device_num); 3130 } 3131 /* That's the end of device setup. */ 3132 3133 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */ 3134 static void __attribute__((noreturn)) restart_guest(void) 3135 { 3136 unsigned int i; 3137 3138 /* 3139 * Since we don't track all open fds, we simply close everything beyond 3140 * stderr. 3141 */ 3142 for (i = 3; i < FD_SETSIZE; i++) 3143 close(i); 3144 3145 /* Reset all the devices (kills all threads). */ 3146 cleanup_devices(); 3147 3148 execv(main_args[0], main_args); 3149 err(1, "Could not exec %s", main_args[0]); 3150 } 3151 3152 /*L:220 3153 * Finally we reach the core of the Launcher which runs the Guest, serves 3154 * its input and output, and finally, lays it to rest. 3155 */ 3156 static void __attribute__((noreturn)) run_guest(void) 3157 { 3158 for (;;) { 3159 struct lguest_pending notify; 3160 int readval; 3161 3162 /* We read from the /dev/lguest device to run the Guest. */ 3163 readval = pread(lguest_fd, ¬ify, sizeof(notify), cpu_id); 3164 if (readval == sizeof(notify)) { 3165 if (notify.trap == 13) { 3166 verbose("Emulating instruction at %#x\n", 3167 getreg(eip)); 3168 emulate_insn(notify.insn); 3169 } else if (notify.trap == 14) { 3170 verbose("Emulating MMIO at %#x\n", 3171 getreg(eip)); 3172 emulate_mmio(notify.addr, notify.insn); 3173 } else 3174 errx(1, "Unknown trap %i addr %#08x\n", 3175 notify.trap, notify.addr); 3176 /* ENOENT means the Guest died. Reading tells us why. */ 3177 } else if (errno == ENOENT) { 3178 char reason[1024] = { 0 }; 3179 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id); 3180 errx(1, "%s", reason); 3181 /* ERESTART means that we need to reboot the guest */ 3182 } else if (errno == ERESTART) { 3183 restart_guest(); 3184 /* Anything else means a bug or incompatible change. */ 3185 } else 3186 err(1, "Running guest failed"); 3187 } 3188 } 3189 /*L:240 3190 * This is the end of the Launcher. The good news: we are over halfway 3191 * through! The bad news: the most fiendish part of the code still lies ahead 3192 * of us. 3193 * 3194 * Are you ready? Take a deep breath and join me in the core of the Host, in 3195 * "make Host". 3196 :*/ 3197 3198 static struct option opts[] = { 3199 { "verbose", 0, NULL, 'v' }, 3200 { "tunnet", 1, NULL, 't' }, 3201 { "block", 1, NULL, 'b' }, 3202 { "rng", 0, NULL, 'r' }, 3203 { "initrd", 1, NULL, 'i' }, 3204 { "username", 1, NULL, 'u' }, 3205 { "chroot", 1, NULL, 'c' }, 3206 { NULL }, 3207 }; 3208 static void usage(void) 3209 { 3210 errx(1, "Usage: lguest [--verbose] " 3211 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n" 3212 "|--block=<filename>|--initrd=<filename>]...\n" 3213 "<mem-in-mb> vmlinux [args...]"); 3214 } 3215 3216 /*L:105 The main routine is where the real work begins: */ 3217 int main(int argc, char *argv[]) 3218 { 3219 /* Memory, code startpoint and size of the (optional) initrd. */ 3220 unsigned long mem = 0, start, initrd_size = 0; 3221 /* Two temporaries. */ 3222 int i, c; 3223 /* The boot information for the Guest. */ 3224 struct boot_params *boot; 3225 /* If they specify an initrd file to load. */ 3226 const char *initrd_name = NULL; 3227 3228 /* Password structure for initgroups/setres[gu]id */ 3229 struct passwd *user_details = NULL; 3230 3231 /* Directory to chroot to */ 3232 char *chroot_path = NULL; 3233 3234 /* Save the args: we "reboot" by execing ourselves again. */ 3235 main_args = argv; 3236 3237 /* 3238 * First we initialize the device list. We remember next interrupt 3239 * number to use for devices (1: remember that 0 is used by the timer). 3240 */ 3241 devices.next_irq = 1; 3242 3243 /* We're CPU 0. In fact, that's the only CPU possible right now. */ 3244 cpu_id = 0; 3245 3246 /* 3247 * We need to know how much memory so we can set up the device 3248 * descriptor and memory pages for the devices as we parse the command 3249 * line. So we quickly look through the arguments to find the amount 3250 * of memory now. 3251 */ 3252 for (i = 1; i < argc; i++) { 3253 if (argv[i][0] != '-') { 3254 mem = atoi(argv[i]) * 1024 * 1024; 3255 /* 3256 * We start by mapping anonymous pages over all of 3257 * guest-physical memory range. This fills it with 0, 3258 * and ensures that the Guest won't be killed when it 3259 * tries to access it. 3260 */ 3261 guest_base = map_zeroed_pages(mem / getpagesize() 3262 + DEVICE_PAGES); 3263 guest_limit = mem; 3264 guest_max = guest_mmio = mem + DEVICE_PAGES*getpagesize(); 3265 break; 3266 } 3267 } 3268 3269 /* If we exit via err(), this kills all the threads, restores tty. */ 3270 atexit(cleanup_devices); 3271 3272 /* We always have a console device, and it's always device 1. */ 3273 setup_console(); 3274 3275 /* The options are fairly straight-forward */ 3276 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) { 3277 switch (c) { 3278 case 'v': 3279 verbose = true; 3280 break; 3281 case 't': 3282 setup_tun_net(optarg); 3283 break; 3284 case 'b': 3285 setup_block_file(optarg); 3286 break; 3287 case 'r': 3288 setup_rng(); 3289 break; 3290 case 'i': 3291 initrd_name = optarg; 3292 break; 3293 case 'u': 3294 user_details = getpwnam(optarg); 3295 if (!user_details) 3296 err(1, "getpwnam failed, incorrect username?"); 3297 break; 3298 case 'c': 3299 chroot_path = optarg; 3300 break; 3301 default: 3302 warnx("Unknown argument %s", argv[optind]); 3303 usage(); 3304 } 3305 } 3306 /* 3307 * After the other arguments we expect memory and kernel image name, 3308 * followed by command line arguments for the kernel. 3309 */ 3310 if (optind + 2 > argc) 3311 usage(); 3312 3313 verbose("Guest base is at %p\n", guest_base); 3314 3315 /* Initialize the (fake) PCI host bridge device. */ 3316 init_pci_host_bridge(); 3317 3318 /* Now we load the kernel */ 3319 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY)); 3320 3321 /* Boot information is stashed at physical address 0 */ 3322 boot = from_guest_phys(0); 3323 3324 /* Map the initrd image if requested (at top of physical memory) */ 3325 if (initrd_name) { 3326 initrd_size = load_initrd(initrd_name, mem); 3327 /* 3328 * These are the location in the Linux boot header where the 3329 * start and size of the initrd are expected to be found. 3330 */ 3331 boot->hdr.ramdisk_image = mem - initrd_size; 3332 boot->hdr.ramdisk_size = initrd_size; 3333 /* The bootloader type 0xFF means "unknown"; that's OK. */ 3334 boot->hdr.type_of_loader = 0xFF; 3335 } 3336 3337 /* 3338 * The Linux boot header contains an "E820" memory map: ours is a 3339 * simple, single region. 3340 */ 3341 boot->e820_entries = 1; 3342 boot->e820_table[0] = ((struct e820_entry) { 0, mem, E820_TYPE_RAM }); 3343 /* 3344 * The boot header contains a command line pointer: we put the command 3345 * line after the boot header. 3346 */ 3347 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1); 3348 /* We use a simple helper to copy the arguments separated by spaces. */ 3349 concat((char *)(boot + 1), argv+optind+2); 3350 3351 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */ 3352 boot->hdr.kernel_alignment = 0x1000000; 3353 3354 /* Boot protocol version: 2.07 supports the fields for lguest. */ 3355 boot->hdr.version = 0x207; 3356 3357 /* X86_SUBARCH_LGUEST tells the Guest it's an lguest. */ 3358 boot->hdr.hardware_subarch = X86_SUBARCH_LGUEST; 3359 3360 /* Tell the entry path not to try to reload segment registers. */ 3361 boot->hdr.loadflags |= KEEP_SEGMENTS; 3362 3363 /* We don't support tboot: */ 3364 boot->tboot_addr = 0; 3365 3366 /* Ensure this is 0 to prevent APM from loading: */ 3367 boot->apm_bios_info.version = 0; 3368 3369 /* We tell the kernel to initialize the Guest. */ 3370 tell_kernel(start); 3371 3372 /* Ensure that we terminate if a device-servicing child dies. */ 3373 signal(SIGCHLD, kill_launcher); 3374 3375 /* If requested, chroot to a directory */ 3376 if (chroot_path) { 3377 if (chroot(chroot_path) != 0) 3378 err(1, "chroot(\"%s\") failed", chroot_path); 3379 3380 if (chdir("/") != 0) 3381 err(1, "chdir(\"/\") failed"); 3382 3383 verbose("chroot done\n"); 3384 } 3385 3386 /* If requested, drop privileges */ 3387 if (user_details) { 3388 uid_t u; 3389 gid_t g; 3390 3391 u = user_details->pw_uid; 3392 g = user_details->pw_gid; 3393 3394 if (initgroups(user_details->pw_name, g) != 0) 3395 err(1, "initgroups failed"); 3396 3397 if (setresgid(g, g, g) != 0) 3398 err(1, "setresgid failed"); 3399 3400 if (setresuid(u, u, u) != 0) 3401 err(1, "setresuid failed"); 3402 3403 verbose("Dropping privileges completed\n"); 3404 } 3405 3406 /* Finally, run the Guest. This doesn't return. */ 3407 run_guest(); 3408 } 3409 /*:*/ 3410 3411 /*M:999 3412 * Mastery is done: you now know everything I do. 3413 * 3414 * But surely you have seen code, features and bugs in your wanderings which 3415 * you now yearn to attack? That is the real game, and I look forward to you 3416 * patching and forking lguest into the Your-Name-Here-visor. 3417 * 3418 * Farewell, and good coding! 3419 * Rusty Russell. 3420 */ 3421
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.