~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/builtin-kmem.c

Version: ~ [ linux-6.0-rc6 ] ~ [ linux-5.19.10 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.69 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.144 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.214 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.259 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.294 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.329 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include "builtin.h"
  3 #include "perf.h"
  4 
  5 #include "util/evlist.h"
  6 #include "util/evsel.h"
  7 #include "util/util.h"
  8 #include "util/config.h"
  9 #include "util/map.h"
 10 #include "util/symbol.h"
 11 #include "util/thread.h"
 12 #include "util/header.h"
 13 #include "util/session.h"
 14 #include "util/tool.h"
 15 #include "util/callchain.h"
 16 #include "util/time-utils.h"
 17 
 18 #include <subcmd/parse-options.h>
 19 #include "util/trace-event.h"
 20 #include "util/data.h"
 21 #include "util/cpumap.h"
 22 
 23 #include "util/debug.h"
 24 
 25 #include <linux/kernel.h>
 26 #include <linux/rbtree.h>
 27 #include <linux/string.h>
 28 #include <errno.h>
 29 #include <inttypes.h>
 30 #include <locale.h>
 31 #include <regex.h>
 32 
 33 #include "sane_ctype.h"
 34 
 35 static int      kmem_slab;
 36 static int      kmem_page;
 37 
 38 static long     kmem_page_size;
 39 static enum {
 40         KMEM_SLAB,
 41         KMEM_PAGE,
 42 } kmem_default = KMEM_SLAB;  /* for backward compatibility */
 43 
 44 struct alloc_stat;
 45 typedef int (*sort_fn_t)(void *, void *);
 46 
 47 static int                      alloc_flag;
 48 static int                      caller_flag;
 49 
 50 static int                      alloc_lines = -1;
 51 static int                      caller_lines = -1;
 52 
 53 static bool                     raw_ip;
 54 
 55 struct alloc_stat {
 56         u64     call_site;
 57         u64     ptr;
 58         u64     bytes_req;
 59         u64     bytes_alloc;
 60         u64     last_alloc;
 61         u32     hit;
 62         u32     pingpong;
 63 
 64         short   alloc_cpu;
 65 
 66         struct rb_node node;
 67 };
 68 
 69 static struct rb_root root_alloc_stat;
 70 static struct rb_root root_alloc_sorted;
 71 static struct rb_root root_caller_stat;
 72 static struct rb_root root_caller_sorted;
 73 
 74 static unsigned long total_requested, total_allocated, total_freed;
 75 static unsigned long nr_allocs, nr_cross_allocs;
 76 
 77 /* filters for controlling start and stop of time of analysis */
 78 static struct perf_time_interval ptime;
 79 const char *time_str;
 80 
 81 static int insert_alloc_stat(unsigned long call_site, unsigned long ptr,
 82                              int bytes_req, int bytes_alloc, int cpu)
 83 {
 84         struct rb_node **node = &root_alloc_stat.rb_node;
 85         struct rb_node *parent = NULL;
 86         struct alloc_stat *data = NULL;
 87 
 88         while (*node) {
 89                 parent = *node;
 90                 data = rb_entry(*node, struct alloc_stat, node);
 91 
 92                 if (ptr > data->ptr)
 93                         node = &(*node)->rb_right;
 94                 else if (ptr < data->ptr)
 95                         node = &(*node)->rb_left;
 96                 else
 97                         break;
 98         }
 99 
100         if (data && data->ptr == ptr) {
101                 data->hit++;
102                 data->bytes_req += bytes_req;
103                 data->bytes_alloc += bytes_alloc;
104         } else {
105                 data = malloc(sizeof(*data));
106                 if (!data) {
107                         pr_err("%s: malloc failed\n", __func__);
108                         return -1;
109                 }
110                 data->ptr = ptr;
111                 data->pingpong = 0;
112                 data->hit = 1;
113                 data->bytes_req = bytes_req;
114                 data->bytes_alloc = bytes_alloc;
115 
116                 rb_link_node(&data->node, parent, node);
117                 rb_insert_color(&data->node, &root_alloc_stat);
118         }
119         data->call_site = call_site;
120         data->alloc_cpu = cpu;
121         data->last_alloc = bytes_alloc;
122 
123         return 0;
124 }
125 
126 static int insert_caller_stat(unsigned long call_site,
127                               int bytes_req, int bytes_alloc)
128 {
129         struct rb_node **node = &root_caller_stat.rb_node;
130         struct rb_node *parent = NULL;
131         struct alloc_stat *data = NULL;
132 
133         while (*node) {
134                 parent = *node;
135                 data = rb_entry(*node, struct alloc_stat, node);
136 
137                 if (call_site > data->call_site)
138                         node = &(*node)->rb_right;
139                 else if (call_site < data->call_site)
140                         node = &(*node)->rb_left;
141                 else
142                         break;
143         }
144 
145         if (data && data->call_site == call_site) {
146                 data->hit++;
147                 data->bytes_req += bytes_req;
148                 data->bytes_alloc += bytes_alloc;
149         } else {
150                 data = malloc(sizeof(*data));
151                 if (!data) {
152                         pr_err("%s: malloc failed\n", __func__);
153                         return -1;
154                 }
155                 data->call_site = call_site;
156                 data->pingpong = 0;
157                 data->hit = 1;
158                 data->bytes_req = bytes_req;
159                 data->bytes_alloc = bytes_alloc;
160 
161                 rb_link_node(&data->node, parent, node);
162                 rb_insert_color(&data->node, &root_caller_stat);
163         }
164 
165         return 0;
166 }
167 
168 static int perf_evsel__process_alloc_event(struct perf_evsel *evsel,
169                                            struct perf_sample *sample)
170 {
171         unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr"),
172                       call_site = perf_evsel__intval(evsel, sample, "call_site");
173         int bytes_req = perf_evsel__intval(evsel, sample, "bytes_req"),
174             bytes_alloc = perf_evsel__intval(evsel, sample, "bytes_alloc");
175 
176         if (insert_alloc_stat(call_site, ptr, bytes_req, bytes_alloc, sample->cpu) ||
177             insert_caller_stat(call_site, bytes_req, bytes_alloc))
178                 return -1;
179 
180         total_requested += bytes_req;
181         total_allocated += bytes_alloc;
182 
183         nr_allocs++;
184         return 0;
185 }
186 
187 static int perf_evsel__process_alloc_node_event(struct perf_evsel *evsel,
188                                                 struct perf_sample *sample)
189 {
190         int ret = perf_evsel__process_alloc_event(evsel, sample);
191 
192         if (!ret) {
193                 int node1 = cpu__get_node(sample->cpu),
194                     node2 = perf_evsel__intval(evsel, sample, "node");
195 
196                 if (node1 != node2)
197                         nr_cross_allocs++;
198         }
199 
200         return ret;
201 }
202 
203 static int ptr_cmp(void *, void *);
204 static int slab_callsite_cmp(void *, void *);
205 
206 static struct alloc_stat *search_alloc_stat(unsigned long ptr,
207                                             unsigned long call_site,
208                                             struct rb_root *root,
209                                             sort_fn_t sort_fn)
210 {
211         struct rb_node *node = root->rb_node;
212         struct alloc_stat key = { .ptr = ptr, .call_site = call_site };
213 
214         while (node) {
215                 struct alloc_stat *data;
216                 int cmp;
217 
218                 data = rb_entry(node, struct alloc_stat, node);
219 
220                 cmp = sort_fn(&key, data);
221                 if (cmp < 0)
222                         node = node->rb_left;
223                 else if (cmp > 0)
224                         node = node->rb_right;
225                 else
226                         return data;
227         }
228         return NULL;
229 }
230 
231 static int perf_evsel__process_free_event(struct perf_evsel *evsel,
232                                           struct perf_sample *sample)
233 {
234         unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr");
235         struct alloc_stat *s_alloc, *s_caller;
236 
237         s_alloc = search_alloc_stat(ptr, 0, &root_alloc_stat, ptr_cmp);
238         if (!s_alloc)
239                 return 0;
240 
241         total_freed += s_alloc->last_alloc;
242 
243         if ((short)sample->cpu != s_alloc->alloc_cpu) {
244                 s_alloc->pingpong++;
245 
246                 s_caller = search_alloc_stat(0, s_alloc->call_site,
247                                              &root_caller_stat,
248                                              slab_callsite_cmp);
249                 if (!s_caller)
250                         return -1;
251                 s_caller->pingpong++;
252         }
253         s_alloc->alloc_cpu = -1;
254 
255         return 0;
256 }
257 
258 static u64 total_page_alloc_bytes;
259 static u64 total_page_free_bytes;
260 static u64 total_page_nomatch_bytes;
261 static u64 total_page_fail_bytes;
262 static unsigned long nr_page_allocs;
263 static unsigned long nr_page_frees;
264 static unsigned long nr_page_fails;
265 static unsigned long nr_page_nomatch;
266 
267 static bool use_pfn;
268 static bool live_page;
269 static struct perf_session *kmem_session;
270 
271 #define MAX_MIGRATE_TYPES  6
272 #define MAX_PAGE_ORDER     11
273 
274 static int order_stats[MAX_PAGE_ORDER][MAX_MIGRATE_TYPES];
275 
276 struct page_stat {
277         struct rb_node  node;
278         u64             page;
279         u64             callsite;
280         int             order;
281         unsigned        gfp_flags;
282         unsigned        migrate_type;
283         u64             alloc_bytes;
284         u64             free_bytes;
285         int             nr_alloc;
286         int             nr_free;
287 };
288 
289 static struct rb_root page_live_tree;
290 static struct rb_root page_alloc_tree;
291 static struct rb_root page_alloc_sorted;
292 static struct rb_root page_caller_tree;
293 static struct rb_root page_caller_sorted;
294 
295 struct alloc_func {
296         u64 start;
297         u64 end;
298         char *name;
299 };
300 
301 static int nr_alloc_funcs;
302 static struct alloc_func *alloc_func_list;
303 
304 static int funcmp(const void *a, const void *b)
305 {
306         const struct alloc_func *fa = a;
307         const struct alloc_func *fb = b;
308 
309         if (fa->start > fb->start)
310                 return 1;
311         else
312                 return -1;
313 }
314 
315 static int callcmp(const void *a, const void *b)
316 {
317         const struct alloc_func *fa = a;
318         const struct alloc_func *fb = b;
319 
320         if (fb->start <= fa->start && fa->end < fb->end)
321                 return 0;
322 
323         if (fa->start > fb->start)
324                 return 1;
325         else
326                 return -1;
327 }
328 
329 static int build_alloc_func_list(void)
330 {
331         int ret;
332         struct map *kernel_map;
333         struct symbol *sym;
334         struct rb_node *node;
335         struct alloc_func *func;
336         struct machine *machine = &kmem_session->machines.host;
337         regex_t alloc_func_regex;
338         static const char pattern[] = "^_?_?(alloc|get_free|get_zeroed)_pages?";
339 
340         ret = regcomp(&alloc_func_regex, pattern, REG_EXTENDED);
341         if (ret) {
342                 char err[BUFSIZ];
343 
344                 regerror(ret, &alloc_func_regex, err, sizeof(err));
345                 pr_err("Invalid regex: %s\n%s", pattern, err);
346                 return -EINVAL;
347         }
348 
349         kernel_map = machine__kernel_map(machine);
350         if (map__load(kernel_map) < 0) {
351                 pr_err("cannot load kernel map\n");
352                 return -ENOENT;
353         }
354 
355         map__for_each_symbol(kernel_map, sym, node) {
356                 if (regexec(&alloc_func_regex, sym->name, 0, NULL, 0))
357                         continue;
358 
359                 func = realloc(alloc_func_list,
360                                (nr_alloc_funcs + 1) * sizeof(*func));
361                 if (func == NULL)
362                         return -ENOMEM;
363 
364                 pr_debug("alloc func: %s\n", sym->name);
365                 func[nr_alloc_funcs].start = sym->start;
366                 func[nr_alloc_funcs].end   = sym->end;
367                 func[nr_alloc_funcs].name  = sym->name;
368 
369                 alloc_func_list = func;
370                 nr_alloc_funcs++;
371         }
372 
373         qsort(alloc_func_list, nr_alloc_funcs, sizeof(*func), funcmp);
374 
375         regfree(&alloc_func_regex);
376         return 0;
377 }
378 
379 /*
380  * Find first non-memory allocation function from callchain.
381  * The allocation functions are in the 'alloc_func_list'.
382  */
383 static u64 find_callsite(struct perf_evsel *evsel, struct perf_sample *sample)
384 {
385         struct addr_location al;
386         struct machine *machine = &kmem_session->machines.host;
387         struct callchain_cursor_node *node;
388 
389         if (alloc_func_list == NULL) {
390                 if (build_alloc_func_list() < 0)
391                         goto out;
392         }
393 
394         al.thread = machine__findnew_thread(machine, sample->pid, sample->tid);
395         sample__resolve_callchain(sample, &callchain_cursor, NULL, evsel, &al, 16);
396 
397         callchain_cursor_commit(&callchain_cursor);
398         while (true) {
399                 struct alloc_func key, *caller;
400                 u64 addr;
401 
402                 node = callchain_cursor_current(&callchain_cursor);
403                 if (node == NULL)
404                         break;
405 
406                 key.start = key.end = node->ip;
407                 caller = bsearch(&key, alloc_func_list, nr_alloc_funcs,
408                                  sizeof(key), callcmp);
409                 if (!caller) {
410                         /* found */
411                         if (node->map)
412                                 addr = map__unmap_ip(node->map, node->ip);
413                         else
414                                 addr = node->ip;
415 
416                         return addr;
417                 } else
418                         pr_debug3("skipping alloc function: %s\n", caller->name);
419 
420                 callchain_cursor_advance(&callchain_cursor);
421         }
422 
423 out:
424         pr_debug2("unknown callsite: %"PRIx64 "\n", sample->ip);
425         return sample->ip;
426 }
427 
428 struct sort_dimension {
429         const char              name[20];
430         sort_fn_t               cmp;
431         struct list_head        list;
432 };
433 
434 static LIST_HEAD(page_alloc_sort_input);
435 static LIST_HEAD(page_caller_sort_input);
436 
437 static struct page_stat *
438 __page_stat__findnew_page(struct page_stat *pstat, bool create)
439 {
440         struct rb_node **node = &page_live_tree.rb_node;
441         struct rb_node *parent = NULL;
442         struct page_stat *data;
443 
444         while (*node) {
445                 s64 cmp;
446 
447                 parent = *node;
448                 data = rb_entry(*node, struct page_stat, node);
449 
450                 cmp = data->page - pstat->page;
451                 if (cmp < 0)
452                         node = &parent->rb_left;
453                 else if (cmp > 0)
454                         node = &parent->rb_right;
455                 else
456                         return data;
457         }
458 
459         if (!create)
460                 return NULL;
461 
462         data = zalloc(sizeof(*data));
463         if (data != NULL) {
464                 data->page = pstat->page;
465                 data->order = pstat->order;
466                 data->gfp_flags = pstat->gfp_flags;
467                 data->migrate_type = pstat->migrate_type;
468 
469                 rb_link_node(&data->node, parent, node);
470                 rb_insert_color(&data->node, &page_live_tree);
471         }
472 
473         return data;
474 }
475 
476 static struct page_stat *page_stat__find_page(struct page_stat *pstat)
477 {
478         return __page_stat__findnew_page(pstat, false);
479 }
480 
481 static struct page_stat *page_stat__findnew_page(struct page_stat *pstat)
482 {
483         return __page_stat__findnew_page(pstat, true);
484 }
485 
486 static struct page_stat *
487 __page_stat__findnew_alloc(struct page_stat *pstat, bool create)
488 {
489         struct rb_node **node = &page_alloc_tree.rb_node;
490         struct rb_node *parent = NULL;
491         struct page_stat *data;
492         struct sort_dimension *sort;
493 
494         while (*node) {
495                 int cmp = 0;
496 
497                 parent = *node;
498                 data = rb_entry(*node, struct page_stat, node);
499 
500                 list_for_each_entry(sort, &page_alloc_sort_input, list) {
501                         cmp = sort->cmp(pstat, data);
502                         if (cmp)
503                                 break;
504                 }
505 
506                 if (cmp < 0)
507                         node = &parent->rb_left;
508                 else if (cmp > 0)
509                         node = &parent->rb_right;
510                 else
511                         return data;
512         }
513 
514         if (!create)
515                 return NULL;
516 
517         data = zalloc(sizeof(*data));
518         if (data != NULL) {
519                 data->page = pstat->page;
520                 data->order = pstat->order;
521                 data->gfp_flags = pstat->gfp_flags;
522                 data->migrate_type = pstat->migrate_type;
523 
524                 rb_link_node(&data->node, parent, node);
525                 rb_insert_color(&data->node, &page_alloc_tree);
526         }
527 
528         return data;
529 }
530 
531 static struct page_stat *page_stat__find_alloc(struct page_stat *pstat)
532 {
533         return __page_stat__findnew_alloc(pstat, false);
534 }
535 
536 static struct page_stat *page_stat__findnew_alloc(struct page_stat *pstat)
537 {
538         return __page_stat__findnew_alloc(pstat, true);
539 }
540 
541 static struct page_stat *
542 __page_stat__findnew_caller(struct page_stat *pstat, bool create)
543 {
544         struct rb_node **node = &page_caller_tree.rb_node;
545         struct rb_node *parent = NULL;
546         struct page_stat *data;
547         struct sort_dimension *sort;
548 
549         while (*node) {
550                 int cmp = 0;
551 
552                 parent = *node;
553                 data = rb_entry(*node, struct page_stat, node);
554 
555                 list_for_each_entry(sort, &page_caller_sort_input, list) {
556                         cmp = sort->cmp(pstat, data);
557                         if (cmp)
558                                 break;
559                 }
560 
561                 if (cmp < 0)
562                         node = &parent->rb_left;
563                 else if (cmp > 0)
564                         node = &parent->rb_right;
565                 else
566                         return data;
567         }
568 
569         if (!create)
570                 return NULL;
571 
572         data = zalloc(sizeof(*data));
573         if (data != NULL) {
574                 data->callsite = pstat->callsite;
575                 data->order = pstat->order;
576                 data->gfp_flags = pstat->gfp_flags;
577                 data->migrate_type = pstat->migrate_type;
578 
579                 rb_link_node(&data->node, parent, node);
580                 rb_insert_color(&data->node, &page_caller_tree);
581         }
582 
583         return data;
584 }
585 
586 static struct page_stat *page_stat__find_caller(struct page_stat *pstat)
587 {
588         return __page_stat__findnew_caller(pstat, false);
589 }
590 
591 static struct page_stat *page_stat__findnew_caller(struct page_stat *pstat)
592 {
593         return __page_stat__findnew_caller(pstat, true);
594 }
595 
596 static bool valid_page(u64 pfn_or_page)
597 {
598         if (use_pfn && pfn_or_page == -1UL)
599                 return false;
600         if (!use_pfn && pfn_or_page == 0)
601                 return false;
602         return true;
603 }
604 
605 struct gfp_flag {
606         unsigned int flags;
607         char *compact_str;
608         char *human_readable;
609 };
610 
611 static struct gfp_flag *gfps;
612 static int nr_gfps;
613 
614 static int gfpcmp(const void *a, const void *b)
615 {
616         const struct gfp_flag *fa = a;
617         const struct gfp_flag *fb = b;
618 
619         return fa->flags - fb->flags;
620 }
621 
622 /* see include/trace/events/mmflags.h */
623 static const struct {
624         const char *original;
625         const char *compact;
626 } gfp_compact_table[] = {
627         { "GFP_TRANSHUGE",              "THP" },
628         { "GFP_TRANSHUGE_LIGHT",        "THL" },
629         { "GFP_HIGHUSER_MOVABLE",       "HUM" },
630         { "GFP_HIGHUSER",               "HU" },
631         { "GFP_USER",                   "U" },
632         { "GFP_KERNEL_ACCOUNT",         "KAC" },
633         { "GFP_KERNEL",                 "K" },
634         { "GFP_NOFS",                   "NF" },
635         { "GFP_ATOMIC",                 "A" },
636         { "GFP_NOIO",                   "NI" },
637         { "GFP_NOWAIT",                 "NW" },
638         { "GFP_DMA",                    "D" },
639         { "__GFP_HIGHMEM",              "HM" },
640         { "GFP_DMA32",                  "D32" },
641         { "__GFP_HIGH",                 "H" },
642         { "__GFP_ATOMIC",               "_A" },
643         { "__GFP_IO",                   "I" },
644         { "__GFP_FS",                   "F" },
645         { "__GFP_NOWARN",               "NWR" },
646         { "__GFP_RETRY_MAYFAIL",        "R" },
647         { "__GFP_NOFAIL",               "NF" },
648         { "__GFP_NORETRY",              "NR" },
649         { "__GFP_COMP",                 "C" },
650         { "__GFP_ZERO",                 "Z" },
651         { "__GFP_NOMEMALLOC",           "NMA" },
652         { "__GFP_MEMALLOC",             "MA" },
653         { "__GFP_HARDWALL",             "HW" },
654         { "__GFP_THISNODE",             "TN" },
655         { "__GFP_RECLAIMABLE",          "RC" },
656         { "__GFP_MOVABLE",              "M" },
657         { "__GFP_ACCOUNT",              "AC" },
658         { "__GFP_WRITE",                "WR" },
659         { "__GFP_RECLAIM",              "R" },
660         { "__GFP_DIRECT_RECLAIM",       "DR" },
661         { "__GFP_KSWAPD_RECLAIM",       "KR" },
662 };
663 
664 static size_t max_gfp_len;
665 
666 static char *compact_gfp_flags(char *gfp_flags)
667 {
668         char *orig_flags = strdup(gfp_flags);
669         char *new_flags = NULL;
670         char *str, *pos = NULL;
671         size_t len = 0;
672 
673         if (orig_flags == NULL)
674                 return NULL;
675 
676         str = strtok_r(orig_flags, "|", &pos);
677         while (str) {
678                 size_t i;
679                 char *new;
680                 const char *cpt;
681 
682                 for (i = 0; i < ARRAY_SIZE(gfp_compact_table); i++) {
683                         if (strcmp(gfp_compact_table[i].original, str))
684                                 continue;
685 
686                         cpt = gfp_compact_table[i].compact;
687                         new = realloc(new_flags, len + strlen(cpt) + 2);
688                         if (new == NULL) {
689                                 free(new_flags);
690                                 return NULL;
691                         }
692 
693                         new_flags = new;
694 
695                         if (!len) {
696                                 strcpy(new_flags, cpt);
697                         } else {
698                                 strcat(new_flags, "|");
699                                 strcat(new_flags, cpt);
700                                 len++;
701                         }
702 
703                         len += strlen(cpt);
704                 }
705 
706                 str = strtok_r(NULL, "|", &pos);
707         }
708 
709         if (max_gfp_len < len)
710                 max_gfp_len = len;
711 
712         free(orig_flags);
713         return new_flags;
714 }
715 
716 static char *compact_gfp_string(unsigned long gfp_flags)
717 {
718         struct gfp_flag key = {
719                 .flags = gfp_flags,
720         };
721         struct gfp_flag *gfp;
722 
723         gfp = bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp);
724         if (gfp)
725                 return gfp->compact_str;
726 
727         return NULL;
728 }
729 
730 static int parse_gfp_flags(struct perf_evsel *evsel, struct perf_sample *sample,
731                            unsigned int gfp_flags)
732 {
733         struct tep_record record = {
734                 .cpu = sample->cpu,
735                 .data = sample->raw_data,
736                 .size = sample->raw_size,
737         };
738         struct trace_seq seq;
739         char *str, *pos = NULL;
740 
741         if (nr_gfps) {
742                 struct gfp_flag key = {
743                         .flags = gfp_flags,
744                 };
745 
746                 if (bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp))
747                         return 0;
748         }
749 
750         trace_seq_init(&seq);
751         tep_event_info(&seq, evsel->tp_format, &record);
752 
753         str = strtok_r(seq.buffer, " ", &pos);
754         while (str) {
755                 if (!strncmp(str, "gfp_flags=", 10)) {
756                         struct gfp_flag *new;
757 
758                         new = realloc(gfps, (nr_gfps + 1) * sizeof(*gfps));
759                         if (new == NULL)
760                                 return -ENOMEM;
761 
762                         gfps = new;
763                         new += nr_gfps++;
764 
765                         new->flags = gfp_flags;
766                         new->human_readable = strdup(str + 10);
767                         new->compact_str = compact_gfp_flags(str + 10);
768                         if (!new->human_readable || !new->compact_str)
769                                 return -ENOMEM;
770 
771                         qsort(gfps, nr_gfps, sizeof(*gfps), gfpcmp);
772                 }
773 
774                 str = strtok_r(NULL, " ", &pos);
775         }
776 
777         trace_seq_destroy(&seq);
778         return 0;
779 }
780 
781 static int perf_evsel__process_page_alloc_event(struct perf_evsel *evsel,
782                                                 struct perf_sample *sample)
783 {
784         u64 page;
785         unsigned int order = perf_evsel__intval(evsel, sample, "order");
786         unsigned int gfp_flags = perf_evsel__intval(evsel, sample, "gfp_flags");
787         unsigned int migrate_type = perf_evsel__intval(evsel, sample,
788                                                        "migratetype");
789         u64 bytes = kmem_page_size << order;
790         u64 callsite;
791         struct page_stat *pstat;
792         struct page_stat this = {
793                 .order = order,
794                 .gfp_flags = gfp_flags,
795                 .migrate_type = migrate_type,
796         };
797 
798         if (use_pfn)
799                 page = perf_evsel__intval(evsel, sample, "pfn");
800         else
801                 page = perf_evsel__intval(evsel, sample, "page");
802 
803         nr_page_allocs++;
804         total_page_alloc_bytes += bytes;
805 
806         if (!valid_page(page)) {
807                 nr_page_fails++;
808                 total_page_fail_bytes += bytes;
809 
810                 return 0;
811         }
812 
813         if (parse_gfp_flags(evsel, sample, gfp_flags) < 0)
814                 return -1;
815 
816         callsite = find_callsite(evsel, sample);
817 
818         /*
819          * This is to find the current page (with correct gfp flags and
820          * migrate type) at free event.
821          */
822         this.page = page;
823         pstat = page_stat__findnew_page(&this);
824         if (pstat == NULL)
825                 return -ENOMEM;
826 
827         pstat->nr_alloc++;
828         pstat->alloc_bytes += bytes;
829         pstat->callsite = callsite;
830 
831         if (!live_page) {
832                 pstat = page_stat__findnew_alloc(&this);
833                 if (pstat == NULL)
834                         return -ENOMEM;
835 
836                 pstat->nr_alloc++;
837                 pstat->alloc_bytes += bytes;
838                 pstat->callsite = callsite;
839         }
840 
841         this.callsite = callsite;
842         pstat = page_stat__findnew_caller(&this);
843         if (pstat == NULL)
844                 return -ENOMEM;
845 
846         pstat->nr_alloc++;
847         pstat->alloc_bytes += bytes;
848 
849         order_stats[order][migrate_type]++;
850 
851         return 0;
852 }
853 
854 static int perf_evsel__process_page_free_event(struct perf_evsel *evsel,
855                                                 struct perf_sample *sample)
856 {
857         u64 page;
858         unsigned int order = perf_evsel__intval(evsel, sample, "order");
859         u64 bytes = kmem_page_size << order;
860         struct page_stat *pstat;
861         struct page_stat this = {
862                 .order = order,
863         };
864 
865         if (use_pfn)
866                 page = perf_evsel__intval(evsel, sample, "pfn");
867         else
868                 page = perf_evsel__intval(evsel, sample, "page");
869 
870         nr_page_frees++;
871         total_page_free_bytes += bytes;
872 
873         this.page = page;
874         pstat = page_stat__find_page(&this);
875         if (pstat == NULL) {
876                 pr_debug2("missing free at page %"PRIx64" (order: %d)\n",
877                           page, order);
878 
879                 nr_page_nomatch++;
880                 total_page_nomatch_bytes += bytes;
881 
882                 return 0;
883         }
884 
885         this.gfp_flags = pstat->gfp_flags;
886         this.migrate_type = pstat->migrate_type;
887         this.callsite = pstat->callsite;
888 
889         rb_erase(&pstat->node, &page_live_tree);
890         free(pstat);
891 
892         if (live_page) {
893                 order_stats[this.order][this.migrate_type]--;
894         } else {
895                 pstat = page_stat__find_alloc(&this);
896                 if (pstat == NULL)
897                         return -ENOMEM;
898 
899                 pstat->nr_free++;
900                 pstat->free_bytes += bytes;
901         }
902 
903         pstat = page_stat__find_caller(&this);
904         if (pstat == NULL)
905                 return -ENOENT;
906 
907         pstat->nr_free++;
908         pstat->free_bytes += bytes;
909 
910         if (live_page) {
911                 pstat->nr_alloc--;
912                 pstat->alloc_bytes -= bytes;
913 
914                 if (pstat->nr_alloc == 0) {
915                         rb_erase(&pstat->node, &page_caller_tree);
916                         free(pstat);
917                 }
918         }
919 
920         return 0;
921 }
922 
923 static bool perf_kmem__skip_sample(struct perf_sample *sample)
924 {
925         /* skip sample based on time? */
926         if (perf_time__skip_sample(&ptime, sample->time))
927                 return true;
928 
929         return false;
930 }
931 
932 typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
933                                   struct perf_sample *sample);
934 
935 static int process_sample_event(struct perf_tool *tool __maybe_unused,
936                                 union perf_event *event,
937                                 struct perf_sample *sample,
938                                 struct perf_evsel *evsel,
939                                 struct machine *machine)
940 {
941         int err = 0;
942         struct thread *thread = machine__findnew_thread(machine, sample->pid,
943                                                         sample->tid);
944 
945         if (thread == NULL) {
946                 pr_debug("problem processing %d event, skipping it.\n",
947                          event->header.type);
948                 return -1;
949         }
950 
951         if (perf_kmem__skip_sample(sample))
952                 return 0;
953 
954         dump_printf(" ... thread: %s:%d\n", thread__comm_str(thread), thread->tid);
955 
956         if (evsel->handler != NULL) {
957                 tracepoint_handler f = evsel->handler;
958                 err = f(evsel, sample);
959         }
960 
961         thread__put(thread);
962 
963         return err;
964 }
965 
966 static struct perf_tool perf_kmem = {
967         .sample          = process_sample_event,
968         .comm            = perf_event__process_comm,
969         .mmap            = perf_event__process_mmap,
970         .mmap2           = perf_event__process_mmap2,
971         .namespaces      = perf_event__process_namespaces,
972         .ordered_events  = true,
973 };
974 
975 static double fragmentation(unsigned long n_req, unsigned long n_alloc)
976 {
977         if (n_alloc == 0)
978                 return 0.0;
979         else
980                 return 100.0 - (100.0 * n_req / n_alloc);
981 }
982 
983 static void __print_slab_result(struct rb_root *root,
984                                 struct perf_session *session,
985                                 int n_lines, int is_caller)
986 {
987         struct rb_node *next;
988         struct machine *machine = &session->machines.host;
989 
990         printf("%.105s\n", graph_dotted_line);
991         printf(" %-34s |",  is_caller ? "Callsite": "Alloc Ptr");
992         printf(" Total_alloc/Per | Total_req/Per   | Hit      | Ping-pong | Frag\n");
993         printf("%.105s\n", graph_dotted_line);
994 
995         next = rb_first(root);
996 
997         while (next && n_lines--) {
998                 struct alloc_stat *data = rb_entry(next, struct alloc_stat,
999                                                    node);
1000                 struct symbol *sym = NULL;
1001                 struct map *map;
1002                 char buf[BUFSIZ];
1003                 u64 addr;
1004 
1005                 if (is_caller) {
1006                         addr = data->call_site;
1007                         if (!raw_ip)
1008                                 sym = machine__find_kernel_symbol(machine, addr, &map);
1009                 } else
1010                         addr = data->ptr;
1011 
1012                 if (sym != NULL)
1013                         snprintf(buf, sizeof(buf), "%s+%" PRIx64 "", sym->name,
1014                                  addr - map->unmap_ip(map, sym->start));
1015                 else
1016                         snprintf(buf, sizeof(buf), "%#" PRIx64 "", addr);
1017                 printf(" %-34s |", buf);
1018 
1019                 printf(" %9llu/%-5lu | %9llu/%-5lu | %8lu | %9lu | %6.3f%%\n",
1020                        (unsigned long long)data->bytes_alloc,
1021                        (unsigned long)data->bytes_alloc / data->hit,
1022                        (unsigned long long)data->bytes_req,
1023                        (unsigned long)data->bytes_req / data->hit,
1024                        (unsigned long)data->hit,
1025                        (unsigned long)data->pingpong,
1026                        fragmentation(data->bytes_req, data->bytes_alloc));
1027 
1028                 next = rb_next(next);
1029         }
1030 
1031         if (n_lines == -1)
1032                 printf(" ...                                | ...             | ...             | ...      | ...       | ...   \n");
1033 
1034         printf("%.105s\n", graph_dotted_line);
1035 }
1036 
1037 static const char * const migrate_type_str[] = {
1038         "UNMOVABL",
1039         "RECLAIM",
1040         "MOVABLE",
1041         "RESERVED",
1042         "CMA/ISLT",
1043         "UNKNOWN",
1044 };
1045 
1046 static void __print_page_alloc_result(struct perf_session *session, int n_lines)
1047 {
1048         struct rb_node *next = rb_first(&page_alloc_sorted);
1049         struct machine *machine = &session->machines.host;
1050         const char *format;
1051         int gfp_len = max(strlen("GFP flags"), max_gfp_len);
1052 
1053         printf("\n%.105s\n", graph_dotted_line);
1054         printf(" %-16s | %5s alloc (KB) | Hits      | Order | Mig.type | %-*s | Callsite\n",
1055                use_pfn ? "PFN" : "Page", live_page ? "Live" : "Total",
1056                gfp_len, "GFP flags");
1057         printf("%.105s\n", graph_dotted_line);
1058 
1059         if (use_pfn)
1060                 format = " %16llu | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
1061         else
1062                 format = " %016llx | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
1063 
1064         while (next && n_lines--) {
1065                 struct page_stat *data;
1066                 struct symbol *sym;
1067                 struct map *map;
1068                 char buf[32];
1069                 char *caller = buf;
1070 
1071                 data = rb_entry(next, struct page_stat, node);
1072                 sym = machine__find_kernel_symbol(machine, data->callsite, &map);
1073                 if (sym)
1074                         caller = sym->name;
1075                 else
1076                         scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
1077 
1078                 printf(format, (unsigned long long)data->page,
1079                        (unsigned long long)data->alloc_bytes / 1024,
1080                        data->nr_alloc, data->order,
1081                        migrate_type_str[data->migrate_type],
1082                        gfp_len, compact_gfp_string(data->gfp_flags), caller);
1083 
1084                 next = rb_next(next);
1085         }
1086 
1087         if (n_lines == -1) {
1088                 printf(" ...              | ...              | ...       | ...   | ...      | %-*s | ...\n",
1089                        gfp_len, "...");
1090         }
1091 
1092         printf("%.105s\n", graph_dotted_line);
1093 }
1094 
1095 static void __print_page_caller_result(struct perf_session *session, int n_lines)
1096 {
1097         struct rb_node *next = rb_first(&page_caller_sorted);
1098         struct machine *machine = &session->machines.host;
1099         int gfp_len = max(strlen("GFP flags"), max_gfp_len);
1100 
1101         printf("\n%.105s\n", graph_dotted_line);
1102         printf(" %5s alloc (KB) | Hits      | Order | Mig.type | %-*s | Callsite\n",
1103                live_page ? "Live" : "Total", gfp_len, "GFP flags");
1104         printf("%.105s\n", graph_dotted_line);
1105 
1106         while (next && n_lines--) {
1107                 struct page_stat *data;
1108                 struct symbol *sym;
1109                 struct map *map;
1110                 char buf[32];
1111                 char *caller = buf;
1112 
1113                 data = rb_entry(next, struct page_stat, node);
1114                 sym = machine__find_kernel_symbol(machine, data->callsite, &map);
1115                 if (sym)
1116                         caller = sym->name;
1117                 else
1118                         scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
1119 
1120                 printf(" %'16llu | %'9d | %5d | %8s | %-*s | %s\n",
1121                        (unsigned long long)data->alloc_bytes / 1024,
1122                        data->nr_alloc, data->order,
1123                        migrate_type_str[data->migrate_type],
1124                        gfp_len, compact_gfp_string(data->gfp_flags), caller);
1125 
1126                 next = rb_next(next);
1127         }
1128 
1129         if (n_lines == -1) {
1130                 printf(" ...              | ...       | ...   | ...      | %-*s | ...\n",
1131                        gfp_len, "...");
1132         }
1133 
1134         printf("%.105s\n", graph_dotted_line);
1135 }
1136 
1137 static void print_gfp_flags(void)
1138 {
1139         int i;
1140 
1141         printf("#\n");
1142         printf("# GFP flags\n");
1143         printf("# ---------\n");
1144         for (i = 0; i < nr_gfps; i++) {
1145                 printf("# %08x: %*s: %s\n", gfps[i].flags,
1146                        (int) max_gfp_len, gfps[i].compact_str,
1147                        gfps[i].human_readable);
1148         }
1149 }
1150 
1151 static void print_slab_summary(void)
1152 {
1153         printf("\nSUMMARY (SLAB allocator)");
1154         printf("\n========================\n");
1155         printf("Total bytes requested: %'lu\n", total_requested);
1156         printf("Total bytes allocated: %'lu\n", total_allocated);
1157         printf("Total bytes freed:     %'lu\n", total_freed);
1158         if (total_allocated > total_freed) {
1159                 printf("Net total bytes allocated: %'lu\n",
1160                 total_allocated - total_freed);
1161         }
1162         printf("Total bytes wasted on internal fragmentation: %'lu\n",
1163                total_allocated - total_requested);
1164         printf("Internal fragmentation: %f%%\n",
1165                fragmentation(total_requested, total_allocated));
1166         printf("Cross CPU allocations: %'lu/%'lu\n", nr_cross_allocs, nr_allocs);
1167 }
1168 
1169 static void print_page_summary(void)
1170 {
1171         int o, m;
1172         u64 nr_alloc_freed = nr_page_frees - nr_page_nomatch;
1173         u64 total_alloc_freed_bytes = total_page_free_bytes - total_page_nomatch_bytes;
1174 
1175         printf("\nSUMMARY (page allocator)");
1176         printf("\n========================\n");
1177         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total allocation requests",
1178                nr_page_allocs, total_page_alloc_bytes / 1024);
1179         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total free requests",
1180                nr_page_frees, total_page_free_bytes / 1024);
1181         printf("\n");
1182 
1183         printf("%-30s: %'16"PRIu64"   [ %'16"PRIu64" KB ]\n", "Total alloc+freed requests",
1184                nr_alloc_freed, (total_alloc_freed_bytes) / 1024);
1185         printf("%-30s: %'16"PRIu64"   [ %'16"PRIu64" KB ]\n", "Total alloc-only requests",
1186                nr_page_allocs - nr_alloc_freed,
1187                (total_page_alloc_bytes - total_alloc_freed_bytes) / 1024);
1188         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total free-only requests",
1189                nr_page_nomatch, total_page_nomatch_bytes / 1024);
1190         printf("\n");
1191 
1192         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total allocation failures",
1193                nr_page_fails, total_page_fail_bytes / 1024);
1194         printf("\n");
1195 
1196         printf("%5s  %12s  %12s  %12s  %12s  %12s\n", "Order",  "Unmovable",
1197                "Reclaimable", "Movable", "Reserved", "CMA/Isolated");
1198         printf("%.5s  %.12s  %.12s  %.12s  %.12s  %.12s\n", graph_dotted_line,
1199                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1200                graph_dotted_line, graph_dotted_line);
1201 
1202         for (o = 0; o < MAX_PAGE_ORDER; o++) {
1203                 printf("%5d", o);
1204                 for (m = 0; m < MAX_MIGRATE_TYPES - 1; m++) {
1205                         if (order_stats[o][m])
1206                                 printf("  %'12d", order_stats[o][m]);
1207                         else
1208                                 printf("  %12c", '.');
1209                 }
1210                 printf("\n");
1211         }
1212 }
1213 
1214 static void print_slab_result(struct perf_session *session)
1215 {
1216         if (caller_flag)
1217                 __print_slab_result(&root_caller_sorted, session, caller_lines, 1);
1218         if (alloc_flag)
1219                 __print_slab_result(&root_alloc_sorted, session, alloc_lines, 0);
1220         print_slab_summary();
1221 }
1222 
1223 static void print_page_result(struct perf_session *session)
1224 {
1225         if (caller_flag || alloc_flag)
1226                 print_gfp_flags();
1227         if (caller_flag)
1228                 __print_page_caller_result(session, caller_lines);
1229         if (alloc_flag)
1230                 __print_page_alloc_result(session, alloc_lines);
1231         print_page_summary();
1232 }
1233 
1234 static void print_result(struct perf_session *session)
1235 {
1236         if (kmem_slab)
1237                 print_slab_result(session);
1238         if (kmem_page)
1239                 print_page_result(session);
1240 }
1241 
1242 static LIST_HEAD(slab_caller_sort);
1243 static LIST_HEAD(slab_alloc_sort);
1244 static LIST_HEAD(page_caller_sort);
1245 static LIST_HEAD(page_alloc_sort);
1246 
1247 static void sort_slab_insert(struct rb_root *root, struct alloc_stat *data,
1248                              struct list_head *sort_list)
1249 {
1250         struct rb_node **new = &(root->rb_node);
1251         struct rb_node *parent = NULL;
1252         struct sort_dimension *sort;
1253 
1254         while (*new) {
1255                 struct alloc_stat *this;
1256                 int cmp = 0;
1257 
1258                 this = rb_entry(*new, struct alloc_stat, node);
1259                 parent = *new;
1260 
1261                 list_for_each_entry(sort, sort_list, list) {
1262                         cmp = sort->cmp(data, this);
1263                         if (cmp)
1264                                 break;
1265                 }
1266 
1267                 if (cmp > 0)
1268                         new = &((*new)->rb_left);
1269                 else
1270                         new = &((*new)->rb_right);
1271         }
1272 
1273         rb_link_node(&data->node, parent, new);
1274         rb_insert_color(&data->node, root);
1275 }
1276 
1277 static void __sort_slab_result(struct rb_root *root, struct rb_root *root_sorted,
1278                                struct list_head *sort_list)
1279 {
1280         struct rb_node *node;
1281         struct alloc_stat *data;
1282 
1283         for (;;) {
1284                 node = rb_first(root);
1285                 if (!node)
1286                         break;
1287 
1288                 rb_erase(node, root);
1289                 data = rb_entry(node, struct alloc_stat, node);
1290                 sort_slab_insert(root_sorted, data, sort_list);
1291         }
1292 }
1293 
1294 static void sort_page_insert(struct rb_root *root, struct page_stat *data,
1295                              struct list_head *sort_list)
1296 {
1297         struct rb_node **new = &root->rb_node;
1298         struct rb_node *parent = NULL;
1299         struct sort_dimension *sort;
1300 
1301         while (*new) {
1302                 struct page_stat *this;
1303                 int cmp = 0;
1304 
1305                 this = rb_entry(*new, struct page_stat, node);
1306                 parent = *new;
1307 
1308                 list_for_each_entry(sort, sort_list, list) {
1309                         cmp = sort->cmp(data, this);
1310                         if (cmp)
1311                                 break;
1312                 }
1313 
1314                 if (cmp > 0)
1315                         new = &parent->rb_left;
1316                 else
1317                         new = &parent->rb_right;
1318         }
1319 
1320         rb_link_node(&data->node, parent, new);
1321         rb_insert_color(&data->node, root);
1322 }
1323 
1324 static void __sort_page_result(struct rb_root *root, struct rb_root *root_sorted,
1325                                struct list_head *sort_list)
1326 {
1327         struct rb_node *node;
1328         struct page_stat *data;
1329 
1330         for (;;) {
1331                 node = rb_first(root);
1332                 if (!node)
1333                         break;
1334 
1335                 rb_erase(node, root);
1336                 data = rb_entry(node, struct page_stat, node);
1337                 sort_page_insert(root_sorted, data, sort_list);
1338         }
1339 }
1340 
1341 static void sort_result(void)
1342 {
1343         if (kmem_slab) {
1344                 __sort_slab_result(&root_alloc_stat, &root_alloc_sorted,
1345                                    &slab_alloc_sort);
1346                 __sort_slab_result(&root_caller_stat, &root_caller_sorted,
1347                                    &slab_caller_sort);
1348         }
1349         if (kmem_page) {
1350                 if (live_page)
1351                         __sort_page_result(&page_live_tree, &page_alloc_sorted,
1352                                            &page_alloc_sort);
1353                 else
1354                         __sort_page_result(&page_alloc_tree, &page_alloc_sorted,
1355                                            &page_alloc_sort);
1356 
1357                 __sort_page_result(&page_caller_tree, &page_caller_sorted,
1358                                    &page_caller_sort);
1359         }
1360 }
1361 
1362 static int __cmd_kmem(struct perf_session *session)
1363 {
1364         int err = -EINVAL;
1365         struct perf_evsel *evsel;
1366         const struct perf_evsel_str_handler kmem_tracepoints[] = {
1367                 /* slab allocator */
1368                 { "kmem:kmalloc",               perf_evsel__process_alloc_event, },
1369                 { "kmem:kmem_cache_alloc",      perf_evsel__process_alloc_event, },
1370                 { "kmem:kmalloc_node",          perf_evsel__process_alloc_node_event, },
1371                 { "kmem:kmem_cache_alloc_node", perf_evsel__process_alloc_node_event, },
1372                 { "kmem:kfree",                 perf_evsel__process_free_event, },
1373                 { "kmem:kmem_cache_free",       perf_evsel__process_free_event, },
1374                 /* page allocator */
1375                 { "kmem:mm_page_alloc",         perf_evsel__process_page_alloc_event, },
1376                 { "kmem:mm_page_free",          perf_evsel__process_page_free_event, },
1377         };
1378 
1379         if (!perf_session__has_traces(session, "kmem record"))
1380                 goto out;
1381 
1382         if (perf_session__set_tracepoints_handlers(session, kmem_tracepoints)) {
1383                 pr_err("Initializing perf session tracepoint handlers failed\n");
1384                 goto out;
1385         }
1386 
1387         evlist__for_each_entry(session->evlist, evsel) {
1388                 if (!strcmp(perf_evsel__name(evsel), "kmem:mm_page_alloc") &&
1389                     perf_evsel__field(evsel, "pfn")) {
1390                         use_pfn = true;
1391                         break;
1392                 }
1393         }
1394 
1395         setup_pager();
1396         err = perf_session__process_events(session);
1397         if (err != 0) {
1398                 pr_err("error during process events: %d\n", err);
1399                 goto out;
1400         }
1401         sort_result();
1402         print_result(session);
1403 out:
1404         return err;
1405 }
1406 
1407 /* slab sort keys */
1408 static int ptr_cmp(void *a, void *b)
1409 {
1410         struct alloc_stat *l = a;
1411         struct alloc_stat *r = b;
1412 
1413         if (l->ptr < r->ptr)
1414                 return -1;
1415         else if (l->ptr > r->ptr)
1416                 return 1;
1417         return 0;
1418 }
1419 
1420 static struct sort_dimension ptr_sort_dimension = {
1421         .name   = "ptr",
1422         .cmp    = ptr_cmp,
1423 };
1424 
1425 static int slab_callsite_cmp(void *a, void *b)
1426 {
1427         struct alloc_stat *l = a;
1428         struct alloc_stat *r = b;
1429 
1430         if (l->call_site < r->call_site)
1431                 return -1;
1432         else if (l->call_site > r->call_site)
1433                 return 1;
1434         return 0;
1435 }
1436 
1437 static struct sort_dimension callsite_sort_dimension = {
1438         .name   = "callsite",
1439         .cmp    = slab_callsite_cmp,
1440 };
1441 
1442 static int hit_cmp(void *a, void *b)
1443 {
1444         struct alloc_stat *l = a;
1445         struct alloc_stat *r = b;
1446 
1447         if (l->hit < r->hit)
1448                 return -1;
1449         else if (l->hit > r->hit)
1450                 return 1;
1451         return 0;
1452 }
1453 
1454 static struct sort_dimension hit_sort_dimension = {
1455         .name   = "hit",
1456         .cmp    = hit_cmp,
1457 };
1458 
1459 static int bytes_cmp(void *a, void *b)
1460 {
1461         struct alloc_stat *l = a;
1462         struct alloc_stat *r = b;
1463 
1464         if (l->bytes_alloc < r->bytes_alloc)
1465                 return -1;
1466         else if (l->bytes_alloc > r->bytes_alloc)
1467                 return 1;
1468         return 0;
1469 }
1470 
1471 static struct sort_dimension bytes_sort_dimension = {
1472         .name   = "bytes",
1473         .cmp    = bytes_cmp,
1474 };
1475 
1476 static int frag_cmp(void *a, void *b)
1477 {
1478         double x, y;
1479         struct alloc_stat *l = a;
1480         struct alloc_stat *r = b;
1481 
1482         x = fragmentation(l->bytes_req, l->bytes_alloc);
1483         y = fragmentation(r->bytes_req, r->bytes_alloc);
1484 
1485         if (x < y)
1486                 return -1;
1487         else if (x > y)
1488                 return 1;
1489         return 0;
1490 }
1491 
1492 static struct sort_dimension frag_sort_dimension = {
1493         .name   = "frag",
1494         .cmp    = frag_cmp,
1495 };
1496 
1497 static int pingpong_cmp(void *a, void *b)
1498 {
1499         struct alloc_stat *l = a;
1500         struct alloc_stat *r = b;
1501 
1502         if (l->pingpong < r->pingpong)
1503                 return -1;
1504         else if (l->pingpong > r->pingpong)
1505                 return 1;
1506         return 0;
1507 }
1508 
1509 static struct sort_dimension pingpong_sort_dimension = {
1510         .name   = "pingpong",
1511         .cmp    = pingpong_cmp,
1512 };
1513 
1514 /* page sort keys */
1515 static int page_cmp(void *a, void *b)
1516 {
1517         struct page_stat *l = a;
1518         struct page_stat *r = b;
1519 
1520         if (l->page < r->page)
1521                 return -1;
1522         else if (l->page > r->page)
1523                 return 1;
1524         return 0;
1525 }
1526 
1527 static struct sort_dimension page_sort_dimension = {
1528         .name   = "page",
1529         .cmp    = page_cmp,
1530 };
1531 
1532 static int page_callsite_cmp(void *a, void *b)
1533 {
1534         struct page_stat *l = a;
1535         struct page_stat *r = b;
1536 
1537         if (l->callsite < r->callsite)
1538                 return -1;
1539         else if (l->callsite > r->callsite)
1540                 return 1;
1541         return 0;
1542 }
1543 
1544 static struct sort_dimension page_callsite_sort_dimension = {
1545         .name   = "callsite",
1546         .cmp    = page_callsite_cmp,
1547 };
1548 
1549 static int page_hit_cmp(void *a, void *b)
1550 {
1551         struct page_stat *l = a;
1552         struct page_stat *r = b;
1553 
1554         if (l->nr_alloc < r->nr_alloc)
1555                 return -1;
1556         else if (l->nr_alloc > r->nr_alloc)
1557                 return 1;
1558         return 0;
1559 }
1560 
1561 static struct sort_dimension page_hit_sort_dimension = {
1562         .name   = "hit",
1563         .cmp    = page_hit_cmp,
1564 };
1565 
1566 static int page_bytes_cmp(void *a, void *b)
1567 {
1568         struct page_stat *l = a;
1569         struct page_stat *r = b;
1570 
1571         if (l->alloc_bytes < r->alloc_bytes)
1572                 return -1;
1573         else if (l->alloc_bytes > r->alloc_bytes)
1574                 return 1;
1575         return 0;
1576 }
1577 
1578 static struct sort_dimension page_bytes_sort_dimension = {
1579         .name   = "bytes",
1580         .cmp    = page_bytes_cmp,
1581 };
1582 
1583 static int page_order_cmp(void *a, void *b)
1584 {
1585         struct page_stat *l = a;
1586         struct page_stat *r = b;
1587 
1588         if (l->order < r->order)
1589                 return -1;
1590         else if (l->order > r->order)
1591                 return 1;
1592         return 0;
1593 }
1594 
1595 static struct sort_dimension page_order_sort_dimension = {
1596         .name   = "order",
1597         .cmp    = page_order_cmp,
1598 };
1599 
1600 static int migrate_type_cmp(void *a, void *b)
1601 {
1602         struct page_stat *l = a;
1603         struct page_stat *r = b;
1604 
1605         /* for internal use to find free'd page */
1606         if (l->migrate_type == -1U)
1607                 return 0;
1608 
1609         if (l->migrate_type < r->migrate_type)
1610                 return -1;
1611         else if (l->migrate_type > r->migrate_type)
1612                 return 1;
1613         return 0;
1614 }
1615 
1616 static struct sort_dimension migrate_type_sort_dimension = {
1617         .name   = "migtype",
1618         .cmp    = migrate_type_cmp,
1619 };
1620 
1621 static int gfp_flags_cmp(void *a, void *b)
1622 {
1623         struct page_stat *l = a;
1624         struct page_stat *r = b;
1625 
1626         /* for internal use to find free'd page */
1627         if (l->gfp_flags == -1U)
1628                 return 0;
1629 
1630         if (l->gfp_flags < r->gfp_flags)
1631                 return -1;
1632         else if (l->gfp_flags > r->gfp_flags)
1633                 return 1;
1634         return 0;
1635 }
1636 
1637 static struct sort_dimension gfp_flags_sort_dimension = {
1638         .name   = "gfp",
1639         .cmp    = gfp_flags_cmp,
1640 };
1641 
1642 static struct sort_dimension *slab_sorts[] = {
1643         &ptr_sort_dimension,
1644         &callsite_sort_dimension,
1645         &hit_sort_dimension,
1646         &bytes_sort_dimension,
1647         &frag_sort_dimension,
1648         &pingpong_sort_dimension,
1649 };
1650 
1651 static struct sort_dimension *page_sorts[] = {
1652         &page_sort_dimension,
1653         &page_callsite_sort_dimension,
1654         &page_hit_sort_dimension,
1655         &page_bytes_sort_dimension,
1656         &page_order_sort_dimension,
1657         &migrate_type_sort_dimension,
1658         &gfp_flags_sort_dimension,
1659 };
1660 
1661 static int slab_sort_dimension__add(const char *tok, struct list_head *list)
1662 {
1663         struct sort_dimension *sort;
1664         int i;
1665 
1666         for (i = 0; i < (int)ARRAY_SIZE(slab_sorts); i++) {
1667                 if (!strcmp(slab_sorts[i]->name, tok)) {
1668                         sort = memdup(slab_sorts[i], sizeof(*slab_sorts[i]));
1669                         if (!sort) {
1670                                 pr_err("%s: memdup failed\n", __func__);
1671                                 return -1;
1672                         }
1673                         list_add_tail(&sort->list, list);
1674                         return 0;
1675                 }
1676         }
1677 
1678         return -1;
1679 }
1680 
1681 static int page_sort_dimension__add(const char *tok, struct list_head *list)
1682 {
1683         struct sort_dimension *sort;
1684         int i;
1685 
1686         for (i = 0; i < (int)ARRAY_SIZE(page_sorts); i++) {
1687                 if (!strcmp(page_sorts[i]->name, tok)) {
1688                         sort = memdup(page_sorts[i], sizeof(*page_sorts[i]));
1689                         if (!sort) {
1690                                 pr_err("%s: memdup failed\n", __func__);
1691                                 return -1;
1692                         }
1693                         list_add_tail(&sort->list, list);
1694                         return 0;
1695                 }
1696         }
1697 
1698         return -1;
1699 }
1700 
1701 static int setup_slab_sorting(struct list_head *sort_list, const char *arg)
1702 {
1703         char *tok;
1704         char *str = strdup(arg);
1705         char *pos = str;
1706 
1707         if (!str) {
1708                 pr_err("%s: strdup failed\n", __func__);
1709                 return -1;
1710         }
1711 
1712         while (true) {
1713                 tok = strsep(&pos, ",");
1714                 if (!tok)
1715                         break;
1716                 if (slab_sort_dimension__add(tok, sort_list) < 0) {
1717                         pr_err("Unknown slab --sort key: '%s'", tok);
1718                         free(str);
1719                         return -1;
1720                 }
1721         }
1722 
1723         free(str);
1724         return 0;
1725 }
1726 
1727 static int setup_page_sorting(struct list_head *sort_list, const char *arg)
1728 {
1729         char *tok;
1730         char *str = strdup(arg);
1731         char *pos = str;
1732 
1733         if (!str) {
1734                 pr_err("%s: strdup failed\n", __func__);
1735                 return -1;
1736         }
1737 
1738         while (true) {
1739                 tok = strsep(&pos, ",");
1740                 if (!tok)
1741                         break;
1742                 if (page_sort_dimension__add(tok, sort_list) < 0) {
1743                         pr_err("Unknown page --sort key: '%s'", tok);
1744                         free(str);
1745                         return -1;
1746                 }
1747         }
1748 
1749         free(str);
1750         return 0;
1751 }
1752 
1753 static int parse_sort_opt(const struct option *opt __maybe_unused,
1754                           const char *arg, int unset __maybe_unused)
1755 {
1756         if (!arg)
1757                 return -1;
1758 
1759         if (kmem_page > kmem_slab ||
1760             (kmem_page == 0 && kmem_slab == 0 && kmem_default == KMEM_PAGE)) {
1761                 if (caller_flag > alloc_flag)
1762                         return setup_page_sorting(&page_caller_sort, arg);
1763                 else
1764                         return setup_page_sorting(&page_alloc_sort, arg);
1765         } else {
1766                 if (caller_flag > alloc_flag)
1767                         return setup_slab_sorting(&slab_caller_sort, arg);
1768                 else
1769                         return setup_slab_sorting(&slab_alloc_sort, arg);
1770         }
1771 
1772         return 0;
1773 }
1774 
1775 static int parse_caller_opt(const struct option *opt __maybe_unused,
1776                             const char *arg __maybe_unused,
1777                             int unset __maybe_unused)
1778 {
1779         caller_flag = (alloc_flag + 1);
1780         return 0;
1781 }
1782 
1783 static int parse_alloc_opt(const struct option *opt __maybe_unused,
1784                            const char *arg __maybe_unused,
1785                            int unset __maybe_unused)
1786 {
1787         alloc_flag = (caller_flag + 1);
1788         return 0;
1789 }
1790 
1791 static int parse_slab_opt(const struct option *opt __maybe_unused,
1792                           const char *arg __maybe_unused,
1793                           int unset __maybe_unused)
1794 {
1795         kmem_slab = (kmem_page + 1);
1796         return 0;
1797 }
1798 
1799 static int parse_page_opt(const struct option *opt __maybe_unused,
1800                           const char *arg __maybe_unused,
1801                           int unset __maybe_unused)
1802 {
1803         kmem_page = (kmem_slab + 1);
1804         return 0;
1805 }
1806 
1807 static int parse_line_opt(const struct option *opt __maybe_unused,
1808                           const char *arg, int unset __maybe_unused)
1809 {
1810         int lines;
1811 
1812         if (!arg)
1813                 return -1;
1814 
1815         lines = strtoul(arg, NULL, 10);
1816 
1817         if (caller_flag > alloc_flag)
1818                 caller_lines = lines;
1819         else
1820                 alloc_lines = lines;
1821 
1822         return 0;
1823 }
1824 
1825 static int __cmd_record(int argc, const char **argv)
1826 {
1827         const char * const record_args[] = {
1828         "record", "-a", "-R", "-c", "1",
1829         };
1830         const char * const slab_events[] = {
1831         "-e", "kmem:kmalloc",
1832         "-e", "kmem:kmalloc_node",
1833         "-e", "kmem:kfree",
1834         "-e", "kmem:kmem_cache_alloc",
1835         "-e", "kmem:kmem_cache_alloc_node",
1836         "-e", "kmem:kmem_cache_free",
1837         };
1838         const char * const page_events[] = {
1839         "-e", "kmem:mm_page_alloc",
1840         "-e", "kmem:mm_page_free",
1841         };
1842         unsigned int rec_argc, i, j;
1843         const char **rec_argv;
1844 
1845         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1846         if (kmem_slab)
1847                 rec_argc += ARRAY_SIZE(slab_events);
1848         if (kmem_page)
1849                 rec_argc += ARRAY_SIZE(page_events) + 1; /* for -g */
1850 
1851         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1852 
1853         if (rec_argv == NULL)
1854                 return -ENOMEM;
1855 
1856         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1857                 rec_argv[i] = strdup(record_args[i]);
1858 
1859         if (kmem_slab) {
1860                 for (j = 0; j < ARRAY_SIZE(slab_events); j++, i++)
1861                         rec_argv[i] = strdup(slab_events[j]);
1862         }
1863         if (kmem_page) {
1864                 rec_argv[i++] = strdup("-g");
1865 
1866                 for (j = 0; j < ARRAY_SIZE(page_events); j++, i++)
1867                         rec_argv[i] = strdup(page_events[j]);
1868         }
1869 
1870         for (j = 1; j < (unsigned int)argc; j++, i++)
1871                 rec_argv[i] = argv[j];
1872 
1873         return cmd_record(i, rec_argv);
1874 }
1875 
1876 static int kmem_config(const char *var, const char *value, void *cb __maybe_unused)
1877 {
1878         if (!strcmp(var, "kmem.default")) {
1879                 if (!strcmp(value, "slab"))
1880                         kmem_default = KMEM_SLAB;
1881                 else if (!strcmp(value, "page"))
1882                         kmem_default = KMEM_PAGE;
1883                 else
1884                         pr_err("invalid default value ('slab' or 'page' required): %s\n",
1885                                value);
1886                 return 0;
1887         }
1888 
1889         return 0;
1890 }
1891 
1892 int cmd_kmem(int argc, const char **argv)
1893 {
1894         const char * const default_slab_sort = "frag,hit,bytes";
1895         const char * const default_page_sort = "bytes,hit";
1896         struct perf_data data = {
1897                 .mode = PERF_DATA_MODE_READ,
1898         };
1899         const struct option kmem_options[] = {
1900         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1901         OPT_INCR('v', "verbose", &verbose,
1902                     "be more verbose (show symbol address, etc)"),
1903         OPT_CALLBACK_NOOPT(0, "caller", NULL, NULL,
1904                            "show per-callsite statistics", parse_caller_opt),
1905         OPT_CALLBACK_NOOPT(0, "alloc", NULL, NULL,
1906                            "show per-allocation statistics", parse_alloc_opt),
1907         OPT_CALLBACK('s', "sort", NULL, "key[,key2...]",
1908                      "sort by keys: ptr, callsite, bytes, hit, pingpong, frag, "
1909                      "page, order, migtype, gfp", parse_sort_opt),
1910         OPT_CALLBACK('l', "line", NULL, "num", "show n lines", parse_line_opt),
1911         OPT_BOOLEAN(0, "raw-ip", &raw_ip, "show raw ip instead of symbol"),
1912         OPT_BOOLEAN('f', "force", &data.force, "don't complain, do it"),
1913         OPT_CALLBACK_NOOPT(0, "slab", NULL, NULL, "Analyze slab allocator",
1914                            parse_slab_opt),
1915         OPT_CALLBACK_NOOPT(0, "page", NULL, NULL, "Analyze page allocator",
1916                            parse_page_opt),
1917         OPT_BOOLEAN(0, "live", &live_page, "Show live page stat"),
1918         OPT_STRING(0, "time", &time_str, "str",
1919                    "Time span of interest (start,stop)"),
1920         OPT_END()
1921         };
1922         const char *const kmem_subcommands[] = { "record", "stat", NULL };
1923         const char *kmem_usage[] = {
1924                 NULL,
1925                 NULL
1926         };
1927         struct perf_session *session;
1928         static const char errmsg[] = "No %s allocation events found.  Have you run 'perf kmem record --%s'?\n";
1929         int ret = perf_config(kmem_config, NULL);
1930 
1931         if (ret)
1932                 return ret;
1933 
1934         argc = parse_options_subcommand(argc, argv, kmem_options,
1935                                         kmem_subcommands, kmem_usage, 0);
1936 
1937         if (!argc)
1938                 usage_with_options(kmem_usage, kmem_options);
1939 
1940         if (kmem_slab == 0 && kmem_page == 0) {
1941                 if (kmem_default == KMEM_SLAB)
1942                         kmem_slab = 1;
1943                 else
1944                         kmem_page = 1;
1945         }
1946 
1947         if (!strncmp(argv[0], "rec", 3)) {
1948                 symbol__init(NULL);
1949                 return __cmd_record(argc, argv);
1950         }
1951 
1952         data.path = input_name;
1953 
1954         kmem_session = session = perf_session__new(&data, false, &perf_kmem);
1955         if (session == NULL)
1956                 return -1;
1957 
1958         ret = -1;
1959 
1960         if (kmem_slab) {
1961                 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
1962                                                           "kmem:kmalloc")) {
1963                         pr_err(errmsg, "slab", "slab");
1964                         goto out_delete;
1965                 }
1966         }
1967 
1968         if (kmem_page) {
1969                 struct perf_evsel *evsel;
1970 
1971                 evsel = perf_evlist__find_tracepoint_by_name(session->evlist,
1972                                                              "kmem:mm_page_alloc");
1973                 if (evsel == NULL) {
1974                         pr_err(errmsg, "page", "page");
1975                         goto out_delete;
1976                 }
1977 
1978                 kmem_page_size = tep_get_page_size(evsel->tp_format->pevent);
1979                 symbol_conf.use_callchain = true;
1980         }
1981 
1982         symbol__init(&session->header.env);
1983 
1984         if (perf_time__parse_str(&ptime, time_str) != 0) {
1985                 pr_err("Invalid time string\n");
1986                 ret = -EINVAL;
1987                 goto out_delete;
1988         }
1989 
1990         if (!strcmp(argv[0], "stat")) {
1991                 setlocale(LC_ALL, "");
1992 
1993                 if (cpu__setup_cpunode_map())
1994                         goto out_delete;
1995 
1996                 if (list_empty(&slab_caller_sort))
1997                         setup_slab_sorting(&slab_caller_sort, default_slab_sort);
1998                 if (list_empty(&slab_alloc_sort))
1999                         setup_slab_sorting(&slab_alloc_sort, default_slab_sort);
2000                 if (list_empty(&page_caller_sort))
2001                         setup_page_sorting(&page_caller_sort, default_page_sort);
2002                 if (list_empty(&page_alloc_sort))
2003                         setup_page_sorting(&page_alloc_sort, default_page_sort);
2004 
2005                 if (kmem_page) {
2006                         setup_page_sorting(&page_alloc_sort_input,
2007                                            "page,order,migtype,gfp");
2008                         setup_page_sorting(&page_caller_sort_input,
2009                                            "callsite,order,migtype,gfp");
2010                 }
2011                 ret = __cmd_kmem(session);
2012         } else
2013                 usage_with_options(kmem_usage, kmem_options);
2014 
2015 out_delete:
2016         perf_session__delete(session);
2017 
2018         return ret;
2019 }
2020 
2021 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp