~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/builtin-sched.c

Version: ~ [ linux-6.2-rc3 ] ~ [ linux-6.1.5 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.87 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.162 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.228 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.269 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.302 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #include "builtin.h"
  2 #include "perf.h"
  3 
  4 #include "util/util.h"
  5 #include "util/evlist.h"
  6 #include "util/cache.h"
  7 #include "util/evsel.h"
  8 #include "util/symbol.h"
  9 #include "util/thread.h"
 10 #include "util/header.h"
 11 #include "util/session.h"
 12 #include "util/tool.h"
 13 #include "util/cloexec.h"
 14 
 15 #include "util/parse-options.h"
 16 #include "util/trace-event.h"
 17 
 18 #include "util/debug.h"
 19 
 20 #include <sys/prctl.h>
 21 #include <sys/resource.h>
 22 
 23 #include <semaphore.h>
 24 #include <pthread.h>
 25 #include <math.h>
 26 
 27 #define PR_SET_NAME             15               /* Set process name */
 28 #define MAX_CPUS                4096
 29 #define COMM_LEN                20
 30 #define SYM_LEN                 129
 31 #define MAX_PID                 65536
 32 
 33 struct sched_atom;
 34 
 35 struct task_desc {
 36         unsigned long           nr;
 37         unsigned long           pid;
 38         char                    comm[COMM_LEN];
 39 
 40         unsigned long           nr_events;
 41         unsigned long           curr_event;
 42         struct sched_atom       **atoms;
 43 
 44         pthread_t               thread;
 45         sem_t                   sleep_sem;
 46 
 47         sem_t                   ready_for_work;
 48         sem_t                   work_done_sem;
 49 
 50         u64                     cpu_usage;
 51 };
 52 
 53 enum sched_event_type {
 54         SCHED_EVENT_RUN,
 55         SCHED_EVENT_SLEEP,
 56         SCHED_EVENT_WAKEUP,
 57         SCHED_EVENT_MIGRATION,
 58 };
 59 
 60 struct sched_atom {
 61         enum sched_event_type   type;
 62         int                     specific_wait;
 63         u64                     timestamp;
 64         u64                     duration;
 65         unsigned long           nr;
 66         sem_t                   *wait_sem;
 67         struct task_desc        *wakee;
 68 };
 69 
 70 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 71 
 72 enum thread_state {
 73         THREAD_SLEEPING = 0,
 74         THREAD_WAIT_CPU,
 75         THREAD_SCHED_IN,
 76         THREAD_IGNORE
 77 };
 78 
 79 struct work_atom {
 80         struct list_head        list;
 81         enum thread_state       state;
 82         u64                     sched_out_time;
 83         u64                     wake_up_time;
 84         u64                     sched_in_time;
 85         u64                     runtime;
 86 };
 87 
 88 struct work_atoms {
 89         struct list_head        work_list;
 90         struct thread           *thread;
 91         struct rb_node          node;
 92         u64                     max_lat;
 93         u64                     max_lat_at;
 94         u64                     total_lat;
 95         u64                     nb_atoms;
 96         u64                     total_runtime;
 97 };
 98 
 99 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
100 
101 struct perf_sched;
102 
103 struct trace_sched_handler {
104         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
105                             struct perf_sample *sample, struct machine *machine);
106 
107         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
108                              struct perf_sample *sample, struct machine *machine);
109 
110         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
111                             struct perf_sample *sample, struct machine *machine);
112 
113         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
114         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
115                           struct machine *machine);
116 
117         int (*migrate_task_event)(struct perf_sched *sched,
118                                   struct perf_evsel *evsel,
119                                   struct perf_sample *sample,
120                                   struct machine *machine);
121 };
122 
123 struct perf_sched {
124         struct perf_tool tool;
125         const char       *sort_order;
126         unsigned long    nr_tasks;
127         struct task_desc *pid_to_task[MAX_PID];
128         struct task_desc **tasks;
129         const struct trace_sched_handler *tp_handler;
130         pthread_mutex_t  start_work_mutex;
131         pthread_mutex_t  work_done_wait_mutex;
132         int              profile_cpu;
133 /*
134  * Track the current task - that way we can know whether there's any
135  * weird events, such as a task being switched away that is not current.
136  */
137         int              max_cpu;
138         u32              curr_pid[MAX_CPUS];
139         struct thread    *curr_thread[MAX_CPUS];
140         char             next_shortname1;
141         char             next_shortname2;
142         unsigned int     replay_repeat;
143         unsigned long    nr_run_events;
144         unsigned long    nr_sleep_events;
145         unsigned long    nr_wakeup_events;
146         unsigned long    nr_sleep_corrections;
147         unsigned long    nr_run_events_optimized;
148         unsigned long    targetless_wakeups;
149         unsigned long    multitarget_wakeups;
150         unsigned long    nr_runs;
151         unsigned long    nr_timestamps;
152         unsigned long    nr_unordered_timestamps;
153         unsigned long    nr_context_switch_bugs;
154         unsigned long    nr_events;
155         unsigned long    nr_lost_chunks;
156         unsigned long    nr_lost_events;
157         u64              run_measurement_overhead;
158         u64              sleep_measurement_overhead;
159         u64              start_time;
160         u64              cpu_usage;
161         u64              runavg_cpu_usage;
162         u64              parent_cpu_usage;
163         u64              runavg_parent_cpu_usage;
164         u64              sum_runtime;
165         u64              sum_fluct;
166         u64              run_avg;
167         u64              all_runtime;
168         u64              all_count;
169         u64              cpu_last_switched[MAX_CPUS];
170         struct rb_root   atom_root, sorted_atom_root;
171         struct list_head sort_list, cmp_pid;
172 };
173 
174 static u64 get_nsecs(void)
175 {
176         struct timespec ts;
177 
178         clock_gettime(CLOCK_MONOTONIC, &ts);
179 
180         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181 }
182 
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184 {
185         u64 T0 = get_nsecs(), T1;
186 
187         do {
188                 T1 = get_nsecs();
189         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190 }
191 
192 static void sleep_nsecs(u64 nsecs)
193 {
194         struct timespec ts;
195 
196         ts.tv_nsec = nsecs % 999999999;
197         ts.tv_sec = nsecs / 999999999;
198 
199         nanosleep(&ts, NULL);
200 }
201 
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203 {
204         u64 T0, T1, delta, min_delta = 1000000000ULL;
205         int i;
206 
207         for (i = 0; i < 10; i++) {
208                 T0 = get_nsecs();
209                 burn_nsecs(sched, 0);
210                 T1 = get_nsecs();
211                 delta = T1-T0;
212                 min_delta = min(min_delta, delta);
213         }
214         sched->run_measurement_overhead = min_delta;
215 
216         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217 }
218 
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220 {
221         u64 T0, T1, delta, min_delta = 1000000000ULL;
222         int i;
223 
224         for (i = 0; i < 10; i++) {
225                 T0 = get_nsecs();
226                 sleep_nsecs(10000);
227                 T1 = get_nsecs();
228                 delta = T1-T0;
229                 min_delta = min(min_delta, delta);
230         }
231         min_delta -= 10000;
232         sched->sleep_measurement_overhead = min_delta;
233 
234         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235 }
236 
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
239 {
240         struct sched_atom *event = zalloc(sizeof(*event));
241         unsigned long idx = task->nr_events;
242         size_t size;
243 
244         event->timestamp = timestamp;
245         event->nr = idx;
246 
247         task->nr_events++;
248         size = sizeof(struct sched_atom *) * task->nr_events;
249         task->atoms = realloc(task->atoms, size);
250         BUG_ON(!task->atoms);
251 
252         task->atoms[idx] = event;
253 
254         return event;
255 }
256 
257 static struct sched_atom *last_event(struct task_desc *task)
258 {
259         if (!task->nr_events)
260                 return NULL;
261 
262         return task->atoms[task->nr_events - 1];
263 }
264 
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266                                 u64 timestamp, u64 duration)
267 {
268         struct sched_atom *event, *curr_event = last_event(task);
269 
270         /*
271          * optimize an existing RUN event by merging this one
272          * to it:
273          */
274         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275                 sched->nr_run_events_optimized++;
276                 curr_event->duration += duration;
277                 return;
278         }
279 
280         event = get_new_event(task, timestamp);
281 
282         event->type = SCHED_EVENT_RUN;
283         event->duration = duration;
284 
285         sched->nr_run_events++;
286 }
287 
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289                                    u64 timestamp, struct task_desc *wakee)
290 {
291         struct sched_atom *event, *wakee_event;
292 
293         event = get_new_event(task, timestamp);
294         event->type = SCHED_EVENT_WAKEUP;
295         event->wakee = wakee;
296 
297         wakee_event = last_event(wakee);
298         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299                 sched->targetless_wakeups++;
300                 return;
301         }
302         if (wakee_event->wait_sem) {
303                 sched->multitarget_wakeups++;
304                 return;
305         }
306 
307         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308         sem_init(wakee_event->wait_sem, 0, 0);
309         wakee_event->specific_wait = 1;
310         event->wait_sem = wakee_event->wait_sem;
311 
312         sched->nr_wakeup_events++;
313 }
314 
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316                                   u64 timestamp, u64 task_state __maybe_unused)
317 {
318         struct sched_atom *event = get_new_event(task, timestamp);
319 
320         event->type = SCHED_EVENT_SLEEP;
321 
322         sched->nr_sleep_events++;
323 }
324 
325 static struct task_desc *register_pid(struct perf_sched *sched,
326                                       unsigned long pid, const char *comm)
327 {
328         struct task_desc *task;
329 
330         BUG_ON(pid >= MAX_PID);
331 
332         task = sched->pid_to_task[pid];
333 
334         if (task)
335                 return task;
336 
337         task = zalloc(sizeof(*task));
338         task->pid = pid;
339         task->nr = sched->nr_tasks;
340         strcpy(task->comm, comm);
341         /*
342          * every task starts in sleeping state - this gets ignored
343          * if there's no wakeup pointing to this sleep state:
344          */
345         add_sched_event_sleep(sched, task, 0, 0);
346 
347         sched->pid_to_task[pid] = task;
348         sched->nr_tasks++;
349         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350         BUG_ON(!sched->tasks);
351         sched->tasks[task->nr] = task;
352 
353         if (verbose)
354                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355 
356         return task;
357 }
358 
359 
360 static void print_task_traces(struct perf_sched *sched)
361 {
362         struct task_desc *task;
363         unsigned long i;
364 
365         for (i = 0; i < sched->nr_tasks; i++) {
366                 task = sched->tasks[i];
367                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368                         task->nr, task->comm, task->pid, task->nr_events);
369         }
370 }
371 
372 static void add_cross_task_wakeups(struct perf_sched *sched)
373 {
374         struct task_desc *task1, *task2;
375         unsigned long i, j;
376 
377         for (i = 0; i < sched->nr_tasks; i++) {
378                 task1 = sched->tasks[i];
379                 j = i + 1;
380                 if (j == sched->nr_tasks)
381                         j = 0;
382                 task2 = sched->tasks[j];
383                 add_sched_event_wakeup(sched, task1, 0, task2);
384         }
385 }
386 
387 static void perf_sched__process_event(struct perf_sched *sched,
388                                       struct sched_atom *atom)
389 {
390         int ret = 0;
391 
392         switch (atom->type) {
393                 case SCHED_EVENT_RUN:
394                         burn_nsecs(sched, atom->duration);
395                         break;
396                 case SCHED_EVENT_SLEEP:
397                         if (atom->wait_sem)
398                                 ret = sem_wait(atom->wait_sem);
399                         BUG_ON(ret);
400                         break;
401                 case SCHED_EVENT_WAKEUP:
402                         if (atom->wait_sem)
403                                 ret = sem_post(atom->wait_sem);
404                         BUG_ON(ret);
405                         break;
406                 case SCHED_EVENT_MIGRATION:
407                         break;
408                 default:
409                         BUG_ON(1);
410         }
411 }
412 
413 static u64 get_cpu_usage_nsec_parent(void)
414 {
415         struct rusage ru;
416         u64 sum;
417         int err;
418 
419         err = getrusage(RUSAGE_SELF, &ru);
420         BUG_ON(err);
421 
422         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424 
425         return sum;
426 }
427 
428 static int self_open_counters(void)
429 {
430         struct perf_event_attr attr;
431         char sbuf[STRERR_BUFSIZE];
432         int fd;
433 
434         memset(&attr, 0, sizeof(attr));
435 
436         attr.type = PERF_TYPE_SOFTWARE;
437         attr.config = PERF_COUNT_SW_TASK_CLOCK;
438 
439         fd = sys_perf_event_open(&attr, 0, -1, -1,
440                                  perf_event_open_cloexec_flag());
441 
442         if (fd < 0)
443                 pr_err("Error: sys_perf_event_open() syscall returned "
444                        "with %d (%s)\n", fd,
445                        strerror_r(errno, sbuf, sizeof(sbuf)));
446         return fd;
447 }
448 
449 static u64 get_cpu_usage_nsec_self(int fd)
450 {
451         u64 runtime;
452         int ret;
453 
454         ret = read(fd, &runtime, sizeof(runtime));
455         BUG_ON(ret != sizeof(runtime));
456 
457         return runtime;
458 }
459 
460 struct sched_thread_parms {
461         struct task_desc  *task;
462         struct perf_sched *sched;
463 };
464 
465 static void *thread_func(void *ctx)
466 {
467         struct sched_thread_parms *parms = ctx;
468         struct task_desc *this_task = parms->task;
469         struct perf_sched *sched = parms->sched;
470         u64 cpu_usage_0, cpu_usage_1;
471         unsigned long i, ret;
472         char comm2[22];
473         int fd;
474 
475         zfree(&parms);
476 
477         sprintf(comm2, ":%s", this_task->comm);
478         prctl(PR_SET_NAME, comm2);
479         fd = self_open_counters();
480         if (fd < 0)
481                 return NULL;
482 again:
483         ret = sem_post(&this_task->ready_for_work);
484         BUG_ON(ret);
485         ret = pthread_mutex_lock(&sched->start_work_mutex);
486         BUG_ON(ret);
487         ret = pthread_mutex_unlock(&sched->start_work_mutex);
488         BUG_ON(ret);
489 
490         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
491 
492         for (i = 0; i < this_task->nr_events; i++) {
493                 this_task->curr_event = i;
494                 perf_sched__process_event(sched, this_task->atoms[i]);
495         }
496 
497         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
498         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
499         ret = sem_post(&this_task->work_done_sem);
500         BUG_ON(ret);
501 
502         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
503         BUG_ON(ret);
504         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
505         BUG_ON(ret);
506 
507         goto again;
508 }
509 
510 static void create_tasks(struct perf_sched *sched)
511 {
512         struct task_desc *task;
513         pthread_attr_t attr;
514         unsigned long i;
515         int err;
516 
517         err = pthread_attr_init(&attr);
518         BUG_ON(err);
519         err = pthread_attr_setstacksize(&attr,
520                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
521         BUG_ON(err);
522         err = pthread_mutex_lock(&sched->start_work_mutex);
523         BUG_ON(err);
524         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
525         BUG_ON(err);
526         for (i = 0; i < sched->nr_tasks; i++) {
527                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
528                 BUG_ON(parms == NULL);
529                 parms->task = task = sched->tasks[i];
530                 parms->sched = sched;
531                 sem_init(&task->sleep_sem, 0, 0);
532                 sem_init(&task->ready_for_work, 0, 0);
533                 sem_init(&task->work_done_sem, 0, 0);
534                 task->curr_event = 0;
535                 err = pthread_create(&task->thread, &attr, thread_func, parms);
536                 BUG_ON(err);
537         }
538 }
539 
540 static void wait_for_tasks(struct perf_sched *sched)
541 {
542         u64 cpu_usage_0, cpu_usage_1;
543         struct task_desc *task;
544         unsigned long i, ret;
545 
546         sched->start_time = get_nsecs();
547         sched->cpu_usage = 0;
548         pthread_mutex_unlock(&sched->work_done_wait_mutex);
549 
550         for (i = 0; i < sched->nr_tasks; i++) {
551                 task = sched->tasks[i];
552                 ret = sem_wait(&task->ready_for_work);
553                 BUG_ON(ret);
554                 sem_init(&task->ready_for_work, 0, 0);
555         }
556         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
557         BUG_ON(ret);
558 
559         cpu_usage_0 = get_cpu_usage_nsec_parent();
560 
561         pthread_mutex_unlock(&sched->start_work_mutex);
562 
563         for (i = 0; i < sched->nr_tasks; i++) {
564                 task = sched->tasks[i];
565                 ret = sem_wait(&task->work_done_sem);
566                 BUG_ON(ret);
567                 sem_init(&task->work_done_sem, 0, 0);
568                 sched->cpu_usage += task->cpu_usage;
569                 task->cpu_usage = 0;
570         }
571 
572         cpu_usage_1 = get_cpu_usage_nsec_parent();
573         if (!sched->runavg_cpu_usage)
574                 sched->runavg_cpu_usage = sched->cpu_usage;
575         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
576 
577         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
578         if (!sched->runavg_parent_cpu_usage)
579                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
580         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
581                                          sched->parent_cpu_usage)/10;
582 
583         ret = pthread_mutex_lock(&sched->start_work_mutex);
584         BUG_ON(ret);
585 
586         for (i = 0; i < sched->nr_tasks; i++) {
587                 task = sched->tasks[i];
588                 sem_init(&task->sleep_sem, 0, 0);
589                 task->curr_event = 0;
590         }
591 }
592 
593 static void run_one_test(struct perf_sched *sched)
594 {
595         u64 T0, T1, delta, avg_delta, fluct;
596 
597         T0 = get_nsecs();
598         wait_for_tasks(sched);
599         T1 = get_nsecs();
600 
601         delta = T1 - T0;
602         sched->sum_runtime += delta;
603         sched->nr_runs++;
604 
605         avg_delta = sched->sum_runtime / sched->nr_runs;
606         if (delta < avg_delta)
607                 fluct = avg_delta - delta;
608         else
609                 fluct = delta - avg_delta;
610         sched->sum_fluct += fluct;
611         if (!sched->run_avg)
612                 sched->run_avg = delta;
613         sched->run_avg = (sched->run_avg * 9 + delta) / 10;
614 
615         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
616 
617         printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
618 
619         printf("cpu: %0.2f / %0.2f",
620                 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
621 
622 #if 0
623         /*
624          * rusage statistics done by the parent, these are less
625          * accurate than the sched->sum_exec_runtime based statistics:
626          */
627         printf(" [%0.2f / %0.2f]",
628                 (double)sched->parent_cpu_usage/1e6,
629                 (double)sched->runavg_parent_cpu_usage/1e6);
630 #endif
631 
632         printf("\n");
633 
634         if (sched->nr_sleep_corrections)
635                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
636         sched->nr_sleep_corrections = 0;
637 }
638 
639 static void test_calibrations(struct perf_sched *sched)
640 {
641         u64 T0, T1;
642 
643         T0 = get_nsecs();
644         burn_nsecs(sched, 1e6);
645         T1 = get_nsecs();
646 
647         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
648 
649         T0 = get_nsecs();
650         sleep_nsecs(1e6);
651         T1 = get_nsecs();
652 
653         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
654 }
655 
656 static int
657 replay_wakeup_event(struct perf_sched *sched,
658                     struct perf_evsel *evsel, struct perf_sample *sample,
659                     struct machine *machine __maybe_unused)
660 {
661         const char *comm = perf_evsel__strval(evsel, sample, "comm");
662         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
663         struct task_desc *waker, *wakee;
664 
665         if (verbose) {
666                 printf("sched_wakeup event %p\n", evsel);
667 
668                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
669         }
670 
671         waker = register_pid(sched, sample->tid, "<unknown>");
672         wakee = register_pid(sched, pid, comm);
673 
674         add_sched_event_wakeup(sched, waker, sample->time, wakee);
675         return 0;
676 }
677 
678 static int replay_switch_event(struct perf_sched *sched,
679                                struct perf_evsel *evsel,
680                                struct perf_sample *sample,
681                                struct machine *machine __maybe_unused)
682 {
683         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
684                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
685         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
686                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
687         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
688         struct task_desc *prev, __maybe_unused *next;
689         u64 timestamp0, timestamp = sample->time;
690         int cpu = sample->cpu;
691         s64 delta;
692 
693         if (verbose)
694                 printf("sched_switch event %p\n", evsel);
695 
696         if (cpu >= MAX_CPUS || cpu < 0)
697                 return 0;
698 
699         timestamp0 = sched->cpu_last_switched[cpu];
700         if (timestamp0)
701                 delta = timestamp - timestamp0;
702         else
703                 delta = 0;
704 
705         if (delta < 0) {
706                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
707                 return -1;
708         }
709 
710         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
711                  prev_comm, prev_pid, next_comm, next_pid, delta);
712 
713         prev = register_pid(sched, prev_pid, prev_comm);
714         next = register_pid(sched, next_pid, next_comm);
715 
716         sched->cpu_last_switched[cpu] = timestamp;
717 
718         add_sched_event_run(sched, prev, timestamp, delta);
719         add_sched_event_sleep(sched, prev, timestamp, prev_state);
720 
721         return 0;
722 }
723 
724 static int replay_fork_event(struct perf_sched *sched,
725                              union perf_event *event,
726                              struct machine *machine)
727 {
728         struct thread *child, *parent;
729 
730         child = machine__findnew_thread(machine, event->fork.pid,
731                                         event->fork.tid);
732         parent = machine__findnew_thread(machine, event->fork.ppid,
733                                          event->fork.ptid);
734 
735         if (child == NULL || parent == NULL) {
736                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
737                                  child, parent);
738                 return 0;
739         }
740 
741         if (verbose) {
742                 printf("fork event\n");
743                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
744                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
745         }
746 
747         register_pid(sched, parent->tid, thread__comm_str(parent));
748         register_pid(sched, child->tid, thread__comm_str(child));
749         return 0;
750 }
751 
752 struct sort_dimension {
753         const char              *name;
754         sort_fn_t               cmp;
755         struct list_head        list;
756 };
757 
758 static int
759 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
760 {
761         struct sort_dimension *sort;
762         int ret = 0;
763 
764         BUG_ON(list_empty(list));
765 
766         list_for_each_entry(sort, list, list) {
767                 ret = sort->cmp(l, r);
768                 if (ret)
769                         return ret;
770         }
771 
772         return ret;
773 }
774 
775 static struct work_atoms *
776 thread_atoms_search(struct rb_root *root, struct thread *thread,
777                          struct list_head *sort_list)
778 {
779         struct rb_node *node = root->rb_node;
780         struct work_atoms key = { .thread = thread };
781 
782         while (node) {
783                 struct work_atoms *atoms;
784                 int cmp;
785 
786                 atoms = container_of(node, struct work_atoms, node);
787 
788                 cmp = thread_lat_cmp(sort_list, &key, atoms);
789                 if (cmp > 0)
790                         node = node->rb_left;
791                 else if (cmp < 0)
792                         node = node->rb_right;
793                 else {
794                         BUG_ON(thread != atoms->thread);
795                         return atoms;
796                 }
797         }
798         return NULL;
799 }
800 
801 static void
802 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
803                          struct list_head *sort_list)
804 {
805         struct rb_node **new = &(root->rb_node), *parent = NULL;
806 
807         while (*new) {
808                 struct work_atoms *this;
809                 int cmp;
810 
811                 this = container_of(*new, struct work_atoms, node);
812                 parent = *new;
813 
814                 cmp = thread_lat_cmp(sort_list, data, this);
815 
816                 if (cmp > 0)
817                         new = &((*new)->rb_left);
818                 else
819                         new = &((*new)->rb_right);
820         }
821 
822         rb_link_node(&data->node, parent, new);
823         rb_insert_color(&data->node, root);
824 }
825 
826 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
827 {
828         struct work_atoms *atoms = zalloc(sizeof(*atoms));
829         if (!atoms) {
830                 pr_err("No memory at %s\n", __func__);
831                 return -1;
832         }
833 
834         atoms->thread = thread;
835         INIT_LIST_HEAD(&atoms->work_list);
836         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
837         return 0;
838 }
839 
840 static char sched_out_state(u64 prev_state)
841 {
842         const char *str = TASK_STATE_TO_CHAR_STR;
843 
844         return str[prev_state];
845 }
846 
847 static int
848 add_sched_out_event(struct work_atoms *atoms,
849                     char run_state,
850                     u64 timestamp)
851 {
852         struct work_atom *atom = zalloc(sizeof(*atom));
853         if (!atom) {
854                 pr_err("Non memory at %s", __func__);
855                 return -1;
856         }
857 
858         atom->sched_out_time = timestamp;
859 
860         if (run_state == 'R') {
861                 atom->state = THREAD_WAIT_CPU;
862                 atom->wake_up_time = atom->sched_out_time;
863         }
864 
865         list_add_tail(&atom->list, &atoms->work_list);
866         return 0;
867 }
868 
869 static void
870 add_runtime_event(struct work_atoms *atoms, u64 delta,
871                   u64 timestamp __maybe_unused)
872 {
873         struct work_atom *atom;
874 
875         BUG_ON(list_empty(&atoms->work_list));
876 
877         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
878 
879         atom->runtime += delta;
880         atoms->total_runtime += delta;
881 }
882 
883 static void
884 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
885 {
886         struct work_atom *atom;
887         u64 delta;
888 
889         if (list_empty(&atoms->work_list))
890                 return;
891 
892         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
893 
894         if (atom->state != THREAD_WAIT_CPU)
895                 return;
896 
897         if (timestamp < atom->wake_up_time) {
898                 atom->state = THREAD_IGNORE;
899                 return;
900         }
901 
902         atom->state = THREAD_SCHED_IN;
903         atom->sched_in_time = timestamp;
904 
905         delta = atom->sched_in_time - atom->wake_up_time;
906         atoms->total_lat += delta;
907         if (delta > atoms->max_lat) {
908                 atoms->max_lat = delta;
909                 atoms->max_lat_at = timestamp;
910         }
911         atoms->nb_atoms++;
912 }
913 
914 static int latency_switch_event(struct perf_sched *sched,
915                                 struct perf_evsel *evsel,
916                                 struct perf_sample *sample,
917                                 struct machine *machine)
918 {
919         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
920                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
921         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
922         struct work_atoms *out_events, *in_events;
923         struct thread *sched_out, *sched_in;
924         u64 timestamp0, timestamp = sample->time;
925         int cpu = sample->cpu;
926         s64 delta;
927 
928         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
929 
930         timestamp0 = sched->cpu_last_switched[cpu];
931         sched->cpu_last_switched[cpu] = timestamp;
932         if (timestamp0)
933                 delta = timestamp - timestamp0;
934         else
935                 delta = 0;
936 
937         if (delta < 0) {
938                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
939                 return -1;
940         }
941 
942         sched_out = machine__findnew_thread(machine, -1, prev_pid);
943         sched_in = machine__findnew_thread(machine, -1, next_pid);
944 
945         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946         if (!out_events) {
947                 if (thread_atoms_insert(sched, sched_out))
948                         return -1;
949                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
950                 if (!out_events) {
951                         pr_err("out-event: Internal tree error");
952                         return -1;
953                 }
954         }
955         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
956                 return -1;
957 
958         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959         if (!in_events) {
960                 if (thread_atoms_insert(sched, sched_in))
961                         return -1;
962                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
963                 if (!in_events) {
964                         pr_err("in-event: Internal tree error");
965                         return -1;
966                 }
967                 /*
968                  * Take came in we have not heard about yet,
969                  * add in an initial atom in runnable state:
970                  */
971                 if (add_sched_out_event(in_events, 'R', timestamp))
972                         return -1;
973         }
974         add_sched_in_event(in_events, timestamp);
975 
976         return 0;
977 }
978 
979 static int latency_runtime_event(struct perf_sched *sched,
980                                  struct perf_evsel *evsel,
981                                  struct perf_sample *sample,
982                                  struct machine *machine)
983 {
984         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
985         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
986         struct thread *thread = machine__findnew_thread(machine, -1, pid);
987         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
988         u64 timestamp = sample->time;
989         int cpu = sample->cpu;
990 
991         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
992         if (!atoms) {
993                 if (thread_atoms_insert(sched, thread))
994                         return -1;
995                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
996                 if (!atoms) {
997                         pr_err("in-event: Internal tree error");
998                         return -1;
999                 }
1000                 if (add_sched_out_event(atoms, 'R', timestamp))
1001                         return -1;
1002         }
1003 
1004         add_runtime_event(atoms, runtime, timestamp);
1005         return 0;
1006 }
1007 
1008 static int latency_wakeup_event(struct perf_sched *sched,
1009                                 struct perf_evsel *evsel,
1010                                 struct perf_sample *sample,
1011                                 struct machine *machine)
1012 {
1013         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1014         struct work_atoms *atoms;
1015         struct work_atom *atom;
1016         struct thread *wakee;
1017         u64 timestamp = sample->time;
1018 
1019         wakee = machine__findnew_thread(machine, -1, pid);
1020         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021         if (!atoms) {
1022                 if (thread_atoms_insert(sched, wakee))
1023                         return -1;
1024                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1025                 if (!atoms) {
1026                         pr_err("wakeup-event: Internal tree error");
1027                         return -1;
1028                 }
1029                 if (add_sched_out_event(atoms, 'S', timestamp))
1030                         return -1;
1031         }
1032 
1033         BUG_ON(list_empty(&atoms->work_list));
1034 
1035         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1036 
1037         /*
1038          * As we do not guarantee the wakeup event happens when
1039          * task is out of run queue, also may happen when task is
1040          * on run queue and wakeup only change ->state to TASK_RUNNING,
1041          * then we should not set the ->wake_up_time when wake up a
1042          * task which is on run queue.
1043          *
1044          * You WILL be missing events if you've recorded only
1045          * one CPU, or are only looking at only one, so don't
1046          * skip in this case.
1047          */
1048         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1049                 return 0;
1050 
1051         sched->nr_timestamps++;
1052         if (atom->sched_out_time > timestamp) {
1053                 sched->nr_unordered_timestamps++;
1054                 return 0;
1055         }
1056 
1057         atom->state = THREAD_WAIT_CPU;
1058         atom->wake_up_time = timestamp;
1059         return 0;
1060 }
1061 
1062 static int latency_migrate_task_event(struct perf_sched *sched,
1063                                       struct perf_evsel *evsel,
1064                                       struct perf_sample *sample,
1065                                       struct machine *machine)
1066 {
1067         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1068         u64 timestamp = sample->time;
1069         struct work_atoms *atoms;
1070         struct work_atom *atom;
1071         struct thread *migrant;
1072 
1073         /*
1074          * Only need to worry about migration when profiling one CPU.
1075          */
1076         if (sched->profile_cpu == -1)
1077                 return 0;
1078 
1079         migrant = machine__findnew_thread(machine, -1, pid);
1080         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1081         if (!atoms) {
1082                 if (thread_atoms_insert(sched, migrant))
1083                         return -1;
1084                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1085                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1086                 if (!atoms) {
1087                         pr_err("migration-event: Internal tree error");
1088                         return -1;
1089                 }
1090                 if (add_sched_out_event(atoms, 'R', timestamp))
1091                         return -1;
1092         }
1093 
1094         BUG_ON(list_empty(&atoms->work_list));
1095 
1096         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1097         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1098 
1099         sched->nr_timestamps++;
1100 
1101         if (atom->sched_out_time > timestamp)
1102                 sched->nr_unordered_timestamps++;
1103 
1104         return 0;
1105 }
1106 
1107 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1108 {
1109         int i;
1110         int ret;
1111         u64 avg;
1112 
1113         if (!work_list->nb_atoms)
1114                 return;
1115         /*
1116          * Ignore idle threads:
1117          */
1118         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1119                 return;
1120 
1121         sched->all_runtime += work_list->total_runtime;
1122         sched->all_count   += work_list->nb_atoms;
1123 
1124         ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1125 
1126         for (i = 0; i < 24 - ret; i++)
1127                 printf(" ");
1128 
1129         avg = work_list->total_lat / work_list->nb_atoms;
1130 
1131         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1132               (double)work_list->total_runtime / 1e6,
1133                  work_list->nb_atoms, (double)avg / 1e6,
1134                  (double)work_list->max_lat / 1e6,
1135                  (double)work_list->max_lat_at / 1e9);
1136 }
1137 
1138 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1139 {
1140         if (l->thread->tid < r->thread->tid)
1141                 return -1;
1142         if (l->thread->tid > r->thread->tid)
1143                 return 1;
1144 
1145         return 0;
1146 }
1147 
1148 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1149 {
1150         u64 avgl, avgr;
1151 
1152         if (!l->nb_atoms)
1153                 return -1;
1154 
1155         if (!r->nb_atoms)
1156                 return 1;
1157 
1158         avgl = l->total_lat / l->nb_atoms;
1159         avgr = r->total_lat / r->nb_atoms;
1160 
1161         if (avgl < avgr)
1162                 return -1;
1163         if (avgl > avgr)
1164                 return 1;
1165 
1166         return 0;
1167 }
1168 
1169 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1170 {
1171         if (l->max_lat < r->max_lat)
1172                 return -1;
1173         if (l->max_lat > r->max_lat)
1174                 return 1;
1175 
1176         return 0;
1177 }
1178 
1179 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1180 {
1181         if (l->nb_atoms < r->nb_atoms)
1182                 return -1;
1183         if (l->nb_atoms > r->nb_atoms)
1184                 return 1;
1185 
1186         return 0;
1187 }
1188 
1189 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1190 {
1191         if (l->total_runtime < r->total_runtime)
1192                 return -1;
1193         if (l->total_runtime > r->total_runtime)
1194                 return 1;
1195 
1196         return 0;
1197 }
1198 
1199 static int sort_dimension__add(const char *tok, struct list_head *list)
1200 {
1201         size_t i;
1202         static struct sort_dimension avg_sort_dimension = {
1203                 .name = "avg",
1204                 .cmp  = avg_cmp,
1205         };
1206         static struct sort_dimension max_sort_dimension = {
1207                 .name = "max",
1208                 .cmp  = max_cmp,
1209         };
1210         static struct sort_dimension pid_sort_dimension = {
1211                 .name = "pid",
1212                 .cmp  = pid_cmp,
1213         };
1214         static struct sort_dimension runtime_sort_dimension = {
1215                 .name = "runtime",
1216                 .cmp  = runtime_cmp,
1217         };
1218         static struct sort_dimension switch_sort_dimension = {
1219                 .name = "switch",
1220                 .cmp  = switch_cmp,
1221         };
1222         struct sort_dimension *available_sorts[] = {
1223                 &pid_sort_dimension,
1224                 &avg_sort_dimension,
1225                 &max_sort_dimension,
1226                 &switch_sort_dimension,
1227                 &runtime_sort_dimension,
1228         };
1229 
1230         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1231                 if (!strcmp(available_sorts[i]->name, tok)) {
1232                         list_add_tail(&available_sorts[i]->list, list);
1233 
1234                         return 0;
1235                 }
1236         }
1237 
1238         return -1;
1239 }
1240 
1241 static void perf_sched__sort_lat(struct perf_sched *sched)
1242 {
1243         struct rb_node *node;
1244 
1245         for (;;) {
1246                 struct work_atoms *data;
1247                 node = rb_first(&sched->atom_root);
1248                 if (!node)
1249                         break;
1250 
1251                 rb_erase(node, &sched->atom_root);
1252                 data = rb_entry(node, struct work_atoms, node);
1253                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1254         }
1255 }
1256 
1257 static int process_sched_wakeup_event(struct perf_tool *tool,
1258                                       struct perf_evsel *evsel,
1259                                       struct perf_sample *sample,
1260                                       struct machine *machine)
1261 {
1262         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1263 
1264         if (sched->tp_handler->wakeup_event)
1265                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1266 
1267         return 0;
1268 }
1269 
1270 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1271                             struct perf_sample *sample, struct machine *machine)
1272 {
1273         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1274         struct thread *sched_in;
1275         int new_shortname;
1276         u64 timestamp0, timestamp = sample->time;
1277         s64 delta;
1278         int cpu, this_cpu = sample->cpu;
1279 
1280         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1281 
1282         if (this_cpu > sched->max_cpu)
1283                 sched->max_cpu = this_cpu;
1284 
1285         timestamp0 = sched->cpu_last_switched[this_cpu];
1286         sched->cpu_last_switched[this_cpu] = timestamp;
1287         if (timestamp0)
1288                 delta = timestamp - timestamp0;
1289         else
1290                 delta = 0;
1291 
1292         if (delta < 0) {
1293                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1294                 return -1;
1295         }
1296 
1297         sched_in = machine__findnew_thread(machine, -1, next_pid);
1298 
1299         sched->curr_thread[this_cpu] = sched_in;
1300 
1301         printf("  ");
1302 
1303         new_shortname = 0;
1304         if (!sched_in->shortname[0]) {
1305                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1306                         /*
1307                          * Don't allocate a letter-number for swapper:0
1308                          * as a shortname. Instead, we use '.' for it.
1309                          */
1310                         sched_in->shortname[0] = '.';
1311                         sched_in->shortname[1] = ' ';
1312                 } else {
1313                         sched_in->shortname[0] = sched->next_shortname1;
1314                         sched_in->shortname[1] = sched->next_shortname2;
1315 
1316                         if (sched->next_shortname1 < 'Z') {
1317                                 sched->next_shortname1++;
1318                         } else {
1319                                 sched->next_shortname1 = 'A';
1320                                 if (sched->next_shortname2 < '9')
1321                                         sched->next_shortname2++;
1322                                 else
1323                                         sched->next_shortname2 = '';
1324                         }
1325                 }
1326                 new_shortname = 1;
1327         }
1328 
1329         for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1330                 if (cpu != this_cpu)
1331                         printf(" ");
1332                 else
1333                         printf("*");
1334 
1335                 if (sched->curr_thread[cpu])
1336                         printf("%2s ", sched->curr_thread[cpu]->shortname);
1337                 else
1338                         printf("   ");
1339         }
1340 
1341         printf("  %12.6f secs ", (double)timestamp/1e9);
1342         if (new_shortname) {
1343                 printf("%s => %s:%d\n",
1344                        sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1345         } else {
1346                 printf("\n");
1347         }
1348 
1349         return 0;
1350 }
1351 
1352 static int process_sched_switch_event(struct perf_tool *tool,
1353                                       struct perf_evsel *evsel,
1354                                       struct perf_sample *sample,
1355                                       struct machine *machine)
1356 {
1357         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1358         int this_cpu = sample->cpu, err = 0;
1359         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1360             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1361 
1362         if (sched->curr_pid[this_cpu] != (u32)-1) {
1363                 /*
1364                  * Are we trying to switch away a PID that is
1365                  * not current?
1366                  */
1367                 if (sched->curr_pid[this_cpu] != prev_pid)
1368                         sched->nr_context_switch_bugs++;
1369         }
1370 
1371         if (sched->tp_handler->switch_event)
1372                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1373 
1374         sched->curr_pid[this_cpu] = next_pid;
1375         return err;
1376 }
1377 
1378 static int process_sched_runtime_event(struct perf_tool *tool,
1379                                        struct perf_evsel *evsel,
1380                                        struct perf_sample *sample,
1381                                        struct machine *machine)
1382 {
1383         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1384 
1385         if (sched->tp_handler->runtime_event)
1386                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1387 
1388         return 0;
1389 }
1390 
1391 static int perf_sched__process_fork_event(struct perf_tool *tool,
1392                                           union perf_event *event,
1393                                           struct perf_sample *sample,
1394                                           struct machine *machine)
1395 {
1396         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1397 
1398         /* run the fork event through the perf machineruy */
1399         perf_event__process_fork(tool, event, sample, machine);
1400 
1401         /* and then run additional processing needed for this command */
1402         if (sched->tp_handler->fork_event)
1403                 return sched->tp_handler->fork_event(sched, event, machine);
1404 
1405         return 0;
1406 }
1407 
1408 static int process_sched_migrate_task_event(struct perf_tool *tool,
1409                                             struct perf_evsel *evsel,
1410                                             struct perf_sample *sample,
1411                                             struct machine *machine)
1412 {
1413         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1414 
1415         if (sched->tp_handler->migrate_task_event)
1416                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1417 
1418         return 0;
1419 }
1420 
1421 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1422                                   struct perf_evsel *evsel,
1423                                   struct perf_sample *sample,
1424                                   struct machine *machine);
1425 
1426 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1427                                                  union perf_event *event __maybe_unused,
1428                                                  struct perf_sample *sample,
1429                                                  struct perf_evsel *evsel,
1430                                                  struct machine *machine)
1431 {
1432         int err = 0;
1433 
1434         if (evsel->handler != NULL) {
1435                 tracepoint_handler f = evsel->handler;
1436                 err = f(tool, evsel, sample, machine);
1437         }
1438 
1439         return err;
1440 }
1441 
1442 static int perf_sched__read_events(struct perf_sched *sched,
1443                                    struct perf_session **psession)
1444 {
1445         const struct perf_evsel_str_handler handlers[] = {
1446                 { "sched:sched_switch",       process_sched_switch_event, },
1447                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1448                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1449                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1450                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1451         };
1452         struct perf_session *session;
1453         struct perf_data_file file = {
1454                 .path = input_name,
1455                 .mode = PERF_DATA_MODE_READ,
1456         };
1457 
1458         session = perf_session__new(&file, false, &sched->tool);
1459         if (session == NULL) {
1460                 pr_debug("No Memory for session\n");
1461                 return -1;
1462         }
1463 
1464         symbol__init(&session->header.env);
1465 
1466         if (perf_session__set_tracepoints_handlers(session, handlers))
1467                 goto out_delete;
1468 
1469         if (perf_session__has_traces(session, "record -R")) {
1470                 int err = perf_session__process_events(session, &sched->tool);
1471                 if (err) {
1472                         pr_err("Failed to process events, error %d", err);
1473                         goto out_delete;
1474                 }
1475 
1476                 sched->nr_events      = session->stats.nr_events[0];
1477                 sched->nr_lost_events = session->stats.total_lost;
1478                 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1479         }
1480 
1481         if (psession)
1482                 *psession = session;
1483         else
1484                 perf_session__delete(session);
1485 
1486         return 0;
1487 
1488 out_delete:
1489         perf_session__delete(session);
1490         return -1;
1491 }
1492 
1493 static void print_bad_events(struct perf_sched *sched)
1494 {
1495         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1496                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1497                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1498                         sched->nr_unordered_timestamps, sched->nr_timestamps);
1499         }
1500         if (sched->nr_lost_events && sched->nr_events) {
1501                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1502                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1503                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1504         }
1505         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1506                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1507                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1508                         sched->nr_context_switch_bugs, sched->nr_timestamps);
1509                 if (sched->nr_lost_events)
1510                         printf(" (due to lost events?)");
1511                 printf("\n");
1512         }
1513 }
1514 
1515 static int perf_sched__lat(struct perf_sched *sched)
1516 {
1517         struct rb_node *next;
1518         struct perf_session *session;
1519 
1520         setup_pager();
1521 
1522         /* save session -- references to threads are held in work_list */
1523         if (perf_sched__read_events(sched, &session))
1524                 return -1;
1525 
1526         perf_sched__sort_lat(sched);
1527 
1528         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1529         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1530         printf(" -----------------------------------------------------------------------------------------------------------------\n");
1531 
1532         next = rb_first(&sched->sorted_atom_root);
1533 
1534         while (next) {
1535                 struct work_atoms *work_list;
1536 
1537                 work_list = rb_entry(next, struct work_atoms, node);
1538                 output_lat_thread(sched, work_list);
1539                 next = rb_next(next);
1540         }
1541 
1542         printf(" -----------------------------------------------------------------------------------------------------------------\n");
1543         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1544                 (double)sched->all_runtime / 1e6, sched->all_count);
1545 
1546         printf(" ---------------------------------------------------\n");
1547 
1548         print_bad_events(sched);
1549         printf("\n");
1550 
1551         perf_session__delete(session);
1552         return 0;
1553 }
1554 
1555 static int perf_sched__map(struct perf_sched *sched)
1556 {
1557         sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1558 
1559         setup_pager();
1560         if (perf_sched__read_events(sched, NULL))
1561                 return -1;
1562         print_bad_events(sched);
1563         return 0;
1564 }
1565 
1566 static int perf_sched__replay(struct perf_sched *sched)
1567 {
1568         unsigned long i;
1569 
1570         calibrate_run_measurement_overhead(sched);
1571         calibrate_sleep_measurement_overhead(sched);
1572 
1573         test_calibrations(sched);
1574 
1575         if (perf_sched__read_events(sched, NULL))
1576                 return -1;
1577 
1578         printf("nr_run_events:        %ld\n", sched->nr_run_events);
1579         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1580         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1581 
1582         if (sched->targetless_wakeups)
1583                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1584         if (sched->multitarget_wakeups)
1585                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1586         if (sched->nr_run_events_optimized)
1587                 printf("run atoms optimized: %ld\n",
1588                         sched->nr_run_events_optimized);
1589 
1590         print_task_traces(sched);
1591         add_cross_task_wakeups(sched);
1592 
1593         create_tasks(sched);
1594         printf("------------------------------------------------------------\n");
1595         for (i = 0; i < sched->replay_repeat; i++)
1596                 run_one_test(sched);
1597 
1598         return 0;
1599 }
1600 
1601 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1602                           const char * const usage_msg[])
1603 {
1604         char *tmp, *tok, *str = strdup(sched->sort_order);
1605 
1606         for (tok = strtok_r(str, ", ", &tmp);
1607                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1608                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1609                         error("Unknown --sort key: `%s'", tok);
1610                         usage_with_options(usage_msg, options);
1611                 }
1612         }
1613 
1614         free(str);
1615 
1616         sort_dimension__add("pid", &sched->cmp_pid);
1617 }
1618 
1619 static int __cmd_record(int argc, const char **argv)
1620 {
1621         unsigned int rec_argc, i, j;
1622         const char **rec_argv;
1623         const char * const record_args[] = {
1624                 "record",
1625                 "-a",
1626                 "-R",
1627                 "-m", "1024",
1628                 "-c", "1",
1629                 "-e", "sched:sched_switch",
1630                 "-e", "sched:sched_stat_wait",
1631                 "-e", "sched:sched_stat_sleep",
1632                 "-e", "sched:sched_stat_iowait",
1633                 "-e", "sched:sched_stat_runtime",
1634                 "-e", "sched:sched_process_fork",
1635                 "-e", "sched:sched_wakeup",
1636                 "-e", "sched:sched_wakeup_new",
1637                 "-e", "sched:sched_migrate_task",
1638         };
1639 
1640         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1641         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1642 
1643         if (rec_argv == NULL)
1644                 return -ENOMEM;
1645 
1646         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1647                 rec_argv[i] = strdup(record_args[i]);
1648 
1649         for (j = 1; j < (unsigned int)argc; j++, i++)
1650                 rec_argv[i] = argv[j];
1651 
1652         BUG_ON(i != rec_argc);
1653 
1654         return cmd_record(i, rec_argv, NULL);
1655 }
1656 
1657 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1658 {
1659         const char default_sort_order[] = "avg, max, switch, runtime";
1660         struct perf_sched sched = {
1661                 .tool = {
1662                         .sample          = perf_sched__process_tracepoint_sample,
1663                         .comm            = perf_event__process_comm,
1664                         .lost            = perf_event__process_lost,
1665                         .fork            = perf_sched__process_fork_event,
1666                         .ordered_events = true,
1667                 },
1668                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1669                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1670                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1671                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1672                 .sort_order           = default_sort_order,
1673                 .replay_repeat        = 10,
1674                 .profile_cpu          = -1,
1675                 .next_shortname1      = 'A',
1676                 .next_shortname2      = '',
1677         };
1678         const struct option latency_options[] = {
1679         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1680                    "sort by key(s): runtime, switch, avg, max"),
1681         OPT_INCR('v', "verbose", &verbose,
1682                     "be more verbose (show symbol address, etc)"),
1683         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1684                     "CPU to profile on"),
1685         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1686                     "dump raw trace in ASCII"),
1687         OPT_END()
1688         };
1689         const struct option replay_options[] = {
1690         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1691                      "repeat the workload replay N times (-1: infinite)"),
1692         OPT_INCR('v', "verbose", &verbose,
1693                     "be more verbose (show symbol address, etc)"),
1694         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1695                     "dump raw trace in ASCII"),
1696         OPT_END()
1697         };
1698         const struct option sched_options[] = {
1699         OPT_STRING('i', "input", &input_name, "file",
1700                     "input file name"),
1701         OPT_INCR('v', "verbose", &verbose,
1702                     "be more verbose (show symbol address, etc)"),
1703         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1704                     "dump raw trace in ASCII"),
1705         OPT_END()
1706         };
1707         const char * const latency_usage[] = {
1708                 "perf sched latency [<options>]",
1709                 NULL
1710         };
1711         const char * const replay_usage[] = {
1712                 "perf sched replay [<options>]",
1713                 NULL
1714         };
1715         const char *const sched_subcommands[] = { "record", "latency", "map",
1716                                                   "replay", "script", NULL };
1717         const char *sched_usage[] = {
1718                 NULL,
1719                 NULL
1720         };
1721         struct trace_sched_handler lat_ops  = {
1722                 .wakeup_event       = latency_wakeup_event,
1723                 .switch_event       = latency_switch_event,
1724                 .runtime_event      = latency_runtime_event,
1725                 .migrate_task_event = latency_migrate_task_event,
1726         };
1727         struct trace_sched_handler map_ops  = {
1728                 .switch_event       = map_switch_event,
1729         };
1730         struct trace_sched_handler replay_ops  = {
1731                 .wakeup_event       = replay_wakeup_event,
1732                 .switch_event       = replay_switch_event,
1733                 .fork_event         = replay_fork_event,
1734         };
1735         unsigned int i;
1736 
1737         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1738                 sched.curr_pid[i] = -1;
1739 
1740         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1741                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1742         if (!argc)
1743                 usage_with_options(sched_usage, sched_options);
1744 
1745         /*
1746          * Aliased to 'perf script' for now:
1747          */
1748         if (!strcmp(argv[0], "script"))
1749                 return cmd_script(argc, argv, prefix);
1750 
1751         if (!strncmp(argv[0], "rec", 3)) {
1752                 return __cmd_record(argc, argv);
1753         } else if (!strncmp(argv[0], "lat", 3)) {
1754                 sched.tp_handler = &lat_ops;
1755                 if (argc > 1) {
1756                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757                         if (argc)
1758                                 usage_with_options(latency_usage, latency_options);
1759                 }
1760                 setup_sorting(&sched, latency_options, latency_usage);
1761                 return perf_sched__lat(&sched);
1762         } else if (!strcmp(argv[0], "map")) {
1763                 sched.tp_handler = &map_ops;
1764                 setup_sorting(&sched, latency_options, latency_usage);
1765                 return perf_sched__map(&sched);
1766         } else if (!strncmp(argv[0], "rep", 3)) {
1767                 sched.tp_handler = &replay_ops;
1768                 if (argc) {
1769                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770                         if (argc)
1771                                 usage_with_options(replay_usage, replay_options);
1772                 }
1773                 return perf_sched__replay(&sched);
1774         } else {
1775                 usage_with_options(sched_usage, sched_options);
1776         }
1777 
1778         return 0;
1779 }
1780 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp