~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/builtin-sched.c

Version: ~ [ linux-5.19-rc8 ] ~ [ linux-5.18.14 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.57 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.133 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.207 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.253 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.289 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.324 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include "builtin.h"
  3 #include "perf.h"
  4 
  5 #include "util/util.h"
  6 #include "util/evlist.h"
  7 #include "util/cache.h"
  8 #include "util/evsel.h"
  9 #include "util/symbol.h"
 10 #include "util/thread.h"
 11 #include "util/header.h"
 12 #include "util/session.h"
 13 #include "util/tool.h"
 14 #include "util/cloexec.h"
 15 #include "util/thread_map.h"
 16 #include "util/color.h"
 17 #include "util/stat.h"
 18 #include "util/callchain.h"
 19 #include "util/time-utils.h"
 20 
 21 #include <subcmd/parse-options.h>
 22 #include "util/trace-event.h"
 23 
 24 #include "util/debug.h"
 25 
 26 #include <linux/kernel.h>
 27 #include <linux/log2.h>
 28 #include <sys/prctl.h>
 29 #include <sys/resource.h>
 30 #include <inttypes.h>
 31 
 32 #include <errno.h>
 33 #include <semaphore.h>
 34 #include <pthread.h>
 35 #include <math.h>
 36 #include <api/fs/fs.h>
 37 #include <linux/time64.h>
 38 
 39 #include "sane_ctype.h"
 40 
 41 #define PR_SET_NAME             15               /* Set process name */
 42 #define MAX_CPUS                4096
 43 #define COMM_LEN                20
 44 #define SYM_LEN                 129
 45 #define MAX_PID                 1024000
 46 
 47 struct sched_atom;
 48 
 49 struct task_desc {
 50         unsigned long           nr;
 51         unsigned long           pid;
 52         char                    comm[COMM_LEN];
 53 
 54         unsigned long           nr_events;
 55         unsigned long           curr_event;
 56         struct sched_atom       **atoms;
 57 
 58         pthread_t               thread;
 59         sem_t                   sleep_sem;
 60 
 61         sem_t                   ready_for_work;
 62         sem_t                   work_done_sem;
 63 
 64         u64                     cpu_usage;
 65 };
 66 
 67 enum sched_event_type {
 68         SCHED_EVENT_RUN,
 69         SCHED_EVENT_SLEEP,
 70         SCHED_EVENT_WAKEUP,
 71         SCHED_EVENT_MIGRATION,
 72 };
 73 
 74 struct sched_atom {
 75         enum sched_event_type   type;
 76         int                     specific_wait;
 77         u64                     timestamp;
 78         u64                     duration;
 79         unsigned long           nr;
 80         sem_t                   *wait_sem;
 81         struct task_desc        *wakee;
 82 };
 83 
 84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 85 
 86 /* task state bitmask, copied from include/linux/sched.h */
 87 #define TASK_RUNNING            0
 88 #define TASK_INTERRUPTIBLE      1
 89 #define TASK_UNINTERRUPTIBLE    2
 90 #define __TASK_STOPPED          4
 91 #define __TASK_TRACED           8
 92 /* in tsk->exit_state */
 93 #define EXIT_DEAD               16
 94 #define EXIT_ZOMBIE             32
 95 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
 96 /* in tsk->state again */
 97 #define TASK_DEAD               64
 98 #define TASK_WAKEKILL           128
 99 #define TASK_WAKING             256
100 #define TASK_PARKED             512
101 
102 enum thread_state {
103         THREAD_SLEEPING = 0,
104         THREAD_WAIT_CPU,
105         THREAD_SCHED_IN,
106         THREAD_IGNORE
107 };
108 
109 struct work_atom {
110         struct list_head        list;
111         enum thread_state       state;
112         u64                     sched_out_time;
113         u64                     wake_up_time;
114         u64                     sched_in_time;
115         u64                     runtime;
116 };
117 
118 struct work_atoms {
119         struct list_head        work_list;
120         struct thread           *thread;
121         struct rb_node          node;
122         u64                     max_lat;
123         u64                     max_lat_at;
124         u64                     total_lat;
125         u64                     nb_atoms;
126         u64                     total_runtime;
127         int                     num_merged;
128 };
129 
130 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
131 
132 struct perf_sched;
133 
134 struct trace_sched_handler {
135         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
136                             struct perf_sample *sample, struct machine *machine);
137 
138         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
139                              struct perf_sample *sample, struct machine *machine);
140 
141         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
142                             struct perf_sample *sample, struct machine *machine);
143 
144         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
145         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
146                           struct machine *machine);
147 
148         int (*migrate_task_event)(struct perf_sched *sched,
149                                   struct perf_evsel *evsel,
150                                   struct perf_sample *sample,
151                                   struct machine *machine);
152 };
153 
154 #define COLOR_PIDS PERF_COLOR_BLUE
155 #define COLOR_CPUS PERF_COLOR_BG_RED
156 
157 struct perf_sched_map {
158         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
159         int                     *comp_cpus;
160         bool                     comp;
161         struct thread_map       *color_pids;
162         const char              *color_pids_str;
163         struct cpu_map          *color_cpus;
164         const char              *color_cpus_str;
165         struct cpu_map          *cpus;
166         const char              *cpus_str;
167 };
168 
169 struct perf_sched {
170         struct perf_tool tool;
171         const char       *sort_order;
172         unsigned long    nr_tasks;
173         struct task_desc **pid_to_task;
174         struct task_desc **tasks;
175         const struct trace_sched_handler *tp_handler;
176         pthread_mutex_t  start_work_mutex;
177         pthread_mutex_t  work_done_wait_mutex;
178         int              profile_cpu;
179 /*
180  * Track the current task - that way we can know whether there's any
181  * weird events, such as a task being switched away that is not current.
182  */
183         int              max_cpu;
184         u32              curr_pid[MAX_CPUS];
185         struct thread    *curr_thread[MAX_CPUS];
186         char             next_shortname1;
187         char             next_shortname2;
188         unsigned int     replay_repeat;
189         unsigned long    nr_run_events;
190         unsigned long    nr_sleep_events;
191         unsigned long    nr_wakeup_events;
192         unsigned long    nr_sleep_corrections;
193         unsigned long    nr_run_events_optimized;
194         unsigned long    targetless_wakeups;
195         unsigned long    multitarget_wakeups;
196         unsigned long    nr_runs;
197         unsigned long    nr_timestamps;
198         unsigned long    nr_unordered_timestamps;
199         unsigned long    nr_context_switch_bugs;
200         unsigned long    nr_events;
201         unsigned long    nr_lost_chunks;
202         unsigned long    nr_lost_events;
203         u64              run_measurement_overhead;
204         u64              sleep_measurement_overhead;
205         u64              start_time;
206         u64              cpu_usage;
207         u64              runavg_cpu_usage;
208         u64              parent_cpu_usage;
209         u64              runavg_parent_cpu_usage;
210         u64              sum_runtime;
211         u64              sum_fluct;
212         u64              run_avg;
213         u64              all_runtime;
214         u64              all_count;
215         u64              cpu_last_switched[MAX_CPUS];
216         struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
217         struct list_head sort_list, cmp_pid;
218         bool force;
219         bool skip_merge;
220         struct perf_sched_map map;
221 
222         /* options for timehist command */
223         bool            summary;
224         bool            summary_only;
225         bool            idle_hist;
226         bool            show_callchain;
227         unsigned int    max_stack;
228         bool            show_cpu_visual;
229         bool            show_wakeups;
230         bool            show_next;
231         bool            show_migrations;
232         bool            show_state;
233         u64             skipped_samples;
234         const char      *time_str;
235         struct perf_time_interval ptime;
236         struct perf_time_interval hist_time;
237 };
238 
239 /* per thread run time data */
240 struct thread_runtime {
241         u64 last_time;      /* time of previous sched in/out event */
242         u64 dt_run;         /* run time */
243         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
244         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
245         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
246         u64 dt_delay;       /* time between wakeup and sched-in */
247         u64 ready_to_run;   /* time of wakeup */
248 
249         struct stats run_stats;
250         u64 total_run_time;
251         u64 total_sleep_time;
252         u64 total_iowait_time;
253         u64 total_preempt_time;
254         u64 total_delay_time;
255 
256         int last_state;
257 
258         char shortname[3];
259         bool comm_changed;
260 
261         u64 migrations;
262 };
263 
264 /* per event run time data */
265 struct evsel_runtime {
266         u64 *last_time; /* time this event was last seen per cpu */
267         u32 ncpu;       /* highest cpu slot allocated */
268 };
269 
270 /* per cpu idle time data */
271 struct idle_thread_runtime {
272         struct thread_runtime   tr;
273         struct thread           *last_thread;
274         struct rb_root_cached   sorted_root;
275         struct callchain_root   callchain;
276         struct callchain_cursor cursor;
277 };
278 
279 /* track idle times per cpu */
280 static struct thread **idle_threads;
281 static int idle_max_cpu;
282 static char idle_comm[] = "<idle>";
283 
284 static u64 get_nsecs(void)
285 {
286         struct timespec ts;
287 
288         clock_gettime(CLOCK_MONOTONIC, &ts);
289 
290         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
291 }
292 
293 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
294 {
295         u64 T0 = get_nsecs(), T1;
296 
297         do {
298                 T1 = get_nsecs();
299         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
300 }
301 
302 static void sleep_nsecs(u64 nsecs)
303 {
304         struct timespec ts;
305 
306         ts.tv_nsec = nsecs % 999999999;
307         ts.tv_sec = nsecs / 999999999;
308 
309         nanosleep(&ts, NULL);
310 }
311 
312 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
313 {
314         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
315         int i;
316 
317         for (i = 0; i < 10; i++) {
318                 T0 = get_nsecs();
319                 burn_nsecs(sched, 0);
320                 T1 = get_nsecs();
321                 delta = T1-T0;
322                 min_delta = min(min_delta, delta);
323         }
324         sched->run_measurement_overhead = min_delta;
325 
326         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
327 }
328 
329 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
330 {
331         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
332         int i;
333 
334         for (i = 0; i < 10; i++) {
335                 T0 = get_nsecs();
336                 sleep_nsecs(10000);
337                 T1 = get_nsecs();
338                 delta = T1-T0;
339                 min_delta = min(min_delta, delta);
340         }
341         min_delta -= 10000;
342         sched->sleep_measurement_overhead = min_delta;
343 
344         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
345 }
346 
347 static struct sched_atom *
348 get_new_event(struct task_desc *task, u64 timestamp)
349 {
350         struct sched_atom *event = zalloc(sizeof(*event));
351         unsigned long idx = task->nr_events;
352         size_t size;
353 
354         event->timestamp = timestamp;
355         event->nr = idx;
356 
357         task->nr_events++;
358         size = sizeof(struct sched_atom *) * task->nr_events;
359         task->atoms = realloc(task->atoms, size);
360         BUG_ON(!task->atoms);
361 
362         task->atoms[idx] = event;
363 
364         return event;
365 }
366 
367 static struct sched_atom *last_event(struct task_desc *task)
368 {
369         if (!task->nr_events)
370                 return NULL;
371 
372         return task->atoms[task->nr_events - 1];
373 }
374 
375 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
376                                 u64 timestamp, u64 duration)
377 {
378         struct sched_atom *event, *curr_event = last_event(task);
379 
380         /*
381          * optimize an existing RUN event by merging this one
382          * to it:
383          */
384         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
385                 sched->nr_run_events_optimized++;
386                 curr_event->duration += duration;
387                 return;
388         }
389 
390         event = get_new_event(task, timestamp);
391 
392         event->type = SCHED_EVENT_RUN;
393         event->duration = duration;
394 
395         sched->nr_run_events++;
396 }
397 
398 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
399                                    u64 timestamp, struct task_desc *wakee)
400 {
401         struct sched_atom *event, *wakee_event;
402 
403         event = get_new_event(task, timestamp);
404         event->type = SCHED_EVENT_WAKEUP;
405         event->wakee = wakee;
406 
407         wakee_event = last_event(wakee);
408         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
409                 sched->targetless_wakeups++;
410                 return;
411         }
412         if (wakee_event->wait_sem) {
413                 sched->multitarget_wakeups++;
414                 return;
415         }
416 
417         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
418         sem_init(wakee_event->wait_sem, 0, 0);
419         wakee_event->specific_wait = 1;
420         event->wait_sem = wakee_event->wait_sem;
421 
422         sched->nr_wakeup_events++;
423 }
424 
425 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
426                                   u64 timestamp, u64 task_state __maybe_unused)
427 {
428         struct sched_atom *event = get_new_event(task, timestamp);
429 
430         event->type = SCHED_EVENT_SLEEP;
431 
432         sched->nr_sleep_events++;
433 }
434 
435 static struct task_desc *register_pid(struct perf_sched *sched,
436                                       unsigned long pid, const char *comm)
437 {
438         struct task_desc *task;
439         static int pid_max;
440 
441         if (sched->pid_to_task == NULL) {
442                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
443                         pid_max = MAX_PID;
444                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
445         }
446         if (pid >= (unsigned long)pid_max) {
447                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
448                         sizeof(struct task_desc *))) == NULL);
449                 while (pid >= (unsigned long)pid_max)
450                         sched->pid_to_task[pid_max++] = NULL;
451         }
452 
453         task = sched->pid_to_task[pid];
454 
455         if (task)
456                 return task;
457 
458         task = zalloc(sizeof(*task));
459         task->pid = pid;
460         task->nr = sched->nr_tasks;
461         strcpy(task->comm, comm);
462         /*
463          * every task starts in sleeping state - this gets ignored
464          * if there's no wakeup pointing to this sleep state:
465          */
466         add_sched_event_sleep(sched, task, 0, 0);
467 
468         sched->pid_to_task[pid] = task;
469         sched->nr_tasks++;
470         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
471         BUG_ON(!sched->tasks);
472         sched->tasks[task->nr] = task;
473 
474         if (verbose > 0)
475                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
476 
477         return task;
478 }
479 
480 
481 static void print_task_traces(struct perf_sched *sched)
482 {
483         struct task_desc *task;
484         unsigned long i;
485 
486         for (i = 0; i < sched->nr_tasks; i++) {
487                 task = sched->tasks[i];
488                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
489                         task->nr, task->comm, task->pid, task->nr_events);
490         }
491 }
492 
493 static void add_cross_task_wakeups(struct perf_sched *sched)
494 {
495         struct task_desc *task1, *task2;
496         unsigned long i, j;
497 
498         for (i = 0; i < sched->nr_tasks; i++) {
499                 task1 = sched->tasks[i];
500                 j = i + 1;
501                 if (j == sched->nr_tasks)
502                         j = 0;
503                 task2 = sched->tasks[j];
504                 add_sched_event_wakeup(sched, task1, 0, task2);
505         }
506 }
507 
508 static void perf_sched__process_event(struct perf_sched *sched,
509                                       struct sched_atom *atom)
510 {
511         int ret = 0;
512 
513         switch (atom->type) {
514                 case SCHED_EVENT_RUN:
515                         burn_nsecs(sched, atom->duration);
516                         break;
517                 case SCHED_EVENT_SLEEP:
518                         if (atom->wait_sem)
519                                 ret = sem_wait(atom->wait_sem);
520                         BUG_ON(ret);
521                         break;
522                 case SCHED_EVENT_WAKEUP:
523                         if (atom->wait_sem)
524                                 ret = sem_post(atom->wait_sem);
525                         BUG_ON(ret);
526                         break;
527                 case SCHED_EVENT_MIGRATION:
528                         break;
529                 default:
530                         BUG_ON(1);
531         }
532 }
533 
534 static u64 get_cpu_usage_nsec_parent(void)
535 {
536         struct rusage ru;
537         u64 sum;
538         int err;
539 
540         err = getrusage(RUSAGE_SELF, &ru);
541         BUG_ON(err);
542 
543         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
544         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
545 
546         return sum;
547 }
548 
549 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
550 {
551         struct perf_event_attr attr;
552         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
553         int fd;
554         struct rlimit limit;
555         bool need_privilege = false;
556 
557         memset(&attr, 0, sizeof(attr));
558 
559         attr.type = PERF_TYPE_SOFTWARE;
560         attr.config = PERF_COUNT_SW_TASK_CLOCK;
561 
562 force_again:
563         fd = sys_perf_event_open(&attr, 0, -1, -1,
564                                  perf_event_open_cloexec_flag());
565 
566         if (fd < 0) {
567                 if (errno == EMFILE) {
568                         if (sched->force) {
569                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
570                                 limit.rlim_cur += sched->nr_tasks - cur_task;
571                                 if (limit.rlim_cur > limit.rlim_max) {
572                                         limit.rlim_max = limit.rlim_cur;
573                                         need_privilege = true;
574                                 }
575                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
576                                         if (need_privilege && errno == EPERM)
577                                                 strcpy(info, "Need privilege\n");
578                                 } else
579                                         goto force_again;
580                         } else
581                                 strcpy(info, "Have a try with -f option\n");
582                 }
583                 pr_err("Error: sys_perf_event_open() syscall returned "
584                        "with %d (%s)\n%s", fd,
585                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
586                 exit(EXIT_FAILURE);
587         }
588         return fd;
589 }
590 
591 static u64 get_cpu_usage_nsec_self(int fd)
592 {
593         u64 runtime;
594         int ret;
595 
596         ret = read(fd, &runtime, sizeof(runtime));
597         BUG_ON(ret != sizeof(runtime));
598 
599         return runtime;
600 }
601 
602 struct sched_thread_parms {
603         struct task_desc  *task;
604         struct perf_sched *sched;
605         int fd;
606 };
607 
608 static void *thread_func(void *ctx)
609 {
610         struct sched_thread_parms *parms = ctx;
611         struct task_desc *this_task = parms->task;
612         struct perf_sched *sched = parms->sched;
613         u64 cpu_usage_0, cpu_usage_1;
614         unsigned long i, ret;
615         char comm2[22];
616         int fd = parms->fd;
617 
618         zfree(&parms);
619 
620         sprintf(comm2, ":%s", this_task->comm);
621         prctl(PR_SET_NAME, comm2);
622         if (fd < 0)
623                 return NULL;
624 again:
625         ret = sem_post(&this_task->ready_for_work);
626         BUG_ON(ret);
627         ret = pthread_mutex_lock(&sched->start_work_mutex);
628         BUG_ON(ret);
629         ret = pthread_mutex_unlock(&sched->start_work_mutex);
630         BUG_ON(ret);
631 
632         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
633 
634         for (i = 0; i < this_task->nr_events; i++) {
635                 this_task->curr_event = i;
636                 perf_sched__process_event(sched, this_task->atoms[i]);
637         }
638 
639         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
640         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
641         ret = sem_post(&this_task->work_done_sem);
642         BUG_ON(ret);
643 
644         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
645         BUG_ON(ret);
646         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
647         BUG_ON(ret);
648 
649         goto again;
650 }
651 
652 static void create_tasks(struct perf_sched *sched)
653 {
654         struct task_desc *task;
655         pthread_attr_t attr;
656         unsigned long i;
657         int err;
658 
659         err = pthread_attr_init(&attr);
660         BUG_ON(err);
661         err = pthread_attr_setstacksize(&attr,
662                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
663         BUG_ON(err);
664         err = pthread_mutex_lock(&sched->start_work_mutex);
665         BUG_ON(err);
666         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
667         BUG_ON(err);
668         for (i = 0; i < sched->nr_tasks; i++) {
669                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
670                 BUG_ON(parms == NULL);
671                 parms->task = task = sched->tasks[i];
672                 parms->sched = sched;
673                 parms->fd = self_open_counters(sched, i);
674                 sem_init(&task->sleep_sem, 0, 0);
675                 sem_init(&task->ready_for_work, 0, 0);
676                 sem_init(&task->work_done_sem, 0, 0);
677                 task->curr_event = 0;
678                 err = pthread_create(&task->thread, &attr, thread_func, parms);
679                 BUG_ON(err);
680         }
681 }
682 
683 static void wait_for_tasks(struct perf_sched *sched)
684 {
685         u64 cpu_usage_0, cpu_usage_1;
686         struct task_desc *task;
687         unsigned long i, ret;
688 
689         sched->start_time = get_nsecs();
690         sched->cpu_usage = 0;
691         pthread_mutex_unlock(&sched->work_done_wait_mutex);
692 
693         for (i = 0; i < sched->nr_tasks; i++) {
694                 task = sched->tasks[i];
695                 ret = sem_wait(&task->ready_for_work);
696                 BUG_ON(ret);
697                 sem_init(&task->ready_for_work, 0, 0);
698         }
699         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
700         BUG_ON(ret);
701 
702         cpu_usage_0 = get_cpu_usage_nsec_parent();
703 
704         pthread_mutex_unlock(&sched->start_work_mutex);
705 
706         for (i = 0; i < sched->nr_tasks; i++) {
707                 task = sched->tasks[i];
708                 ret = sem_wait(&task->work_done_sem);
709                 BUG_ON(ret);
710                 sem_init(&task->work_done_sem, 0, 0);
711                 sched->cpu_usage += task->cpu_usage;
712                 task->cpu_usage = 0;
713         }
714 
715         cpu_usage_1 = get_cpu_usage_nsec_parent();
716         if (!sched->runavg_cpu_usage)
717                 sched->runavg_cpu_usage = sched->cpu_usage;
718         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
719 
720         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
721         if (!sched->runavg_parent_cpu_usage)
722                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
723         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
724                                          sched->parent_cpu_usage)/sched->replay_repeat;
725 
726         ret = pthread_mutex_lock(&sched->start_work_mutex);
727         BUG_ON(ret);
728 
729         for (i = 0; i < sched->nr_tasks; i++) {
730                 task = sched->tasks[i];
731                 sem_init(&task->sleep_sem, 0, 0);
732                 task->curr_event = 0;
733         }
734 }
735 
736 static void run_one_test(struct perf_sched *sched)
737 {
738         u64 T0, T1, delta, avg_delta, fluct;
739 
740         T0 = get_nsecs();
741         wait_for_tasks(sched);
742         T1 = get_nsecs();
743 
744         delta = T1 - T0;
745         sched->sum_runtime += delta;
746         sched->nr_runs++;
747 
748         avg_delta = sched->sum_runtime / sched->nr_runs;
749         if (delta < avg_delta)
750                 fluct = avg_delta - delta;
751         else
752                 fluct = delta - avg_delta;
753         sched->sum_fluct += fluct;
754         if (!sched->run_avg)
755                 sched->run_avg = delta;
756         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
757 
758         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
759 
760         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
761 
762         printf("cpu: %0.2f / %0.2f",
763                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
764 
765 #if 0
766         /*
767          * rusage statistics done by the parent, these are less
768          * accurate than the sched->sum_exec_runtime based statistics:
769          */
770         printf(" [%0.2f / %0.2f]",
771                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
772                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
773 #endif
774 
775         printf("\n");
776 
777         if (sched->nr_sleep_corrections)
778                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
779         sched->nr_sleep_corrections = 0;
780 }
781 
782 static void test_calibrations(struct perf_sched *sched)
783 {
784         u64 T0, T1;
785 
786         T0 = get_nsecs();
787         burn_nsecs(sched, NSEC_PER_MSEC);
788         T1 = get_nsecs();
789 
790         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
791 
792         T0 = get_nsecs();
793         sleep_nsecs(NSEC_PER_MSEC);
794         T1 = get_nsecs();
795 
796         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
797 }
798 
799 static int
800 replay_wakeup_event(struct perf_sched *sched,
801                     struct perf_evsel *evsel, struct perf_sample *sample,
802                     struct machine *machine __maybe_unused)
803 {
804         const char *comm = perf_evsel__strval(evsel, sample, "comm");
805         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
806         struct task_desc *waker, *wakee;
807 
808         if (verbose > 0) {
809                 printf("sched_wakeup event %p\n", evsel);
810 
811                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
812         }
813 
814         waker = register_pid(sched, sample->tid, "<unknown>");
815         wakee = register_pid(sched, pid, comm);
816 
817         add_sched_event_wakeup(sched, waker, sample->time, wakee);
818         return 0;
819 }
820 
821 static int replay_switch_event(struct perf_sched *sched,
822                                struct perf_evsel *evsel,
823                                struct perf_sample *sample,
824                                struct machine *machine __maybe_unused)
825 {
826         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
827                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
828         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
829                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
830         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
831         struct task_desc *prev, __maybe_unused *next;
832         u64 timestamp0, timestamp = sample->time;
833         int cpu = sample->cpu;
834         s64 delta;
835 
836         if (verbose > 0)
837                 printf("sched_switch event %p\n", evsel);
838 
839         if (cpu >= MAX_CPUS || cpu < 0)
840                 return 0;
841 
842         timestamp0 = sched->cpu_last_switched[cpu];
843         if (timestamp0)
844                 delta = timestamp - timestamp0;
845         else
846                 delta = 0;
847 
848         if (delta < 0) {
849                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
850                 return -1;
851         }
852 
853         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
854                  prev_comm, prev_pid, next_comm, next_pid, delta);
855 
856         prev = register_pid(sched, prev_pid, prev_comm);
857         next = register_pid(sched, next_pid, next_comm);
858 
859         sched->cpu_last_switched[cpu] = timestamp;
860 
861         add_sched_event_run(sched, prev, timestamp, delta);
862         add_sched_event_sleep(sched, prev, timestamp, prev_state);
863 
864         return 0;
865 }
866 
867 static int replay_fork_event(struct perf_sched *sched,
868                              union perf_event *event,
869                              struct machine *machine)
870 {
871         struct thread *child, *parent;
872 
873         child = machine__findnew_thread(machine, event->fork.pid,
874                                         event->fork.tid);
875         parent = machine__findnew_thread(machine, event->fork.ppid,
876                                          event->fork.ptid);
877 
878         if (child == NULL || parent == NULL) {
879                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
880                                  child, parent);
881                 goto out_put;
882         }
883 
884         if (verbose > 0) {
885                 printf("fork event\n");
886                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
887                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
888         }
889 
890         register_pid(sched, parent->tid, thread__comm_str(parent));
891         register_pid(sched, child->tid, thread__comm_str(child));
892 out_put:
893         thread__put(child);
894         thread__put(parent);
895         return 0;
896 }
897 
898 struct sort_dimension {
899         const char              *name;
900         sort_fn_t               cmp;
901         struct list_head        list;
902 };
903 
904 /*
905  * handle runtime stats saved per thread
906  */
907 static struct thread_runtime *thread__init_runtime(struct thread *thread)
908 {
909         struct thread_runtime *r;
910 
911         r = zalloc(sizeof(struct thread_runtime));
912         if (!r)
913                 return NULL;
914 
915         init_stats(&r->run_stats);
916         thread__set_priv(thread, r);
917 
918         return r;
919 }
920 
921 static struct thread_runtime *thread__get_runtime(struct thread *thread)
922 {
923         struct thread_runtime *tr;
924 
925         tr = thread__priv(thread);
926         if (tr == NULL) {
927                 tr = thread__init_runtime(thread);
928                 if (tr == NULL)
929                         pr_debug("Failed to malloc memory for runtime data.\n");
930         }
931 
932         return tr;
933 }
934 
935 static int
936 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
937 {
938         struct sort_dimension *sort;
939         int ret = 0;
940 
941         BUG_ON(list_empty(list));
942 
943         list_for_each_entry(sort, list, list) {
944                 ret = sort->cmp(l, r);
945                 if (ret)
946                         return ret;
947         }
948 
949         return ret;
950 }
951 
952 static struct work_atoms *
953 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
954                          struct list_head *sort_list)
955 {
956         struct rb_node *node = root->rb_root.rb_node;
957         struct work_atoms key = { .thread = thread };
958 
959         while (node) {
960                 struct work_atoms *atoms;
961                 int cmp;
962 
963                 atoms = container_of(node, struct work_atoms, node);
964 
965                 cmp = thread_lat_cmp(sort_list, &key, atoms);
966                 if (cmp > 0)
967                         node = node->rb_left;
968                 else if (cmp < 0)
969                         node = node->rb_right;
970                 else {
971                         BUG_ON(thread != atoms->thread);
972                         return atoms;
973                 }
974         }
975         return NULL;
976 }
977 
978 static void
979 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
980                          struct list_head *sort_list)
981 {
982         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
983         bool leftmost = true;
984 
985         while (*new) {
986                 struct work_atoms *this;
987                 int cmp;
988 
989                 this = container_of(*new, struct work_atoms, node);
990                 parent = *new;
991 
992                 cmp = thread_lat_cmp(sort_list, data, this);
993 
994                 if (cmp > 0)
995                         new = &((*new)->rb_left);
996                 else {
997                         new = &((*new)->rb_right);
998                         leftmost = false;
999                 }
1000         }
1001 
1002         rb_link_node(&data->node, parent, new);
1003         rb_insert_color_cached(&data->node, root, leftmost);
1004 }
1005 
1006 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1007 {
1008         struct work_atoms *atoms = zalloc(sizeof(*atoms));
1009         if (!atoms) {
1010                 pr_err("No memory at %s\n", __func__);
1011                 return -1;
1012         }
1013 
1014         atoms->thread = thread__get(thread);
1015         INIT_LIST_HEAD(&atoms->work_list);
1016         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1017         return 0;
1018 }
1019 
1020 static char sched_out_state(u64 prev_state)
1021 {
1022         const char *str = TASK_STATE_TO_CHAR_STR;
1023 
1024         return str[prev_state];
1025 }
1026 
1027 static int
1028 add_sched_out_event(struct work_atoms *atoms,
1029                     char run_state,
1030                     u64 timestamp)
1031 {
1032         struct work_atom *atom = zalloc(sizeof(*atom));
1033         if (!atom) {
1034                 pr_err("Non memory at %s", __func__);
1035                 return -1;
1036         }
1037 
1038         atom->sched_out_time = timestamp;
1039 
1040         if (run_state == 'R') {
1041                 atom->state = THREAD_WAIT_CPU;
1042                 atom->wake_up_time = atom->sched_out_time;
1043         }
1044 
1045         list_add_tail(&atom->list, &atoms->work_list);
1046         return 0;
1047 }
1048 
1049 static void
1050 add_runtime_event(struct work_atoms *atoms, u64 delta,
1051                   u64 timestamp __maybe_unused)
1052 {
1053         struct work_atom *atom;
1054 
1055         BUG_ON(list_empty(&atoms->work_list));
1056 
1057         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1058 
1059         atom->runtime += delta;
1060         atoms->total_runtime += delta;
1061 }
1062 
1063 static void
1064 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1065 {
1066         struct work_atom *atom;
1067         u64 delta;
1068 
1069         if (list_empty(&atoms->work_list))
1070                 return;
1071 
1072         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1073 
1074         if (atom->state != THREAD_WAIT_CPU)
1075                 return;
1076 
1077         if (timestamp < atom->wake_up_time) {
1078                 atom->state = THREAD_IGNORE;
1079                 return;
1080         }
1081 
1082         atom->state = THREAD_SCHED_IN;
1083         atom->sched_in_time = timestamp;
1084 
1085         delta = atom->sched_in_time - atom->wake_up_time;
1086         atoms->total_lat += delta;
1087         if (delta > atoms->max_lat) {
1088                 atoms->max_lat = delta;
1089                 atoms->max_lat_at = timestamp;
1090         }
1091         atoms->nb_atoms++;
1092 }
1093 
1094 static int latency_switch_event(struct perf_sched *sched,
1095                                 struct perf_evsel *evsel,
1096                                 struct perf_sample *sample,
1097                                 struct machine *machine)
1098 {
1099         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1100                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1101         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1102         struct work_atoms *out_events, *in_events;
1103         struct thread *sched_out, *sched_in;
1104         u64 timestamp0, timestamp = sample->time;
1105         int cpu = sample->cpu, err = -1;
1106         s64 delta;
1107 
1108         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1109 
1110         timestamp0 = sched->cpu_last_switched[cpu];
1111         sched->cpu_last_switched[cpu] = timestamp;
1112         if (timestamp0)
1113                 delta = timestamp - timestamp0;
1114         else
1115                 delta = 0;
1116 
1117         if (delta < 0) {
1118                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1119                 return -1;
1120         }
1121 
1122         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1123         sched_in = machine__findnew_thread(machine, -1, next_pid);
1124         if (sched_out == NULL || sched_in == NULL)
1125                 goto out_put;
1126 
1127         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1128         if (!out_events) {
1129                 if (thread_atoms_insert(sched, sched_out))
1130                         goto out_put;
1131                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1132                 if (!out_events) {
1133                         pr_err("out-event: Internal tree error");
1134                         goto out_put;
1135                 }
1136         }
1137         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1138                 return -1;
1139 
1140         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1141         if (!in_events) {
1142                 if (thread_atoms_insert(sched, sched_in))
1143                         goto out_put;
1144                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1145                 if (!in_events) {
1146                         pr_err("in-event: Internal tree error");
1147                         goto out_put;
1148                 }
1149                 /*
1150                  * Take came in we have not heard about yet,
1151                  * add in an initial atom in runnable state:
1152                  */
1153                 if (add_sched_out_event(in_events, 'R', timestamp))
1154                         goto out_put;
1155         }
1156         add_sched_in_event(in_events, timestamp);
1157         err = 0;
1158 out_put:
1159         thread__put(sched_out);
1160         thread__put(sched_in);
1161         return err;
1162 }
1163 
1164 static int latency_runtime_event(struct perf_sched *sched,
1165                                  struct perf_evsel *evsel,
1166                                  struct perf_sample *sample,
1167                                  struct machine *machine)
1168 {
1169         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1170         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1171         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1172         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1173         u64 timestamp = sample->time;
1174         int cpu = sample->cpu, err = -1;
1175 
1176         if (thread == NULL)
1177                 return -1;
1178 
1179         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1180         if (!atoms) {
1181                 if (thread_atoms_insert(sched, thread))
1182                         goto out_put;
1183                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1184                 if (!atoms) {
1185                         pr_err("in-event: Internal tree error");
1186                         goto out_put;
1187                 }
1188                 if (add_sched_out_event(atoms, 'R', timestamp))
1189                         goto out_put;
1190         }
1191 
1192         add_runtime_event(atoms, runtime, timestamp);
1193         err = 0;
1194 out_put:
1195         thread__put(thread);
1196         return err;
1197 }
1198 
1199 static int latency_wakeup_event(struct perf_sched *sched,
1200                                 struct perf_evsel *evsel,
1201                                 struct perf_sample *sample,
1202                                 struct machine *machine)
1203 {
1204         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1205         struct work_atoms *atoms;
1206         struct work_atom *atom;
1207         struct thread *wakee;
1208         u64 timestamp = sample->time;
1209         int err = -1;
1210 
1211         wakee = machine__findnew_thread(machine, -1, pid);
1212         if (wakee == NULL)
1213                 return -1;
1214         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1215         if (!atoms) {
1216                 if (thread_atoms_insert(sched, wakee))
1217                         goto out_put;
1218                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1219                 if (!atoms) {
1220                         pr_err("wakeup-event: Internal tree error");
1221                         goto out_put;
1222                 }
1223                 if (add_sched_out_event(atoms, 'S', timestamp))
1224                         goto out_put;
1225         }
1226 
1227         BUG_ON(list_empty(&atoms->work_list));
1228 
1229         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1230 
1231         /*
1232          * As we do not guarantee the wakeup event happens when
1233          * task is out of run queue, also may happen when task is
1234          * on run queue and wakeup only change ->state to TASK_RUNNING,
1235          * then we should not set the ->wake_up_time when wake up a
1236          * task which is on run queue.
1237          *
1238          * You WILL be missing events if you've recorded only
1239          * one CPU, or are only looking at only one, so don't
1240          * skip in this case.
1241          */
1242         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1243                 goto out_ok;
1244 
1245         sched->nr_timestamps++;
1246         if (atom->sched_out_time > timestamp) {
1247                 sched->nr_unordered_timestamps++;
1248                 goto out_ok;
1249         }
1250 
1251         atom->state = THREAD_WAIT_CPU;
1252         atom->wake_up_time = timestamp;
1253 out_ok:
1254         err = 0;
1255 out_put:
1256         thread__put(wakee);
1257         return err;
1258 }
1259 
1260 static int latency_migrate_task_event(struct perf_sched *sched,
1261                                       struct perf_evsel *evsel,
1262                                       struct perf_sample *sample,
1263                                       struct machine *machine)
1264 {
1265         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1266         u64 timestamp = sample->time;
1267         struct work_atoms *atoms;
1268         struct work_atom *atom;
1269         struct thread *migrant;
1270         int err = -1;
1271 
1272         /*
1273          * Only need to worry about migration when profiling one CPU.
1274          */
1275         if (sched->profile_cpu == -1)
1276                 return 0;
1277 
1278         migrant = machine__findnew_thread(machine, -1, pid);
1279         if (migrant == NULL)
1280                 return -1;
1281         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1282         if (!atoms) {
1283                 if (thread_atoms_insert(sched, migrant))
1284                         goto out_put;
1285                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1286                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1287                 if (!atoms) {
1288                         pr_err("migration-event: Internal tree error");
1289                         goto out_put;
1290                 }
1291                 if (add_sched_out_event(atoms, 'R', timestamp))
1292                         goto out_put;
1293         }
1294 
1295         BUG_ON(list_empty(&atoms->work_list));
1296 
1297         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1298         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1299 
1300         sched->nr_timestamps++;
1301 
1302         if (atom->sched_out_time > timestamp)
1303                 sched->nr_unordered_timestamps++;
1304         err = 0;
1305 out_put:
1306         thread__put(migrant);
1307         return err;
1308 }
1309 
1310 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1311 {
1312         int i;
1313         int ret;
1314         u64 avg;
1315         char max_lat_at[32];
1316 
1317         if (!work_list->nb_atoms)
1318                 return;
1319         /*
1320          * Ignore idle threads:
1321          */
1322         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1323                 return;
1324 
1325         sched->all_runtime += work_list->total_runtime;
1326         sched->all_count   += work_list->nb_atoms;
1327 
1328         if (work_list->num_merged > 1)
1329                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1330         else
1331                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1332 
1333         for (i = 0; i < 24 - ret; i++)
1334                 printf(" ");
1335 
1336         avg = work_list->total_lat / work_list->nb_atoms;
1337         timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1338 
1339         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1340               (double)work_list->total_runtime / NSEC_PER_MSEC,
1341                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1342                  (double)work_list->max_lat / NSEC_PER_MSEC,
1343                  max_lat_at);
1344 }
1345 
1346 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1347 {
1348         if (l->thread == r->thread)
1349                 return 0;
1350         if (l->thread->tid < r->thread->tid)
1351                 return -1;
1352         if (l->thread->tid > r->thread->tid)
1353                 return 1;
1354         return (int)(l->thread - r->thread);
1355 }
1356 
1357 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1358 {
1359         u64 avgl, avgr;
1360 
1361         if (!l->nb_atoms)
1362                 return -1;
1363 
1364         if (!r->nb_atoms)
1365                 return 1;
1366 
1367         avgl = l->total_lat / l->nb_atoms;
1368         avgr = r->total_lat / r->nb_atoms;
1369 
1370         if (avgl < avgr)
1371                 return -1;
1372         if (avgl > avgr)
1373                 return 1;
1374 
1375         return 0;
1376 }
1377 
1378 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1379 {
1380         if (l->max_lat < r->max_lat)
1381                 return -1;
1382         if (l->max_lat > r->max_lat)
1383                 return 1;
1384 
1385         return 0;
1386 }
1387 
1388 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1389 {
1390         if (l->nb_atoms < r->nb_atoms)
1391                 return -1;
1392         if (l->nb_atoms > r->nb_atoms)
1393                 return 1;
1394 
1395         return 0;
1396 }
1397 
1398 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1399 {
1400         if (l->total_runtime < r->total_runtime)
1401                 return -1;
1402         if (l->total_runtime > r->total_runtime)
1403                 return 1;
1404 
1405         return 0;
1406 }
1407 
1408 static int sort_dimension__add(const char *tok, struct list_head *list)
1409 {
1410         size_t i;
1411         static struct sort_dimension avg_sort_dimension = {
1412                 .name = "avg",
1413                 .cmp  = avg_cmp,
1414         };
1415         static struct sort_dimension max_sort_dimension = {
1416                 .name = "max",
1417                 .cmp  = max_cmp,
1418         };
1419         static struct sort_dimension pid_sort_dimension = {
1420                 .name = "pid",
1421                 .cmp  = pid_cmp,
1422         };
1423         static struct sort_dimension runtime_sort_dimension = {
1424                 .name = "runtime",
1425                 .cmp  = runtime_cmp,
1426         };
1427         static struct sort_dimension switch_sort_dimension = {
1428                 .name = "switch",
1429                 .cmp  = switch_cmp,
1430         };
1431         struct sort_dimension *available_sorts[] = {
1432                 &pid_sort_dimension,
1433                 &avg_sort_dimension,
1434                 &max_sort_dimension,
1435                 &switch_sort_dimension,
1436                 &runtime_sort_dimension,
1437         };
1438 
1439         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1440                 if (!strcmp(available_sorts[i]->name, tok)) {
1441                         list_add_tail(&available_sorts[i]->list, list);
1442 
1443                         return 0;
1444                 }
1445         }
1446 
1447         return -1;
1448 }
1449 
1450 static void perf_sched__sort_lat(struct perf_sched *sched)
1451 {
1452         struct rb_node *node;
1453         struct rb_root_cached *root = &sched->atom_root;
1454 again:
1455         for (;;) {
1456                 struct work_atoms *data;
1457                 node = rb_first_cached(root);
1458                 if (!node)
1459                         break;
1460 
1461                 rb_erase_cached(node, root);
1462                 data = rb_entry(node, struct work_atoms, node);
1463                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1464         }
1465         if (root == &sched->atom_root) {
1466                 root = &sched->merged_atom_root;
1467                 goto again;
1468         }
1469 }
1470 
1471 static int process_sched_wakeup_event(struct perf_tool *tool,
1472                                       struct perf_evsel *evsel,
1473                                       struct perf_sample *sample,
1474                                       struct machine *machine)
1475 {
1476         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1477 
1478         if (sched->tp_handler->wakeup_event)
1479                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1480 
1481         return 0;
1482 }
1483 
1484 union map_priv {
1485         void    *ptr;
1486         bool     color;
1487 };
1488 
1489 static bool thread__has_color(struct thread *thread)
1490 {
1491         union map_priv priv = {
1492                 .ptr = thread__priv(thread),
1493         };
1494 
1495         return priv.color;
1496 }
1497 
1498 static struct thread*
1499 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1500 {
1501         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1502         union map_priv priv = {
1503                 .color = false,
1504         };
1505 
1506         if (!sched->map.color_pids || !thread || thread__priv(thread))
1507                 return thread;
1508 
1509         if (thread_map__has(sched->map.color_pids, tid))
1510                 priv.color = true;
1511 
1512         thread__set_priv(thread, priv.ptr);
1513         return thread;
1514 }
1515 
1516 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1517                             struct perf_sample *sample, struct machine *machine)
1518 {
1519         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1520         struct thread *sched_in;
1521         struct thread_runtime *tr;
1522         int new_shortname;
1523         u64 timestamp0, timestamp = sample->time;
1524         s64 delta;
1525         int i, this_cpu = sample->cpu;
1526         int cpus_nr;
1527         bool new_cpu = false;
1528         const char *color = PERF_COLOR_NORMAL;
1529         char stimestamp[32];
1530 
1531         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1532 
1533         if (this_cpu > sched->max_cpu)
1534                 sched->max_cpu = this_cpu;
1535 
1536         if (sched->map.comp) {
1537                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1538                 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1539                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1540                         new_cpu = true;
1541                 }
1542         } else
1543                 cpus_nr = sched->max_cpu;
1544 
1545         timestamp0 = sched->cpu_last_switched[this_cpu];
1546         sched->cpu_last_switched[this_cpu] = timestamp;
1547         if (timestamp0)
1548                 delta = timestamp - timestamp0;
1549         else
1550                 delta = 0;
1551 
1552         if (delta < 0) {
1553                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1554                 return -1;
1555         }
1556 
1557         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1558         if (sched_in == NULL)
1559                 return -1;
1560 
1561         tr = thread__get_runtime(sched_in);
1562         if (tr == NULL) {
1563                 thread__put(sched_in);
1564                 return -1;
1565         }
1566 
1567         sched->curr_thread[this_cpu] = thread__get(sched_in);
1568 
1569         printf("  ");
1570 
1571         new_shortname = 0;
1572         if (!tr->shortname[0]) {
1573                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1574                         /*
1575                          * Don't allocate a letter-number for swapper:0
1576                          * as a shortname. Instead, we use '.' for it.
1577                          */
1578                         tr->shortname[0] = '.';
1579                         tr->shortname[1] = ' ';
1580                 } else {
1581                         tr->shortname[0] = sched->next_shortname1;
1582                         tr->shortname[1] = sched->next_shortname2;
1583 
1584                         if (sched->next_shortname1 < 'Z') {
1585                                 sched->next_shortname1++;
1586                         } else {
1587                                 sched->next_shortname1 = 'A';
1588                                 if (sched->next_shortname2 < '9')
1589                                         sched->next_shortname2++;
1590                                 else
1591                                         sched->next_shortname2 = '';
1592                         }
1593                 }
1594                 new_shortname = 1;
1595         }
1596 
1597         for (i = 0; i < cpus_nr; i++) {
1598                 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1599                 struct thread *curr_thread = sched->curr_thread[cpu];
1600                 struct thread_runtime *curr_tr;
1601                 const char *pid_color = color;
1602                 const char *cpu_color = color;
1603 
1604                 if (curr_thread && thread__has_color(curr_thread))
1605                         pid_color = COLOR_PIDS;
1606 
1607                 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1608                         continue;
1609 
1610                 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1611                         cpu_color = COLOR_CPUS;
1612 
1613                 if (cpu != this_cpu)
1614                         color_fprintf(stdout, color, " ");
1615                 else
1616                         color_fprintf(stdout, cpu_color, "*");
1617 
1618                 if (sched->curr_thread[cpu]) {
1619                         curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1620                         if (curr_tr == NULL) {
1621                                 thread__put(sched_in);
1622                                 return -1;
1623                         }
1624                         color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1625                 } else
1626                         color_fprintf(stdout, color, "   ");
1627         }
1628 
1629         if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1630                 goto out;
1631 
1632         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1633         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1634         if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1635                 const char *pid_color = color;
1636 
1637                 if (thread__has_color(sched_in))
1638                         pid_color = COLOR_PIDS;
1639 
1640                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1641                        tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1642                 tr->comm_changed = false;
1643         }
1644 
1645         if (sched->map.comp && new_cpu)
1646                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1647 
1648 out:
1649         color_fprintf(stdout, color, "\n");
1650 
1651         thread__put(sched_in);
1652 
1653         return 0;
1654 }
1655 
1656 static int process_sched_switch_event(struct perf_tool *tool,
1657                                       struct perf_evsel *evsel,
1658                                       struct perf_sample *sample,
1659                                       struct machine *machine)
1660 {
1661         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1662         int this_cpu = sample->cpu, err = 0;
1663         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1664             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1665 
1666         if (sched->curr_pid[this_cpu] != (u32)-1) {
1667                 /*
1668                  * Are we trying to switch away a PID that is
1669                  * not current?
1670                  */
1671                 if (sched->curr_pid[this_cpu] != prev_pid)
1672                         sched->nr_context_switch_bugs++;
1673         }
1674 
1675         if (sched->tp_handler->switch_event)
1676                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1677 
1678         sched->curr_pid[this_cpu] = next_pid;
1679         return err;
1680 }
1681 
1682 static int process_sched_runtime_event(struct perf_tool *tool,
1683                                        struct perf_evsel *evsel,
1684                                        struct perf_sample *sample,
1685                                        struct machine *machine)
1686 {
1687         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1688 
1689         if (sched->tp_handler->runtime_event)
1690                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1691 
1692         return 0;
1693 }
1694 
1695 static int perf_sched__process_fork_event(struct perf_tool *tool,
1696                                           union perf_event *event,
1697                                           struct perf_sample *sample,
1698                                           struct machine *machine)
1699 {
1700         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1701 
1702         /* run the fork event through the perf machineruy */
1703         perf_event__process_fork(tool, event, sample, machine);
1704 
1705         /* and then run additional processing needed for this command */
1706         if (sched->tp_handler->fork_event)
1707                 return sched->tp_handler->fork_event(sched, event, machine);
1708 
1709         return 0;
1710 }
1711 
1712 static int process_sched_migrate_task_event(struct perf_tool *tool,
1713                                             struct perf_evsel *evsel,
1714                                             struct perf_sample *sample,
1715                                             struct machine *machine)
1716 {
1717         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1718 
1719         if (sched->tp_handler->migrate_task_event)
1720                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1721 
1722         return 0;
1723 }
1724 
1725 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1726                                   struct perf_evsel *evsel,
1727                                   struct perf_sample *sample,
1728                                   struct machine *machine);
1729 
1730 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1731                                                  union perf_event *event __maybe_unused,
1732                                                  struct perf_sample *sample,
1733                                                  struct perf_evsel *evsel,
1734                                                  struct machine *machine)
1735 {
1736         int err = 0;
1737 
1738         if (evsel->handler != NULL) {
1739                 tracepoint_handler f = evsel->handler;
1740                 err = f(tool, evsel, sample, machine);
1741         }
1742 
1743         return err;
1744 }
1745 
1746 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1747                                     union perf_event *event,
1748                                     struct perf_sample *sample,
1749                                     struct machine *machine)
1750 {
1751         struct thread *thread;
1752         struct thread_runtime *tr;
1753         int err;
1754 
1755         err = perf_event__process_comm(tool, event, sample, machine);
1756         if (err)
1757                 return err;
1758 
1759         thread = machine__find_thread(machine, sample->pid, sample->tid);
1760         if (!thread) {
1761                 pr_err("Internal error: can't find thread\n");
1762                 return -1;
1763         }
1764 
1765         tr = thread__get_runtime(thread);
1766         if (tr == NULL) {
1767                 thread__put(thread);
1768                 return -1;
1769         }
1770 
1771         tr->comm_changed = true;
1772         thread__put(thread);
1773 
1774         return 0;
1775 }
1776 
1777 static int perf_sched__read_events(struct perf_sched *sched)
1778 {
1779         const struct perf_evsel_str_handler handlers[] = {
1780                 { "sched:sched_switch",       process_sched_switch_event, },
1781                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1782                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1783                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1784                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1785         };
1786         struct perf_session *session;
1787         struct perf_data data = {
1788                 .path  = input_name,
1789                 .mode  = PERF_DATA_MODE_READ,
1790                 .force = sched->force,
1791         };
1792         int rc = -1;
1793 
1794         session = perf_session__new(&data, false, &sched->tool);
1795         if (session == NULL) {
1796                 pr_debug("No Memory for session\n");
1797                 return -1;
1798         }
1799 
1800         symbol__init(&session->header.env);
1801 
1802         if (perf_session__set_tracepoints_handlers(session, handlers))
1803                 goto out_delete;
1804 
1805         if (perf_session__has_traces(session, "record -R")) {
1806                 int err = perf_session__process_events(session);
1807                 if (err) {
1808                         pr_err("Failed to process events, error %d", err);
1809                         goto out_delete;
1810                 }
1811 
1812                 sched->nr_events      = session->evlist->stats.nr_events[0];
1813                 sched->nr_lost_events = session->evlist->stats.total_lost;
1814                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1815         }
1816 
1817         rc = 0;
1818 out_delete:
1819         perf_session__delete(session);
1820         return rc;
1821 }
1822 
1823 /*
1824  * scheduling times are printed as msec.usec
1825  */
1826 static inline void print_sched_time(unsigned long long nsecs, int width)
1827 {
1828         unsigned long msecs;
1829         unsigned long usecs;
1830 
1831         msecs  = nsecs / NSEC_PER_MSEC;
1832         nsecs -= msecs * NSEC_PER_MSEC;
1833         usecs  = nsecs / NSEC_PER_USEC;
1834         printf("%*lu.%03lu ", width, msecs, usecs);
1835 }
1836 
1837 /*
1838  * returns runtime data for event, allocating memory for it the
1839  * first time it is used.
1840  */
1841 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1842 {
1843         struct evsel_runtime *r = evsel->priv;
1844 
1845         if (r == NULL) {
1846                 r = zalloc(sizeof(struct evsel_runtime));
1847                 evsel->priv = r;
1848         }
1849 
1850         return r;
1851 }
1852 
1853 /*
1854  * save last time event was seen per cpu
1855  */
1856 static void perf_evsel__save_time(struct perf_evsel *evsel,
1857                                   u64 timestamp, u32 cpu)
1858 {
1859         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1860 
1861         if (r == NULL)
1862                 return;
1863 
1864         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1865                 int i, n = __roundup_pow_of_two(cpu+1);
1866                 void *p = r->last_time;
1867 
1868                 p = realloc(r->last_time, n * sizeof(u64));
1869                 if (!p)
1870                         return;
1871 
1872                 r->last_time = p;
1873                 for (i = r->ncpu; i < n; ++i)
1874                         r->last_time[i] = (u64) 0;
1875 
1876                 r->ncpu = n;
1877         }
1878 
1879         r->last_time[cpu] = timestamp;
1880 }
1881 
1882 /* returns last time this event was seen on the given cpu */
1883 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1884 {
1885         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1886 
1887         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1888                 return 0;
1889 
1890         return r->last_time[cpu];
1891 }
1892 
1893 static int comm_width = 30;
1894 
1895 static char *timehist_get_commstr(struct thread *thread)
1896 {
1897         static char str[32];
1898         const char *comm = thread__comm_str(thread);
1899         pid_t tid = thread->tid;
1900         pid_t pid = thread->pid_;
1901         int n;
1902 
1903         if (pid == 0)
1904                 n = scnprintf(str, sizeof(str), "%s", comm);
1905 
1906         else if (tid != pid)
1907                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1908 
1909         else
1910                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1911 
1912         if (n > comm_width)
1913                 comm_width = n;
1914 
1915         return str;
1916 }
1917 
1918 static void timehist_header(struct perf_sched *sched)
1919 {
1920         u32 ncpus = sched->max_cpu + 1;
1921         u32 i, j;
1922 
1923         printf("%15s %6s ", "time", "cpu");
1924 
1925         if (sched->show_cpu_visual) {
1926                 printf(" ");
1927                 for (i = 0, j = 0; i < ncpus; ++i) {
1928                         printf("%x", j++);
1929                         if (j > 15)
1930                                 j = 0;
1931                 }
1932                 printf(" ");
1933         }
1934 
1935         printf(" %-*s  %9s  %9s  %9s", comm_width,
1936                 "task name", "wait time", "sch delay", "run time");
1937 
1938         if (sched->show_state)
1939                 printf("  %s", "state");
1940 
1941         printf("\n");
1942 
1943         /*
1944          * units row
1945          */
1946         printf("%15s %-6s ", "", "");
1947 
1948         if (sched->show_cpu_visual)
1949                 printf(" %*s ", ncpus, "");
1950 
1951         printf(" %-*s  %9s  %9s  %9s", comm_width,
1952                "[tid/pid]", "(msec)", "(msec)", "(msec)");
1953 
1954         if (sched->show_state)
1955                 printf("  %5s", "");
1956 
1957         printf("\n");
1958 
1959         /*
1960          * separator
1961          */
1962         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1963 
1964         if (sched->show_cpu_visual)
1965                 printf(" %.*s ", ncpus, graph_dotted_line);
1966 
1967         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1968                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1969                 graph_dotted_line);
1970 
1971         if (sched->show_state)
1972                 printf("  %.5s", graph_dotted_line);
1973 
1974         printf("\n");
1975 }
1976 
1977 static char task_state_char(struct thread *thread, int state)
1978 {
1979         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1980         unsigned bit = state ? ffs(state) : 0;
1981 
1982         /* 'I' for idle */
1983         if (thread->tid == 0)
1984                 return 'I';
1985 
1986         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1987 }
1988 
1989 static void timehist_print_sample(struct perf_sched *sched,
1990                                   struct perf_evsel *evsel,
1991                                   struct perf_sample *sample,
1992                                   struct addr_location *al,
1993                                   struct thread *thread,
1994                                   u64 t, int state)
1995 {
1996         struct thread_runtime *tr = thread__priv(thread);
1997         const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1998         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1999         u32 max_cpus = sched->max_cpu + 1;
2000         char tstr[64];
2001         char nstr[30];
2002         u64 wait_time;
2003 
2004         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2005         printf("%15s [%04d] ", tstr, sample->cpu);
2006 
2007         if (sched->show_cpu_visual) {
2008                 u32 i;
2009                 char c;
2010 
2011                 printf(" ");
2012                 for (i = 0; i < max_cpus; ++i) {
2013                         /* flag idle times with 'i'; others are sched events */
2014                         if (i == sample->cpu)
2015                                 c = (thread->tid == 0) ? 'i' : 's';
2016                         else
2017                                 c = ' ';
2018                         printf("%c", c);
2019                 }
2020                 printf(" ");
2021         }
2022 
2023         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2024 
2025         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2026         print_sched_time(wait_time, 6);
2027 
2028         print_sched_time(tr->dt_delay, 6);
2029         print_sched_time(tr->dt_run, 6);
2030 
2031         if (sched->show_state)
2032                 printf(" %5c ", task_state_char(thread, state));
2033 
2034         if (sched->show_next) {
2035                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2036                 printf(" %-*s", comm_width, nstr);
2037         }
2038 
2039         if (sched->show_wakeups && !sched->show_next)
2040                 printf("  %-*s", comm_width, "");
2041 
2042         if (thread->tid == 0)
2043                 goto out;
2044 
2045         if (sched->show_callchain)
2046                 printf("  ");
2047 
2048         sample__fprintf_sym(sample, al, 0,
2049                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2050                             EVSEL__PRINT_CALLCHAIN_ARROW |
2051                             EVSEL__PRINT_SKIP_IGNORED,
2052                             &callchain_cursor, stdout);
2053 
2054 out:
2055         printf("\n");
2056 }
2057 
2058 /*
2059  * Explanation of delta-time stats:
2060  *
2061  *            t = time of current schedule out event
2062  *        tprev = time of previous sched out event
2063  *                also time of schedule-in event for current task
2064  *    last_time = time of last sched change event for current task
2065  *                (i.e, time process was last scheduled out)
2066  * ready_to_run = time of wakeup for current task
2067  *
2068  * -----|------------|------------|------------|------
2069  *    last         ready        tprev          t
2070  *    time         to run
2071  *
2072  *      |-------- dt_wait --------|
2073  *                   |- dt_delay -|-- dt_run --|
2074  *
2075  *   dt_run = run time of current task
2076  *  dt_wait = time between last schedule out event for task and tprev
2077  *            represents time spent off the cpu
2078  * dt_delay = time between wakeup and schedule-in of task
2079  */
2080 
2081 static void timehist_update_runtime_stats(struct thread_runtime *r,
2082                                          u64 t, u64 tprev)
2083 {
2084         r->dt_delay   = 0;
2085         r->dt_sleep   = 0;
2086         r->dt_iowait  = 0;
2087         r->dt_preempt = 0;
2088         r->dt_run     = 0;
2089 
2090         if (tprev) {
2091                 r->dt_run = t - tprev;
2092                 if (r->ready_to_run) {
2093                         if (r->ready_to_run > tprev)
2094                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2095                         else
2096                                 r->dt_delay = tprev - r->ready_to_run;
2097                 }
2098 
2099                 if (r->last_time > tprev)
2100                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2101                 else if (r->last_time) {
2102                         u64 dt_wait = tprev - r->last_time;
2103 
2104                         if (r->last_state == TASK_RUNNING)
2105                                 r->dt_preempt = dt_wait;
2106                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2107                                 r->dt_iowait = dt_wait;
2108                         else
2109                                 r->dt_sleep = dt_wait;
2110                 }
2111         }
2112 
2113         update_stats(&r->run_stats, r->dt_run);
2114 
2115         r->total_run_time     += r->dt_run;
2116         r->total_delay_time   += r->dt_delay;
2117         r->total_sleep_time   += r->dt_sleep;
2118         r->total_iowait_time  += r->dt_iowait;
2119         r->total_preempt_time += r->dt_preempt;
2120 }
2121 
2122 static bool is_idle_sample(struct perf_sample *sample,
2123                            struct perf_evsel *evsel)
2124 {
2125         /* pid 0 == swapper == idle task */
2126         if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2127                 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2128 
2129         return sample->pid == 0;
2130 }
2131 
2132 static void save_task_callchain(struct perf_sched *sched,
2133                                 struct perf_sample *sample,
2134                                 struct perf_evsel *evsel,
2135                                 struct machine *machine)
2136 {
2137         struct callchain_cursor *cursor = &callchain_cursor;
2138         struct thread *thread;
2139 
2140         /* want main thread for process - has maps */
2141         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2142         if (thread == NULL) {
2143                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2144                 return;
2145         }
2146 
2147         if (!sched->show_callchain || sample->callchain == NULL)
2148                 return;
2149 
2150         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2151                                       NULL, NULL, sched->max_stack + 2) != 0) {
2152                 if (verbose > 0)
2153                         pr_err("Failed to resolve callchain. Skipping\n");
2154 
2155                 return;
2156         }
2157 
2158         callchain_cursor_commit(cursor);
2159 
2160         while (true) {
2161                 struct callchain_cursor_node *node;
2162                 struct symbol *sym;
2163 
2164                 node = callchain_cursor_current(cursor);
2165                 if (node == NULL)
2166                         break;
2167 
2168                 sym = node->sym;
2169                 if (sym) {
2170                         if (!strcmp(sym->name, "schedule") ||
2171                             !strcmp(sym->name, "__schedule") ||
2172                             !strcmp(sym->name, "preempt_schedule"))
2173                                 sym->ignore = 1;
2174                 }
2175 
2176                 callchain_cursor_advance(cursor);
2177         }
2178 }
2179 
2180 static int init_idle_thread(struct thread *thread)
2181 {
2182         struct idle_thread_runtime *itr;
2183 
2184         thread__set_comm(thread, idle_comm, 0);
2185 
2186         itr = zalloc(sizeof(*itr));
2187         if (itr == NULL)
2188                 return -ENOMEM;
2189 
2190         init_stats(&itr->tr.run_stats);
2191         callchain_init(&itr->callchain);
2192         callchain_cursor_reset(&itr->cursor);
2193         thread__set_priv(thread, itr);
2194 
2195         return 0;
2196 }
2197 
2198 /*
2199  * Track idle stats per cpu by maintaining a local thread
2200  * struct for the idle task on each cpu.
2201  */
2202 static int init_idle_threads(int ncpu)
2203 {
2204         int i, ret;
2205 
2206         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2207         if (!idle_threads)
2208                 return -ENOMEM;
2209 
2210         idle_max_cpu = ncpu;
2211 
2212         /* allocate the actual thread struct if needed */
2213         for (i = 0; i < ncpu; ++i) {
2214                 idle_threads[i] = thread__new(0, 0);
2215                 if (idle_threads[i] == NULL)
2216                         return -ENOMEM;
2217 
2218                 ret = init_idle_thread(idle_threads[i]);
2219                 if (ret < 0)
2220                         return ret;
2221         }
2222 
2223         return 0;
2224 }
2225 
2226 static void free_idle_threads(void)
2227 {
2228         int i;
2229 
2230         if (idle_threads == NULL)
2231                 return;
2232 
2233         for (i = 0; i < idle_max_cpu; ++i) {
2234                 if ((idle_threads[i]))
2235                         thread__delete(idle_threads[i]);
2236         }
2237 
2238         free(idle_threads);
2239 }
2240 
2241 static struct thread *get_idle_thread(int cpu)
2242 {
2243         /*
2244          * expand/allocate array of pointers to local thread
2245          * structs if needed
2246          */
2247         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2248                 int i, j = __roundup_pow_of_two(cpu+1);
2249                 void *p;
2250 
2251                 p = realloc(idle_threads, j * sizeof(struct thread *));
2252                 if (!p)
2253                         return NULL;
2254 
2255                 idle_threads = (struct thread **) p;
2256                 for (i = idle_max_cpu; i < j; ++i)
2257                         idle_threads[i] = NULL;
2258 
2259                 idle_max_cpu = j;
2260         }
2261 
2262         /* allocate a new thread struct if needed */
2263         if (idle_threads[cpu] == NULL) {
2264                 idle_threads[cpu] = thread__new(0, 0);
2265 
2266                 if (idle_threads[cpu]) {
2267                         if (init_idle_thread(idle_threads[cpu]) < 0)
2268                                 return NULL;
2269                 }
2270         }
2271 
2272         return idle_threads[cpu];
2273 }
2274 
2275 static void save_idle_callchain(struct perf_sched *sched,
2276                                 struct idle_thread_runtime *itr,
2277                                 struct perf_sample *sample)
2278 {
2279         if (!sched->show_callchain || sample->callchain == NULL)
2280                 return;
2281 
2282         callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2283 }
2284 
2285 static struct thread *timehist_get_thread(struct perf_sched *sched,
2286                                           struct perf_sample *sample,
2287                                           struct machine *machine,
2288                                           struct perf_evsel *evsel)
2289 {
2290         struct thread *thread;
2291 
2292         if (is_idle_sample(sample, evsel)) {
2293                 thread = get_idle_thread(sample->cpu);
2294                 if (thread == NULL)
2295                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2296 
2297         } else {
2298                 /* there were samples with tid 0 but non-zero pid */
2299                 thread = machine__findnew_thread(machine, sample->pid,
2300                                                  sample->tid ?: sample->pid);
2301                 if (thread == NULL) {
2302                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2303                                  sample->tid);
2304                 }
2305 
2306                 save_task_callchain(sched, sample, evsel, machine);
2307                 if (sched->idle_hist) {
2308                         struct thread *idle;
2309                         struct idle_thread_runtime *itr;
2310 
2311                         idle = get_idle_thread(sample->cpu);
2312                         if (idle == NULL) {
2313                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2314                                 return NULL;
2315                         }
2316 
2317                         itr = thread__priv(idle);
2318                         if (itr == NULL)
2319                                 return NULL;
2320 
2321                         itr->last_thread = thread;
2322 
2323                         /* copy task callchain when entering to idle */
2324                         if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2325                                 save_idle_callchain(sched, itr, sample);
2326                 }
2327         }
2328 
2329         return thread;
2330 }
2331 
2332 static bool timehist_skip_sample(struct perf_sched *sched,
2333                                  struct thread *thread,
2334                                  struct perf_evsel *evsel,
2335                                  struct perf_sample *sample)
2336 {
2337         bool rc = false;
2338 
2339         if (thread__is_filtered(thread)) {
2340                 rc = true;
2341                 sched->skipped_samples++;
2342         }
2343 
2344         if (sched->idle_hist) {
2345                 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2346                         rc = true;
2347                 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2348                          perf_evsel__intval(evsel, sample, "next_pid") != 0)
2349                         rc = true;
2350         }
2351 
2352         return rc;
2353 }
2354 
2355 static void timehist_print_wakeup_event(struct perf_sched *sched,
2356                                         struct perf_evsel *evsel,
2357                                         struct perf_sample *sample,
2358                                         struct machine *machine,
2359                                         struct thread *awakened)
2360 {
2361         struct thread *thread;
2362         char tstr[64];
2363 
2364         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2365         if (thread == NULL)
2366                 return;
2367 
2368         /* show wakeup unless both awakee and awaker are filtered */
2369         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2370             timehist_skip_sample(sched, awakened, evsel, sample)) {
2371                 return;
2372         }
2373 
2374         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2375         printf("%15s [%04d] ", tstr, sample->cpu);
2376         if (sched->show_cpu_visual)
2377                 printf(" %*s ", sched->max_cpu + 1, "");
2378 
2379         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2380 
2381         /* dt spacer */
2382         printf("  %9s  %9s  %9s ", "", "", "");
2383 
2384         printf("awakened: %s", timehist_get_commstr(awakened));
2385 
2386         printf("\n");
2387 }
2388 
2389 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2390                                        union perf_event *event __maybe_unused,
2391                                        struct perf_evsel *evsel,
2392                                        struct perf_sample *sample,
2393                                        struct machine *machine)
2394 {
2395         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2396         struct thread *thread;
2397         struct thread_runtime *tr = NULL;
2398         /* want pid of awakened task not pid in sample */
2399         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2400 
2401         thread = machine__findnew_thread(machine, 0, pid);
2402         if (thread == NULL)
2403                 return -1;
2404 
2405         tr = thread__get_runtime(thread);
2406         if (tr == NULL)
2407                 return -1;
2408 
2409         if (tr->ready_to_run == 0)
2410                 tr->ready_to_run = sample->time;
2411 
2412         /* show wakeups if requested */
2413         if (sched->show_wakeups &&
2414             !perf_time__skip_sample(&sched->ptime, sample->time))
2415                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2416 
2417         return 0;
2418 }
2419 
2420 static void timehist_print_migration_event(struct perf_sched *sched,
2421                                         struct perf_evsel *evsel,
2422                                         struct perf_sample *sample,
2423                                         struct machine *machine,
2424                                         struct thread *migrated)
2425 {
2426         struct thread *thread;
2427         char tstr[64];
2428         u32 max_cpus = sched->max_cpu + 1;
2429         u32 ocpu, dcpu;
2430 
2431         if (sched->summary_only)
2432                 return;
2433 
2434         max_cpus = sched->max_cpu + 1;
2435         ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2436         dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2437 
2438         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2439         if (thread == NULL)
2440                 return;
2441 
2442         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2443             timehist_skip_sample(sched, migrated, evsel, sample)) {
2444                 return;
2445         }
2446 
2447         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2448         printf("%15s [%04d] ", tstr, sample->cpu);
2449 
2450         if (sched->show_cpu_visual) {
2451                 u32 i;
2452                 char c;
2453 
2454                 printf("  ");
2455                 for (i = 0; i < max_cpus; ++i) {
2456                         c = (i == sample->cpu) ? 'm' : ' ';
2457                         printf("%c", c);
2458                 }
2459                 printf("  ");
2460         }
2461 
2462         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2463 
2464         /* dt spacer */
2465         printf("  %9s  %9s  %9s ", "", "", "");
2466 
2467         printf("migrated: %s", timehist_get_commstr(migrated));
2468         printf(" cpu %d => %d", ocpu, dcpu);
2469 
2470         printf("\n");
2471 }
2472 
2473 static int timehist_migrate_task_event(struct perf_tool *tool,
2474                                        union perf_event *event __maybe_unused,
2475                                        struct perf_evsel *evsel,
2476                                        struct perf_sample *sample,
2477                                        struct machine *machine)
2478 {
2479         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2480         struct thread *thread;
2481         struct thread_runtime *tr = NULL;
2482         /* want pid of migrated task not pid in sample */
2483         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2484 
2485         thread = machine__findnew_thread(machine, 0, pid);
2486         if (thread == NULL)
2487                 return -1;
2488 
2489         tr = thread__get_runtime(thread);
2490         if (tr == NULL)
2491                 return -1;
2492 
2493         tr->migrations++;
2494 
2495         /* show migrations if requested */
2496         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2497 
2498         return 0;
2499 }
2500 
2501 static int timehist_sched_change_event(struct perf_tool *tool,
2502                                        union perf_event *event,
2503                                        struct perf_evsel *evsel,
2504                                        struct perf_sample *sample,
2505                                        struct machine *machine)
2506 {
2507         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2508         struct perf_time_interval *ptime = &sched->ptime;
2509         struct addr_location al;
2510         struct thread *thread;
2511         struct thread_runtime *tr = NULL;
2512         u64 tprev, t = sample->time;
2513         int rc = 0;
2514         int state = perf_evsel__intval(evsel, sample, "prev_state");
2515 
2516 
2517         if (machine__resolve(machine, &al, sample) < 0) {
2518                 pr_err("problem processing %d event. skipping it\n",
2519                        event->header.type);
2520                 rc = -1;
2521                 goto out;
2522         }
2523 
2524         thread = timehist_get_thread(sched, sample, machine, evsel);
2525         if (thread == NULL) {
2526                 rc = -1;
2527                 goto out;
2528         }
2529 
2530         if (timehist_skip_sample(sched, thread, evsel, sample))
2531                 goto out;
2532 
2533         tr = thread__get_runtime(thread);
2534         if (tr == NULL) {
2535                 rc = -1;
2536                 goto out;
2537         }
2538 
2539         tprev = perf_evsel__get_time(evsel, sample->cpu);
2540 
2541         /*
2542          * If start time given:
2543          * - sample time is under window user cares about - skip sample
2544          * - tprev is under window user cares about  - reset to start of window
2545          */
2546         if (ptime->start && ptime->start > t)
2547                 goto out;
2548 
2549         if (tprev && ptime->start > tprev)
2550                 tprev = ptime->start;
2551 
2552         /*
2553          * If end time given:
2554          * - previous sched event is out of window - we are done
2555          * - sample time is beyond window user cares about - reset it
2556          *   to close out stats for time window interest
2557          */
2558         if (ptime->end) {
2559                 if (tprev > ptime->end)
2560                         goto out;
2561 
2562                 if (t > ptime->end)
2563                         t = ptime->end;
2564         }
2565 
2566         if (!sched->idle_hist || thread->tid == 0) {
2567                 timehist_update_runtime_stats(tr, t, tprev);
2568 
2569                 if (sched->idle_hist) {
2570                         struct idle_thread_runtime *itr = (void *)tr;
2571                         struct thread_runtime *last_tr;
2572 
2573                         BUG_ON(thread->tid != 0);
2574 
2575                         if (itr->last_thread == NULL)
2576                                 goto out;
2577 
2578                         /* add current idle time as last thread's runtime */
2579                         last_tr = thread__get_runtime(itr->last_thread);
2580                         if (last_tr == NULL)
2581                                 goto out;
2582 
2583                         timehist_update_runtime_stats(last_tr, t, tprev);
2584                         /*
2585                          * remove delta time of last thread as it's not updated
2586                          * and otherwise it will show an invalid value next
2587                          * time.  we only care total run time and run stat.
2588                          */
2589                         last_tr->dt_run = 0;
2590                         last_tr->dt_delay = 0;
2591                         last_tr->dt_sleep = 0;
2592                         last_tr->dt_iowait = 0;
2593                         last_tr->dt_preempt = 0;
2594 
2595                         if (itr->cursor.nr)
2596                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2597 
2598                         itr->last_thread = NULL;
2599                 }
2600         }
2601 
2602         if (!sched->summary_only)
2603                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2604 
2605 out:
2606         if (sched->hist_time.start == 0 && t >= ptime->start)
2607                 sched->hist_time.start = t;
2608         if (ptime->end == 0 || t <= ptime->end)
2609                 sched->hist_time.end = t;
2610 
2611         if (tr) {
2612                 /* time of this sched_switch event becomes last time task seen */
2613                 tr->last_time = sample->time;
2614 
2615                 /* last state is used to determine where to account wait time */
2616                 tr->last_state = state;
2617 
2618                 /* sched out event for task so reset ready to run time */
2619                 tr->ready_to_run = 0;
2620         }
2621 
2622         perf_evsel__save_time(evsel, sample->time, sample->cpu);
2623 
2624         return rc;
2625 }
2626 
2627 static int timehist_sched_switch_event(struct perf_tool *tool,
2628                              union perf_event *event,
2629                              struct perf_evsel *evsel,
2630                              struct perf_sample *sample,
2631                              struct machine *machine __maybe_unused)
2632 {
2633         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2634 }
2635 
2636 static int process_lost(struct perf_tool *tool __maybe_unused,
2637                         union perf_event *event,
2638                         struct perf_sample *sample,
2639                         struct machine *machine __maybe_unused)
2640 {
2641         char tstr[64];
2642 
2643         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2644         printf("%15s ", tstr);
2645         printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2646 
2647         return 0;
2648 }
2649 
2650 
2651 static void print_thread_runtime(struct thread *t,
2652                                  struct thread_runtime *r)
2653 {
2654         double mean = avg_stats(&r->run_stats);
2655         float stddev;
2656 
2657         printf("%*s   %5d  %9" PRIu64 " ",
2658                comm_width, timehist_get_commstr(t), t->ppid,
2659                (u64) r->run_stats.n);
2660 
2661         print_sched_time(r->total_run_time, 8);
2662         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2663         print_sched_time(r->run_stats.min, 6);
2664         printf(" ");
2665         print_sched_time((u64) mean, 6);
2666         printf(" ");
2667         print_sched_time(r->run_stats.max, 6);
2668         printf("  ");
2669         printf("%5.2f", stddev);
2670         printf("   %5" PRIu64, r->migrations);
2671         printf("\n");
2672 }
2673 
2674 static void print_thread_waittime(struct thread *t,
2675                                   struct thread_runtime *r)
2676 {
2677         printf("%*s   %5d  %9" PRIu64 " ",
2678                comm_width, timehist_get_commstr(t), t->ppid,
2679                (u64) r->run_stats.n);
2680 
2681         print_sched_time(r->total_run_time, 8);
2682         print_sched_time(r->total_sleep_time, 6);
2683         printf(" ");
2684         print_sched_time(r->total_iowait_time, 6);
2685         printf(" ");
2686         print_sched_time(r->total_preempt_time, 6);
2687         printf(" ");
2688         print_sched_time(r->total_delay_time, 6);
2689         printf("\n");
2690 }
2691 
2692 struct total_run_stats {
2693         struct perf_sched *sched;
2694         u64  sched_count;
2695         u64  task_count;
2696         u64  total_run_time;
2697 };
2698 
2699 static int __show_thread_runtime(struct thread *t, void *priv)
2700 {
2701         struct total_run_stats *stats = priv;
2702         struct thread_runtime *r;
2703 
2704         if (thread__is_filtered(t))
2705                 return 0;
2706 
2707         r = thread__priv(t);
2708         if (r && r->run_stats.n) {
2709                 stats->task_count++;
2710                 stats->sched_count += r->run_stats.n;
2711                 stats->total_run_time += r->total_run_time;
2712 
2713                 if (stats->sched->show_state)
2714                         print_thread_waittime(t, r);
2715                 else
2716                         print_thread_runtime(t, r);
2717         }
2718 
2719         return 0;
2720 }
2721 
2722 static int show_thread_runtime(struct thread *t, void *priv)
2723 {
2724         if (t->dead)
2725                 return 0;
2726 
2727         return __show_thread_runtime(t, priv);
2728 }
2729 
2730 static int show_deadthread_runtime(struct thread *t, void *priv)
2731 {
2732         if (!t->dead)
2733                 return 0;
2734 
2735         return __show_thread_runtime(t, priv);
2736 }
2737 
2738 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2739 {
2740         const char *sep = " <- ";
2741         struct callchain_list *chain;
2742         size_t ret = 0;
2743         char bf[1024];
2744         bool first;
2745 
2746         if (node == NULL)
2747                 return 0;
2748 
2749         ret = callchain__fprintf_folded(fp, node->parent);
2750         first = (ret == 0);
2751 
2752         list_for_each_entry(chain, &node->val, list) {
2753                 if (chain->ip >= PERF_CONTEXT_MAX)
2754                         continue;
2755                 if (chain->ms.sym && chain->ms.sym->ignore)
2756                         continue;
2757                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2758                                callchain_list__sym_name(chain, bf, sizeof(bf),
2759                                                         false));
2760                 first = false;
2761         }
2762 
2763         return ret;
2764 }
2765 
2766 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2767 {
2768         size_t ret = 0;
2769         FILE *fp = stdout;
2770         struct callchain_node *chain;
2771         struct rb_node *rb_node = rb_first_cached(root);
2772 
2773         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2774         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2775                graph_dotted_line);
2776 
2777         while (rb_node) {
2778                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2779                 rb_node = rb_next(rb_node);
2780 
2781                 ret += fprintf(fp, "  ");
2782                 print_sched_time(chain->hit, 12);
2783                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2784                 ret += fprintf(fp, " %8d  ", chain->count);
2785                 ret += callchain__fprintf_folded(fp, chain);
2786                 ret += fprintf(fp, "\n");
2787         }
2788 
2789         return ret;
2790 }
2791 
2792 static void timehist_print_summary(struct perf_sched *sched,
2793                                    struct perf_session *session)
2794 {
2795         struct machine *m = &session->machines.host;
2796         struct total_run_stats totals;
2797         u64 task_count;
2798         struct thread *t;
2799         struct thread_runtime *r;
2800         int i;
2801         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2802 
2803         memset(&totals, 0, sizeof(totals));
2804         totals.sched = sched;
2805 
2806         if (sched->idle_hist) {
2807                 printf("\nIdle-time summary\n");
2808                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2809                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2810         } else if (sched->show_state) {
2811                 printf("\nWait-time summary\n");
2812                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2813                 printf("   run-time      sleep      iowait     preempt       delay\n");
2814         } else {
2815                 printf("\nRuntime summary\n");
2816                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2817                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2818         }
2819         printf("%*s            (count)  ", comm_width, "");
2820         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2821                sched->show_state ? "(msec)" : "%");
2822         printf("%.117s\n", graph_dotted_line);
2823 
2824         machine__for_each_thread(m, show_thread_runtime, &totals);
2825         task_count = totals.task_count;
2826         if (!task_count)
2827                 printf("<no still running tasks>\n");
2828 
2829         printf("\nTerminated tasks:\n");
2830         machine__for_each_thread(m, show_deadthread_runtime, &totals);
2831         if (task_count == totals.task_count)
2832                 printf("<no terminated tasks>\n");
2833 
2834         /* CPU idle stats not tracked when samples were skipped */
2835         if (sched->skipped_samples && !sched->idle_hist)
2836                 return;
2837 
2838         printf("\nIdle stats:\n");
2839         for (i = 0; i < idle_max_cpu; ++i) {
2840                 t = idle_threads[i];
2841                 if (!t)
2842                         continue;
2843 
2844                 r = thread__priv(t);
2845                 if (r && r->run_stats.n) {
2846                         totals.sched_count += r->run_stats.n;
2847                         printf("    CPU %2d idle for ", i);
2848                         print_sched_time(r->total_run_time, 6);
2849                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2850                 } else
2851                         printf("    CPU %2d idle entire time window\n", i);
2852         }
2853 
2854         if (sched->idle_hist && sched->show_callchain) {
2855                 callchain_param.mode  = CHAIN_FOLDED;
2856                 callchain_param.value = CCVAL_PERIOD;
2857 
2858                 callchain_register_param(&callchain_param);
2859 
2860                 printf("\nIdle stats by callchain:\n");
2861                 for (i = 0; i < idle_max_cpu; ++i) {
2862                         struct idle_thread_runtime *itr;
2863 
2864                         t = idle_threads[i];
2865                         if (!t)
2866                                 continue;
2867 
2868                         itr = thread__priv(t);
2869                         if (itr == NULL)
2870                                 continue;
2871 
2872                         callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2873                                              0, &callchain_param);
2874 
2875                         printf("  CPU %2d:", i);
2876                         print_sched_time(itr->tr.total_run_time, 6);
2877                         printf(" msec\n");
2878                         timehist_print_idlehist_callchain(&itr->sorted_root);
2879                         printf("\n");
2880                 }
2881         }
2882 
2883         printf("\n"
2884                "    Total number of unique tasks: %" PRIu64 "\n"
2885                "Total number of context switches: %" PRIu64 "\n",
2886                totals.task_count, totals.sched_count);
2887 
2888         printf("           Total run time (msec): ");
2889         print_sched_time(totals.total_run_time, 2);
2890         printf("\n");
2891 
2892         printf("    Total scheduling time (msec): ");
2893         print_sched_time(hist_time, 2);
2894         printf(" (x %d)\n", sched->max_cpu);
2895 }
2896 
2897 typedef int (*sched_handler)(struct perf_tool *tool,
2898                           union perf_event *event,
2899                           struct perf_evsel *evsel,
2900                           struct perf_sample *sample,
2901                           struct machine *machine);
2902 
2903 static int perf_timehist__process_sample(struct perf_tool *tool,
2904                                          union perf_event *event,
2905                                          struct perf_sample *sample,
2906                                          struct perf_evsel *evsel,
2907                                          struct machine *machine)
2908 {
2909         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2910         int err = 0;
2911         int this_cpu = sample->cpu;
2912 
2913         if (this_cpu > sched->max_cpu)
2914                 sched->max_cpu = this_cpu;
2915 
2916         if (evsel->handler != NULL) {
2917                 sched_handler f = evsel->handler;
2918 
2919                 err = f(tool, event, evsel, sample, machine);
2920         }
2921 
2922         return err;
2923 }
2924 
2925 static int timehist_check_attr(struct perf_sched *sched,
2926                                struct perf_evlist *evlist)
2927 {
2928         struct perf_evsel *evsel;
2929         struct evsel_runtime *er;
2930 
2931         list_for_each_entry(evsel, &evlist->entries, node) {
2932                 er = perf_evsel__get_runtime(evsel);
2933                 if (er == NULL) {
2934                         pr_err("Failed to allocate memory for evsel runtime data\n");
2935                         return -1;
2936                 }
2937 
2938                 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2939                         pr_info("Samples do not have callchains.\n");
2940                         sched->show_callchain = 0;
2941                         symbol_conf.use_callchain = 0;
2942                 }
2943         }
2944 
2945         return 0;
2946 }
2947 
2948 static int perf_sched__timehist(struct perf_sched *sched)
2949 {
2950         const struct perf_evsel_str_handler handlers[] = {
2951                 { "sched:sched_switch",       timehist_sched_switch_event, },
2952                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2953                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2954         };
2955         const struct perf_evsel_str_handler migrate_handlers[] = {
2956                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2957         };
2958         struct perf_data data = {
2959                 .path  = input_name,
2960                 .mode  = PERF_DATA_MODE_READ,
2961                 .force = sched->force,
2962         };
2963 
2964         struct perf_session *session;
2965         struct perf_evlist *evlist;
2966         int err = -1;
2967 
2968         /*
2969          * event handlers for timehist option
2970          */
2971         sched->tool.sample       = perf_timehist__process_sample;
2972         sched->tool.mmap         = perf_event__process_mmap;
2973         sched->tool.comm         = perf_event__process_comm;
2974         sched->tool.exit         = perf_event__process_exit;
2975         sched->tool.fork         = perf_event__process_fork;
2976         sched->tool.lost         = process_lost;
2977         sched->tool.attr         = perf_event__process_attr;
2978         sched->tool.tracing_data = perf_event__process_tracing_data;
2979         sched->tool.build_id     = perf_event__process_build_id;
2980 
2981         sched->tool.ordered_events = true;
2982         sched->tool.ordering_requires_timestamps = true;
2983 
2984         symbol_conf.use_callchain = sched->show_callchain;
2985 
2986         session = perf_session__new(&data, false, &sched->tool);
2987         if (session == NULL)
2988                 return -ENOMEM;
2989 
2990         evlist = session->evlist;
2991 
2992         symbol__init(&session->header.env);
2993 
2994         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2995                 pr_err("Invalid time string\n");
2996                 return -EINVAL;
2997         }
2998 
2999         if (timehist_check_attr(sched, evlist) != 0)
3000                 goto out;
3001 
3002         setup_pager();
3003 
3004         /* setup per-evsel handlers */
3005         if (perf_session__set_tracepoints_handlers(session, handlers))
3006                 goto out;
3007 
3008         /* sched_switch event at a minimum needs to exist */
3009         if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3010                                                   "sched:sched_switch")) {
3011                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3012                 goto out;
3013         }
3014 
3015         if (sched->show_migrations &&
3016             perf_session__set_tracepoints_handlers(session, migrate_handlers))
3017                 goto out;
3018 
3019         /* pre-allocate struct for per-CPU idle stats */
3020         sched->max_cpu = session->header.env.nr_cpus_online;
3021         if (sched->max_cpu == 0)
3022                 sched->max_cpu = 4;
3023         if (init_idle_threads(sched->max_cpu))
3024                 goto out;
3025 
3026         /* summary_only implies summary option, but don't overwrite summary if set */
3027         if (sched->summary_only)
3028                 sched->summary = sched->summary_only;
3029 
3030         if (!sched->summary_only)
3031                 timehist_header(sched);
3032 
3033         err = perf_session__process_events(session);
3034         if (err) {
3035                 pr_err("Failed to process events, error %d", err);
3036                 goto out;
3037         }
3038 
3039         sched->nr_events      = evlist->stats.nr_events[0];
3040         sched->nr_lost_events = evlist->stats.total_lost;
3041         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3042 
3043         if (sched->summary)
3044                 timehist_print_summary(sched, session);
3045 
3046 out:
3047         free_idle_threads();
3048         perf_session__delete(session);
3049 
3050         return err;
3051 }
3052 
3053 
3054 static void print_bad_events(struct perf_sched *sched)
3055 {
3056         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3057                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3058                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3059                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3060         }
3061         if (sched->nr_lost_events && sched->nr_events) {
3062                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3063                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3064                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3065         }
3066         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3067                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3068                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3069                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3070                 if (sched->nr_lost_events)
3071                         printf(" (due to lost events?)");
3072                 printf("\n");
3073         }
3074 }
3075 
3076 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3077 {
3078         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3079         struct work_atoms *this;
3080         const char *comm = thread__comm_str(data->thread), *this_comm;
3081         bool leftmost = true;
3082 
3083         while (*new) {
3084                 int cmp;
3085 
3086                 this = container_of(*new, struct work_atoms, node);
3087                 parent = *new;
3088 
3089                 this_comm = thread__comm_str(this->thread);
3090                 cmp = strcmp(comm, this_comm);
3091                 if (cmp > 0) {
3092                         new = &((*new)->rb_left);
3093                 } else if (cmp < 0) {
3094                         new = &((*new)->rb_right);
3095                         leftmost = false;
3096                 } else {
3097                         this->num_merged++;
3098                         this->total_runtime += data->total_runtime;
3099                         this->nb_atoms += data->nb_atoms;
3100                         this->total_lat += data->total_lat;
3101                         list_splice(&data->work_list, &this->work_list);
3102                         if (this->max_lat < data->max_lat) {
3103                                 this->max_lat = data->max_lat;
3104                                 this->max_lat_at = data->max_lat_at;
3105                         }
3106                         zfree(&data);
3107                         return;
3108                 }
3109         }
3110 
3111         data->num_merged++;
3112         rb_link_node(&data->node, parent, new);
3113         rb_insert_color_cached(&data->node, root, leftmost);
3114 }
3115 
3116 static void perf_sched__merge_lat(struct perf_sched *sched)
3117 {
3118         struct work_atoms *data;
3119         struct rb_node *node;
3120 
3121         if (sched->skip_merge)
3122                 return;
3123 
3124         while ((node = rb_first_cached(&sched->atom_root))) {
3125                 rb_erase_cached(node, &sched->atom_root);
3126                 data = rb_entry(node, struct work_atoms, node);
3127                 __merge_work_atoms(&sched->merged_atom_root, data);
3128         }
3129 }
3130 
3131 static int perf_sched__lat(struct perf_sched *sched)
3132 {
3133         struct rb_node *next;
3134 
3135         setup_pager();
3136 
3137         if (perf_sched__read_events(sched))
3138                 return -1;
3139 
3140         perf_sched__merge_lat(sched);
3141         perf_sched__sort_lat(sched);
3142 
3143         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3144         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3145         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3146 
3147         next = rb_first_cached(&sched->sorted_atom_root);
3148 
3149         while (next) {
3150                 struct work_atoms *work_list;
3151 
3152                 work_list = rb_entry(next, struct work_atoms, node);
3153                 output_lat_thread(sched, work_list);
3154                 next = rb_next(next);
3155                 thread__zput(work_list->thread);
3156         }
3157 
3158         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3159         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3160                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3161 
3162         printf(" ---------------------------------------------------\n");
3163 
3164         print_bad_events(sched);
3165         printf("\n");
3166 
3167         return 0;
3168 }
3169 
3170 static int setup_map_cpus(struct perf_sched *sched)
3171 {
3172         struct cpu_map *map;
3173 
3174         sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3175 
3176         if (sched->map.comp) {
3177                 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3178                 if (!sched->map.comp_cpus)
3179                         return -1;
3180         }
3181 
3182         if (!sched->map.cpus_str)
3183                 return 0;
3184 
3185         map = cpu_map__new(sched->map.cpus_str);
3186         if (!map) {
3187                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3188                 return -1;
3189         }
3190 
3191         sched->map.cpus = map;
3192         return 0;
3193 }
3194 
3195 static int setup_color_pids(struct perf_sched *sched)
3196 {
3197         struct thread_map *map;
3198 
3199         if (!sched->map.color_pids_str)
3200                 return 0;
3201 
3202         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3203         if (!map) {
3204                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3205                 return -1;
3206         }
3207 
3208         sched->map.color_pids = map;
3209         return 0;
3210 }
3211 
3212 static int setup_color_cpus(struct perf_sched *sched)
3213 {
3214         struct cpu_map *map;
3215 
3216         if (!sched->map.color_cpus_str)
3217                 return 0;
3218 
3219         map = cpu_map__new(sched->map.color_cpus_str);
3220         if (!map) {
3221                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3222                 return -1;
3223         }
3224 
3225         sched->map.color_cpus = map;
3226         return 0;
3227 }
3228 
3229 static int perf_sched__map(struct perf_sched *sched)
3230 {
3231         if (setup_map_cpus(sched))
3232                 return -1;
3233 
3234         if (setup_color_pids(sched))
3235                 return -1;
3236 
3237         if (setup_color_cpus(sched))
3238                 return -1;
3239 
3240         setup_pager();
3241         if (perf_sched__read_events(sched))
3242                 return -1;
3243         print_bad_events(sched);
3244         return 0;
3245 }
3246 
3247 static int perf_sched__replay(struct perf_sched *sched)
3248 {
3249         unsigned long i;
3250 
3251         calibrate_run_measurement_overhead(sched);
3252         calibrate_sleep_measurement_overhead(sched);
3253 
3254         test_calibrations(sched);
3255 
3256         if (perf_sched__read_events(sched))
3257                 return -1;
3258 
3259         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3260         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3261         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3262 
3263         if (sched->targetless_wakeups)
3264                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3265         if (sched->multitarget_wakeups)
3266                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3267         if (sched->nr_run_events_optimized)
3268                 printf("run atoms optimized: %ld\n",
3269                         sched->nr_run_events_optimized);
3270 
3271         print_task_traces(sched);
3272         add_cross_task_wakeups(sched);
3273 
3274         create_tasks(sched);
3275         printf("------------------------------------------------------------\n");
3276         for (i = 0; i < sched->replay_repeat; i++)
3277                 run_one_test(sched);
3278 
3279         return 0;
3280 }
3281 
3282 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3283                           const char * const usage_msg[])
3284 {
3285         char *tmp, *tok, *str = strdup(sched->sort_order);
3286 
3287         for (tok = strtok_r(str, ", ", &tmp);
3288                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3289                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3290                         usage_with_options_msg(usage_msg, options,
3291                                         "Unknown --sort key: `%s'", tok);
3292                 }
3293         }
3294 
3295         free(str);
3296 
3297         sort_dimension__add("pid", &sched->cmp_pid);
3298 }
3299 
3300 static int __cmd_record(int argc, const char **argv)
3301 {
3302         unsigned int rec_argc, i, j;
3303         const char **rec_argv;
3304         const char * const record_args[] = {
3305                 "record",
3306                 "-a",
3307                 "-R",
3308                 "-m", "1024",
3309                 "-c", "1",
3310                 "-e", "sched:sched_switch",
3311                 "-e", "sched:sched_stat_wait",
3312                 "-e", "sched:sched_stat_sleep",
3313                 "-e", "sched:sched_stat_iowait",
3314                 "-e", "sched:sched_stat_runtime",
3315                 "-e", "sched:sched_process_fork",
3316                 "-e", "sched:sched_wakeup",
3317                 "-e", "sched:sched_wakeup_new",
3318                 "-e", "sched:sched_migrate_task",
3319         };
3320 
3321         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3322         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3323 
3324         if (rec_argv == NULL)
3325                 return -ENOMEM;
3326 
3327         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3328                 rec_argv[i] = strdup(record_args[i]);
3329 
3330         for (j = 1; j < (unsigned int)argc; j++, i++)
3331                 rec_argv[i] = argv[j];
3332 
3333         BUG_ON(i != rec_argc);
3334 
3335         return cmd_record(i, rec_argv);
3336 }
3337 
3338 int cmd_sched(int argc, const char **argv)
3339 {
3340         static const char default_sort_order[] = "avg, max, switch, runtime";
3341         struct perf_sched sched = {
3342                 .tool = {
3343                         .sample          = perf_sched__process_tracepoint_sample,
3344                         .comm            = perf_sched__process_comm,
3345                         .namespaces      = perf_event__process_namespaces,
3346                         .lost            = perf_event__process_lost,
3347                         .fork            = perf_sched__process_fork_event,
3348                         .ordered_events = true,
3349                 },
3350                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3351                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3352                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3353                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3354                 .sort_order           = default_sort_order,
3355                 .replay_repeat        = 10,
3356                 .profile_cpu          = -1,
3357                 .next_shortname1      = 'A',
3358                 .next_shortname2      = '',
3359                 .skip_merge           = 0,
3360                 .show_callchain       = 1,
3361                 .max_stack            = 5,
3362         };
3363         const struct option sched_options[] = {
3364         OPT_STRING('i', "input", &input_name, "file",
3365                     "input file name"),
3366         OPT_INCR('v', "verbose", &verbose,
3367                     "be more verbose (show symbol address, etc)"),
3368         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3369                     "dump raw trace in ASCII"),
3370         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3371         OPT_END()
3372         };
3373         const struct option latency_options[] = {
3374         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3375                    "sort by key(s): runtime, switch, avg, max"),
3376         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3377                     "CPU to profile on"),
3378         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3379                     "latency stats per pid instead of per comm"),
3380         OPT_PARENT(sched_options)
3381         };
3382         const struct option replay_options[] = {
3383         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3384                      "repeat the workload replay N times (-1: infinite)"),
3385         OPT_PARENT(sched_options)
3386         };
3387         const struct option map_options[] = {
3388         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3389                     "map output in compact mode"),
3390         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3391                    "highlight given pids in map"),
3392         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3393                     "highlight given CPUs in map"),
3394         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3395                     "display given CPUs in map"),
3396         OPT_PARENT(sched_options)
3397         };
3398         const struct option timehist_options[] = {
3399         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3400                    "file", "vmlinux pathname"),
3401         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3402                    "file", "kallsyms pathname"),
3403         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3404                     "Display call chains if present (default on)"),
3405         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3406                    "Maximum number of functions to display backtrace."),
3407         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3408                     "Look for files with symbols relative to this directory"),
3409         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3410                     "Show only syscall summary with statistics"),
3411         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3412                     "Show all syscalls and summary with statistics"),
3413         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3414         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3415         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3416         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3417         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3418         OPT_STRING(0, "time", &sched.time_str, "str",
3419                    "Time span for analysis (start,stop)"),
3420         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3421         OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3422                    "analyze events only for given process id(s)"),
3423         OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3424                    "analyze events only for given thread id(s)"),
3425         OPT_PARENT(sched_options)
3426         };
3427 
3428         const char * const latency_usage[] = {
3429                 "perf sched latency [<options>]",
3430                 NULL
3431         };
3432         const char * const replay_usage[] = {
3433                 "perf sched replay [<options>]",
3434                 NULL
3435         };
3436         const char * const map_usage[] = {
3437                 "perf sched map [<options>]",
3438                 NULL
3439         };
3440         const char * const timehist_usage[] = {
3441                 "perf sched timehist [<options>]",
3442                 NULL
3443         };
3444         const char *const sched_subcommands[] = { "record", "latency", "map",
3445                                                   "replay", "script",
3446                                                   "timehist", NULL };
3447         const char *sched_usage[] = {
3448                 NULL,
3449                 NULL
3450         };
3451         struct trace_sched_handler lat_ops  = {
3452                 .wakeup_event       = latency_wakeup_event,
3453                 .switch_event       = latency_switch_event,
3454                 .runtime_event      = latency_runtime_event,
3455                 .migrate_task_event = latency_migrate_task_event,
3456         };
3457         struct trace_sched_handler map_ops  = {
3458                 .switch_event       = map_switch_event,
3459         };
3460         struct trace_sched_handler replay_ops  = {
3461                 .wakeup_event       = replay_wakeup_event,
3462                 .switch_event       = replay_switch_event,
3463                 .fork_event         = replay_fork_event,
3464         };
3465         unsigned int i;
3466 
3467         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3468                 sched.curr_pid[i] = -1;
3469 
3470         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3471                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3472         if (!argc)
3473                 usage_with_options(sched_usage, sched_options);
3474 
3475         /*
3476          * Aliased to 'perf script' for now:
3477          */
3478         if (!strcmp(argv[0], "script"))
3479                 return cmd_script(argc, argv);
3480 
3481         if (!strncmp(argv[0], "rec", 3)) {
3482                 return __cmd_record(argc, argv);
3483         } else if (!strncmp(argv[0], "lat", 3)) {
3484                 sched.tp_handler = &lat_ops;
3485                 if (argc > 1) {
3486                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3487                         if (argc)
3488                                 usage_with_options(latency_usage, latency_options);
3489                 }
3490                 setup_sorting(&sched, latency_options, latency_usage);
3491                 return perf_sched__lat(&sched);
3492         } else if (!strcmp(argv[0], "map")) {
3493                 if (argc) {
3494                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3495                         if (argc)
3496                                 usage_with_options(map_usage, map_options);
3497                 }
3498                 sched.tp_handler = &map_ops;
3499                 setup_sorting(&sched, latency_options, latency_usage);
3500                 return perf_sched__map(&sched);
3501         } else if (!strncmp(argv[0], "rep", 3)) {
3502                 sched.tp_handler = &replay_ops;
3503                 if (argc) {
3504                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3505                         if (argc)
3506                                 usage_with_options(replay_usage, replay_options);
3507                 }
3508                 return perf_sched__replay(&sched);
3509         } else if (!strcmp(argv[0], "timehist")) {
3510                 if (argc) {
3511                         argc = parse_options(argc, argv, timehist_options,
3512                                              timehist_usage, 0);
3513                         if (argc)
3514                                 usage_with_options(timehist_usage, timehist_options);
3515                 }
3516                 if ((sched.show_wakeups || sched.show_next) &&
3517                     sched.summary_only) {
3518                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3519                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3520                         if (sched.show_wakeups)
3521                                 parse_options_usage(NULL, timehist_options, "w", true);
3522                         if (sched.show_next)
3523                                 parse_options_usage(NULL, timehist_options, "n", true);
3524                         return -EINVAL;
3525                 }
3526 
3527                 return perf_sched__timehist(&sched);
3528         } else {
3529                 usage_with_options(sched_usage, sched_options);
3530         }
3531 
3532         return 0;
3533 }
3534 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp