~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/builtin-timechart.c

Version: ~ [ linux-5.11 ] ~ [ linux-5.10.17 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.99 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.176 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.221 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.257 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.257 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * builtin-timechart.c - make an svg timechart of system activity
  3  *
  4  * (C) Copyright 2009 Intel Corporation
  5  *
  6  * Authors:
  7  *     Arjan van de Ven <arjan@linux.intel.com>
  8  *
  9  * This program is free software; you can redistribute it and/or
 10  * modify it under the terms of the GNU General Public License
 11  * as published by the Free Software Foundation; version 2
 12  * of the License.
 13  */
 14 
 15 #include <errno.h>
 16 #include <inttypes.h>
 17 #include <traceevent/event-parse.h>
 18 
 19 #include "builtin.h"
 20 
 21 #include "util/util.h"
 22 
 23 #include "util/color.h"
 24 #include <linux/list.h>
 25 #include "util/cache.h"
 26 #include "util/evlist.h"
 27 #include "util/evsel.h"
 28 #include <linux/kernel.h>
 29 #include <linux/rbtree.h>
 30 #include <linux/time64.h>
 31 #include "util/symbol.h"
 32 #include "util/thread.h"
 33 #include "util/callchain.h"
 34 
 35 #include "perf.h"
 36 #include "util/header.h"
 37 #include <subcmd/parse-options.h>
 38 #include "util/parse-events.h"
 39 #include "util/event.h"
 40 #include "util/session.h"
 41 #include "util/svghelper.h"
 42 #include "util/tool.h"
 43 #include "util/data.h"
 44 #include "util/debug.h"
 45 
 46 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
 47 FILE *open_memstream(char **ptr, size_t *sizeloc);
 48 #endif
 49 
 50 #define SUPPORT_OLD_POWER_EVENTS 1
 51 #define PWR_EVENT_EXIT -1
 52 
 53 struct per_pid;
 54 struct power_event;
 55 struct wake_event;
 56 
 57 struct timechart {
 58         struct perf_tool        tool;
 59         struct per_pid          *all_data;
 60         struct power_event      *power_events;
 61         struct wake_event       *wake_events;
 62         int                     proc_num;
 63         unsigned int            numcpus;
 64         u64                     min_freq,       /* Lowest CPU frequency seen */
 65                                 max_freq,       /* Highest CPU frequency seen */
 66                                 turbo_frequency,
 67                                 first_time, last_time;
 68         bool                    power_only,
 69                                 tasks_only,
 70                                 with_backtrace,
 71                                 topology;
 72         bool                    force;
 73         /* IO related settings */
 74         bool                    io_only,
 75                                 skip_eagain;
 76         u64                     io_events;
 77         u64                     min_time,
 78                                 merge_dist;
 79 };
 80 
 81 struct per_pidcomm;
 82 struct cpu_sample;
 83 struct io_sample;
 84 
 85 /*
 86  * Datastructure layout:
 87  * We keep an list of "pid"s, matching the kernels notion of a task struct.
 88  * Each "pid" entry, has a list of "comm"s.
 89  *      this is because we want to track different programs different, while
 90  *      exec will reuse the original pid (by design).
 91  * Each comm has a list of samples that will be used to draw
 92  * final graph.
 93  */
 94 
 95 struct per_pid {
 96         struct per_pid *next;
 97 
 98         int             pid;
 99         int             ppid;
100 
101         u64             start_time;
102         u64             end_time;
103         u64             total_time;
104         u64             total_bytes;
105         int             display;
106 
107         struct per_pidcomm *all;
108         struct per_pidcomm *current;
109 };
110 
111 
112 struct per_pidcomm {
113         struct per_pidcomm *next;
114 
115         u64             start_time;
116         u64             end_time;
117         u64             total_time;
118         u64             max_bytes;
119         u64             total_bytes;
120 
121         int             Y;
122         int             display;
123 
124         long            state;
125         u64             state_since;
126 
127         char            *comm;
128 
129         struct cpu_sample *samples;
130         struct io_sample  *io_samples;
131 };
132 
133 struct sample_wrapper {
134         struct sample_wrapper *next;
135 
136         u64             timestamp;
137         unsigned char   data[0];
138 };
139 
140 #define TYPE_NONE       0
141 #define TYPE_RUNNING    1
142 #define TYPE_WAITING    2
143 #define TYPE_BLOCKED    3
144 
145 struct cpu_sample {
146         struct cpu_sample *next;
147 
148         u64 start_time;
149         u64 end_time;
150         int type;
151         int cpu;
152         const char *backtrace;
153 };
154 
155 enum {
156         IOTYPE_READ,
157         IOTYPE_WRITE,
158         IOTYPE_SYNC,
159         IOTYPE_TX,
160         IOTYPE_RX,
161         IOTYPE_POLL,
162 };
163 
164 struct io_sample {
165         struct io_sample *next;
166 
167         u64 start_time;
168         u64 end_time;
169         u64 bytes;
170         int type;
171         int fd;
172         int err;
173         int merges;
174 };
175 
176 #define CSTATE 1
177 #define PSTATE 2
178 
179 struct power_event {
180         struct power_event *next;
181         int type;
182         int state;
183         u64 start_time;
184         u64 end_time;
185         int cpu;
186 };
187 
188 struct wake_event {
189         struct wake_event *next;
190         int waker;
191         int wakee;
192         u64 time;
193         const char *backtrace;
194 };
195 
196 struct process_filter {
197         char                    *name;
198         int                     pid;
199         struct process_filter   *next;
200 };
201 
202 static struct process_filter *process_filter;
203 
204 
205 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
206 {
207         struct per_pid *cursor = tchart->all_data;
208 
209         while (cursor) {
210                 if (cursor->pid == pid)
211                         return cursor;
212                 cursor = cursor->next;
213         }
214         cursor = zalloc(sizeof(*cursor));
215         assert(cursor != NULL);
216         cursor->pid = pid;
217         cursor->next = tchart->all_data;
218         tchart->all_data = cursor;
219         return cursor;
220 }
221 
222 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
223 {
224         struct per_pid *p;
225         struct per_pidcomm *c;
226         p = find_create_pid(tchart, pid);
227         c = p->all;
228         while (c) {
229                 if (c->comm && strcmp(c->comm, comm) == 0) {
230                         p->current = c;
231                         return;
232                 }
233                 if (!c->comm) {
234                         c->comm = strdup(comm);
235                         p->current = c;
236                         return;
237                 }
238                 c = c->next;
239         }
240         c = zalloc(sizeof(*c));
241         assert(c != NULL);
242         c->comm = strdup(comm);
243         p->current = c;
244         c->next = p->all;
245         p->all = c;
246 }
247 
248 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
249 {
250         struct per_pid *p, *pp;
251         p = find_create_pid(tchart, pid);
252         pp = find_create_pid(tchart, ppid);
253         p->ppid = ppid;
254         if (pp->current && pp->current->comm && !p->current)
255                 pid_set_comm(tchart, pid, pp->current->comm);
256 
257         p->start_time = timestamp;
258         if (p->current && !p->current->start_time) {
259                 p->current->start_time = timestamp;
260                 p->current->state_since = timestamp;
261         }
262 }
263 
264 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
265 {
266         struct per_pid *p;
267         p = find_create_pid(tchart, pid);
268         p->end_time = timestamp;
269         if (p->current)
270                 p->current->end_time = timestamp;
271 }
272 
273 static void pid_put_sample(struct timechart *tchart, int pid, int type,
274                            unsigned int cpu, u64 start, u64 end,
275                            const char *backtrace)
276 {
277         struct per_pid *p;
278         struct per_pidcomm *c;
279         struct cpu_sample *sample;
280 
281         p = find_create_pid(tchart, pid);
282         c = p->current;
283         if (!c) {
284                 c = zalloc(sizeof(*c));
285                 assert(c != NULL);
286                 p->current = c;
287                 c->next = p->all;
288                 p->all = c;
289         }
290 
291         sample = zalloc(sizeof(*sample));
292         assert(sample != NULL);
293         sample->start_time = start;
294         sample->end_time = end;
295         sample->type = type;
296         sample->next = c->samples;
297         sample->cpu = cpu;
298         sample->backtrace = backtrace;
299         c->samples = sample;
300 
301         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
302                 c->total_time += (end-start);
303                 p->total_time += (end-start);
304         }
305 
306         if (c->start_time == 0 || c->start_time > start)
307                 c->start_time = start;
308         if (p->start_time == 0 || p->start_time > start)
309                 p->start_time = start;
310 }
311 
312 #define MAX_CPUS 4096
313 
314 static u64 cpus_cstate_start_times[MAX_CPUS];
315 static int cpus_cstate_state[MAX_CPUS];
316 static u64 cpus_pstate_start_times[MAX_CPUS];
317 static u64 cpus_pstate_state[MAX_CPUS];
318 
319 static int process_comm_event(struct perf_tool *tool,
320                               union perf_event *event,
321                               struct perf_sample *sample __maybe_unused,
322                               struct machine *machine __maybe_unused)
323 {
324         struct timechart *tchart = container_of(tool, struct timechart, tool);
325         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
326         return 0;
327 }
328 
329 static int process_fork_event(struct perf_tool *tool,
330                               union perf_event *event,
331                               struct perf_sample *sample __maybe_unused,
332                               struct machine *machine __maybe_unused)
333 {
334         struct timechart *tchart = container_of(tool, struct timechart, tool);
335         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
336         return 0;
337 }
338 
339 static int process_exit_event(struct perf_tool *tool,
340                               union perf_event *event,
341                               struct perf_sample *sample __maybe_unused,
342                               struct machine *machine __maybe_unused)
343 {
344         struct timechart *tchart = container_of(tool, struct timechart, tool);
345         pid_exit(tchart, event->fork.pid, event->fork.time);
346         return 0;
347 }
348 
349 #ifdef SUPPORT_OLD_POWER_EVENTS
350 static int use_old_power_events;
351 #endif
352 
353 static void c_state_start(int cpu, u64 timestamp, int state)
354 {
355         cpus_cstate_start_times[cpu] = timestamp;
356         cpus_cstate_state[cpu] = state;
357 }
358 
359 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
360 {
361         struct power_event *pwr = zalloc(sizeof(*pwr));
362 
363         if (!pwr)
364                 return;
365 
366         pwr->state = cpus_cstate_state[cpu];
367         pwr->start_time = cpus_cstate_start_times[cpu];
368         pwr->end_time = timestamp;
369         pwr->cpu = cpu;
370         pwr->type = CSTATE;
371         pwr->next = tchart->power_events;
372 
373         tchart->power_events = pwr;
374 }
375 
376 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
377 {
378         struct power_event *pwr;
379 
380         if (new_freq > 8000000) /* detect invalid data */
381                 return;
382 
383         pwr = zalloc(sizeof(*pwr));
384         if (!pwr)
385                 return;
386 
387         pwr->state = cpus_pstate_state[cpu];
388         pwr->start_time = cpus_pstate_start_times[cpu];
389         pwr->end_time = timestamp;
390         pwr->cpu = cpu;
391         pwr->type = PSTATE;
392         pwr->next = tchart->power_events;
393 
394         if (!pwr->start_time)
395                 pwr->start_time = tchart->first_time;
396 
397         tchart->power_events = pwr;
398 
399         cpus_pstate_state[cpu] = new_freq;
400         cpus_pstate_start_times[cpu] = timestamp;
401 
402         if ((u64)new_freq > tchart->max_freq)
403                 tchart->max_freq = new_freq;
404 
405         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
406                 tchart->min_freq = new_freq;
407 
408         if (new_freq == tchart->max_freq - 1000)
409                 tchart->turbo_frequency = tchart->max_freq;
410 }
411 
412 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
413                          int waker, int wakee, u8 flags, const char *backtrace)
414 {
415         struct per_pid *p;
416         struct wake_event *we = zalloc(sizeof(*we));
417 
418         if (!we)
419                 return;
420 
421         we->time = timestamp;
422         we->waker = waker;
423         we->backtrace = backtrace;
424 
425         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
426                 we->waker = -1;
427 
428         we->wakee = wakee;
429         we->next = tchart->wake_events;
430         tchart->wake_events = we;
431         p = find_create_pid(tchart, we->wakee);
432 
433         if (p && p->current && p->current->state == TYPE_NONE) {
434                 p->current->state_since = timestamp;
435                 p->current->state = TYPE_WAITING;
436         }
437         if (p && p->current && p->current->state == TYPE_BLOCKED) {
438                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
439                                p->current->state_since, timestamp, NULL);
440                 p->current->state_since = timestamp;
441                 p->current->state = TYPE_WAITING;
442         }
443 }
444 
445 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
446                          int prev_pid, int next_pid, u64 prev_state,
447                          const char *backtrace)
448 {
449         struct per_pid *p = NULL, *prev_p;
450 
451         prev_p = find_create_pid(tchart, prev_pid);
452 
453         p = find_create_pid(tchart, next_pid);
454 
455         if (prev_p->current && prev_p->current->state != TYPE_NONE)
456                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
457                                prev_p->current->state_since, timestamp,
458                                backtrace);
459         if (p && p->current) {
460                 if (p->current->state != TYPE_NONE)
461                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
462                                        p->current->state_since, timestamp,
463                                        backtrace);
464 
465                 p->current->state_since = timestamp;
466                 p->current->state = TYPE_RUNNING;
467         }
468 
469         if (prev_p->current) {
470                 prev_p->current->state = TYPE_NONE;
471                 prev_p->current->state_since = timestamp;
472                 if (prev_state & 2)
473                         prev_p->current->state = TYPE_BLOCKED;
474                 if (prev_state == 0)
475                         prev_p->current->state = TYPE_WAITING;
476         }
477 }
478 
479 static const char *cat_backtrace(union perf_event *event,
480                                  struct perf_sample *sample,
481                                  struct machine *machine)
482 {
483         struct addr_location al;
484         unsigned int i;
485         char *p = NULL;
486         size_t p_len;
487         u8 cpumode = PERF_RECORD_MISC_USER;
488         struct addr_location tal;
489         struct ip_callchain *chain = sample->callchain;
490         FILE *f = open_memstream(&p, &p_len);
491 
492         if (!f) {
493                 perror("open_memstream error");
494                 return NULL;
495         }
496 
497         if (!chain)
498                 goto exit;
499 
500         if (machine__resolve(machine, &al, sample) < 0) {
501                 fprintf(stderr, "problem processing %d event, skipping it.\n",
502                         event->header.type);
503                 goto exit;
504         }
505 
506         for (i = 0; i < chain->nr; i++) {
507                 u64 ip;
508 
509                 if (callchain_param.order == ORDER_CALLEE)
510                         ip = chain->ips[i];
511                 else
512                         ip = chain->ips[chain->nr - i - 1];
513 
514                 if (ip >= PERF_CONTEXT_MAX) {
515                         switch (ip) {
516                         case PERF_CONTEXT_HV:
517                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
518                                 break;
519                         case PERF_CONTEXT_KERNEL:
520                                 cpumode = PERF_RECORD_MISC_KERNEL;
521                                 break;
522                         case PERF_CONTEXT_USER:
523                                 cpumode = PERF_RECORD_MISC_USER;
524                                 break;
525                         default:
526                                 pr_debug("invalid callchain context: "
527                                          "%"PRId64"\n", (s64) ip);
528 
529                                 /*
530                                  * It seems the callchain is corrupted.
531                                  * Discard all.
532                                  */
533                                 zfree(&p);
534                                 goto exit_put;
535                         }
536                         continue;
537                 }
538 
539                 tal.filtered = 0;
540                 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
541                         fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
542                 else
543                         fprintf(f, "..... %016" PRIx64 "\n", ip);
544         }
545 exit_put:
546         addr_location__put(&al);
547 exit:
548         fclose(f);
549 
550         return p;
551 }
552 
553 typedef int (*tracepoint_handler)(struct timechart *tchart,
554                                   struct perf_evsel *evsel,
555                                   struct perf_sample *sample,
556                                   const char *backtrace);
557 
558 static int process_sample_event(struct perf_tool *tool,
559                                 union perf_event *event,
560                                 struct perf_sample *sample,
561                                 struct perf_evsel *evsel,
562                                 struct machine *machine)
563 {
564         struct timechart *tchart = container_of(tool, struct timechart, tool);
565 
566         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
567                 if (!tchart->first_time || tchart->first_time > sample->time)
568                         tchart->first_time = sample->time;
569                 if (tchart->last_time < sample->time)
570                         tchart->last_time = sample->time;
571         }
572 
573         if (evsel->handler != NULL) {
574                 tracepoint_handler f = evsel->handler;
575                 return f(tchart, evsel, sample,
576                          cat_backtrace(event, sample, machine));
577         }
578 
579         return 0;
580 }
581 
582 static int
583 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
584                         struct perf_evsel *evsel,
585                         struct perf_sample *sample,
586                         const char *backtrace __maybe_unused)
587 {
588         u32 state = perf_evsel__intval(evsel, sample, "state");
589         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
590 
591         if (state == (u32)PWR_EVENT_EXIT)
592                 c_state_end(tchart, cpu_id, sample->time);
593         else
594                 c_state_start(cpu_id, sample->time, state);
595         return 0;
596 }
597 
598 static int
599 process_sample_cpu_frequency(struct timechart *tchart,
600                              struct perf_evsel *evsel,
601                              struct perf_sample *sample,
602                              const char *backtrace __maybe_unused)
603 {
604         u32 state = perf_evsel__intval(evsel, sample, "state");
605         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
606 
607         p_state_change(tchart, cpu_id, sample->time, state);
608         return 0;
609 }
610 
611 static int
612 process_sample_sched_wakeup(struct timechart *tchart,
613                             struct perf_evsel *evsel,
614                             struct perf_sample *sample,
615                             const char *backtrace)
616 {
617         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
618         int waker = perf_evsel__intval(evsel, sample, "common_pid");
619         int wakee = perf_evsel__intval(evsel, sample, "pid");
620 
621         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
622         return 0;
623 }
624 
625 static int
626 process_sample_sched_switch(struct timechart *tchart,
627                             struct perf_evsel *evsel,
628                             struct perf_sample *sample,
629                             const char *backtrace)
630 {
631         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
632         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
633         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
634 
635         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
636                      prev_state, backtrace);
637         return 0;
638 }
639 
640 #ifdef SUPPORT_OLD_POWER_EVENTS
641 static int
642 process_sample_power_start(struct timechart *tchart __maybe_unused,
643                            struct perf_evsel *evsel,
644                            struct perf_sample *sample,
645                            const char *backtrace __maybe_unused)
646 {
647         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
648         u64 value = perf_evsel__intval(evsel, sample, "value");
649 
650         c_state_start(cpu_id, sample->time, value);
651         return 0;
652 }
653 
654 static int
655 process_sample_power_end(struct timechart *tchart,
656                          struct perf_evsel *evsel __maybe_unused,
657                          struct perf_sample *sample,
658                          const char *backtrace __maybe_unused)
659 {
660         c_state_end(tchart, sample->cpu, sample->time);
661         return 0;
662 }
663 
664 static int
665 process_sample_power_frequency(struct timechart *tchart,
666                                struct perf_evsel *evsel,
667                                struct perf_sample *sample,
668                                const char *backtrace __maybe_unused)
669 {
670         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
671         u64 value = perf_evsel__intval(evsel, sample, "value");
672 
673         p_state_change(tchart, cpu_id, sample->time, value);
674         return 0;
675 }
676 #endif /* SUPPORT_OLD_POWER_EVENTS */
677 
678 /*
679  * After the last sample we need to wrap up the current C/P state
680  * and close out each CPU for these.
681  */
682 static void end_sample_processing(struct timechart *tchart)
683 {
684         u64 cpu;
685         struct power_event *pwr;
686 
687         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
688                 /* C state */
689 #if 0
690                 pwr = zalloc(sizeof(*pwr));
691                 if (!pwr)
692                         return;
693 
694                 pwr->state = cpus_cstate_state[cpu];
695                 pwr->start_time = cpus_cstate_start_times[cpu];
696                 pwr->end_time = tchart->last_time;
697                 pwr->cpu = cpu;
698                 pwr->type = CSTATE;
699                 pwr->next = tchart->power_events;
700 
701                 tchart->power_events = pwr;
702 #endif
703                 /* P state */
704 
705                 pwr = zalloc(sizeof(*pwr));
706                 if (!pwr)
707                         return;
708 
709                 pwr->state = cpus_pstate_state[cpu];
710                 pwr->start_time = cpus_pstate_start_times[cpu];
711                 pwr->end_time = tchart->last_time;
712                 pwr->cpu = cpu;
713                 pwr->type = PSTATE;
714                 pwr->next = tchart->power_events;
715 
716                 if (!pwr->start_time)
717                         pwr->start_time = tchart->first_time;
718                 if (!pwr->state)
719                         pwr->state = tchart->min_freq;
720                 tchart->power_events = pwr;
721         }
722 }
723 
724 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
725                                u64 start, int fd)
726 {
727         struct per_pid *p = find_create_pid(tchart, pid);
728         struct per_pidcomm *c = p->current;
729         struct io_sample *sample;
730         struct io_sample *prev;
731 
732         if (!c) {
733                 c = zalloc(sizeof(*c));
734                 if (!c)
735                         return -ENOMEM;
736                 p->current = c;
737                 c->next = p->all;
738                 p->all = c;
739         }
740 
741         prev = c->io_samples;
742 
743         if (prev && prev->start_time && !prev->end_time) {
744                 pr_warning("Skip invalid start event: "
745                            "previous event already started!\n");
746 
747                 /* remove previous event that has been started,
748                  * we are not sure we will ever get an end for it */
749                 c->io_samples = prev->next;
750                 free(prev);
751                 return 0;
752         }
753 
754         sample = zalloc(sizeof(*sample));
755         if (!sample)
756                 return -ENOMEM;
757         sample->start_time = start;
758         sample->type = type;
759         sample->fd = fd;
760         sample->next = c->io_samples;
761         c->io_samples = sample;
762 
763         if (c->start_time == 0 || c->start_time > start)
764                 c->start_time = start;
765 
766         return 0;
767 }
768 
769 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
770                              u64 end, long ret)
771 {
772         struct per_pid *p = find_create_pid(tchart, pid);
773         struct per_pidcomm *c = p->current;
774         struct io_sample *sample, *prev;
775 
776         if (!c) {
777                 pr_warning("Invalid pidcomm!\n");
778                 return -1;
779         }
780 
781         sample = c->io_samples;
782 
783         if (!sample) /* skip partially captured events */
784                 return 0;
785 
786         if (sample->end_time) {
787                 pr_warning("Skip invalid end event: "
788                            "previous event already ended!\n");
789                 return 0;
790         }
791 
792         if (sample->type != type) {
793                 pr_warning("Skip invalid end event: invalid event type!\n");
794                 return 0;
795         }
796 
797         sample->end_time = end;
798         prev = sample->next;
799 
800         /* we want to be able to see small and fast transfers, so make them
801          * at least min_time long, but don't overlap them */
802         if (sample->end_time - sample->start_time < tchart->min_time)
803                 sample->end_time = sample->start_time + tchart->min_time;
804         if (prev && sample->start_time < prev->end_time) {
805                 if (prev->err) /* try to make errors more visible */
806                         sample->start_time = prev->end_time;
807                 else
808                         prev->end_time = sample->start_time;
809         }
810 
811         if (ret < 0) {
812                 sample->err = ret;
813         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
814                    type == IOTYPE_TX || type == IOTYPE_RX) {
815 
816                 if ((u64)ret > c->max_bytes)
817                         c->max_bytes = ret;
818 
819                 c->total_bytes += ret;
820                 p->total_bytes += ret;
821                 sample->bytes = ret;
822         }
823 
824         /* merge two requests to make svg smaller and render-friendly */
825         if (prev &&
826             prev->type == sample->type &&
827             prev->err == sample->err &&
828             prev->fd == sample->fd &&
829             prev->end_time + tchart->merge_dist >= sample->start_time) {
830 
831                 sample->bytes += prev->bytes;
832                 sample->merges += prev->merges + 1;
833 
834                 sample->start_time = prev->start_time;
835                 sample->next = prev->next;
836                 free(prev);
837 
838                 if (!sample->err && sample->bytes > c->max_bytes)
839                         c->max_bytes = sample->bytes;
840         }
841 
842         tchart->io_events++;
843 
844         return 0;
845 }
846 
847 static int
848 process_enter_read(struct timechart *tchart,
849                    struct perf_evsel *evsel,
850                    struct perf_sample *sample)
851 {
852         long fd = perf_evsel__intval(evsel, sample, "fd");
853         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
854                                    sample->time, fd);
855 }
856 
857 static int
858 process_exit_read(struct timechart *tchart,
859                   struct perf_evsel *evsel,
860                   struct perf_sample *sample)
861 {
862         long ret = perf_evsel__intval(evsel, sample, "ret");
863         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
864                                  sample->time, ret);
865 }
866 
867 static int
868 process_enter_write(struct timechart *tchart,
869                     struct perf_evsel *evsel,
870                     struct perf_sample *sample)
871 {
872         long fd = perf_evsel__intval(evsel, sample, "fd");
873         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
874                                    sample->time, fd);
875 }
876 
877 static int
878 process_exit_write(struct timechart *tchart,
879                    struct perf_evsel *evsel,
880                    struct perf_sample *sample)
881 {
882         long ret = perf_evsel__intval(evsel, sample, "ret");
883         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
884                                  sample->time, ret);
885 }
886 
887 static int
888 process_enter_sync(struct timechart *tchart,
889                    struct perf_evsel *evsel,
890                    struct perf_sample *sample)
891 {
892         long fd = perf_evsel__intval(evsel, sample, "fd");
893         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
894                                    sample->time, fd);
895 }
896 
897 static int
898 process_exit_sync(struct timechart *tchart,
899                   struct perf_evsel *evsel,
900                   struct perf_sample *sample)
901 {
902         long ret = perf_evsel__intval(evsel, sample, "ret");
903         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
904                                  sample->time, ret);
905 }
906 
907 static int
908 process_enter_tx(struct timechart *tchart,
909                  struct perf_evsel *evsel,
910                  struct perf_sample *sample)
911 {
912         long fd = perf_evsel__intval(evsel, sample, "fd");
913         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
914                                    sample->time, fd);
915 }
916 
917 static int
918 process_exit_tx(struct timechart *tchart,
919                 struct perf_evsel *evsel,
920                 struct perf_sample *sample)
921 {
922         long ret = perf_evsel__intval(evsel, sample, "ret");
923         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
924                                  sample->time, ret);
925 }
926 
927 static int
928 process_enter_rx(struct timechart *tchart,
929                  struct perf_evsel *evsel,
930                  struct perf_sample *sample)
931 {
932         long fd = perf_evsel__intval(evsel, sample, "fd");
933         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
934                                    sample->time, fd);
935 }
936 
937 static int
938 process_exit_rx(struct timechart *tchart,
939                 struct perf_evsel *evsel,
940                 struct perf_sample *sample)
941 {
942         long ret = perf_evsel__intval(evsel, sample, "ret");
943         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
944                                  sample->time, ret);
945 }
946 
947 static int
948 process_enter_poll(struct timechart *tchart,
949                    struct perf_evsel *evsel,
950                    struct perf_sample *sample)
951 {
952         long fd = perf_evsel__intval(evsel, sample, "fd");
953         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
954                                    sample->time, fd);
955 }
956 
957 static int
958 process_exit_poll(struct timechart *tchart,
959                   struct perf_evsel *evsel,
960                   struct perf_sample *sample)
961 {
962         long ret = perf_evsel__intval(evsel, sample, "ret");
963         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
964                                  sample->time, ret);
965 }
966 
967 /*
968  * Sort the pid datastructure
969  */
970 static void sort_pids(struct timechart *tchart)
971 {
972         struct per_pid *new_list, *p, *cursor, *prev;
973         /* sort by ppid first, then by pid, lowest to highest */
974 
975         new_list = NULL;
976 
977         while (tchart->all_data) {
978                 p = tchart->all_data;
979                 tchart->all_data = p->next;
980                 p->next = NULL;
981 
982                 if (new_list == NULL) {
983                         new_list = p;
984                         p->next = NULL;
985                         continue;
986                 }
987                 prev = NULL;
988                 cursor = new_list;
989                 while (cursor) {
990                         if (cursor->ppid > p->ppid ||
991                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
992                                 /* must insert before */
993                                 if (prev) {
994                                         p->next = prev->next;
995                                         prev->next = p;
996                                         cursor = NULL;
997                                         continue;
998                                 } else {
999                                         p->next = new_list;
1000                                         new_list = p;
1001                                         cursor = NULL;
1002                                         continue;
1003                                 }
1004                         }
1005 
1006                         prev = cursor;
1007                         cursor = cursor->next;
1008                         if (!cursor)
1009                                 prev->next = p;
1010                 }
1011         }
1012         tchart->all_data = new_list;
1013 }
1014 
1015 
1016 static void draw_c_p_states(struct timechart *tchart)
1017 {
1018         struct power_event *pwr;
1019         pwr = tchart->power_events;
1020 
1021         /*
1022          * two pass drawing so that the P state bars are on top of the C state blocks
1023          */
1024         while (pwr) {
1025                 if (pwr->type == CSTATE)
1026                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027                 pwr = pwr->next;
1028         }
1029 
1030         pwr = tchart->power_events;
1031         while (pwr) {
1032                 if (pwr->type == PSTATE) {
1033                         if (!pwr->state)
1034                                 pwr->state = tchart->min_freq;
1035                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036                 }
1037                 pwr = pwr->next;
1038         }
1039 }
1040 
1041 static void draw_wakeups(struct timechart *tchart)
1042 {
1043         struct wake_event *we;
1044         struct per_pid *p;
1045         struct per_pidcomm *c;
1046 
1047         we = tchart->wake_events;
1048         while (we) {
1049                 int from = 0, to = 0;
1050                 char *task_from = NULL, *task_to = NULL;
1051 
1052                 /* locate the column of the waker and wakee */
1053                 p = tchart->all_data;
1054                 while (p) {
1055                         if (p->pid == we->waker || p->pid == we->wakee) {
1056                                 c = p->all;
1057                                 while (c) {
1058                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059                                                 if (p->pid == we->waker && !from) {
1060                                                         from = c->Y;
1061                                                         task_from = strdup(c->comm);
1062                                                 }
1063                                                 if (p->pid == we->wakee && !to) {
1064                                                         to = c->Y;
1065                                                         task_to = strdup(c->comm);
1066                                                 }
1067                                         }
1068                                         c = c->next;
1069                                 }
1070                                 c = p->all;
1071                                 while (c) {
1072                                         if (p->pid == we->waker && !from) {
1073                                                 from = c->Y;
1074                                                 task_from = strdup(c->comm);
1075                                         }
1076                                         if (p->pid == we->wakee && !to) {
1077                                                 to = c->Y;
1078                                                 task_to = strdup(c->comm);
1079                                         }
1080                                         c = c->next;
1081                                 }
1082                         }
1083                         p = p->next;
1084                 }
1085 
1086                 if (!task_from) {
1087                         task_from = malloc(40);
1088                         sprintf(task_from, "[%i]", we->waker);
1089                 }
1090                 if (!task_to) {
1091                         task_to = malloc(40);
1092                         sprintf(task_to, "[%i]", we->wakee);
1093                 }
1094 
1095                 if (we->waker == -1)
1096                         svg_interrupt(we->time, to, we->backtrace);
1097                 else if (from && to && abs(from - to) == 1)
1098                         svg_wakeline(we->time, from, to, we->backtrace);
1099                 else
1100                         svg_partial_wakeline(we->time, from, task_from, to,
1101                                              task_to, we->backtrace);
1102                 we = we->next;
1103 
1104                 free(task_from);
1105                 free(task_to);
1106         }
1107 }
1108 
1109 static void draw_cpu_usage(struct timechart *tchart)
1110 {
1111         struct per_pid *p;
1112         struct per_pidcomm *c;
1113         struct cpu_sample *sample;
1114         p = tchart->all_data;
1115         while (p) {
1116                 c = p->all;
1117                 while (c) {
1118                         sample = c->samples;
1119                         while (sample) {
1120                                 if (sample->type == TYPE_RUNNING) {
1121                                         svg_process(sample->cpu,
1122                                                     sample->start_time,
1123                                                     sample->end_time,
1124                                                     p->pid,
1125                                                     c->comm,
1126                                                     sample->backtrace);
1127                                 }
1128 
1129                                 sample = sample->next;
1130                         }
1131                         c = c->next;
1132                 }
1133                 p = p->next;
1134         }
1135 }
1136 
1137 static void draw_io_bars(struct timechart *tchart)
1138 {
1139         const char *suf;
1140         double bytes;
1141         char comm[256];
1142         struct per_pid *p;
1143         struct per_pidcomm *c;
1144         struct io_sample *sample;
1145         int Y = 1;
1146 
1147         p = tchart->all_data;
1148         while (p) {
1149                 c = p->all;
1150                 while (c) {
1151                         if (!c->display) {
1152                                 c->Y = 0;
1153                                 c = c->next;
1154                                 continue;
1155                         }
1156 
1157                         svg_box(Y, c->start_time, c->end_time, "process3");
1158                         sample = c->io_samples;
1159                         for (sample = c->io_samples; sample; sample = sample->next) {
1160                                 double h = (double)sample->bytes / c->max_bytes;
1161 
1162                                 if (tchart->skip_eagain &&
1163                                     sample->err == -EAGAIN)
1164                                         continue;
1165 
1166                                 if (sample->err)
1167                                         h = 1;
1168 
1169                                 if (sample->type == IOTYPE_SYNC)
1170                                         svg_fbox(Y,
1171                                                 sample->start_time,
1172                                                 sample->end_time,
1173                                                 1,
1174                                                 sample->err ? "error" : "sync",
1175                                                 sample->fd,
1176                                                 sample->err,
1177                                                 sample->merges);
1178                                 else if (sample->type == IOTYPE_POLL)
1179                                         svg_fbox(Y,
1180                                                 sample->start_time,
1181                                                 sample->end_time,
1182                                                 1,
1183                                                 sample->err ? "error" : "poll",
1184                                                 sample->fd,
1185                                                 sample->err,
1186                                                 sample->merges);
1187                                 else if (sample->type == IOTYPE_READ)
1188                                         svg_ubox(Y,
1189                                                 sample->start_time,
1190                                                 sample->end_time,
1191                                                 h,
1192                                                 sample->err ? "error" : "disk",
1193                                                 sample->fd,
1194                                                 sample->err,
1195                                                 sample->merges);
1196                                 else if (sample->type == IOTYPE_WRITE)
1197                                         svg_lbox(Y,
1198                                                 sample->start_time,
1199                                                 sample->end_time,
1200                                                 h,
1201                                                 sample->err ? "error" : "disk",
1202                                                 sample->fd,
1203                                                 sample->err,
1204                                                 sample->merges);
1205                                 else if (sample->type == IOTYPE_RX)
1206                                         svg_ubox(Y,
1207                                                 sample->start_time,
1208                                                 sample->end_time,
1209                                                 h,
1210                                                 sample->err ? "error" : "net",
1211                                                 sample->fd,
1212                                                 sample->err,
1213                                                 sample->merges);
1214                                 else if (sample->type == IOTYPE_TX)
1215                                         svg_lbox(Y,
1216                                                 sample->start_time,
1217                                                 sample->end_time,
1218                                                 h,
1219                                                 sample->err ? "error" : "net",
1220                                                 sample->fd,
1221                                                 sample->err,
1222                                                 sample->merges);
1223                         }
1224 
1225                         suf = "";
1226                         bytes = c->total_bytes;
1227                         if (bytes > 1024) {
1228                                 bytes = bytes / 1024;
1229                                 suf = "K";
1230                         }
1231                         if (bytes > 1024) {
1232                                 bytes = bytes / 1024;
1233                                 suf = "M";
1234                         }
1235                         if (bytes > 1024) {
1236                                 bytes = bytes / 1024;
1237                                 suf = "G";
1238                         }
1239 
1240 
1241                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242                         svg_text(Y, c->start_time, comm);
1243 
1244                         c->Y = Y;
1245                         Y++;
1246                         c = c->next;
1247                 }
1248                 p = p->next;
1249         }
1250 }
1251 
1252 static void draw_process_bars(struct timechart *tchart)
1253 {
1254         struct per_pid *p;
1255         struct per_pidcomm *c;
1256         struct cpu_sample *sample;
1257         int Y = 0;
1258 
1259         Y = 2 * tchart->numcpus + 2;
1260 
1261         p = tchart->all_data;
1262         while (p) {
1263                 c = p->all;
1264                 while (c) {
1265                         if (!c->display) {
1266                                 c->Y = 0;
1267                                 c = c->next;
1268                                 continue;
1269                         }
1270 
1271                         svg_box(Y, c->start_time, c->end_time, "process");
1272                         sample = c->samples;
1273                         while (sample) {
1274                                 if (sample->type == TYPE_RUNNING)
1275                                         svg_running(Y, sample->cpu,
1276                                                     sample->start_time,
1277                                                     sample->end_time,
1278                                                     sample->backtrace);
1279                                 if (sample->type == TYPE_BLOCKED)
1280                                         svg_blocked(Y, sample->cpu,
1281                                                     sample->start_time,
1282                                                     sample->end_time,
1283                                                     sample->backtrace);
1284                                 if (sample->type == TYPE_WAITING)
1285                                         svg_waiting(Y, sample->cpu,
1286                                                     sample->start_time,
1287                                                     sample->end_time,
1288                                                     sample->backtrace);
1289                                 sample = sample->next;
1290                         }
1291 
1292                         if (c->comm) {
1293                                 char comm[256];
1294                                 if (c->total_time > 5000000000) /* 5 seconds */
1295                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296                                 else
1297                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298 
1299                                 svg_text(Y, c->start_time, comm);
1300                         }
1301                         c->Y = Y;
1302                         Y++;
1303                         c = c->next;
1304                 }
1305                 p = p->next;
1306         }
1307 }
1308 
1309 static void add_process_filter(const char *string)
1310 {
1311         int pid = strtoull(string, NULL, 10);
1312         struct process_filter *filt = malloc(sizeof(*filt));
1313 
1314         if (!filt)
1315                 return;
1316 
1317         filt->name = strdup(string);
1318         filt->pid  = pid;
1319         filt->next = process_filter;
1320 
1321         process_filter = filt;
1322 }
1323 
1324 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325 {
1326         struct process_filter *filt;
1327         if (!process_filter)
1328                 return 1;
1329 
1330         filt = process_filter;
1331         while (filt) {
1332                 if (filt->pid && p->pid == filt->pid)
1333                         return 1;
1334                 if (strcmp(filt->name, c->comm) == 0)
1335                         return 1;
1336                 filt = filt->next;
1337         }
1338         return 0;
1339 }
1340 
1341 static int determine_display_tasks_filtered(struct timechart *tchart)
1342 {
1343         struct per_pid *p;
1344         struct per_pidcomm *c;
1345         int count = 0;
1346 
1347         p = tchart->all_data;
1348         while (p) {
1349                 p->display = 0;
1350                 if (p->start_time == 1)
1351                         p->start_time = tchart->first_time;
1352 
1353                 /* no exit marker, task kept running to the end */
1354                 if (p->end_time == 0)
1355                         p->end_time = tchart->last_time;
1356 
1357                 c = p->all;
1358 
1359                 while (c) {
1360                         c->display = 0;
1361 
1362                         if (c->start_time == 1)
1363                                 c->start_time = tchart->first_time;
1364 
1365                         if (passes_filter(p, c)) {
1366                                 c->display = 1;
1367                                 p->display = 1;
1368                                 count++;
1369                         }
1370 
1371                         if (c->end_time == 0)
1372                                 c->end_time = tchart->last_time;
1373 
1374                         c = c->next;
1375                 }
1376                 p = p->next;
1377         }
1378         return count;
1379 }
1380 
1381 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382 {
1383         struct per_pid *p;
1384         struct per_pidcomm *c;
1385         int count = 0;
1386 
1387         p = tchart->all_data;
1388         while (p) {
1389                 p->display = 0;
1390                 if (p->start_time == 1)
1391                         p->start_time = tchart->first_time;
1392 
1393                 /* no exit marker, task kept running to the end */
1394                 if (p->end_time == 0)
1395                         p->end_time = tchart->last_time;
1396                 if (p->total_time >= threshold)
1397                         p->display = 1;
1398 
1399                 c = p->all;
1400 
1401                 while (c) {
1402                         c->display = 0;
1403 
1404                         if (c->start_time == 1)
1405                                 c->start_time = tchart->first_time;
1406 
1407                         if (c->total_time >= threshold) {
1408                                 c->display = 1;
1409                                 count++;
1410                         }
1411 
1412                         if (c->end_time == 0)
1413                                 c->end_time = tchart->last_time;
1414 
1415                         c = c->next;
1416                 }
1417                 p = p->next;
1418         }
1419         return count;
1420 }
1421 
1422 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423 {
1424         struct per_pid *p;
1425         struct per_pidcomm *c;
1426         int count = 0;
1427 
1428         p = timechart->all_data;
1429         while (p) {
1430                 /* no exit marker, task kept running to the end */
1431                 if (p->end_time == 0)
1432                         p->end_time = timechart->last_time;
1433 
1434                 c = p->all;
1435 
1436                 while (c) {
1437                         c->display = 0;
1438 
1439                         if (c->total_bytes >= threshold) {
1440                                 c->display = 1;
1441                                 count++;
1442                         }
1443 
1444                         if (c->end_time == 0)
1445                                 c->end_time = timechart->last_time;
1446 
1447                         c = c->next;
1448                 }
1449                 p = p->next;
1450         }
1451         return count;
1452 }
1453 
1454 #define BYTES_THRESH (1 * 1024 * 1024)
1455 #define TIME_THRESH 10000000
1456 
1457 static void write_svg_file(struct timechart *tchart, const char *filename)
1458 {
1459         u64 i;
1460         int count;
1461         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462 
1463         if (tchart->power_only)
1464                 tchart->proc_num = 0;
1465 
1466         /* We'd like to show at least proc_num tasks;
1467          * be less picky if we have fewer */
1468         do {
1469                 if (process_filter)
1470                         count = determine_display_tasks_filtered(tchart);
1471                 else if (tchart->io_events)
1472                         count = determine_display_io_tasks(tchart, thresh);
1473                 else
1474                         count = determine_display_tasks(tchart, thresh);
1475                 thresh /= 10;
1476         } while (!process_filter && thresh && count < tchart->proc_num);
1477 
1478         if (!tchart->proc_num)
1479                 count = 0;
1480 
1481         if (tchart->io_events) {
1482                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483 
1484                 svg_time_grid(0.5);
1485                 svg_io_legenda();
1486 
1487                 draw_io_bars(tchart);
1488         } else {
1489                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490 
1491                 svg_time_grid(0);
1492 
1493                 svg_legenda();
1494 
1495                 for (i = 0; i < tchart->numcpus; i++)
1496                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497 
1498                 draw_cpu_usage(tchart);
1499                 if (tchart->proc_num)
1500                         draw_process_bars(tchart);
1501                 if (!tchart->tasks_only)
1502                         draw_c_p_states(tchart);
1503                 if (tchart->proc_num)
1504                         draw_wakeups(tchart);
1505         }
1506 
1507         svg_close();
1508 }
1509 
1510 static int process_header(struct perf_file_section *section __maybe_unused,
1511                           struct perf_header *ph,
1512                           int feat,
1513                           int fd __maybe_unused,
1514                           void *data)
1515 {
1516         struct timechart *tchart = data;
1517 
1518         switch (feat) {
1519         case HEADER_NRCPUS:
1520                 tchart->numcpus = ph->env.nr_cpus_avail;
1521                 break;
1522 
1523         case HEADER_CPU_TOPOLOGY:
1524                 if (!tchart->topology)
1525                         break;
1526 
1527                 if (svg_build_topology_map(ph->env.sibling_cores,
1528                                            ph->env.nr_sibling_cores,
1529                                            ph->env.sibling_threads,
1530                                            ph->env.nr_sibling_threads))
1531                         fprintf(stderr, "problem building topology\n");
1532                 break;
1533 
1534         default:
1535                 break;
1536         }
1537 
1538         return 0;
1539 }
1540 
1541 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1542 {
1543         const struct perf_evsel_str_handler power_tracepoints[] = {
1544                 { "power:cpu_idle",             process_sample_cpu_idle },
1545                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1546                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1547                 { "sched:sched_switch",         process_sample_sched_switch },
1548 #ifdef SUPPORT_OLD_POWER_EVENTS
1549                 { "power:power_start",          process_sample_power_start },
1550                 { "power:power_end",            process_sample_power_end },
1551                 { "power:power_frequency",      process_sample_power_frequency },
1552 #endif
1553 
1554                 { "syscalls:sys_enter_read",            process_enter_read },
1555                 { "syscalls:sys_enter_pread64",         process_enter_read },
1556                 { "syscalls:sys_enter_readv",           process_enter_read },
1557                 { "syscalls:sys_enter_preadv",          process_enter_read },
1558                 { "syscalls:sys_enter_write",           process_enter_write },
1559                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1560                 { "syscalls:sys_enter_writev",          process_enter_write },
1561                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1562                 { "syscalls:sys_enter_sync",            process_enter_sync },
1563                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1564                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1565                 { "syscalls:sys_enter_msync",           process_enter_sync },
1566                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1567                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1568                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1569                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1570                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1571                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1572                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1573                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1574                 { "syscalls:sys_enter_poll",            process_enter_poll },
1575                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1576                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1577                 { "syscalls:sys_enter_select",          process_enter_poll },
1578 
1579                 { "syscalls:sys_exit_read",             process_exit_read },
1580                 { "syscalls:sys_exit_pread64",          process_exit_read },
1581                 { "syscalls:sys_exit_readv",            process_exit_read },
1582                 { "syscalls:sys_exit_preadv",           process_exit_read },
1583                 { "syscalls:sys_exit_write",            process_exit_write },
1584                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1585                 { "syscalls:sys_exit_writev",           process_exit_write },
1586                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1587                 { "syscalls:sys_exit_sync",             process_exit_sync },
1588                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1589                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1590                 { "syscalls:sys_exit_msync",            process_exit_sync },
1591                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1592                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1593                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1594                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1595                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1596                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1597                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1598                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1599                 { "syscalls:sys_exit_poll",             process_exit_poll },
1600                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1601                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1602                 { "syscalls:sys_exit_select",           process_exit_poll },
1603         };
1604         struct perf_data data = {
1605                 .file      = {
1606                         .path = input_name,
1607                 },
1608                 .mode      = PERF_DATA_MODE_READ,
1609                 .force     = tchart->force,
1610         };
1611 
1612         struct perf_session *session = perf_session__new(&data, false,
1613                                                          &tchart->tool);
1614         int ret = -EINVAL;
1615 
1616         if (session == NULL)
1617                 return -1;
1618 
1619         symbol__init(&session->header.env);
1620 
1621         (void)perf_header__process_sections(&session->header,
1622                                             perf_data__fd(session->data),
1623                                             tchart,
1624                                             process_header);
1625 
1626         if (!perf_session__has_traces(session, "timechart record"))
1627                 goto out_delete;
1628 
1629         if (perf_session__set_tracepoints_handlers(session,
1630                                                    power_tracepoints)) {
1631                 pr_err("Initializing session tracepoint handlers failed\n");
1632                 goto out_delete;
1633         }
1634 
1635         ret = perf_session__process_events(session);
1636         if (ret)
1637                 goto out_delete;
1638 
1639         end_sample_processing(tchart);
1640 
1641         sort_pids(tchart);
1642 
1643         write_svg_file(tchart, output_name);
1644 
1645         pr_info("Written %2.1f seconds of trace to %s.\n",
1646                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1647 out_delete:
1648         perf_session__delete(session);
1649         return ret;
1650 }
1651 
1652 static int timechart__io_record(int argc, const char **argv)
1653 {
1654         unsigned int rec_argc, i;
1655         const char **rec_argv;
1656         const char **p;
1657         char *filter = NULL;
1658 
1659         const char * const common_args[] = {
1660                 "record", "-a", "-R", "-c", "1",
1661         };
1662         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1663 
1664         const char * const disk_events[] = {
1665                 "syscalls:sys_enter_read",
1666                 "syscalls:sys_enter_pread64",
1667                 "syscalls:sys_enter_readv",
1668                 "syscalls:sys_enter_preadv",
1669                 "syscalls:sys_enter_write",
1670                 "syscalls:sys_enter_pwrite64",
1671                 "syscalls:sys_enter_writev",
1672                 "syscalls:sys_enter_pwritev",
1673                 "syscalls:sys_enter_sync",
1674                 "syscalls:sys_enter_sync_file_range",
1675                 "syscalls:sys_enter_fsync",
1676                 "syscalls:sys_enter_msync",
1677 
1678                 "syscalls:sys_exit_read",
1679                 "syscalls:sys_exit_pread64",
1680                 "syscalls:sys_exit_readv",
1681                 "syscalls:sys_exit_preadv",
1682                 "syscalls:sys_exit_write",
1683                 "syscalls:sys_exit_pwrite64",
1684                 "syscalls:sys_exit_writev",
1685                 "syscalls:sys_exit_pwritev",
1686                 "syscalls:sys_exit_sync",
1687                 "syscalls:sys_exit_sync_file_range",
1688                 "syscalls:sys_exit_fsync",
1689                 "syscalls:sys_exit_msync",
1690         };
1691         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1692 
1693         const char * const net_events[] = {
1694                 "syscalls:sys_enter_recvfrom",
1695                 "syscalls:sys_enter_recvmmsg",
1696                 "syscalls:sys_enter_recvmsg",
1697                 "syscalls:sys_enter_sendto",
1698                 "syscalls:sys_enter_sendmsg",
1699                 "syscalls:sys_enter_sendmmsg",
1700 
1701                 "syscalls:sys_exit_recvfrom",
1702                 "syscalls:sys_exit_recvmmsg",
1703                 "syscalls:sys_exit_recvmsg",
1704                 "syscalls:sys_exit_sendto",
1705                 "syscalls:sys_exit_sendmsg",
1706                 "syscalls:sys_exit_sendmmsg",
1707         };
1708         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1709 
1710         const char * const poll_events[] = {
1711                 "syscalls:sys_enter_epoll_pwait",
1712                 "syscalls:sys_enter_epoll_wait",
1713                 "syscalls:sys_enter_poll",
1714                 "syscalls:sys_enter_ppoll",
1715                 "syscalls:sys_enter_pselect6",
1716                 "syscalls:sys_enter_select",
1717 
1718                 "syscalls:sys_exit_epoll_pwait",
1719                 "syscalls:sys_exit_epoll_wait",
1720                 "syscalls:sys_exit_poll",
1721                 "syscalls:sys_exit_ppoll",
1722                 "syscalls:sys_exit_pselect6",
1723                 "syscalls:sys_exit_select",
1724         };
1725         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1726 
1727         rec_argc = common_args_nr +
1728                 disk_events_nr * 4 +
1729                 net_events_nr * 4 +
1730                 poll_events_nr * 4 +
1731                 argc;
1732         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1733 
1734         if (rec_argv == NULL)
1735                 return -ENOMEM;
1736 
1737         if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1738                 free(rec_argv);
1739                 return -ENOMEM;
1740         }
1741 
1742         p = rec_argv;
1743         for (i = 0; i < common_args_nr; i++)
1744                 *p++ = strdup(common_args[i]);
1745 
1746         for (i = 0; i < disk_events_nr; i++) {
1747                 if (!is_valid_tracepoint(disk_events[i])) {
1748                         rec_argc -= 4;
1749                         continue;
1750                 }
1751 
1752                 *p++ = "-e";
1753                 *p++ = strdup(disk_events[i]);
1754                 *p++ = "--filter";
1755                 *p++ = filter;
1756         }
1757         for (i = 0; i < net_events_nr; i++) {
1758                 if (!is_valid_tracepoint(net_events[i])) {
1759                         rec_argc -= 4;
1760                         continue;
1761                 }
1762 
1763                 *p++ = "-e";
1764                 *p++ = strdup(net_events[i]);
1765                 *p++ = "--filter";
1766                 *p++ = filter;
1767         }
1768         for (i = 0; i < poll_events_nr; i++) {
1769                 if (!is_valid_tracepoint(poll_events[i])) {
1770                         rec_argc -= 4;
1771                         continue;
1772                 }
1773 
1774                 *p++ = "-e";
1775                 *p++ = strdup(poll_events[i]);
1776                 *p++ = "--filter";
1777                 *p++ = filter;
1778         }
1779 
1780         for (i = 0; i < (unsigned int)argc; i++)
1781                 *p++ = argv[i];
1782 
1783         return cmd_record(rec_argc, rec_argv);
1784 }
1785 
1786 
1787 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1788 {
1789         unsigned int rec_argc, i, j;
1790         const char **rec_argv;
1791         const char **p;
1792         unsigned int record_elems;
1793 
1794         const char * const common_args[] = {
1795                 "record", "-a", "-R", "-c", "1",
1796         };
1797         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1798 
1799         const char * const backtrace_args[] = {
1800                 "-g",
1801         };
1802         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1803 
1804         const char * const power_args[] = {
1805                 "-e", "power:cpu_frequency",
1806                 "-e", "power:cpu_idle",
1807         };
1808         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1809 
1810         const char * const old_power_args[] = {
1811 #ifdef SUPPORT_OLD_POWER_EVENTS
1812                 "-e", "power:power_start",
1813                 "-e", "power:power_end",
1814                 "-e", "power:power_frequency",
1815 #endif
1816         };
1817         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1818 
1819         const char * const tasks_args[] = {
1820                 "-e", "sched:sched_wakeup",
1821                 "-e", "sched:sched_switch",
1822         };
1823         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1824 
1825 #ifdef SUPPORT_OLD_POWER_EVENTS
1826         if (!is_valid_tracepoint("power:cpu_idle") &&
1827             is_valid_tracepoint("power:power_start")) {
1828                 use_old_power_events = 1;
1829                 power_args_nr = 0;
1830         } else {
1831                 old_power_args_nr = 0;
1832         }
1833 #endif
1834 
1835         if (tchart->power_only)
1836                 tasks_args_nr = 0;
1837 
1838         if (tchart->tasks_only) {
1839                 power_args_nr = 0;
1840                 old_power_args_nr = 0;
1841         }
1842 
1843         if (!tchart->with_backtrace)
1844                 backtrace_args_no = 0;
1845 
1846         record_elems = common_args_nr + tasks_args_nr +
1847                 power_args_nr + old_power_args_nr + backtrace_args_no;
1848 
1849         rec_argc = record_elems + argc;
1850         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1851 
1852         if (rec_argv == NULL)
1853                 return -ENOMEM;
1854 
1855         p = rec_argv;
1856         for (i = 0; i < common_args_nr; i++)
1857                 *p++ = strdup(common_args[i]);
1858 
1859         for (i = 0; i < backtrace_args_no; i++)
1860                 *p++ = strdup(backtrace_args[i]);
1861 
1862         for (i = 0; i < tasks_args_nr; i++)
1863                 *p++ = strdup(tasks_args[i]);
1864 
1865         for (i = 0; i < power_args_nr; i++)
1866                 *p++ = strdup(power_args[i]);
1867 
1868         for (i = 0; i < old_power_args_nr; i++)
1869                 *p++ = strdup(old_power_args[i]);
1870 
1871         for (j = 0; j < (unsigned int)argc; j++)
1872                 *p++ = argv[j];
1873 
1874         return cmd_record(rec_argc, rec_argv);
1875 }
1876 
1877 static int
1878 parse_process(const struct option *opt __maybe_unused, const char *arg,
1879               int __maybe_unused unset)
1880 {
1881         if (arg)
1882                 add_process_filter(arg);
1883         return 0;
1884 }
1885 
1886 static int
1887 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1888                 int __maybe_unused unset)
1889 {
1890         unsigned long duration = strtoul(arg, NULL, 0);
1891 
1892         if (svg_highlight || svg_highlight_name)
1893                 return -1;
1894 
1895         if (duration)
1896                 svg_highlight = duration;
1897         else
1898                 svg_highlight_name = strdup(arg);
1899 
1900         return 0;
1901 }
1902 
1903 static int
1904 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1905 {
1906         char unit = 'n';
1907         u64 *value = opt->value;
1908 
1909         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1910                 switch (unit) {
1911                 case 'm':
1912                         *value *= NSEC_PER_MSEC;
1913                         break;
1914                 case 'u':
1915                         *value *= NSEC_PER_USEC;
1916                         break;
1917                 case 'n':
1918                         break;
1919                 default:
1920                         return -1;
1921                 }
1922         }
1923 
1924         return 0;
1925 }
1926 
1927 int cmd_timechart(int argc, const char **argv)
1928 {
1929         struct timechart tchart = {
1930                 .tool = {
1931                         .comm            = process_comm_event,
1932                         .fork            = process_fork_event,
1933                         .exit            = process_exit_event,
1934                         .sample          = process_sample_event,
1935                         .ordered_events  = true,
1936                 },
1937                 .proc_num = 15,
1938                 .min_time = NSEC_PER_MSEC,
1939                 .merge_dist = 1000,
1940         };
1941         const char *output_name = "output.svg";
1942         const struct option timechart_common_options[] = {
1943         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1945         OPT_END()
1946         };
1947         const struct option timechart_options[] = {
1948         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1949         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1950         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1951         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1952                       "highlight tasks. Pass duration in ns or process name.",
1953                        parse_highlight),
1954         OPT_CALLBACK('p', "process", NULL, "process",
1955                       "process selector. Pass a pid or process name.",
1956                        parse_process),
1957         OPT_CALLBACK(0, "symfs", NULL, "directory",
1958                      "Look for files with symbols relative to this directory",
1959                      symbol__config_symfs),
1960         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1961                     "min. number of tasks to print"),
1962         OPT_BOOLEAN('t', "topology", &tchart.topology,
1963                     "sort CPUs according to topology"),
1964         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1965                     "skip EAGAIN errors"),
1966         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1967                      "all IO faster than min-time will visually appear longer",
1968                      parse_time),
1969         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1970                      "merge events that are merge-dist us apart",
1971                      parse_time),
1972         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1973         OPT_PARENT(timechart_common_options),
1974         };
1975         const char * const timechart_subcommands[] = { "record", NULL };
1976         const char *timechart_usage[] = {
1977                 "perf timechart [<options>] {record}",
1978                 NULL
1979         };
1980         const struct option timechart_record_options[] = {
1981         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1982                     "record only IO data"),
1983         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1984         OPT_PARENT(timechart_common_options),
1985         };
1986         const char * const timechart_record_usage[] = {
1987                 "perf timechart record [<options>]",
1988                 NULL
1989         };
1990         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1991                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1992 
1993         if (tchart.power_only && tchart.tasks_only) {
1994                 pr_err("-P and -T options cannot be used at the same time.\n");
1995                 return -1;
1996         }
1997 
1998         if (argc && !strncmp(argv[0], "rec", 3)) {
1999                 argc = parse_options(argc, argv, timechart_record_options,
2000                                      timechart_record_usage,
2001                                      PARSE_OPT_STOP_AT_NON_OPTION);
2002 
2003                 if (tchart.power_only && tchart.tasks_only) {
2004                         pr_err("-P and -T options cannot be used at the same time.\n");
2005                         return -1;
2006                 }
2007 
2008                 if (tchart.io_only)
2009                         return timechart__io_record(argc, argv);
2010                 else
2011                         return timechart__record(&tchart, argc, argv);
2012         } else if (argc)
2013                 usage_with_options(timechart_usage, timechart_options);
2014 
2015         setup_pager();
2016 
2017         return __cmd_timechart(&tchart, output_name);
2018 }
2019 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp