~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/builtin-kmem.c

Version: ~ [ linux-6.1-rc7 ] ~ [ linux-6.0.10 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.80 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.156 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.225 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.267 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.300 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.334 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include "builtin.h"
  3 #include "perf.h"
  4 
  5 #include "util/dso.h"
  6 #include "util/evlist.h"
  7 #include "util/evsel.h"
  8 #include "util/config.h"
  9 #include "util/map.h"
 10 #include "util/symbol.h"
 11 #include "util/thread.h"
 12 #include "util/header.h"
 13 #include "util/session.h"
 14 #include "util/tool.h"
 15 #include "util/callchain.h"
 16 #include "util/time-utils.h"
 17 #include <linux/err.h>
 18 
 19 #include <subcmd/pager.h>
 20 #include <subcmd/parse-options.h>
 21 #include "util/trace-event.h"
 22 #include "util/data.h"
 23 #include "util/cpumap.h"
 24 
 25 #include "util/debug.h"
 26 #include "util/string2.h"
 27 
 28 #include <linux/kernel.h>
 29 #include <linux/rbtree.h>
 30 #include <linux/string.h>
 31 #include <linux/zalloc.h>
 32 #include <errno.h>
 33 #include <inttypes.h>
 34 #include <locale.h>
 35 #include <regex.h>
 36 
 37 #include <linux/ctype.h>
 38 
 39 static int      kmem_slab;
 40 static int      kmem_page;
 41 
 42 static long     kmem_page_size;
 43 static enum {
 44         KMEM_SLAB,
 45         KMEM_PAGE,
 46 } kmem_default = KMEM_SLAB;  /* for backward compatibility */
 47 
 48 struct alloc_stat;
 49 typedef int (*sort_fn_t)(void *, void *);
 50 
 51 static int                      alloc_flag;
 52 static int                      caller_flag;
 53 
 54 static int                      alloc_lines = -1;
 55 static int                      caller_lines = -1;
 56 
 57 static bool                     raw_ip;
 58 
 59 struct alloc_stat {
 60         u64     call_site;
 61         u64     ptr;
 62         u64     bytes_req;
 63         u64     bytes_alloc;
 64         u64     last_alloc;
 65         u32     hit;
 66         u32     pingpong;
 67 
 68         short   alloc_cpu;
 69 
 70         struct rb_node node;
 71 };
 72 
 73 static struct rb_root root_alloc_stat;
 74 static struct rb_root root_alloc_sorted;
 75 static struct rb_root root_caller_stat;
 76 static struct rb_root root_caller_sorted;
 77 
 78 static unsigned long total_requested, total_allocated, total_freed;
 79 static unsigned long nr_allocs, nr_cross_allocs;
 80 
 81 /* filters for controlling start and stop of time of analysis */
 82 static struct perf_time_interval ptime;
 83 const char *time_str;
 84 
 85 static int insert_alloc_stat(unsigned long call_site, unsigned long ptr,
 86                              int bytes_req, int bytes_alloc, int cpu)
 87 {
 88         struct rb_node **node = &root_alloc_stat.rb_node;
 89         struct rb_node *parent = NULL;
 90         struct alloc_stat *data = NULL;
 91 
 92         while (*node) {
 93                 parent = *node;
 94                 data = rb_entry(*node, struct alloc_stat, node);
 95 
 96                 if (ptr > data->ptr)
 97                         node = &(*node)->rb_right;
 98                 else if (ptr < data->ptr)
 99                         node = &(*node)->rb_left;
100                 else
101                         break;
102         }
103 
104         if (data && data->ptr == ptr) {
105                 data->hit++;
106                 data->bytes_req += bytes_req;
107                 data->bytes_alloc += bytes_alloc;
108         } else {
109                 data = malloc(sizeof(*data));
110                 if (!data) {
111                         pr_err("%s: malloc failed\n", __func__);
112                         return -1;
113                 }
114                 data->ptr = ptr;
115                 data->pingpong = 0;
116                 data->hit = 1;
117                 data->bytes_req = bytes_req;
118                 data->bytes_alloc = bytes_alloc;
119 
120                 rb_link_node(&data->node, parent, node);
121                 rb_insert_color(&data->node, &root_alloc_stat);
122         }
123         data->call_site = call_site;
124         data->alloc_cpu = cpu;
125         data->last_alloc = bytes_alloc;
126 
127         return 0;
128 }
129 
130 static int insert_caller_stat(unsigned long call_site,
131                               int bytes_req, int bytes_alloc)
132 {
133         struct rb_node **node = &root_caller_stat.rb_node;
134         struct rb_node *parent = NULL;
135         struct alloc_stat *data = NULL;
136 
137         while (*node) {
138                 parent = *node;
139                 data = rb_entry(*node, struct alloc_stat, node);
140 
141                 if (call_site > data->call_site)
142                         node = &(*node)->rb_right;
143                 else if (call_site < data->call_site)
144                         node = &(*node)->rb_left;
145                 else
146                         break;
147         }
148 
149         if (data && data->call_site == call_site) {
150                 data->hit++;
151                 data->bytes_req += bytes_req;
152                 data->bytes_alloc += bytes_alloc;
153         } else {
154                 data = malloc(sizeof(*data));
155                 if (!data) {
156                         pr_err("%s: malloc failed\n", __func__);
157                         return -1;
158                 }
159                 data->call_site = call_site;
160                 data->pingpong = 0;
161                 data->hit = 1;
162                 data->bytes_req = bytes_req;
163                 data->bytes_alloc = bytes_alloc;
164 
165                 rb_link_node(&data->node, parent, node);
166                 rb_insert_color(&data->node, &root_caller_stat);
167         }
168 
169         return 0;
170 }
171 
172 static int perf_evsel__process_alloc_event(struct evsel *evsel,
173                                            struct perf_sample *sample)
174 {
175         unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr"),
176                       call_site = perf_evsel__intval(evsel, sample, "call_site");
177         int bytes_req = perf_evsel__intval(evsel, sample, "bytes_req"),
178             bytes_alloc = perf_evsel__intval(evsel, sample, "bytes_alloc");
179 
180         if (insert_alloc_stat(call_site, ptr, bytes_req, bytes_alloc, sample->cpu) ||
181             insert_caller_stat(call_site, bytes_req, bytes_alloc))
182                 return -1;
183 
184         total_requested += bytes_req;
185         total_allocated += bytes_alloc;
186 
187         nr_allocs++;
188         return 0;
189 }
190 
191 static int perf_evsel__process_alloc_node_event(struct evsel *evsel,
192                                                 struct perf_sample *sample)
193 {
194         int ret = perf_evsel__process_alloc_event(evsel, sample);
195 
196         if (!ret) {
197                 int node1 = cpu__get_node(sample->cpu),
198                     node2 = perf_evsel__intval(evsel, sample, "node");
199 
200                 if (node1 != node2)
201                         nr_cross_allocs++;
202         }
203 
204         return ret;
205 }
206 
207 static int ptr_cmp(void *, void *);
208 static int slab_callsite_cmp(void *, void *);
209 
210 static struct alloc_stat *search_alloc_stat(unsigned long ptr,
211                                             unsigned long call_site,
212                                             struct rb_root *root,
213                                             sort_fn_t sort_fn)
214 {
215         struct rb_node *node = root->rb_node;
216         struct alloc_stat key = { .ptr = ptr, .call_site = call_site };
217 
218         while (node) {
219                 struct alloc_stat *data;
220                 int cmp;
221 
222                 data = rb_entry(node, struct alloc_stat, node);
223 
224                 cmp = sort_fn(&key, data);
225                 if (cmp < 0)
226                         node = node->rb_left;
227                 else if (cmp > 0)
228                         node = node->rb_right;
229                 else
230                         return data;
231         }
232         return NULL;
233 }
234 
235 static int perf_evsel__process_free_event(struct evsel *evsel,
236                                           struct perf_sample *sample)
237 {
238         unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr");
239         struct alloc_stat *s_alloc, *s_caller;
240 
241         s_alloc = search_alloc_stat(ptr, 0, &root_alloc_stat, ptr_cmp);
242         if (!s_alloc)
243                 return 0;
244 
245         total_freed += s_alloc->last_alloc;
246 
247         if ((short)sample->cpu != s_alloc->alloc_cpu) {
248                 s_alloc->pingpong++;
249 
250                 s_caller = search_alloc_stat(0, s_alloc->call_site,
251                                              &root_caller_stat,
252                                              slab_callsite_cmp);
253                 if (!s_caller)
254                         return -1;
255                 s_caller->pingpong++;
256         }
257         s_alloc->alloc_cpu = -1;
258 
259         return 0;
260 }
261 
262 static u64 total_page_alloc_bytes;
263 static u64 total_page_free_bytes;
264 static u64 total_page_nomatch_bytes;
265 static u64 total_page_fail_bytes;
266 static unsigned long nr_page_allocs;
267 static unsigned long nr_page_frees;
268 static unsigned long nr_page_fails;
269 static unsigned long nr_page_nomatch;
270 
271 static bool use_pfn;
272 static bool live_page;
273 static struct perf_session *kmem_session;
274 
275 #define MAX_MIGRATE_TYPES  6
276 #define MAX_PAGE_ORDER     11
277 
278 static int order_stats[MAX_PAGE_ORDER][MAX_MIGRATE_TYPES];
279 
280 struct page_stat {
281         struct rb_node  node;
282         u64             page;
283         u64             callsite;
284         int             order;
285         unsigned        gfp_flags;
286         unsigned        migrate_type;
287         u64             alloc_bytes;
288         u64             free_bytes;
289         int             nr_alloc;
290         int             nr_free;
291 };
292 
293 static struct rb_root page_live_tree;
294 static struct rb_root page_alloc_tree;
295 static struct rb_root page_alloc_sorted;
296 static struct rb_root page_caller_tree;
297 static struct rb_root page_caller_sorted;
298 
299 struct alloc_func {
300         u64 start;
301         u64 end;
302         char *name;
303 };
304 
305 static int nr_alloc_funcs;
306 static struct alloc_func *alloc_func_list;
307 
308 static int funcmp(const void *a, const void *b)
309 {
310         const struct alloc_func *fa = a;
311         const struct alloc_func *fb = b;
312 
313         if (fa->start > fb->start)
314                 return 1;
315         else
316                 return -1;
317 }
318 
319 static int callcmp(const void *a, const void *b)
320 {
321         const struct alloc_func *fa = a;
322         const struct alloc_func *fb = b;
323 
324         if (fb->start <= fa->start && fa->end < fb->end)
325                 return 0;
326 
327         if (fa->start > fb->start)
328                 return 1;
329         else
330                 return -1;
331 }
332 
333 static int build_alloc_func_list(void)
334 {
335         int ret;
336         struct map *kernel_map;
337         struct symbol *sym;
338         struct rb_node *node;
339         struct alloc_func *func;
340         struct machine *machine = &kmem_session->machines.host;
341         regex_t alloc_func_regex;
342         static const char pattern[] = "^_?_?(alloc|get_free|get_zeroed)_pages?";
343 
344         ret = regcomp(&alloc_func_regex, pattern, REG_EXTENDED);
345         if (ret) {
346                 char err[BUFSIZ];
347 
348                 regerror(ret, &alloc_func_regex, err, sizeof(err));
349                 pr_err("Invalid regex: %s\n%s", pattern, err);
350                 return -EINVAL;
351         }
352 
353         kernel_map = machine__kernel_map(machine);
354         if (map__load(kernel_map) < 0) {
355                 pr_err("cannot load kernel map\n");
356                 return -ENOENT;
357         }
358 
359         map__for_each_symbol(kernel_map, sym, node) {
360                 if (regexec(&alloc_func_regex, sym->name, 0, NULL, 0))
361                         continue;
362 
363                 func = realloc(alloc_func_list,
364                                (nr_alloc_funcs + 1) * sizeof(*func));
365                 if (func == NULL)
366                         return -ENOMEM;
367 
368                 pr_debug("alloc func: %s\n", sym->name);
369                 func[nr_alloc_funcs].start = sym->start;
370                 func[nr_alloc_funcs].end   = sym->end;
371                 func[nr_alloc_funcs].name  = sym->name;
372 
373                 alloc_func_list = func;
374                 nr_alloc_funcs++;
375         }
376 
377         qsort(alloc_func_list, nr_alloc_funcs, sizeof(*func), funcmp);
378 
379         regfree(&alloc_func_regex);
380         return 0;
381 }
382 
383 /*
384  * Find first non-memory allocation function from callchain.
385  * The allocation functions are in the 'alloc_func_list'.
386  */
387 static u64 find_callsite(struct evsel *evsel, struct perf_sample *sample)
388 {
389         struct addr_location al;
390         struct machine *machine = &kmem_session->machines.host;
391         struct callchain_cursor_node *node;
392 
393         if (alloc_func_list == NULL) {
394                 if (build_alloc_func_list() < 0)
395                         goto out;
396         }
397 
398         al.thread = machine__findnew_thread(machine, sample->pid, sample->tid);
399         sample__resolve_callchain(sample, &callchain_cursor, NULL, evsel, &al, 16);
400 
401         callchain_cursor_commit(&callchain_cursor);
402         while (true) {
403                 struct alloc_func key, *caller;
404                 u64 addr;
405 
406                 node = callchain_cursor_current(&callchain_cursor);
407                 if (node == NULL)
408                         break;
409 
410                 key.start = key.end = node->ip;
411                 caller = bsearch(&key, alloc_func_list, nr_alloc_funcs,
412                                  sizeof(key), callcmp);
413                 if (!caller) {
414                         /* found */
415                         if (node->ms.map)
416                                 addr = map__unmap_ip(node->ms.map, node->ip);
417                         else
418                                 addr = node->ip;
419 
420                         return addr;
421                 } else
422                         pr_debug3("skipping alloc function: %s\n", caller->name);
423 
424                 callchain_cursor_advance(&callchain_cursor);
425         }
426 
427 out:
428         pr_debug2("unknown callsite: %"PRIx64 "\n", sample->ip);
429         return sample->ip;
430 }
431 
432 struct sort_dimension {
433         const char              name[20];
434         sort_fn_t               cmp;
435         struct list_head        list;
436 };
437 
438 static LIST_HEAD(page_alloc_sort_input);
439 static LIST_HEAD(page_caller_sort_input);
440 
441 static struct page_stat *
442 __page_stat__findnew_page(struct page_stat *pstat, bool create)
443 {
444         struct rb_node **node = &page_live_tree.rb_node;
445         struct rb_node *parent = NULL;
446         struct page_stat *data;
447 
448         while (*node) {
449                 s64 cmp;
450 
451                 parent = *node;
452                 data = rb_entry(*node, struct page_stat, node);
453 
454                 cmp = data->page - pstat->page;
455                 if (cmp < 0)
456                         node = &parent->rb_left;
457                 else if (cmp > 0)
458                         node = &parent->rb_right;
459                 else
460                         return data;
461         }
462 
463         if (!create)
464                 return NULL;
465 
466         data = zalloc(sizeof(*data));
467         if (data != NULL) {
468                 data->page = pstat->page;
469                 data->order = pstat->order;
470                 data->gfp_flags = pstat->gfp_flags;
471                 data->migrate_type = pstat->migrate_type;
472 
473                 rb_link_node(&data->node, parent, node);
474                 rb_insert_color(&data->node, &page_live_tree);
475         }
476 
477         return data;
478 }
479 
480 static struct page_stat *page_stat__find_page(struct page_stat *pstat)
481 {
482         return __page_stat__findnew_page(pstat, false);
483 }
484 
485 static struct page_stat *page_stat__findnew_page(struct page_stat *pstat)
486 {
487         return __page_stat__findnew_page(pstat, true);
488 }
489 
490 static struct page_stat *
491 __page_stat__findnew_alloc(struct page_stat *pstat, bool create)
492 {
493         struct rb_node **node = &page_alloc_tree.rb_node;
494         struct rb_node *parent = NULL;
495         struct page_stat *data;
496         struct sort_dimension *sort;
497 
498         while (*node) {
499                 int cmp = 0;
500 
501                 parent = *node;
502                 data = rb_entry(*node, struct page_stat, node);
503 
504                 list_for_each_entry(sort, &page_alloc_sort_input, list) {
505                         cmp = sort->cmp(pstat, data);
506                         if (cmp)
507                                 break;
508                 }
509 
510                 if (cmp < 0)
511                         node = &parent->rb_left;
512                 else if (cmp > 0)
513                         node = &parent->rb_right;
514                 else
515                         return data;
516         }
517 
518         if (!create)
519                 return NULL;
520 
521         data = zalloc(sizeof(*data));
522         if (data != NULL) {
523                 data->page = pstat->page;
524                 data->order = pstat->order;
525                 data->gfp_flags = pstat->gfp_flags;
526                 data->migrate_type = pstat->migrate_type;
527 
528                 rb_link_node(&data->node, parent, node);
529                 rb_insert_color(&data->node, &page_alloc_tree);
530         }
531 
532         return data;
533 }
534 
535 static struct page_stat *page_stat__find_alloc(struct page_stat *pstat)
536 {
537         return __page_stat__findnew_alloc(pstat, false);
538 }
539 
540 static struct page_stat *page_stat__findnew_alloc(struct page_stat *pstat)
541 {
542         return __page_stat__findnew_alloc(pstat, true);
543 }
544 
545 static struct page_stat *
546 __page_stat__findnew_caller(struct page_stat *pstat, bool create)
547 {
548         struct rb_node **node = &page_caller_tree.rb_node;
549         struct rb_node *parent = NULL;
550         struct page_stat *data;
551         struct sort_dimension *sort;
552 
553         while (*node) {
554                 int cmp = 0;
555 
556                 parent = *node;
557                 data = rb_entry(*node, struct page_stat, node);
558 
559                 list_for_each_entry(sort, &page_caller_sort_input, list) {
560                         cmp = sort->cmp(pstat, data);
561                         if (cmp)
562                                 break;
563                 }
564 
565                 if (cmp < 0)
566                         node = &parent->rb_left;
567                 else if (cmp > 0)
568                         node = &parent->rb_right;
569                 else
570                         return data;
571         }
572 
573         if (!create)
574                 return NULL;
575 
576         data = zalloc(sizeof(*data));
577         if (data != NULL) {
578                 data->callsite = pstat->callsite;
579                 data->order = pstat->order;
580                 data->gfp_flags = pstat->gfp_flags;
581                 data->migrate_type = pstat->migrate_type;
582 
583                 rb_link_node(&data->node, parent, node);
584                 rb_insert_color(&data->node, &page_caller_tree);
585         }
586 
587         return data;
588 }
589 
590 static struct page_stat *page_stat__find_caller(struct page_stat *pstat)
591 {
592         return __page_stat__findnew_caller(pstat, false);
593 }
594 
595 static struct page_stat *page_stat__findnew_caller(struct page_stat *pstat)
596 {
597         return __page_stat__findnew_caller(pstat, true);
598 }
599 
600 static bool valid_page(u64 pfn_or_page)
601 {
602         if (use_pfn && pfn_or_page == -1UL)
603                 return false;
604         if (!use_pfn && pfn_or_page == 0)
605                 return false;
606         return true;
607 }
608 
609 struct gfp_flag {
610         unsigned int flags;
611         char *compact_str;
612         char *human_readable;
613 };
614 
615 static struct gfp_flag *gfps;
616 static int nr_gfps;
617 
618 static int gfpcmp(const void *a, const void *b)
619 {
620         const struct gfp_flag *fa = a;
621         const struct gfp_flag *fb = b;
622 
623         return fa->flags - fb->flags;
624 }
625 
626 /* see include/trace/events/mmflags.h */
627 static const struct {
628         const char *original;
629         const char *compact;
630 } gfp_compact_table[] = {
631         { "GFP_TRANSHUGE",              "THP" },
632         { "GFP_TRANSHUGE_LIGHT",        "THL" },
633         { "GFP_HIGHUSER_MOVABLE",       "HUM" },
634         { "GFP_HIGHUSER",               "HU" },
635         { "GFP_USER",                   "U" },
636         { "GFP_KERNEL_ACCOUNT",         "KAC" },
637         { "GFP_KERNEL",                 "K" },
638         { "GFP_NOFS",                   "NF" },
639         { "GFP_ATOMIC",                 "A" },
640         { "GFP_NOIO",                   "NI" },
641         { "GFP_NOWAIT",                 "NW" },
642         { "GFP_DMA",                    "D" },
643         { "__GFP_HIGHMEM",              "HM" },
644         { "GFP_DMA32",                  "D32" },
645         { "__GFP_HIGH",                 "H" },
646         { "__GFP_ATOMIC",               "_A" },
647         { "__GFP_IO",                   "I" },
648         { "__GFP_FS",                   "F" },
649         { "__GFP_NOWARN",               "NWR" },
650         { "__GFP_RETRY_MAYFAIL",        "R" },
651         { "__GFP_NOFAIL",               "NF" },
652         { "__GFP_NORETRY",              "NR" },
653         { "__GFP_COMP",                 "C" },
654         { "__GFP_ZERO",                 "Z" },
655         { "__GFP_NOMEMALLOC",           "NMA" },
656         { "__GFP_MEMALLOC",             "MA" },
657         { "__GFP_HARDWALL",             "HW" },
658         { "__GFP_THISNODE",             "TN" },
659         { "__GFP_RECLAIMABLE",          "RC" },
660         { "__GFP_MOVABLE",              "M" },
661         { "__GFP_ACCOUNT",              "AC" },
662         { "__GFP_WRITE",                "WR" },
663         { "__GFP_RECLAIM",              "R" },
664         { "__GFP_DIRECT_RECLAIM",       "DR" },
665         { "__GFP_KSWAPD_RECLAIM",       "KR" },
666 };
667 
668 static size_t max_gfp_len;
669 
670 static char *compact_gfp_flags(char *gfp_flags)
671 {
672         char *orig_flags = strdup(gfp_flags);
673         char *new_flags = NULL;
674         char *str, *pos = NULL;
675         size_t len = 0;
676 
677         if (orig_flags == NULL)
678                 return NULL;
679 
680         str = strtok_r(orig_flags, "|", &pos);
681         while (str) {
682                 size_t i;
683                 char *new;
684                 const char *cpt;
685 
686                 for (i = 0; i < ARRAY_SIZE(gfp_compact_table); i++) {
687                         if (strcmp(gfp_compact_table[i].original, str))
688                                 continue;
689 
690                         cpt = gfp_compact_table[i].compact;
691                         new = realloc(new_flags, len + strlen(cpt) + 2);
692                         if (new == NULL) {
693                                 free(new_flags);
694                                 free(orig_flags);
695                                 return NULL;
696                         }
697 
698                         new_flags = new;
699 
700                         if (!len) {
701                                 strcpy(new_flags, cpt);
702                         } else {
703                                 strcat(new_flags, "|");
704                                 strcat(new_flags, cpt);
705                                 len++;
706                         }
707 
708                         len += strlen(cpt);
709                 }
710 
711                 str = strtok_r(NULL, "|", &pos);
712         }
713 
714         if (max_gfp_len < len)
715                 max_gfp_len = len;
716 
717         free(orig_flags);
718         return new_flags;
719 }
720 
721 static char *compact_gfp_string(unsigned long gfp_flags)
722 {
723         struct gfp_flag key = {
724                 .flags = gfp_flags,
725         };
726         struct gfp_flag *gfp;
727 
728         gfp = bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp);
729         if (gfp)
730                 return gfp->compact_str;
731 
732         return NULL;
733 }
734 
735 static int parse_gfp_flags(struct evsel *evsel, struct perf_sample *sample,
736                            unsigned int gfp_flags)
737 {
738         struct tep_record record = {
739                 .cpu = sample->cpu,
740                 .data = sample->raw_data,
741                 .size = sample->raw_size,
742         };
743         struct trace_seq seq;
744         char *str, *pos = NULL;
745 
746         if (nr_gfps) {
747                 struct gfp_flag key = {
748                         .flags = gfp_flags,
749                 };
750 
751                 if (bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp))
752                         return 0;
753         }
754 
755         trace_seq_init(&seq);
756         tep_print_event(evsel->tp_format->tep,
757                         &seq, &record, "%s", TEP_PRINT_INFO);
758 
759         str = strtok_r(seq.buffer, " ", &pos);
760         while (str) {
761                 if (!strncmp(str, "gfp_flags=", 10)) {
762                         struct gfp_flag *new;
763 
764                         new = realloc(gfps, (nr_gfps + 1) * sizeof(*gfps));
765                         if (new == NULL)
766                                 return -ENOMEM;
767 
768                         gfps = new;
769                         new += nr_gfps++;
770 
771                         new->flags = gfp_flags;
772                         new->human_readable = strdup(str + 10);
773                         new->compact_str = compact_gfp_flags(str + 10);
774                         if (!new->human_readable || !new->compact_str)
775                                 return -ENOMEM;
776 
777                         qsort(gfps, nr_gfps, sizeof(*gfps), gfpcmp);
778                 }
779 
780                 str = strtok_r(NULL, " ", &pos);
781         }
782 
783         trace_seq_destroy(&seq);
784         return 0;
785 }
786 
787 static int perf_evsel__process_page_alloc_event(struct evsel *evsel,
788                                                 struct perf_sample *sample)
789 {
790         u64 page;
791         unsigned int order = perf_evsel__intval(evsel, sample, "order");
792         unsigned int gfp_flags = perf_evsel__intval(evsel, sample, "gfp_flags");
793         unsigned int migrate_type = perf_evsel__intval(evsel, sample,
794                                                        "migratetype");
795         u64 bytes = kmem_page_size << order;
796         u64 callsite;
797         struct page_stat *pstat;
798         struct page_stat this = {
799                 .order = order,
800                 .gfp_flags = gfp_flags,
801                 .migrate_type = migrate_type,
802         };
803 
804         if (use_pfn)
805                 page = perf_evsel__intval(evsel, sample, "pfn");
806         else
807                 page = perf_evsel__intval(evsel, sample, "page");
808 
809         nr_page_allocs++;
810         total_page_alloc_bytes += bytes;
811 
812         if (!valid_page(page)) {
813                 nr_page_fails++;
814                 total_page_fail_bytes += bytes;
815 
816                 return 0;
817         }
818 
819         if (parse_gfp_flags(evsel, sample, gfp_flags) < 0)
820                 return -1;
821 
822         callsite = find_callsite(evsel, sample);
823 
824         /*
825          * This is to find the current page (with correct gfp flags and
826          * migrate type) at free event.
827          */
828         this.page = page;
829         pstat = page_stat__findnew_page(&this);
830         if (pstat == NULL)
831                 return -ENOMEM;
832 
833         pstat->nr_alloc++;
834         pstat->alloc_bytes += bytes;
835         pstat->callsite = callsite;
836 
837         if (!live_page) {
838                 pstat = page_stat__findnew_alloc(&this);
839                 if (pstat == NULL)
840                         return -ENOMEM;
841 
842                 pstat->nr_alloc++;
843                 pstat->alloc_bytes += bytes;
844                 pstat->callsite = callsite;
845         }
846 
847         this.callsite = callsite;
848         pstat = page_stat__findnew_caller(&this);
849         if (pstat == NULL)
850                 return -ENOMEM;
851 
852         pstat->nr_alloc++;
853         pstat->alloc_bytes += bytes;
854 
855         order_stats[order][migrate_type]++;
856 
857         return 0;
858 }
859 
860 static int perf_evsel__process_page_free_event(struct evsel *evsel,
861                                                 struct perf_sample *sample)
862 {
863         u64 page;
864         unsigned int order = perf_evsel__intval(evsel, sample, "order");
865         u64 bytes = kmem_page_size << order;
866         struct page_stat *pstat;
867         struct page_stat this = {
868                 .order = order,
869         };
870 
871         if (use_pfn)
872                 page = perf_evsel__intval(evsel, sample, "pfn");
873         else
874                 page = perf_evsel__intval(evsel, sample, "page");
875 
876         nr_page_frees++;
877         total_page_free_bytes += bytes;
878 
879         this.page = page;
880         pstat = page_stat__find_page(&this);
881         if (pstat == NULL) {
882                 pr_debug2("missing free at page %"PRIx64" (order: %d)\n",
883                           page, order);
884 
885                 nr_page_nomatch++;
886                 total_page_nomatch_bytes += bytes;
887 
888                 return 0;
889         }
890 
891         this.gfp_flags = pstat->gfp_flags;
892         this.migrate_type = pstat->migrate_type;
893         this.callsite = pstat->callsite;
894 
895         rb_erase(&pstat->node, &page_live_tree);
896         free(pstat);
897 
898         if (live_page) {
899                 order_stats[this.order][this.migrate_type]--;
900         } else {
901                 pstat = page_stat__find_alloc(&this);
902                 if (pstat == NULL)
903                         return -ENOMEM;
904 
905                 pstat->nr_free++;
906                 pstat->free_bytes += bytes;
907         }
908 
909         pstat = page_stat__find_caller(&this);
910         if (pstat == NULL)
911                 return -ENOENT;
912 
913         pstat->nr_free++;
914         pstat->free_bytes += bytes;
915 
916         if (live_page) {
917                 pstat->nr_alloc--;
918                 pstat->alloc_bytes -= bytes;
919 
920                 if (pstat->nr_alloc == 0) {
921                         rb_erase(&pstat->node, &page_caller_tree);
922                         free(pstat);
923                 }
924         }
925 
926         return 0;
927 }
928 
929 static bool perf_kmem__skip_sample(struct perf_sample *sample)
930 {
931         /* skip sample based on time? */
932         if (perf_time__skip_sample(&ptime, sample->time))
933                 return true;
934 
935         return false;
936 }
937 
938 typedef int (*tracepoint_handler)(struct evsel *evsel,
939                                   struct perf_sample *sample);
940 
941 static int process_sample_event(struct perf_tool *tool __maybe_unused,
942                                 union perf_event *event,
943                                 struct perf_sample *sample,
944                                 struct evsel *evsel,
945                                 struct machine *machine)
946 {
947         int err = 0;
948         struct thread *thread = machine__findnew_thread(machine, sample->pid,
949                                                         sample->tid);
950 
951         if (thread == NULL) {
952                 pr_debug("problem processing %d event, skipping it.\n",
953                          event->header.type);
954                 return -1;
955         }
956 
957         if (perf_kmem__skip_sample(sample))
958                 return 0;
959 
960         dump_printf(" ... thread: %s:%d\n", thread__comm_str(thread), thread->tid);
961 
962         if (evsel->handler != NULL) {
963                 tracepoint_handler f = evsel->handler;
964                 err = f(evsel, sample);
965         }
966 
967         thread__put(thread);
968 
969         return err;
970 }
971 
972 static struct perf_tool perf_kmem = {
973         .sample          = process_sample_event,
974         .comm            = perf_event__process_comm,
975         .mmap            = perf_event__process_mmap,
976         .mmap2           = perf_event__process_mmap2,
977         .namespaces      = perf_event__process_namespaces,
978         .ordered_events  = true,
979 };
980 
981 static double fragmentation(unsigned long n_req, unsigned long n_alloc)
982 {
983         if (n_alloc == 0)
984                 return 0.0;
985         else
986                 return 100.0 - (100.0 * n_req / n_alloc);
987 }
988 
989 static void __print_slab_result(struct rb_root *root,
990                                 struct perf_session *session,
991                                 int n_lines, int is_caller)
992 {
993         struct rb_node *next;
994         struct machine *machine = &session->machines.host;
995 
996         printf("%.105s\n", graph_dotted_line);
997         printf(" %-34s |",  is_caller ? "Callsite": "Alloc Ptr");
998         printf(" Total_alloc/Per | Total_req/Per   | Hit      | Ping-pong | Frag\n");
999         printf("%.105s\n", graph_dotted_line);
1000 
1001         next = rb_first(root);
1002 
1003         while (next && n_lines--) {
1004                 struct alloc_stat *data = rb_entry(next, struct alloc_stat,
1005                                                    node);
1006                 struct symbol *sym = NULL;
1007                 struct map *map;
1008                 char buf[BUFSIZ];
1009                 u64 addr;
1010 
1011                 if (is_caller) {
1012                         addr = data->call_site;
1013                         if (!raw_ip)
1014                                 sym = machine__find_kernel_symbol(machine, addr, &map);
1015                 } else
1016                         addr = data->ptr;
1017 
1018                 if (sym != NULL)
1019                         snprintf(buf, sizeof(buf), "%s+%" PRIx64 "", sym->name,
1020                                  addr - map->unmap_ip(map, sym->start));
1021                 else
1022                         snprintf(buf, sizeof(buf), "%#" PRIx64 "", addr);
1023                 printf(" %-34s |", buf);
1024 
1025                 printf(" %9llu/%-5lu | %9llu/%-5lu | %8lu | %9lu | %6.3f%%\n",
1026                        (unsigned long long)data->bytes_alloc,
1027                        (unsigned long)data->bytes_alloc / data->hit,
1028                        (unsigned long long)data->bytes_req,
1029                        (unsigned long)data->bytes_req / data->hit,
1030                        (unsigned long)data->hit,
1031                        (unsigned long)data->pingpong,
1032                        fragmentation(data->bytes_req, data->bytes_alloc));
1033 
1034                 next = rb_next(next);
1035         }
1036 
1037         if (n_lines == -1)
1038                 printf(" ...                                | ...             | ...             | ...      | ...       | ...   \n");
1039 
1040         printf("%.105s\n", graph_dotted_line);
1041 }
1042 
1043 static const char * const migrate_type_str[] = {
1044         "UNMOVABL",
1045         "RECLAIM",
1046         "MOVABLE",
1047         "RESERVED",
1048         "CMA/ISLT",
1049         "UNKNOWN",
1050 };
1051 
1052 static void __print_page_alloc_result(struct perf_session *session, int n_lines)
1053 {
1054         struct rb_node *next = rb_first(&page_alloc_sorted);
1055         struct machine *machine = &session->machines.host;
1056         const char *format;
1057         int gfp_len = max(strlen("GFP flags"), max_gfp_len);
1058 
1059         printf("\n%.105s\n", graph_dotted_line);
1060         printf(" %-16s | %5s alloc (KB) | Hits      | Order | Mig.type | %-*s | Callsite\n",
1061                use_pfn ? "PFN" : "Page", live_page ? "Live" : "Total",
1062                gfp_len, "GFP flags");
1063         printf("%.105s\n", graph_dotted_line);
1064 
1065         if (use_pfn)
1066                 format = " %16llu | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
1067         else
1068                 format = " %016llx | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
1069 
1070         while (next && n_lines--) {
1071                 struct page_stat *data;
1072                 struct symbol *sym;
1073                 struct map *map;
1074                 char buf[32];
1075                 char *caller = buf;
1076 
1077                 data = rb_entry(next, struct page_stat, node);
1078                 sym = machine__find_kernel_symbol(machine, data->callsite, &map);
1079                 if (sym)
1080                         caller = sym->name;
1081                 else
1082                         scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
1083 
1084                 printf(format, (unsigned long long)data->page,
1085                        (unsigned long long)data->alloc_bytes / 1024,
1086                        data->nr_alloc, data->order,
1087                        migrate_type_str[data->migrate_type],
1088                        gfp_len, compact_gfp_string(data->gfp_flags), caller);
1089 
1090                 next = rb_next(next);
1091         }
1092 
1093         if (n_lines == -1) {
1094                 printf(" ...              | ...              | ...       | ...   | ...      | %-*s | ...\n",
1095                        gfp_len, "...");
1096         }
1097 
1098         printf("%.105s\n", graph_dotted_line);
1099 }
1100 
1101 static void __print_page_caller_result(struct perf_session *session, int n_lines)
1102 {
1103         struct rb_node *next = rb_first(&page_caller_sorted);
1104         struct machine *machine = &session->machines.host;
1105         int gfp_len = max(strlen("GFP flags"), max_gfp_len);
1106 
1107         printf("\n%.105s\n", graph_dotted_line);
1108         printf(" %5s alloc (KB) | Hits      | Order | Mig.type | %-*s | Callsite\n",
1109                live_page ? "Live" : "Total", gfp_len, "GFP flags");
1110         printf("%.105s\n", graph_dotted_line);
1111 
1112         while (next && n_lines--) {
1113                 struct page_stat *data;
1114                 struct symbol *sym;
1115                 struct map *map;
1116                 char buf[32];
1117                 char *caller = buf;
1118 
1119                 data = rb_entry(next, struct page_stat, node);
1120                 sym = machine__find_kernel_symbol(machine, data->callsite, &map);
1121                 if (sym)
1122                         caller = sym->name;
1123                 else
1124                         scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
1125 
1126                 printf(" %'16llu | %'9d | %5d | %8s | %-*s | %s\n",
1127                        (unsigned long long)data->alloc_bytes / 1024,
1128                        data->nr_alloc, data->order,
1129                        migrate_type_str[data->migrate_type],
1130                        gfp_len, compact_gfp_string(data->gfp_flags), caller);
1131 
1132                 next = rb_next(next);
1133         }
1134 
1135         if (n_lines == -1) {
1136                 printf(" ...              | ...       | ...   | ...      | %-*s | ...\n",
1137                        gfp_len, "...");
1138         }
1139 
1140         printf("%.105s\n", graph_dotted_line);
1141 }
1142 
1143 static void print_gfp_flags(void)
1144 {
1145         int i;
1146 
1147         printf("#\n");
1148         printf("# GFP flags\n");
1149         printf("# ---------\n");
1150         for (i = 0; i < nr_gfps; i++) {
1151                 printf("# %08x: %*s: %s\n", gfps[i].flags,
1152                        (int) max_gfp_len, gfps[i].compact_str,
1153                        gfps[i].human_readable);
1154         }
1155 }
1156 
1157 static void print_slab_summary(void)
1158 {
1159         printf("\nSUMMARY (SLAB allocator)");
1160         printf("\n========================\n");
1161         printf("Total bytes requested: %'lu\n", total_requested);
1162         printf("Total bytes allocated: %'lu\n", total_allocated);
1163         printf("Total bytes freed:     %'lu\n", total_freed);
1164         if (total_allocated > total_freed) {
1165                 printf("Net total bytes allocated: %'lu\n",
1166                 total_allocated - total_freed);
1167         }
1168         printf("Total bytes wasted on internal fragmentation: %'lu\n",
1169                total_allocated - total_requested);
1170         printf("Internal fragmentation: %f%%\n",
1171                fragmentation(total_requested, total_allocated));
1172         printf("Cross CPU allocations: %'lu/%'lu\n", nr_cross_allocs, nr_allocs);
1173 }
1174 
1175 static void print_page_summary(void)
1176 {
1177         int o, m;
1178         u64 nr_alloc_freed = nr_page_frees - nr_page_nomatch;
1179         u64 total_alloc_freed_bytes = total_page_free_bytes - total_page_nomatch_bytes;
1180 
1181         printf("\nSUMMARY (page allocator)");
1182         printf("\n========================\n");
1183         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total allocation requests",
1184                nr_page_allocs, total_page_alloc_bytes / 1024);
1185         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total free requests",
1186                nr_page_frees, total_page_free_bytes / 1024);
1187         printf("\n");
1188 
1189         printf("%-30s: %'16"PRIu64"   [ %'16"PRIu64" KB ]\n", "Total alloc+freed requests",
1190                nr_alloc_freed, (total_alloc_freed_bytes) / 1024);
1191         printf("%-30s: %'16"PRIu64"   [ %'16"PRIu64" KB ]\n", "Total alloc-only requests",
1192                nr_page_allocs - nr_alloc_freed,
1193                (total_page_alloc_bytes - total_alloc_freed_bytes) / 1024);
1194         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total free-only requests",
1195                nr_page_nomatch, total_page_nomatch_bytes / 1024);
1196         printf("\n");
1197 
1198         printf("%-30s: %'16lu   [ %'16"PRIu64" KB ]\n", "Total allocation failures",
1199                nr_page_fails, total_page_fail_bytes / 1024);
1200         printf("\n");
1201 
1202         printf("%5s  %12s  %12s  %12s  %12s  %12s\n", "Order",  "Unmovable",
1203                "Reclaimable", "Movable", "Reserved", "CMA/Isolated");
1204         printf("%.5s  %.12s  %.12s  %.12s  %.12s  %.12s\n", graph_dotted_line,
1205                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1206                graph_dotted_line, graph_dotted_line);
1207 
1208         for (o = 0; o < MAX_PAGE_ORDER; o++) {
1209                 printf("%5d", o);
1210                 for (m = 0; m < MAX_MIGRATE_TYPES - 1; m++) {
1211                         if (order_stats[o][m])
1212                                 printf("  %'12d", order_stats[o][m]);
1213                         else
1214                                 printf("  %12c", '.');
1215                 }
1216                 printf("\n");
1217         }
1218 }
1219 
1220 static void print_slab_result(struct perf_session *session)
1221 {
1222         if (caller_flag)
1223                 __print_slab_result(&root_caller_sorted, session, caller_lines, 1);
1224         if (alloc_flag)
1225                 __print_slab_result(&root_alloc_sorted, session, alloc_lines, 0);
1226         print_slab_summary();
1227 }
1228 
1229 static void print_page_result(struct perf_session *session)
1230 {
1231         if (caller_flag || alloc_flag)
1232                 print_gfp_flags();
1233         if (caller_flag)
1234                 __print_page_caller_result(session, caller_lines);
1235         if (alloc_flag)
1236                 __print_page_alloc_result(session, alloc_lines);
1237         print_page_summary();
1238 }
1239 
1240 static void print_result(struct perf_session *session)
1241 {
1242         if (kmem_slab)
1243                 print_slab_result(session);
1244         if (kmem_page)
1245                 print_page_result(session);
1246 }
1247 
1248 static LIST_HEAD(slab_caller_sort);
1249 static LIST_HEAD(slab_alloc_sort);
1250 static LIST_HEAD(page_caller_sort);
1251 static LIST_HEAD(page_alloc_sort);
1252 
1253 static void sort_slab_insert(struct rb_root *root, struct alloc_stat *data,
1254                              struct list_head *sort_list)
1255 {
1256         struct rb_node **new = &(root->rb_node);
1257         struct rb_node *parent = NULL;
1258         struct sort_dimension *sort;
1259 
1260         while (*new) {
1261                 struct alloc_stat *this;
1262                 int cmp = 0;
1263 
1264                 this = rb_entry(*new, struct alloc_stat, node);
1265                 parent = *new;
1266 
1267                 list_for_each_entry(sort, sort_list, list) {
1268                         cmp = sort->cmp(data, this);
1269                         if (cmp)
1270                                 break;
1271                 }
1272 
1273                 if (cmp > 0)
1274                         new = &((*new)->rb_left);
1275                 else
1276                         new = &((*new)->rb_right);
1277         }
1278 
1279         rb_link_node(&data->node, parent, new);
1280         rb_insert_color(&data->node, root);
1281 }
1282 
1283 static void __sort_slab_result(struct rb_root *root, struct rb_root *root_sorted,
1284                                struct list_head *sort_list)
1285 {
1286         struct rb_node *node;
1287         struct alloc_stat *data;
1288 
1289         for (;;) {
1290                 node = rb_first(root);
1291                 if (!node)
1292                         break;
1293 
1294                 rb_erase(node, root);
1295                 data = rb_entry(node, struct alloc_stat, node);
1296                 sort_slab_insert(root_sorted, data, sort_list);
1297         }
1298 }
1299 
1300 static void sort_page_insert(struct rb_root *root, struct page_stat *data,
1301                              struct list_head *sort_list)
1302 {
1303         struct rb_node **new = &root->rb_node;
1304         struct rb_node *parent = NULL;
1305         struct sort_dimension *sort;
1306 
1307         while (*new) {
1308                 struct page_stat *this;
1309                 int cmp = 0;
1310 
1311                 this = rb_entry(*new, struct page_stat, node);
1312                 parent = *new;
1313 
1314                 list_for_each_entry(sort, sort_list, list) {
1315                         cmp = sort->cmp(data, this);
1316                         if (cmp)
1317                                 break;
1318                 }
1319 
1320                 if (cmp > 0)
1321                         new = &parent->rb_left;
1322                 else
1323                         new = &parent->rb_right;
1324         }
1325 
1326         rb_link_node(&data->node, parent, new);
1327         rb_insert_color(&data->node, root);
1328 }
1329 
1330 static void __sort_page_result(struct rb_root *root, struct rb_root *root_sorted,
1331                                struct list_head *sort_list)
1332 {
1333         struct rb_node *node;
1334         struct page_stat *data;
1335 
1336         for (;;) {
1337                 node = rb_first(root);
1338                 if (!node)
1339                         break;
1340 
1341                 rb_erase(node, root);
1342                 data = rb_entry(node, struct page_stat, node);
1343                 sort_page_insert(root_sorted, data, sort_list);
1344         }
1345 }
1346 
1347 static void sort_result(void)
1348 {
1349         if (kmem_slab) {
1350                 __sort_slab_result(&root_alloc_stat, &root_alloc_sorted,
1351                                    &slab_alloc_sort);
1352                 __sort_slab_result(&root_caller_stat, &root_caller_sorted,
1353                                    &slab_caller_sort);
1354         }
1355         if (kmem_page) {
1356                 if (live_page)
1357                         __sort_page_result(&page_live_tree, &page_alloc_sorted,
1358                                            &page_alloc_sort);
1359                 else
1360                         __sort_page_result(&page_alloc_tree, &page_alloc_sorted,
1361                                            &page_alloc_sort);
1362 
1363                 __sort_page_result(&page_caller_tree, &page_caller_sorted,
1364                                    &page_caller_sort);
1365         }
1366 }
1367 
1368 static int __cmd_kmem(struct perf_session *session)
1369 {
1370         int err = -EINVAL;
1371         struct evsel *evsel;
1372         const struct evsel_str_handler kmem_tracepoints[] = {
1373                 /* slab allocator */
1374                 { "kmem:kmalloc",               perf_evsel__process_alloc_event, },
1375                 { "kmem:kmem_cache_alloc",      perf_evsel__process_alloc_event, },
1376                 { "kmem:kmalloc_node",          perf_evsel__process_alloc_node_event, },
1377                 { "kmem:kmem_cache_alloc_node", perf_evsel__process_alloc_node_event, },
1378                 { "kmem:kfree",                 perf_evsel__process_free_event, },
1379                 { "kmem:kmem_cache_free",       perf_evsel__process_free_event, },
1380                 /* page allocator */
1381                 { "kmem:mm_page_alloc",         perf_evsel__process_page_alloc_event, },
1382                 { "kmem:mm_page_free",          perf_evsel__process_page_free_event, },
1383         };
1384 
1385         if (!perf_session__has_traces(session, "kmem record"))
1386                 goto out;
1387 
1388         if (perf_session__set_tracepoints_handlers(session, kmem_tracepoints)) {
1389                 pr_err("Initializing perf session tracepoint handlers failed\n");
1390                 goto out;
1391         }
1392 
1393         evlist__for_each_entry(session->evlist, evsel) {
1394                 if (!strcmp(perf_evsel__name(evsel), "kmem:mm_page_alloc") &&
1395                     perf_evsel__field(evsel, "pfn")) {
1396                         use_pfn = true;
1397                         break;
1398                 }
1399         }
1400 
1401         setup_pager();
1402         err = perf_session__process_events(session);
1403         if (err != 0) {
1404                 pr_err("error during process events: %d\n", err);
1405                 goto out;
1406         }
1407         sort_result();
1408         print_result(session);
1409 out:
1410         return err;
1411 }
1412 
1413 /* slab sort keys */
1414 static int ptr_cmp(void *a, void *b)
1415 {
1416         struct alloc_stat *l = a;
1417         struct alloc_stat *r = b;
1418 
1419         if (l->ptr < r->ptr)
1420                 return -1;
1421         else if (l->ptr > r->ptr)
1422                 return 1;
1423         return 0;
1424 }
1425 
1426 static struct sort_dimension ptr_sort_dimension = {
1427         .name   = "ptr",
1428         .cmp    = ptr_cmp,
1429 };
1430 
1431 static int slab_callsite_cmp(void *a, void *b)
1432 {
1433         struct alloc_stat *l = a;
1434         struct alloc_stat *r = b;
1435 
1436         if (l->call_site < r->call_site)
1437                 return -1;
1438         else if (l->call_site > r->call_site)
1439                 return 1;
1440         return 0;
1441 }
1442 
1443 static struct sort_dimension callsite_sort_dimension = {
1444         .name   = "callsite",
1445         .cmp    = slab_callsite_cmp,
1446 };
1447 
1448 static int hit_cmp(void *a, void *b)
1449 {
1450         struct alloc_stat *l = a;
1451         struct alloc_stat *r = b;
1452 
1453         if (l->hit < r->hit)
1454                 return -1;
1455         else if (l->hit > r->hit)
1456                 return 1;
1457         return 0;
1458 }
1459 
1460 static struct sort_dimension hit_sort_dimension = {
1461         .name   = "hit",
1462         .cmp    = hit_cmp,
1463 };
1464 
1465 static int bytes_cmp(void *a, void *b)
1466 {
1467         struct alloc_stat *l = a;
1468         struct alloc_stat *r = b;
1469 
1470         if (l->bytes_alloc < r->bytes_alloc)
1471                 return -1;
1472         else if (l->bytes_alloc > r->bytes_alloc)
1473                 return 1;
1474         return 0;
1475 }
1476 
1477 static struct sort_dimension bytes_sort_dimension = {
1478         .name   = "bytes",
1479         .cmp    = bytes_cmp,
1480 };
1481 
1482 static int frag_cmp(void *a, void *b)
1483 {
1484         double x, y;
1485         struct alloc_stat *l = a;
1486         struct alloc_stat *r = b;
1487 
1488         x = fragmentation(l->bytes_req, l->bytes_alloc);
1489         y = fragmentation(r->bytes_req, r->bytes_alloc);
1490 
1491         if (x < y)
1492                 return -1;
1493         else if (x > y)
1494                 return 1;
1495         return 0;
1496 }
1497 
1498 static struct sort_dimension frag_sort_dimension = {
1499         .name   = "frag",
1500         .cmp    = frag_cmp,
1501 };
1502 
1503 static int pingpong_cmp(void *a, void *b)
1504 {
1505         struct alloc_stat *l = a;
1506         struct alloc_stat *r = b;
1507 
1508         if (l->pingpong < r->pingpong)
1509                 return -1;
1510         else if (l->pingpong > r->pingpong)
1511                 return 1;
1512         return 0;
1513 }
1514 
1515 static struct sort_dimension pingpong_sort_dimension = {
1516         .name   = "pingpong",
1517         .cmp    = pingpong_cmp,
1518 };
1519 
1520 /* page sort keys */
1521 static int page_cmp(void *a, void *b)
1522 {
1523         struct page_stat *l = a;
1524         struct page_stat *r = b;
1525 
1526         if (l->page < r->page)
1527                 return -1;
1528         else if (l->page > r->page)
1529                 return 1;
1530         return 0;
1531 }
1532 
1533 static struct sort_dimension page_sort_dimension = {
1534         .name   = "page",
1535         .cmp    = page_cmp,
1536 };
1537 
1538 static int page_callsite_cmp(void *a, void *b)
1539 {
1540         struct page_stat *l = a;
1541         struct page_stat *r = b;
1542 
1543         if (l->callsite < r->callsite)
1544                 return -1;
1545         else if (l->callsite > r->callsite)
1546                 return 1;
1547         return 0;
1548 }
1549 
1550 static struct sort_dimension page_callsite_sort_dimension = {
1551         .name   = "callsite",
1552         .cmp    = page_callsite_cmp,
1553 };
1554 
1555 static int page_hit_cmp(void *a, void *b)
1556 {
1557         struct page_stat *l = a;
1558         struct page_stat *r = b;
1559 
1560         if (l->nr_alloc < r->nr_alloc)
1561                 return -1;
1562         else if (l->nr_alloc > r->nr_alloc)
1563                 return 1;
1564         return 0;
1565 }
1566 
1567 static struct sort_dimension page_hit_sort_dimension = {
1568         .name   = "hit",
1569         .cmp    = page_hit_cmp,
1570 };
1571 
1572 static int page_bytes_cmp(void *a, void *b)
1573 {
1574         struct page_stat *l = a;
1575         struct page_stat *r = b;
1576 
1577         if (l->alloc_bytes < r->alloc_bytes)
1578                 return -1;
1579         else if (l->alloc_bytes > r->alloc_bytes)
1580                 return 1;
1581         return 0;
1582 }
1583 
1584 static struct sort_dimension page_bytes_sort_dimension = {
1585         .name   = "bytes",
1586         .cmp    = page_bytes_cmp,
1587 };
1588 
1589 static int page_order_cmp(void *a, void *b)
1590 {
1591         struct page_stat *l = a;
1592         struct page_stat *r = b;
1593 
1594         if (l->order < r->order)
1595                 return -1;
1596         else if (l->order > r->order)
1597                 return 1;
1598         return 0;
1599 }
1600 
1601 static struct sort_dimension page_order_sort_dimension = {
1602         .name   = "order",
1603         .cmp    = page_order_cmp,
1604 };
1605 
1606 static int migrate_type_cmp(void *a, void *b)
1607 {
1608         struct page_stat *l = a;
1609         struct page_stat *r = b;
1610 
1611         /* for internal use to find free'd page */
1612         if (l->migrate_type == -1U)
1613                 return 0;
1614 
1615         if (l->migrate_type < r->migrate_type)
1616                 return -1;
1617         else if (l->migrate_type > r->migrate_type)
1618                 return 1;
1619         return 0;
1620 }
1621 
1622 static struct sort_dimension migrate_type_sort_dimension = {
1623         .name   = "migtype",
1624         .cmp    = migrate_type_cmp,
1625 };
1626 
1627 static int gfp_flags_cmp(void *a, void *b)
1628 {
1629         struct page_stat *l = a;
1630         struct page_stat *r = b;
1631 
1632         /* for internal use to find free'd page */
1633         if (l->gfp_flags == -1U)
1634                 return 0;
1635 
1636         if (l->gfp_flags < r->gfp_flags)
1637                 return -1;
1638         else if (l->gfp_flags > r->gfp_flags)
1639                 return 1;
1640         return 0;
1641 }
1642 
1643 static struct sort_dimension gfp_flags_sort_dimension = {
1644         .name   = "gfp",
1645         .cmp    = gfp_flags_cmp,
1646 };
1647 
1648 static struct sort_dimension *slab_sorts[] = {
1649         &ptr_sort_dimension,
1650         &callsite_sort_dimension,
1651         &hit_sort_dimension,
1652         &bytes_sort_dimension,
1653         &frag_sort_dimension,
1654         &pingpong_sort_dimension,
1655 };
1656 
1657 static struct sort_dimension *page_sorts[] = {
1658         &page_sort_dimension,
1659         &page_callsite_sort_dimension,
1660         &page_hit_sort_dimension,
1661         &page_bytes_sort_dimension,
1662         &page_order_sort_dimension,
1663         &migrate_type_sort_dimension,
1664         &gfp_flags_sort_dimension,
1665 };
1666 
1667 static int slab_sort_dimension__add(const char *tok, struct list_head *list)
1668 {
1669         struct sort_dimension *sort;
1670         int i;
1671 
1672         for (i = 0; i < (int)ARRAY_SIZE(slab_sorts); i++) {
1673                 if (!strcmp(slab_sorts[i]->name, tok)) {
1674                         sort = memdup(slab_sorts[i], sizeof(*slab_sorts[i]));
1675                         if (!sort) {
1676                                 pr_err("%s: memdup failed\n", __func__);
1677                                 return -1;
1678                         }
1679                         list_add_tail(&sort->list, list);
1680                         return 0;
1681                 }
1682         }
1683 
1684         return -1;
1685 }
1686 
1687 static int page_sort_dimension__add(const char *tok, struct list_head *list)
1688 {
1689         struct sort_dimension *sort;
1690         int i;
1691 
1692         for (i = 0; i < (int)ARRAY_SIZE(page_sorts); i++) {
1693                 if (!strcmp(page_sorts[i]->name, tok)) {
1694                         sort = memdup(page_sorts[i], sizeof(*page_sorts[i]));
1695                         if (!sort) {
1696                                 pr_err("%s: memdup failed\n", __func__);
1697                                 return -1;
1698                         }
1699                         list_add_tail(&sort->list, list);
1700                         return 0;
1701                 }
1702         }
1703 
1704         return -1;
1705 }
1706 
1707 static int setup_slab_sorting(struct list_head *sort_list, const char *arg)
1708 {
1709         char *tok;
1710         char *str = strdup(arg);
1711         char *pos = str;
1712 
1713         if (!str) {
1714                 pr_err("%s: strdup failed\n", __func__);
1715                 return -1;
1716         }
1717 
1718         while (true) {
1719                 tok = strsep(&pos, ",");
1720                 if (!tok)
1721                         break;
1722                 if (slab_sort_dimension__add(tok, sort_list) < 0) {
1723                         pr_err("Unknown slab --sort key: '%s'", tok);
1724                         free(str);
1725                         return -1;
1726                 }
1727         }
1728 
1729         free(str);
1730         return 0;
1731 }
1732 
1733 static int setup_page_sorting(struct list_head *sort_list, const char *arg)
1734 {
1735         char *tok;
1736         char *str = strdup(arg);
1737         char *pos = str;
1738 
1739         if (!str) {
1740                 pr_err("%s: strdup failed\n", __func__);
1741                 return -1;
1742         }
1743 
1744         while (true) {
1745                 tok = strsep(&pos, ",");
1746                 if (!tok)
1747                         break;
1748                 if (page_sort_dimension__add(tok, sort_list) < 0) {
1749                         pr_err("Unknown page --sort key: '%s'", tok);
1750                         free(str);
1751                         return -1;
1752                 }
1753         }
1754 
1755         free(str);
1756         return 0;
1757 }
1758 
1759 static int parse_sort_opt(const struct option *opt __maybe_unused,
1760                           const char *arg, int unset __maybe_unused)
1761 {
1762         if (!arg)
1763                 return -1;
1764 
1765         if (kmem_page > kmem_slab ||
1766             (kmem_page == 0 && kmem_slab == 0 && kmem_default == KMEM_PAGE)) {
1767                 if (caller_flag > alloc_flag)
1768                         return setup_page_sorting(&page_caller_sort, arg);
1769                 else
1770                         return setup_page_sorting(&page_alloc_sort, arg);
1771         } else {
1772                 if (caller_flag > alloc_flag)
1773                         return setup_slab_sorting(&slab_caller_sort, arg);
1774                 else
1775                         return setup_slab_sorting(&slab_alloc_sort, arg);
1776         }
1777 
1778         return 0;
1779 }
1780 
1781 static int parse_caller_opt(const struct option *opt __maybe_unused,
1782                             const char *arg __maybe_unused,
1783                             int unset __maybe_unused)
1784 {
1785         caller_flag = (alloc_flag + 1);
1786         return 0;
1787 }
1788 
1789 static int parse_alloc_opt(const struct option *opt __maybe_unused,
1790                            const char *arg __maybe_unused,
1791                            int unset __maybe_unused)
1792 {
1793         alloc_flag = (caller_flag + 1);
1794         return 0;
1795 }
1796 
1797 static int parse_slab_opt(const struct option *opt __maybe_unused,
1798                           const char *arg __maybe_unused,
1799                           int unset __maybe_unused)
1800 {
1801         kmem_slab = (kmem_page + 1);
1802         return 0;
1803 }
1804 
1805 static int parse_page_opt(const struct option *opt __maybe_unused,
1806                           const char *arg __maybe_unused,
1807                           int unset __maybe_unused)
1808 {
1809         kmem_page = (kmem_slab + 1);
1810         return 0;
1811 }
1812 
1813 static int parse_line_opt(const struct option *opt __maybe_unused,
1814                           const char *arg, int unset __maybe_unused)
1815 {
1816         int lines;
1817 
1818         if (!arg)
1819                 return -1;
1820 
1821         lines = strtoul(arg, NULL, 10);
1822 
1823         if (caller_flag > alloc_flag)
1824                 caller_lines = lines;
1825         else
1826                 alloc_lines = lines;
1827 
1828         return 0;
1829 }
1830 
1831 static int __cmd_record(int argc, const char **argv)
1832 {
1833         const char * const record_args[] = {
1834         "record", "-a", "-R", "-c", "1",
1835         };
1836         const char * const slab_events[] = {
1837         "-e", "kmem:kmalloc",
1838         "-e", "kmem:kmalloc_node",
1839         "-e", "kmem:kfree",
1840         "-e", "kmem:kmem_cache_alloc",
1841         "-e", "kmem:kmem_cache_alloc_node",
1842         "-e", "kmem:kmem_cache_free",
1843         };
1844         const char * const page_events[] = {
1845         "-e", "kmem:mm_page_alloc",
1846         "-e", "kmem:mm_page_free",
1847         };
1848         unsigned int rec_argc, i, j;
1849         const char **rec_argv;
1850 
1851         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1852         if (kmem_slab)
1853                 rec_argc += ARRAY_SIZE(slab_events);
1854         if (kmem_page)
1855                 rec_argc += ARRAY_SIZE(page_events) + 1; /* for -g */
1856 
1857         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1858 
1859         if (rec_argv == NULL)
1860                 return -ENOMEM;
1861 
1862         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1863                 rec_argv[i] = strdup(record_args[i]);
1864 
1865         if (kmem_slab) {
1866                 for (j = 0; j < ARRAY_SIZE(slab_events); j++, i++)
1867                         rec_argv[i] = strdup(slab_events[j]);
1868         }
1869         if (kmem_page) {
1870                 rec_argv[i++] = strdup("-g");
1871 
1872                 for (j = 0; j < ARRAY_SIZE(page_events); j++, i++)
1873                         rec_argv[i] = strdup(page_events[j]);
1874         }
1875 
1876         for (j = 1; j < (unsigned int)argc; j++, i++)
1877                 rec_argv[i] = argv[j];
1878 
1879         return cmd_record(i, rec_argv);
1880 }
1881 
1882 static int kmem_config(const char *var, const char *value, void *cb __maybe_unused)
1883 {
1884         if (!strcmp(var, "kmem.default")) {
1885                 if (!strcmp(value, "slab"))
1886                         kmem_default = KMEM_SLAB;
1887                 else if (!strcmp(value, "page"))
1888                         kmem_default = KMEM_PAGE;
1889                 else
1890                         pr_err("invalid default value ('slab' or 'page' required): %s\n",
1891                                value);
1892                 return 0;
1893         }
1894 
1895         return 0;
1896 }
1897 
1898 int cmd_kmem(int argc, const char **argv)
1899 {
1900         const char * const default_slab_sort = "frag,hit,bytes";
1901         const char * const default_page_sort = "bytes,hit";
1902         struct perf_data data = {
1903                 .mode = PERF_DATA_MODE_READ,
1904         };
1905         const struct option kmem_options[] = {
1906         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1907         OPT_INCR('v', "verbose", &verbose,
1908                     "be more verbose (show symbol address, etc)"),
1909         OPT_CALLBACK_NOOPT(0, "caller", NULL, NULL,
1910                            "show per-callsite statistics", parse_caller_opt),
1911         OPT_CALLBACK_NOOPT(0, "alloc", NULL, NULL,
1912                            "show per-allocation statistics", parse_alloc_opt),
1913         OPT_CALLBACK('s', "sort", NULL, "key[,key2...]",
1914                      "sort by keys: ptr, callsite, bytes, hit, pingpong, frag, "
1915                      "page, order, migtype, gfp", parse_sort_opt),
1916         OPT_CALLBACK('l', "line", NULL, "num", "show n lines", parse_line_opt),
1917         OPT_BOOLEAN(0, "raw-ip", &raw_ip, "show raw ip instead of symbol"),
1918         OPT_BOOLEAN('f', "force", &data.force, "don't complain, do it"),
1919         OPT_CALLBACK_NOOPT(0, "slab", NULL, NULL, "Analyze slab allocator",
1920                            parse_slab_opt),
1921         OPT_CALLBACK_NOOPT(0, "page", NULL, NULL, "Analyze page allocator",
1922                            parse_page_opt),
1923         OPT_BOOLEAN(0, "live", &live_page, "Show live page stat"),
1924         OPT_STRING(0, "time", &time_str, "str",
1925                    "Time span of interest (start,stop)"),
1926         OPT_END()
1927         };
1928         const char *const kmem_subcommands[] = { "record", "stat", NULL };
1929         const char *kmem_usage[] = {
1930                 NULL,
1931                 NULL
1932         };
1933         struct perf_session *session;
1934         static const char errmsg[] = "No %s allocation events found.  Have you run 'perf kmem record --%s'?\n";
1935         int ret = perf_config(kmem_config, NULL);
1936 
1937         if (ret)
1938                 return ret;
1939 
1940         argc = parse_options_subcommand(argc, argv, kmem_options,
1941                                         kmem_subcommands, kmem_usage, 0);
1942 
1943         if (!argc)
1944                 usage_with_options(kmem_usage, kmem_options);
1945 
1946         if (kmem_slab == 0 && kmem_page == 0) {
1947                 if (kmem_default == KMEM_SLAB)
1948                         kmem_slab = 1;
1949                 else
1950                         kmem_page = 1;
1951         }
1952 
1953         if (!strncmp(argv[0], "rec", 3)) {
1954                 symbol__init(NULL);
1955                 return __cmd_record(argc, argv);
1956         }
1957 
1958         data.path = input_name;
1959 
1960         kmem_session = session = perf_session__new(&data, false, &perf_kmem);
1961         if (IS_ERR(session))
1962                 return PTR_ERR(session);
1963 
1964         ret = -1;
1965 
1966         if (kmem_slab) {
1967                 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
1968                                                           "kmem:kmalloc")) {
1969                         pr_err(errmsg, "slab", "slab");
1970                         goto out_delete;
1971                 }
1972         }
1973 
1974         if (kmem_page) {
1975                 struct evsel *evsel;
1976 
1977                 evsel = perf_evlist__find_tracepoint_by_name(session->evlist,
1978                                                              "kmem:mm_page_alloc");
1979                 if (evsel == NULL) {
1980                         pr_err(errmsg, "page", "page");
1981                         goto out_delete;
1982                 }
1983 
1984                 kmem_page_size = tep_get_page_size(evsel->tp_format->tep);
1985                 symbol_conf.use_callchain = true;
1986         }
1987 
1988         symbol__init(&session->header.env);
1989 
1990         if (perf_time__parse_str(&ptime, time_str) != 0) {
1991                 pr_err("Invalid time string\n");
1992                 ret = -EINVAL;
1993                 goto out_delete;
1994         }
1995 
1996         if (!strcmp(argv[0], "stat")) {
1997                 setlocale(LC_ALL, "");
1998 
1999                 if (cpu__setup_cpunode_map())
2000                         goto out_delete;
2001 
2002                 if (list_empty(&slab_caller_sort))
2003                         setup_slab_sorting(&slab_caller_sort, default_slab_sort);
2004                 if (list_empty(&slab_alloc_sort))
2005                         setup_slab_sorting(&slab_alloc_sort, default_slab_sort);
2006                 if (list_empty(&page_caller_sort))
2007                         setup_page_sorting(&page_caller_sort, default_page_sort);
2008                 if (list_empty(&page_alloc_sort))
2009                         setup_page_sorting(&page_alloc_sort, default_page_sort);
2010 
2011                 if (kmem_page) {
2012                         setup_page_sorting(&page_alloc_sort_input,
2013                                            "page,order,migtype,gfp");
2014                         setup_page_sorting(&page_caller_sort_input,
2015                                            "callsite,order,migtype,gfp");
2016                 }
2017                 ret = __cmd_kmem(session);
2018         } else
2019                 usage_with_options(kmem_usage, kmem_options);
2020 
2021 out_delete:
2022         perf_session__delete(session);
2023 
2024         return ret;
2025 }
2026 
2027 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp