~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/bench/numa.c

Version: ~ [ linux-5.3-rc5 ] ~ [ linux-5.2.9 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.67 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.139 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.189 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.189 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.72 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * numa.c
  3  *
  4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
  5  */
  6 
  7 /* For the CLR_() macros */
  8 #include <pthread.h>
  9 
 10 #include "../perf.h"
 11 #include "../builtin.h"
 12 #include "../util/util.h"
 13 #include <subcmd/parse-options.h>
 14 #include "../util/cloexec.h"
 15 
 16 #include "bench.h"
 17 
 18 #include <errno.h>
 19 #include <sched.h>
 20 #include <stdio.h>
 21 #include <assert.h>
 22 #include <malloc.h>
 23 #include <signal.h>
 24 #include <stdlib.h>
 25 #include <string.h>
 26 #include <unistd.h>
 27 #include <sys/mman.h>
 28 #include <sys/time.h>
 29 #include <sys/resource.h>
 30 #include <sys/wait.h>
 31 #include <sys/prctl.h>
 32 #include <sys/types.h>
 33 #include <linux/time64.h>
 34 
 35 #include <numa.h>
 36 #include <numaif.h>
 37 
 38 /*
 39  * Regular printout to the terminal, supressed if -q is specified:
 40  */
 41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
 42 
 43 /*
 44  * Debug printf:
 45  */
 46 #undef dprintf
 47 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
 48 
 49 struct thread_data {
 50         int                     curr_cpu;
 51         cpu_set_t               bind_cpumask;
 52         int                     bind_node;
 53         u8                      *process_data;
 54         int                     process_nr;
 55         int                     thread_nr;
 56         int                     task_nr;
 57         unsigned int            loops_done;
 58         u64                     val;
 59         u64                     runtime_ns;
 60         u64                     system_time_ns;
 61         u64                     user_time_ns;
 62         double                  speed_gbs;
 63         pthread_mutex_t         *process_lock;
 64 };
 65 
 66 /* Parameters set by options: */
 67 
 68 struct params {
 69         /* Startup synchronization: */
 70         bool                    serialize_startup;
 71 
 72         /* Task hierarchy: */
 73         int                     nr_proc;
 74         int                     nr_threads;
 75 
 76         /* Working set sizes: */
 77         const char              *mb_global_str;
 78         const char              *mb_proc_str;
 79         const char              *mb_proc_locked_str;
 80         const char              *mb_thread_str;
 81 
 82         double                  mb_global;
 83         double                  mb_proc;
 84         double                  mb_proc_locked;
 85         double                  mb_thread;
 86 
 87         /* Access patterns to the working set: */
 88         bool                    data_reads;
 89         bool                    data_writes;
 90         bool                    data_backwards;
 91         bool                    data_zero_memset;
 92         bool                    data_rand_walk;
 93         u32                     nr_loops;
 94         u32                     nr_secs;
 95         u32                     sleep_usecs;
 96 
 97         /* Working set initialization: */
 98         bool                    init_zero;
 99         bool                    init_random;
100         bool                    init_cpu0;
101 
102         /* Misc options: */
103         int                     show_details;
104         int                     run_all;
105         int                     thp;
106 
107         long                    bytes_global;
108         long                    bytes_process;
109         long                    bytes_process_locked;
110         long                    bytes_thread;
111 
112         int                     nr_tasks;
113         bool                    show_quiet;
114 
115         bool                    show_convergence;
116         bool                    measure_convergence;
117 
118         int                     perturb_secs;
119         int                     nr_cpus;
120         int                     nr_nodes;
121 
122         /* Affinity options -C and -N: */
123         char                    *cpu_list_str;
124         char                    *node_list_str;
125 };
126 
127 
128 /* Global, read-writable area, accessible to all processes and threads: */
129 
130 struct global_info {
131         u8                      *data;
132 
133         pthread_mutex_t         startup_mutex;
134         int                     nr_tasks_started;
135 
136         pthread_mutex_t         startup_done_mutex;
137 
138         pthread_mutex_t         start_work_mutex;
139         int                     nr_tasks_working;
140 
141         pthread_mutex_t         stop_work_mutex;
142         u64                     bytes_done;
143 
144         struct thread_data      *threads;
145 
146         /* Convergence latency measurement: */
147         bool                    all_converged;
148         bool                    stop_work;
149 
150         int                     print_once;
151 
152         struct params           p;
153 };
154 
155 static struct global_info       *g = NULL;
156 
157 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
158 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
159 
160 struct params p0;
161 
162 static const struct option options[] = {
163         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
164         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
165 
166         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
167         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
168         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
169         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
170 
171         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
172         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
173         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
174 
175         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via writes (can be mixed with -W)"),
176         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
177         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
178         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
179         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
180 
181 
182         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
183         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
184         OPT_BOOLEAN('', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
185         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
186 
187         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
188         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
189         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
190         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
191         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
192         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
193         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
194 
195         /* Special option string parsing callbacks: */
196         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
197                         "bind the first N tasks to these specific cpus (the rest is unbound)",
198                         parse_cpus_opt),
199         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
200                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
201                         parse_nodes_opt),
202         OPT_END()
203 };
204 
205 static const char * const bench_numa_usage[] = {
206         "perf bench numa <options>",
207         NULL
208 };
209 
210 static const char * const numa_usage[] = {
211         "perf bench numa mem [<options>]",
212         NULL
213 };
214 
215 static cpu_set_t bind_to_cpu(int target_cpu)
216 {
217         cpu_set_t orig_mask, mask;
218         int ret;
219 
220         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
221         BUG_ON(ret);
222 
223         CPU_ZERO(&mask);
224 
225         if (target_cpu == -1) {
226                 int cpu;
227 
228                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
229                         CPU_SET(cpu, &mask);
230         } else {
231                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
232                 CPU_SET(target_cpu, &mask);
233         }
234 
235         ret = sched_setaffinity(0, sizeof(mask), &mask);
236         BUG_ON(ret);
237 
238         return orig_mask;
239 }
240 
241 static cpu_set_t bind_to_node(int target_node)
242 {
243         int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
244         cpu_set_t orig_mask, mask;
245         int cpu;
246         int ret;
247 
248         BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
249         BUG_ON(!cpus_per_node);
250 
251         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
252         BUG_ON(ret);
253 
254         CPU_ZERO(&mask);
255 
256         if (target_node == -1) {
257                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
258                         CPU_SET(cpu, &mask);
259         } else {
260                 int cpu_start = (target_node + 0) * cpus_per_node;
261                 int cpu_stop  = (target_node + 1) * cpus_per_node;
262 
263                 BUG_ON(cpu_stop > g->p.nr_cpus);
264 
265                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
266                         CPU_SET(cpu, &mask);
267         }
268 
269         ret = sched_setaffinity(0, sizeof(mask), &mask);
270         BUG_ON(ret);
271 
272         return orig_mask;
273 }
274 
275 static void bind_to_cpumask(cpu_set_t mask)
276 {
277         int ret;
278 
279         ret = sched_setaffinity(0, sizeof(mask), &mask);
280         BUG_ON(ret);
281 }
282 
283 static void mempol_restore(void)
284 {
285         int ret;
286 
287         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
288 
289         BUG_ON(ret);
290 }
291 
292 static void bind_to_memnode(int node)
293 {
294         unsigned long nodemask;
295         int ret;
296 
297         if (node == -1)
298                 return;
299 
300         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
301         nodemask = 1L << node;
302 
303         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
304         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
305 
306         BUG_ON(ret);
307 }
308 
309 #define HPSIZE (2*1024*1024)
310 
311 #define set_taskname(fmt...)                            \
312 do {                                                    \
313         char name[20];                                  \
314                                                         \
315         snprintf(name, 20, fmt);                        \
316         prctl(PR_SET_NAME, name);                       \
317 } while (0)
318 
319 static u8 *alloc_data(ssize_t bytes0, int map_flags,
320                       int init_zero, int init_cpu0, int thp, int init_random)
321 {
322         cpu_set_t orig_mask;
323         ssize_t bytes;
324         u8 *buf;
325         int ret;
326 
327         if (!bytes0)
328                 return NULL;
329 
330         /* Allocate and initialize all memory on CPU#0: */
331         if (init_cpu0) {
332                 orig_mask = bind_to_node(0);
333                 bind_to_memnode(0);
334         }
335 
336         bytes = bytes0 + HPSIZE;
337 
338         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
339         BUG_ON(buf == (void *)-1);
340 
341         if (map_flags == MAP_PRIVATE) {
342                 if (thp > 0) {
343                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
344                         if (ret && !g->print_once) {
345                                 g->print_once = 1;
346                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
347                         }
348                 }
349                 if (thp < 0) {
350                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
351                         if (ret && !g->print_once) {
352                                 g->print_once = 1;
353                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
354                         }
355                 }
356         }
357 
358         if (init_zero) {
359                 bzero(buf, bytes);
360         } else {
361                 /* Initialize random contents, different in each word: */
362                 if (init_random) {
363                         u64 *wbuf = (void *)buf;
364                         long off = rand();
365                         long i;
366 
367                         for (i = 0; i < bytes/8; i++)
368                                 wbuf[i] = i + off;
369                 }
370         }
371 
372         /* Align to 2MB boundary: */
373         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
374 
375         /* Restore affinity: */
376         if (init_cpu0) {
377                 bind_to_cpumask(orig_mask);
378                 mempol_restore();
379         }
380 
381         return buf;
382 }
383 
384 static void free_data(void *data, ssize_t bytes)
385 {
386         int ret;
387 
388         if (!data)
389                 return;
390 
391         ret = munmap(data, bytes);
392         BUG_ON(ret);
393 }
394 
395 /*
396  * Create a shared memory buffer that can be shared between processes, zeroed:
397  */
398 static void * zalloc_shared_data(ssize_t bytes)
399 {
400         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
401 }
402 
403 /*
404  * Create a shared memory buffer that can be shared between processes:
405  */
406 static void * setup_shared_data(ssize_t bytes)
407 {
408         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410 
411 /*
412  * Allocate process-local memory - this will either be shared between
413  * threads of this process, or only be accessed by this thread:
414  */
415 static void * setup_private_data(ssize_t bytes)
416 {
417         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
418 }
419 
420 /*
421  * Return a process-shared (global) mutex:
422  */
423 static void init_global_mutex(pthread_mutex_t *mutex)
424 {
425         pthread_mutexattr_t attr;
426 
427         pthread_mutexattr_init(&attr);
428         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
429         pthread_mutex_init(mutex, &attr);
430 }
431 
432 static int parse_cpu_list(const char *arg)
433 {
434         p0.cpu_list_str = strdup(arg);
435 
436         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
437 
438         return 0;
439 }
440 
441 static int parse_setup_cpu_list(void)
442 {
443         struct thread_data *td;
444         char *str0, *str;
445         int t;
446 
447         if (!g->p.cpu_list_str)
448                 return 0;
449 
450         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
451 
452         str0 = str = strdup(g->p.cpu_list_str);
453         t = 0;
454 
455         BUG_ON(!str);
456 
457         tprintf("# binding tasks to CPUs:\n");
458         tprintf("#  ");
459 
460         while (true) {
461                 int bind_cpu, bind_cpu_0, bind_cpu_1;
462                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
463                 int bind_len;
464                 int step;
465                 int mul;
466 
467                 tok = strsep(&str, ",");
468                 if (!tok)
469                         break;
470 
471                 tok_end = strstr(tok, "-");
472 
473                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
474                 if (!tok_end) {
475                         /* Single CPU specified: */
476                         bind_cpu_0 = bind_cpu_1 = atol(tok);
477                 } else {
478                         /* CPU range specified (for example: "5-11"): */
479                         bind_cpu_0 = atol(tok);
480                         bind_cpu_1 = atol(tok_end + 1);
481                 }
482 
483                 step = 1;
484                 tok_step = strstr(tok, "#");
485                 if (tok_step) {
486                         step = atol(tok_step + 1);
487                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
488                 }
489 
490                 /*
491                  * Mask length.
492                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
493                  * where the _4 means the next 4 CPUs are allowed.
494                  */
495                 bind_len = 1;
496                 tok_len = strstr(tok, "_");
497                 if (tok_len) {
498                         bind_len = atol(tok_len + 1);
499                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
500                 }
501 
502                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
503                 mul = 1;
504                 tok_mul = strstr(tok, "x");
505                 if (tok_mul) {
506                         mul = atol(tok_mul + 1);
507                         BUG_ON(mul <= 0);
508                 }
509 
510                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
511 
512                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
513                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
514                         return -1;
515                 }
516 
517                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
518                 BUG_ON(bind_cpu_0 > bind_cpu_1);
519 
520                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
521                         int i;
522 
523                         for (i = 0; i < mul; i++) {
524                                 int cpu;
525 
526                                 if (t >= g->p.nr_tasks) {
527                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
528                                         goto out;
529                                 }
530                                 td = g->threads + t;
531 
532                                 if (t)
533                                         tprintf(",");
534                                 if (bind_len > 1) {
535                                         tprintf("%2d/%d", bind_cpu, bind_len);
536                                 } else {
537                                         tprintf("%2d", bind_cpu);
538                                 }
539 
540                                 CPU_ZERO(&td->bind_cpumask);
541                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
542                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
543                                         CPU_SET(cpu, &td->bind_cpumask);
544                                 }
545                                 t++;
546                         }
547                 }
548         }
549 out:
550 
551         tprintf("\n");
552 
553         if (t < g->p.nr_tasks)
554                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
555 
556         free(str0);
557         return 0;
558 }
559 
560 static int parse_cpus_opt(const struct option *opt __maybe_unused,
561                           const char *arg, int unset __maybe_unused)
562 {
563         if (!arg)
564                 return -1;
565 
566         return parse_cpu_list(arg);
567 }
568 
569 static int parse_node_list(const char *arg)
570 {
571         p0.node_list_str = strdup(arg);
572 
573         dprintf("got NODE list: {%s}\n", p0.node_list_str);
574 
575         return 0;
576 }
577 
578 static int parse_setup_node_list(void)
579 {
580         struct thread_data *td;
581         char *str0, *str;
582         int t;
583 
584         if (!g->p.node_list_str)
585                 return 0;
586 
587         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
588 
589         str0 = str = strdup(g->p.node_list_str);
590         t = 0;
591 
592         BUG_ON(!str);
593 
594         tprintf("# binding tasks to NODEs:\n");
595         tprintf("# ");
596 
597         while (true) {
598                 int bind_node, bind_node_0, bind_node_1;
599                 char *tok, *tok_end, *tok_step, *tok_mul;
600                 int step;
601                 int mul;
602 
603                 tok = strsep(&str, ",");
604                 if (!tok)
605                         break;
606 
607                 tok_end = strstr(tok, "-");
608 
609                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
610                 if (!tok_end) {
611                         /* Single NODE specified: */
612                         bind_node_0 = bind_node_1 = atol(tok);
613                 } else {
614                         /* NODE range specified (for example: "5-11"): */
615                         bind_node_0 = atol(tok);
616                         bind_node_1 = atol(tok_end + 1);
617                 }
618 
619                 step = 1;
620                 tok_step = strstr(tok, "#");
621                 if (tok_step) {
622                         step = atol(tok_step + 1);
623                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
624                 }
625 
626                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
627                 mul = 1;
628                 tok_mul = strstr(tok, "x");
629                 if (tok_mul) {
630                         mul = atol(tok_mul + 1);
631                         BUG_ON(mul <= 0);
632                 }
633 
634                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
635 
636                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
637                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
638                         return -1;
639                 }
640 
641                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
642                 BUG_ON(bind_node_0 > bind_node_1);
643 
644                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
645                         int i;
646 
647                         for (i = 0; i < mul; i++) {
648                                 if (t >= g->p.nr_tasks) {
649                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
650                                         goto out;
651                                 }
652                                 td = g->threads + t;
653 
654                                 if (!t)
655                                         tprintf(" %2d", bind_node);
656                                 else
657                                         tprintf(",%2d", bind_node);
658 
659                                 td->bind_node = bind_node;
660                                 t++;
661                         }
662                 }
663         }
664 out:
665 
666         tprintf("\n");
667 
668         if (t < g->p.nr_tasks)
669                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
670 
671         free(str0);
672         return 0;
673 }
674 
675 static int parse_nodes_opt(const struct option *opt __maybe_unused,
676                           const char *arg, int unset __maybe_unused)
677 {
678         if (!arg)
679                 return -1;
680 
681         return parse_node_list(arg);
682 
683         return 0;
684 }
685 
686 #define BIT(x) (1ul << x)
687 
688 static inline uint32_t lfsr_32(uint32_t lfsr)
689 {
690         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
691         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
692 }
693 
694 /*
695  * Make sure there's real data dependency to RAM (when read
696  * accesses are enabled), so the compiler, the CPU and the
697  * kernel (KSM, zero page, etc.) cannot optimize away RAM
698  * accesses:
699  */
700 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
701 {
702         if (g->p.data_reads)
703                 val += *data;
704         if (g->p.data_writes)
705                 *data = val + 1;
706         return val;
707 }
708 
709 /*
710  * The worker process does two types of work, a forwards going
711  * loop and a backwards going loop.
712  *
713  * We do this so that on multiprocessor systems we do not create
714  * a 'train' of processing, with highly synchronized processes,
715  * skewing the whole benchmark.
716  */
717 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
718 {
719         long words = bytes/sizeof(u64);
720         u64 *data = (void *)__data;
721         long chunk_0, chunk_1;
722         u64 *d0, *d, *d1;
723         long off;
724         long i;
725 
726         BUG_ON(!data && words);
727         BUG_ON(data && !words);
728 
729         if (!data)
730                 return val;
731 
732         /* Very simple memset() work variant: */
733         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
734                 bzero(data, bytes);
735                 return val;
736         }
737 
738         /* Spread out by PID/TID nr and by loop nr: */
739         chunk_0 = words/nr_max;
740         chunk_1 = words/g->p.nr_loops;
741         off = nr*chunk_0 + loop*chunk_1;
742 
743         while (off >= words)
744                 off -= words;
745 
746         if (g->p.data_rand_walk) {
747                 u32 lfsr = nr + loop + val;
748                 int j;
749 
750                 for (i = 0; i < words/1024; i++) {
751                         long start, end;
752 
753                         lfsr = lfsr_32(lfsr);
754 
755                         start = lfsr % words;
756                         end = min(start + 1024, words-1);
757 
758                         if (g->p.data_zero_memset) {
759                                 bzero(data + start, (end-start) * sizeof(u64));
760                         } else {
761                                 for (j = start; j < end; j++)
762                                         val = access_data(data + j, val);
763                         }
764                 }
765         } else if (!g->p.data_backwards || (nr + loop) & 1) {
766 
767                 d0 = data + off;
768                 d  = data + off + 1;
769                 d1 = data + words;
770 
771                 /* Process data forwards: */
772                 for (;;) {
773                         if (unlikely(d >= d1))
774                                 d = data;
775                         if (unlikely(d == d0))
776                                 break;
777 
778                         val = access_data(d, val);
779 
780                         d++;
781                 }
782         } else {
783                 /* Process data backwards: */
784 
785                 d0 = data + off;
786                 d  = data + off - 1;
787                 d1 = data + words;
788 
789                 /* Process data forwards: */
790                 for (;;) {
791                         if (unlikely(d < data))
792                                 d = data + words-1;
793                         if (unlikely(d == d0))
794                                 break;
795 
796                         val = access_data(d, val);
797 
798                         d--;
799                 }
800         }
801 
802         return val;
803 }
804 
805 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
806 {
807         unsigned int cpu;
808 
809         cpu = sched_getcpu();
810 
811         g->threads[task_nr].curr_cpu = cpu;
812         prctl(0, bytes_worked);
813 }
814 
815 #define MAX_NR_NODES    64
816 
817 /*
818  * Count the number of nodes a process's threads
819  * are spread out on.
820  *
821  * A count of 1 means that the process is compressed
822  * to a single node. A count of g->p.nr_nodes means it's
823  * spread out on the whole system.
824  */
825 static int count_process_nodes(int process_nr)
826 {
827         char node_present[MAX_NR_NODES] = { 0, };
828         int nodes;
829         int n, t;
830 
831         for (t = 0; t < g->p.nr_threads; t++) {
832                 struct thread_data *td;
833                 int task_nr;
834                 int node;
835 
836                 task_nr = process_nr*g->p.nr_threads + t;
837                 td = g->threads + task_nr;
838 
839                 node = numa_node_of_cpu(td->curr_cpu);
840                 if (node < 0) /* curr_cpu was likely still -1 */
841                         return 0;
842 
843                 node_present[node] = 1;
844         }
845 
846         nodes = 0;
847 
848         for (n = 0; n < MAX_NR_NODES; n++)
849                 nodes += node_present[n];
850 
851         return nodes;
852 }
853 
854 /*
855  * Count the number of distinct process-threads a node contains.
856  *
857  * A count of 1 means that the node contains only a single
858  * process. If all nodes on the system contain at most one
859  * process then we are well-converged.
860  */
861 static int count_node_processes(int node)
862 {
863         int processes = 0;
864         int t, p;
865 
866         for (p = 0; p < g->p.nr_proc; p++) {
867                 for (t = 0; t < g->p.nr_threads; t++) {
868                         struct thread_data *td;
869                         int task_nr;
870                         int n;
871 
872                         task_nr = p*g->p.nr_threads + t;
873                         td = g->threads + task_nr;
874 
875                         n = numa_node_of_cpu(td->curr_cpu);
876                         if (n == node) {
877                                 processes++;
878                                 break;
879                         }
880                 }
881         }
882 
883         return processes;
884 }
885 
886 static void calc_convergence_compression(int *strong)
887 {
888         unsigned int nodes_min, nodes_max;
889         int p;
890 
891         nodes_min = -1;
892         nodes_max =  0;
893 
894         for (p = 0; p < g->p.nr_proc; p++) {
895                 unsigned int nodes = count_process_nodes(p);
896 
897                 if (!nodes) {
898                         *strong = 0;
899                         return;
900                 }
901 
902                 nodes_min = min(nodes, nodes_min);
903                 nodes_max = max(nodes, nodes_max);
904         }
905 
906         /* Strong convergence: all threads compress on a single node: */
907         if (nodes_min == 1 && nodes_max == 1) {
908                 *strong = 1;
909         } else {
910                 *strong = 0;
911                 tprintf(" {%d-%d}", nodes_min, nodes_max);
912         }
913 }
914 
915 static void calc_convergence(double runtime_ns_max, double *convergence)
916 {
917         unsigned int loops_done_min, loops_done_max;
918         int process_groups;
919         int nodes[MAX_NR_NODES];
920         int distance;
921         int nr_min;
922         int nr_max;
923         int strong;
924         int sum;
925         int nr;
926         int node;
927         int cpu;
928         int t;
929 
930         if (!g->p.show_convergence && !g->p.measure_convergence)
931                 return;
932 
933         for (node = 0; node < g->p.nr_nodes; node++)
934                 nodes[node] = 0;
935 
936         loops_done_min = -1;
937         loops_done_max = 0;
938 
939         for (t = 0; t < g->p.nr_tasks; t++) {
940                 struct thread_data *td = g->threads + t;
941                 unsigned int loops_done;
942 
943                 cpu = td->curr_cpu;
944 
945                 /* Not all threads have written it yet: */
946                 if (cpu < 0)
947                         continue;
948 
949                 node = numa_node_of_cpu(cpu);
950 
951                 nodes[node]++;
952 
953                 loops_done = td->loops_done;
954                 loops_done_min = min(loops_done, loops_done_min);
955                 loops_done_max = max(loops_done, loops_done_max);
956         }
957 
958         nr_max = 0;
959         nr_min = g->p.nr_tasks;
960         sum = 0;
961 
962         for (node = 0; node < g->p.nr_nodes; node++) {
963                 nr = nodes[node];
964                 nr_min = min(nr, nr_min);
965                 nr_max = max(nr, nr_max);
966                 sum += nr;
967         }
968         BUG_ON(nr_min > nr_max);
969 
970         BUG_ON(sum > g->p.nr_tasks);
971 
972         if (0 && (sum < g->p.nr_tasks))
973                 return;
974 
975         /*
976          * Count the number of distinct process groups present
977          * on nodes - when we are converged this will decrease
978          * to g->p.nr_proc:
979          */
980         process_groups = 0;
981 
982         for (node = 0; node < g->p.nr_nodes; node++) {
983                 int processes = count_node_processes(node);
984 
985                 nr = nodes[node];
986                 tprintf(" %2d/%-2d", nr, processes);
987 
988                 process_groups += processes;
989         }
990 
991         distance = nr_max - nr_min;
992 
993         tprintf(" [%2d/%-2d]", distance, process_groups);
994 
995         tprintf(" l:%3d-%-3d (%3d)",
996                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
997 
998         if (loops_done_min && loops_done_max) {
999                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1000 
1001                 tprintf(" [%4.1f%%]", skew * 100.0);
1002         }
1003 
1004         calc_convergence_compression(&strong);
1005 
1006         if (strong && process_groups == g->p.nr_proc) {
1007                 if (!*convergence) {
1008                         *convergence = runtime_ns_max;
1009                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1010                         if (g->p.measure_convergence) {
1011                                 g->all_converged = true;
1012                                 g->stop_work = true;
1013                         }
1014                 }
1015         } else {
1016                 if (*convergence) {
1017                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1018                         *convergence = 0;
1019                 }
1020                 tprintf("\n");
1021         }
1022 }
1023 
1024 static void show_summary(double runtime_ns_max, int l, double *convergence)
1025 {
1026         tprintf("\r #  %5.1f%%  [%.1f mins]",
1027                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1028 
1029         calc_convergence(runtime_ns_max, convergence);
1030 
1031         if (g->p.show_details >= 0)
1032                 fflush(stdout);
1033 }
1034 
1035 static void *worker_thread(void *__tdata)
1036 {
1037         struct thread_data *td = __tdata;
1038         struct timeval start0, start, stop, diff;
1039         int process_nr = td->process_nr;
1040         int thread_nr = td->thread_nr;
1041         unsigned long last_perturbance;
1042         int task_nr = td->task_nr;
1043         int details = g->p.show_details;
1044         int first_task, last_task;
1045         double convergence = 0;
1046         u64 val = td->val;
1047         double runtime_ns_max;
1048         u8 *global_data;
1049         u8 *process_data;
1050         u8 *thread_data;
1051         u64 bytes_done;
1052         long work_done;
1053         u32 l;
1054         struct rusage rusage;
1055 
1056         bind_to_cpumask(td->bind_cpumask);
1057         bind_to_memnode(td->bind_node);
1058 
1059         set_taskname("thread %d/%d", process_nr, thread_nr);
1060 
1061         global_data = g->data;
1062         process_data = td->process_data;
1063         thread_data = setup_private_data(g->p.bytes_thread);
1064 
1065         bytes_done = 0;
1066 
1067         last_task = 0;
1068         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1069                 last_task = 1;
1070 
1071         first_task = 0;
1072         if (process_nr == 0 && thread_nr == 0)
1073                 first_task = 1;
1074 
1075         if (details >= 2) {
1076                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1077                         process_nr, thread_nr, global_data, process_data, thread_data);
1078         }
1079 
1080         if (g->p.serialize_startup) {
1081                 pthread_mutex_lock(&g->startup_mutex);
1082                 g->nr_tasks_started++;
1083                 pthread_mutex_unlock(&g->startup_mutex);
1084 
1085                 /* Here we will wait for the main process to start us all at once: */
1086                 pthread_mutex_lock(&g->start_work_mutex);
1087                 g->nr_tasks_working++;
1088 
1089                 /* Last one wake the main process: */
1090                 if (g->nr_tasks_working == g->p.nr_tasks)
1091                         pthread_mutex_unlock(&g->startup_done_mutex);
1092 
1093                 pthread_mutex_unlock(&g->start_work_mutex);
1094         }
1095 
1096         gettimeofday(&start0, NULL);
1097 
1098         start = stop = start0;
1099         last_perturbance = start.tv_sec;
1100 
1101         for (l = 0; l < g->p.nr_loops; l++) {
1102                 start = stop;
1103 
1104                 if (g->stop_work)
1105                         break;
1106 
1107                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1108                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1109                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1110 
1111                 if (g->p.sleep_usecs) {
1112                         pthread_mutex_lock(td->process_lock);
1113                         usleep(g->p.sleep_usecs);
1114                         pthread_mutex_unlock(td->process_lock);
1115                 }
1116                 /*
1117                  * Amount of work to be done under a process-global lock:
1118                  */
1119                 if (g->p.bytes_process_locked) {
1120                         pthread_mutex_lock(td->process_lock);
1121                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1122                         pthread_mutex_unlock(td->process_lock);
1123                 }
1124 
1125                 work_done = g->p.bytes_global + g->p.bytes_process +
1126                             g->p.bytes_process_locked + g->p.bytes_thread;
1127 
1128                 update_curr_cpu(task_nr, work_done);
1129                 bytes_done += work_done;
1130 
1131                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1132                         continue;
1133 
1134                 td->loops_done = l;
1135 
1136                 gettimeofday(&stop, NULL);
1137 
1138                 /* Check whether our max runtime timed out: */
1139                 if (g->p.nr_secs) {
1140                         timersub(&stop, &start0, &diff);
1141                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1142                                 g->stop_work = true;
1143                                 break;
1144                         }
1145                 }
1146 
1147                 /* Update the summary at most once per second: */
1148                 if (start.tv_sec == stop.tv_sec)
1149                         continue;
1150 
1151                 /*
1152                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1153                  * by migrating to CPU#0:
1154                  */
1155                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1156                         cpu_set_t orig_mask;
1157                         int target_cpu;
1158                         int this_cpu;
1159 
1160                         last_perturbance = stop.tv_sec;
1161 
1162                         /*
1163                          * Depending on where we are running, move into
1164                          * the other half of the system, to create some
1165                          * real disturbance:
1166                          */
1167                         this_cpu = g->threads[task_nr].curr_cpu;
1168                         if (this_cpu < g->p.nr_cpus/2)
1169                                 target_cpu = g->p.nr_cpus-1;
1170                         else
1171                                 target_cpu = 0;
1172 
1173                         orig_mask = bind_to_cpu(target_cpu);
1174 
1175                         /* Here we are running on the target CPU already */
1176                         if (details >= 1)
1177                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1178 
1179                         bind_to_cpumask(orig_mask);
1180                 }
1181 
1182                 if (details >= 3) {
1183                         timersub(&stop, &start, &diff);
1184                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1185                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1186 
1187                         if (details >= 0) {
1188                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1189                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1190                         }
1191                         fflush(stdout);
1192                 }
1193                 if (!last_task)
1194                         continue;
1195 
1196                 timersub(&stop, &start0, &diff);
1197                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1198                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1199 
1200                 show_summary(runtime_ns_max, l, &convergence);
1201         }
1202 
1203         gettimeofday(&stop, NULL);
1204         timersub(&stop, &start0, &diff);
1205         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1206         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1207         td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1208 
1209         getrusage(RUSAGE_THREAD, &rusage);
1210         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1211         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1212         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1213         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1214 
1215         free_data(thread_data, g->p.bytes_thread);
1216 
1217         pthread_mutex_lock(&g->stop_work_mutex);
1218         g->bytes_done += bytes_done;
1219         pthread_mutex_unlock(&g->stop_work_mutex);
1220 
1221         return NULL;
1222 }
1223 
1224 /*
1225  * A worker process starts a couple of threads:
1226  */
1227 static void worker_process(int process_nr)
1228 {
1229         pthread_mutex_t process_lock;
1230         struct thread_data *td;
1231         pthread_t *pthreads;
1232         u8 *process_data;
1233         int task_nr;
1234         int ret;
1235         int t;
1236 
1237         pthread_mutex_init(&process_lock, NULL);
1238         set_taskname("process %d", process_nr);
1239 
1240         /*
1241          * Pick up the memory policy and the CPU binding of our first thread,
1242          * so that we initialize memory accordingly:
1243          */
1244         task_nr = process_nr*g->p.nr_threads;
1245         td = g->threads + task_nr;
1246 
1247         bind_to_memnode(td->bind_node);
1248         bind_to_cpumask(td->bind_cpumask);
1249 
1250         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1251         process_data = setup_private_data(g->p.bytes_process);
1252 
1253         if (g->p.show_details >= 3) {
1254                 printf(" # process %2d global mem: %p, process mem: %p\n",
1255                         process_nr, g->data, process_data);
1256         }
1257 
1258         for (t = 0; t < g->p.nr_threads; t++) {
1259                 task_nr = process_nr*g->p.nr_threads + t;
1260                 td = g->threads + task_nr;
1261 
1262                 td->process_data = process_data;
1263                 td->process_nr   = process_nr;
1264                 td->thread_nr    = t;
1265                 td->task_nr      = task_nr;
1266                 td->val          = rand();
1267                 td->curr_cpu     = -1;
1268                 td->process_lock = &process_lock;
1269 
1270                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1271                 BUG_ON(ret);
1272         }
1273 
1274         for (t = 0; t < g->p.nr_threads; t++) {
1275                 ret = pthread_join(pthreads[t], NULL);
1276                 BUG_ON(ret);
1277         }
1278 
1279         free_data(process_data, g->p.bytes_process);
1280         free(pthreads);
1281 }
1282 
1283 static void print_summary(void)
1284 {
1285         if (g->p.show_details < 0)
1286                 return;
1287 
1288         printf("\n ###\n");
1289         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1290                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1291         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1292                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1293         printf(" #      %5dx %5ldMB process shared mem operations\n",
1294                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1295         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1296                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1297 
1298         printf(" ###\n");
1299 
1300         printf("\n ###\n"); fflush(stdout);
1301 }
1302 
1303 static void init_thread_data(void)
1304 {
1305         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1306         int t;
1307 
1308         g->threads = zalloc_shared_data(size);
1309 
1310         for (t = 0; t < g->p.nr_tasks; t++) {
1311                 struct thread_data *td = g->threads + t;
1312                 int cpu;
1313 
1314                 /* Allow all nodes by default: */
1315                 td->bind_node = -1;
1316 
1317                 /* Allow all CPUs by default: */
1318                 CPU_ZERO(&td->bind_cpumask);
1319                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1320                         CPU_SET(cpu, &td->bind_cpumask);
1321         }
1322 }
1323 
1324 static void deinit_thread_data(void)
1325 {
1326         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1327 
1328         free_data(g->threads, size);
1329 }
1330 
1331 static int init(void)
1332 {
1333         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1334 
1335         /* Copy over options: */
1336         g->p = p0;
1337 
1338         g->p.nr_cpus = numa_num_configured_cpus();
1339 
1340         g->p.nr_nodes = numa_max_node() + 1;
1341 
1342         /* char array in count_process_nodes(): */
1343         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1344 
1345         if (g->p.show_quiet && !g->p.show_details)
1346                 g->p.show_details = -1;
1347 
1348         /* Some memory should be specified: */
1349         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1350                 return -1;
1351 
1352         if (g->p.mb_global_str) {
1353                 g->p.mb_global = atof(g->p.mb_global_str);
1354                 BUG_ON(g->p.mb_global < 0);
1355         }
1356 
1357         if (g->p.mb_proc_str) {
1358                 g->p.mb_proc = atof(g->p.mb_proc_str);
1359                 BUG_ON(g->p.mb_proc < 0);
1360         }
1361 
1362         if (g->p.mb_proc_locked_str) {
1363                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1364                 BUG_ON(g->p.mb_proc_locked < 0);
1365                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1366         }
1367 
1368         if (g->p.mb_thread_str) {
1369                 g->p.mb_thread = atof(g->p.mb_thread_str);
1370                 BUG_ON(g->p.mb_thread < 0);
1371         }
1372 
1373         BUG_ON(g->p.nr_threads <= 0);
1374         BUG_ON(g->p.nr_proc <= 0);
1375 
1376         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1377 
1378         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1379         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1380         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1381         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1382 
1383         g->data = setup_shared_data(g->p.bytes_global);
1384 
1385         /* Startup serialization: */
1386         init_global_mutex(&g->start_work_mutex);
1387         init_global_mutex(&g->startup_mutex);
1388         init_global_mutex(&g->startup_done_mutex);
1389         init_global_mutex(&g->stop_work_mutex);
1390 
1391         init_thread_data();
1392 
1393         tprintf("#\n");
1394         if (parse_setup_cpu_list() || parse_setup_node_list())
1395                 return -1;
1396         tprintf("#\n");
1397 
1398         print_summary();
1399 
1400         return 0;
1401 }
1402 
1403 static void deinit(void)
1404 {
1405         free_data(g->data, g->p.bytes_global);
1406         g->data = NULL;
1407 
1408         deinit_thread_data();
1409 
1410         free_data(g, sizeof(*g));
1411         g = NULL;
1412 }
1413 
1414 /*
1415  * Print a short or long result, depending on the verbosity setting:
1416  */
1417 static void print_res(const char *name, double val,
1418                       const char *txt_unit, const char *txt_short, const char *txt_long)
1419 {
1420         if (!name)
1421                 name = "main,";
1422 
1423         if (!g->p.show_quiet)
1424                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1425         else
1426                 printf(" %14.3f %s\n", val, txt_long);
1427 }
1428 
1429 static int __bench_numa(const char *name)
1430 {
1431         struct timeval start, stop, diff;
1432         u64 runtime_ns_min, runtime_ns_sum;
1433         pid_t *pids, pid, wpid;
1434         double delta_runtime;
1435         double runtime_avg;
1436         double runtime_sec_max;
1437         double runtime_sec_min;
1438         int wait_stat;
1439         double bytes;
1440         int i, t, p;
1441 
1442         if (init())
1443                 return -1;
1444 
1445         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1446         pid = -1;
1447 
1448         /* All threads try to acquire it, this way we can wait for them to start up: */
1449         pthread_mutex_lock(&g->start_work_mutex);
1450 
1451         if (g->p.serialize_startup) {
1452                 tprintf(" #\n");
1453                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1454         }
1455 
1456         gettimeofday(&start, NULL);
1457 
1458         for (i = 0; i < g->p.nr_proc; i++) {
1459                 pid = fork();
1460                 dprintf(" # process %2d: PID %d\n", i, pid);
1461 
1462                 BUG_ON(pid < 0);
1463                 if (!pid) {
1464                         /* Child process: */
1465                         worker_process(i);
1466 
1467                         exit(0);
1468                 }
1469                 pids[i] = pid;
1470 
1471         }
1472         /* Wait for all the threads to start up: */
1473         while (g->nr_tasks_started != g->p.nr_tasks)
1474                 usleep(USEC_PER_MSEC);
1475 
1476         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1477 
1478         if (g->p.serialize_startup) {
1479                 double startup_sec;
1480 
1481                 pthread_mutex_lock(&g->startup_done_mutex);
1482 
1483                 /* This will start all threads: */
1484                 pthread_mutex_unlock(&g->start_work_mutex);
1485 
1486                 /* This mutex is locked - the last started thread will wake us: */
1487                 pthread_mutex_lock(&g->startup_done_mutex);
1488 
1489                 gettimeofday(&stop, NULL);
1490 
1491                 timersub(&stop, &start, &diff);
1492 
1493                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1494                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1495                 startup_sec /= NSEC_PER_SEC;
1496 
1497                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1498                 tprintf(" #\n");
1499 
1500                 start = stop;
1501                 pthread_mutex_unlock(&g->startup_done_mutex);
1502         } else {
1503                 gettimeofday(&start, NULL);
1504         }
1505 
1506         /* Parent process: */
1507 
1508 
1509         for (i = 0; i < g->p.nr_proc; i++) {
1510                 wpid = waitpid(pids[i], &wait_stat, 0);
1511                 BUG_ON(wpid < 0);
1512                 BUG_ON(!WIFEXITED(wait_stat));
1513 
1514         }
1515 
1516         runtime_ns_sum = 0;
1517         runtime_ns_min = -1LL;
1518 
1519         for (t = 0; t < g->p.nr_tasks; t++) {
1520                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1521 
1522                 runtime_ns_sum += thread_runtime_ns;
1523                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1524         }
1525 
1526         gettimeofday(&stop, NULL);
1527         timersub(&stop, &start, &diff);
1528 
1529         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1530 
1531         tprintf("\n ###\n");
1532         tprintf("\n");
1533 
1534         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1535         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1536         runtime_sec_max /= NSEC_PER_SEC;
1537 
1538         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1539 
1540         bytes = g->bytes_done;
1541         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1542 
1543         if (g->p.measure_convergence) {
1544                 print_res(name, runtime_sec_max,
1545                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1546         }
1547 
1548         print_res(name, runtime_sec_max,
1549                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1550 
1551         print_res(name, runtime_sec_min,
1552                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1553 
1554         print_res(name, runtime_avg,
1555                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1556 
1557         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1558         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1559                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1560 
1561         print_res(name, bytes / g->p.nr_tasks / 1e9,
1562                 "GB,", "data/thread",           "GB data processed, per thread");
1563 
1564         print_res(name, bytes / 1e9,
1565                 "GB,", "data-total",            "GB data processed, total");
1566 
1567         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1568                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1569 
1570         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1571                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1572 
1573         print_res(name, bytes / runtime_sec_max / 1e9,
1574                 "GB/sec,", "total-speed",       "GB/sec total speed");
1575 
1576         if (g->p.show_details >= 2) {
1577                 char tname[14 + 2 * 10 + 1];
1578                 struct thread_data *td;
1579                 for (p = 0; p < g->p.nr_proc; p++) {
1580                         for (t = 0; t < g->p.nr_threads; t++) {
1581                                 memset(tname, 0, sizeof(tname));
1582                                 td = g->threads + p*g->p.nr_threads + t;
1583                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1584                                 print_res(tname, td->speed_gbs,
1585                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1586                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1587                                         "secs", "thread-system-time", "system CPU time/thread");
1588                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1589                                         "secs", "thread-user-time", "user CPU time/thread");
1590                         }
1591                 }
1592         }
1593 
1594         free(pids);
1595 
1596         deinit();
1597 
1598         return 0;
1599 }
1600 
1601 #define MAX_ARGS 50
1602 
1603 static int command_size(const char **argv)
1604 {
1605         int size = 0;
1606 
1607         while (*argv) {
1608                 size++;
1609                 argv++;
1610         }
1611 
1612         BUG_ON(size >= MAX_ARGS);
1613 
1614         return size;
1615 }
1616 
1617 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1618 {
1619         int i;
1620 
1621         printf("\n # Running %s \"perf bench numa", name);
1622 
1623         for (i = 0; i < argc; i++)
1624                 printf(" %s", argv[i]);
1625 
1626         printf("\"\n");
1627 
1628         memset(p, 0, sizeof(*p));
1629 
1630         /* Initialize nonzero defaults: */
1631 
1632         p->serialize_startup            = 1;
1633         p->data_reads                   = true;
1634         p->data_writes                  = true;
1635         p->data_backwards               = true;
1636         p->data_rand_walk               = true;
1637         p->nr_loops                     = -1;
1638         p->init_random                  = true;
1639         p->mb_global_str                = "1";
1640         p->nr_proc                      = 1;
1641         p->nr_threads                   = 1;
1642         p->nr_secs                      = 5;
1643         p->run_all                      = argc == 1;
1644 }
1645 
1646 static int run_bench_numa(const char *name, const char **argv)
1647 {
1648         int argc = command_size(argv);
1649 
1650         init_params(&p0, name, argc, argv);
1651         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1652         if (argc)
1653                 goto err;
1654 
1655         if (__bench_numa(name))
1656                 goto err;
1657 
1658         return 0;
1659 
1660 err:
1661         return -1;
1662 }
1663 
1664 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1665 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1666 
1667 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1668 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1669 
1670 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1671 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1672 
1673 /*
1674  * The built-in test-suite executed by "perf bench numa -a".
1675  *
1676  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1677  */
1678 static const char *tests[][MAX_ARGS] = {
1679    /* Basic single-stream NUMA bandwidth measurements: */
1680    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1681                           "-C" ,   "", "-M",   "", OPT_BW_RAM },
1682    { "RAM-bw-local-NOTHP,",
1683                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1684                           "-C" ,   "", "-M",   "", OPT_BW_RAM_NOTHP },
1685    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1686                           "-C" ,   "", "-M",   "1", OPT_BW_RAM },
1687 
1688    /* 2-stream NUMA bandwidth measurements: */
1689    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1690                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1691    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1692                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1693 
1694    /* Cross-stream NUMA bandwidth measurement: */
1695    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1696                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1697 
1698    /* Convergence latency measurements: */
1699    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1700    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1701    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1702    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1703    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1704    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1705    { " 4x4-convergence-NOTHP,",
1706                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1707    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1708    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1709    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1710    { " 8x4-convergence-NOTHP,",
1711                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1712    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1713    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1714    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1715    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1716    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1717 
1718    /* Various NUMA process/thread layout bandwidth measurements: */
1719    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1720    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1721    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1722    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1723    { " 8x1-bw-process-NOTHP,",
1724                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1725    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1726 
1727    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1728    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1729    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1730    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1731 
1732    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1733    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1734    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1735    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1736    { " 4x8-bw-thread-NOTHP,",
1737                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1738    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1739    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1740 
1741    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1742    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1743 
1744    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1745    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1746    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1747    { "numa01-bw-thread-NOTHP,",
1748                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1749 };
1750 
1751 static int bench_all(void)
1752 {
1753         int nr = ARRAY_SIZE(tests);
1754         int ret;
1755         int i;
1756 
1757         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1758         BUG_ON(ret < 0);
1759 
1760         for (i = 0; i < nr; i++) {
1761                 run_bench_numa(tests[i][0], tests[i] + 1);
1762         }
1763 
1764         printf("\n");
1765 
1766         return 0;
1767 }
1768 
1769 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1770 {
1771         init_params(&p0, "main,", argc, argv);
1772         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1773         if (argc)
1774                 goto err;
1775 
1776         if (p0.run_all)
1777                 return bench_all();
1778 
1779         if (__bench_numa(NULL))
1780                 goto err;
1781 
1782         return 0;
1783 
1784 err:
1785         usage_with_options(numa_usage, options);
1786         return -1;
1787 }
1788 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp