~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/tools/perf/util/hist.c

Version: ~ [ linux-5.10-rc6 ] ~ [ linux-5.9.12 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.81 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.161 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.210 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.247 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.247 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include "util.h"
  3 #include "build-id.h"
  4 #include "hist.h"
  5 #include "map.h"
  6 #include "session.h"
  7 #include "namespaces.h"
  8 #include "sort.h"
  9 #include "evlist.h"
 10 #include "evsel.h"
 11 #include "annotate.h"
 12 #include "srcline.h"
 13 #include "thread.h"
 14 #include "ui/progress.h"
 15 #include <errno.h>
 16 #include <math.h>
 17 #include <sys/param.h>
 18 
 19 static bool hists__filter_entry_by_dso(struct hists *hists,
 20                                        struct hist_entry *he);
 21 static bool hists__filter_entry_by_thread(struct hists *hists,
 22                                           struct hist_entry *he);
 23 static bool hists__filter_entry_by_symbol(struct hists *hists,
 24                                           struct hist_entry *he);
 25 static bool hists__filter_entry_by_socket(struct hists *hists,
 26                                           struct hist_entry *he);
 27 
 28 u16 hists__col_len(struct hists *hists, enum hist_column col)
 29 {
 30         return hists->col_len[col];
 31 }
 32 
 33 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
 34 {
 35         hists->col_len[col] = len;
 36 }
 37 
 38 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
 39 {
 40         if (len > hists__col_len(hists, col)) {
 41                 hists__set_col_len(hists, col, len);
 42                 return true;
 43         }
 44         return false;
 45 }
 46 
 47 void hists__reset_col_len(struct hists *hists)
 48 {
 49         enum hist_column col;
 50 
 51         for (col = 0; col < HISTC_NR_COLS; ++col)
 52                 hists__set_col_len(hists, col, 0);
 53 }
 54 
 55 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
 56 {
 57         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
 58 
 59         if (hists__col_len(hists, dso) < unresolved_col_width &&
 60             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
 61             !symbol_conf.dso_list)
 62                 hists__set_col_len(hists, dso, unresolved_col_width);
 63 }
 64 
 65 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
 66 {
 67         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
 68         int symlen;
 69         u16 len;
 70 
 71         /*
 72          * +4 accounts for '[x] ' priv level info
 73          * +2 accounts for 0x prefix on raw addresses
 74          * +3 accounts for ' y ' symtab origin info
 75          */
 76         if (h->ms.sym) {
 77                 symlen = h->ms.sym->namelen + 4;
 78                 if (verbose > 0)
 79                         symlen += BITS_PER_LONG / 4 + 2 + 3;
 80                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
 81         } else {
 82                 symlen = unresolved_col_width + 4 + 2;
 83                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
 84                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
 85         }
 86 
 87         len = thread__comm_len(h->thread);
 88         if (hists__new_col_len(hists, HISTC_COMM, len))
 89                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
 90 
 91         if (h->ms.map) {
 92                 len = dso__name_len(h->ms.map->dso);
 93                 hists__new_col_len(hists, HISTC_DSO, len);
 94         }
 95 
 96         if (h->parent)
 97                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
 98 
 99         if (h->branch_info) {
100                 if (h->branch_info->from.sym) {
101                         symlen = (int)h->branch_info->from.sym->namelen + 4;
102                         if (verbose > 0)
103                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
104                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
105 
106                         symlen = dso__name_len(h->branch_info->from.map->dso);
107                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
108                 } else {
109                         symlen = unresolved_col_width + 4 + 2;
110                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
111                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
112                 }
113 
114                 if (h->branch_info->to.sym) {
115                         symlen = (int)h->branch_info->to.sym->namelen + 4;
116                         if (verbose > 0)
117                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
118                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
119 
120                         symlen = dso__name_len(h->branch_info->to.map->dso);
121                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
122                 } else {
123                         symlen = unresolved_col_width + 4 + 2;
124                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
125                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
126                 }
127 
128                 if (h->branch_info->srcline_from)
129                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
130                                         strlen(h->branch_info->srcline_from));
131                 if (h->branch_info->srcline_to)
132                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
133                                         strlen(h->branch_info->srcline_to));
134         }
135 
136         if (h->mem_info) {
137                 if (h->mem_info->daddr.sym) {
138                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
139                                + unresolved_col_width + 2;
140                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
141                                            symlen);
142                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
143                                            symlen + 1);
144                 } else {
145                         symlen = unresolved_col_width + 4 + 2;
146                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
147                                            symlen);
148                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
149                                            symlen);
150                 }
151 
152                 if (h->mem_info->iaddr.sym) {
153                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
154                                + unresolved_col_width + 2;
155                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
156                                            symlen);
157                 } else {
158                         symlen = unresolved_col_width + 4 + 2;
159                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
160                                            symlen);
161                 }
162 
163                 if (h->mem_info->daddr.map) {
164                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
165                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
166                                            symlen);
167                 } else {
168                         symlen = unresolved_col_width + 4 + 2;
169                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
170                 }
171 
172                 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
173                                    unresolved_col_width + 4 + 2);
174 
175         } else {
176                 symlen = unresolved_col_width + 4 + 2;
177                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
178                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
179                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
180         }
181 
182         hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
183         hists__new_col_len(hists, HISTC_CPU, 3);
184         hists__new_col_len(hists, HISTC_SOCKET, 6);
185         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
186         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
187         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
188         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
189         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
190         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
191 
192         if (h->srcline) {
193                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
194                 hists__new_col_len(hists, HISTC_SRCLINE, len);
195         }
196 
197         if (h->srcfile)
198                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
199 
200         if (h->transaction)
201                 hists__new_col_len(hists, HISTC_TRANSACTION,
202                                    hist_entry__transaction_len());
203 
204         if (h->trace_output)
205                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
206 }
207 
208 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
209 {
210         struct rb_node *next = rb_first(&hists->entries);
211         struct hist_entry *n;
212         int row = 0;
213 
214         hists__reset_col_len(hists);
215 
216         while (next && row++ < max_rows) {
217                 n = rb_entry(next, struct hist_entry, rb_node);
218                 if (!n->filtered)
219                         hists__calc_col_len(hists, n);
220                 next = rb_next(&n->rb_node);
221         }
222 }
223 
224 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
225                                         unsigned int cpumode, u64 period)
226 {
227         switch (cpumode) {
228         case PERF_RECORD_MISC_KERNEL:
229                 he_stat->period_sys += period;
230                 break;
231         case PERF_RECORD_MISC_USER:
232                 he_stat->period_us += period;
233                 break;
234         case PERF_RECORD_MISC_GUEST_KERNEL:
235                 he_stat->period_guest_sys += period;
236                 break;
237         case PERF_RECORD_MISC_GUEST_USER:
238                 he_stat->period_guest_us += period;
239                 break;
240         default:
241                 break;
242         }
243 }
244 
245 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
246                                 u64 weight)
247 {
248 
249         he_stat->period         += period;
250         he_stat->weight         += weight;
251         he_stat->nr_events      += 1;
252 }
253 
254 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
255 {
256         dest->period            += src->period;
257         dest->period_sys        += src->period_sys;
258         dest->period_us         += src->period_us;
259         dest->period_guest_sys  += src->period_guest_sys;
260         dest->period_guest_us   += src->period_guest_us;
261         dest->nr_events         += src->nr_events;
262         dest->weight            += src->weight;
263 }
264 
265 static void he_stat__decay(struct he_stat *he_stat)
266 {
267         he_stat->period = (he_stat->period * 7) / 8;
268         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
269         /* XXX need decay for weight too? */
270 }
271 
272 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
273 
274 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
275 {
276         u64 prev_period = he->stat.period;
277         u64 diff;
278 
279         if (prev_period == 0)
280                 return true;
281 
282         he_stat__decay(&he->stat);
283         if (symbol_conf.cumulate_callchain)
284                 he_stat__decay(he->stat_acc);
285         decay_callchain(he->callchain);
286 
287         diff = prev_period - he->stat.period;
288 
289         if (!he->depth) {
290                 hists->stats.total_period -= diff;
291                 if (!he->filtered)
292                         hists->stats.total_non_filtered_period -= diff;
293         }
294 
295         if (!he->leaf) {
296                 struct hist_entry *child;
297                 struct rb_node *node = rb_first(&he->hroot_out);
298                 while (node) {
299                         child = rb_entry(node, struct hist_entry, rb_node);
300                         node = rb_next(node);
301 
302                         if (hists__decay_entry(hists, child))
303                                 hists__delete_entry(hists, child);
304                 }
305         }
306 
307         return he->stat.period == 0;
308 }
309 
310 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
311 {
312         struct rb_root *root_in;
313         struct rb_root *root_out;
314 
315         if (he->parent_he) {
316                 root_in  = &he->parent_he->hroot_in;
317                 root_out = &he->parent_he->hroot_out;
318         } else {
319                 if (hists__has(hists, need_collapse))
320                         root_in = &hists->entries_collapsed;
321                 else
322                         root_in = hists->entries_in;
323                 root_out = &hists->entries;
324         }
325 
326         rb_erase(&he->rb_node_in, root_in);
327         rb_erase(&he->rb_node, root_out);
328 
329         --hists->nr_entries;
330         if (!he->filtered)
331                 --hists->nr_non_filtered_entries;
332 
333         hist_entry__delete(he);
334 }
335 
336 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
337 {
338         struct rb_node *next = rb_first(&hists->entries);
339         struct hist_entry *n;
340 
341         while (next) {
342                 n = rb_entry(next, struct hist_entry, rb_node);
343                 next = rb_next(&n->rb_node);
344                 if (((zap_user && n->level == '.') ||
345                      (zap_kernel && n->level != '.') ||
346                      hists__decay_entry(hists, n))) {
347                         hists__delete_entry(hists, n);
348                 }
349         }
350 }
351 
352 void hists__delete_entries(struct hists *hists)
353 {
354         struct rb_node *next = rb_first(&hists->entries);
355         struct hist_entry *n;
356 
357         while (next) {
358                 n = rb_entry(next, struct hist_entry, rb_node);
359                 next = rb_next(&n->rb_node);
360 
361                 hists__delete_entry(hists, n);
362         }
363 }
364 
365 /*
366  * histogram, sorted on item, collects periods
367  */
368 
369 static int hist_entry__init(struct hist_entry *he,
370                             struct hist_entry *template,
371                             bool sample_self)
372 {
373         *he = *template;
374 
375         if (symbol_conf.cumulate_callchain) {
376                 he->stat_acc = malloc(sizeof(he->stat));
377                 if (he->stat_acc == NULL)
378                         return -ENOMEM;
379                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
380                 if (!sample_self)
381                         memset(&he->stat, 0, sizeof(he->stat));
382         }
383 
384         map__get(he->ms.map);
385 
386         if (he->branch_info) {
387                 /*
388                  * This branch info is (a part of) allocated from
389                  * sample__resolve_bstack() and will be freed after
390                  * adding new entries.  So we need to save a copy.
391                  */
392                 he->branch_info = malloc(sizeof(*he->branch_info));
393                 if (he->branch_info == NULL) {
394                         map__zput(he->ms.map);
395                         free(he->stat_acc);
396                         return -ENOMEM;
397                 }
398 
399                 memcpy(he->branch_info, template->branch_info,
400                        sizeof(*he->branch_info));
401 
402                 map__get(he->branch_info->from.map);
403                 map__get(he->branch_info->to.map);
404         }
405 
406         if (he->mem_info) {
407                 map__get(he->mem_info->iaddr.map);
408                 map__get(he->mem_info->daddr.map);
409         }
410 
411         if (symbol_conf.use_callchain)
412                 callchain_init(he->callchain);
413 
414         if (he->raw_data) {
415                 he->raw_data = memdup(he->raw_data, he->raw_size);
416 
417                 if (he->raw_data == NULL) {
418                         map__put(he->ms.map);
419                         if (he->branch_info) {
420                                 map__put(he->branch_info->from.map);
421                                 map__put(he->branch_info->to.map);
422                                 free(he->branch_info);
423                         }
424                         if (he->mem_info) {
425                                 map__put(he->mem_info->iaddr.map);
426                                 map__put(he->mem_info->daddr.map);
427                         }
428                         free(he->stat_acc);
429                         return -ENOMEM;
430                 }
431         }
432         INIT_LIST_HEAD(&he->pairs.node);
433         thread__get(he->thread);
434         he->hroot_in  = RB_ROOT;
435         he->hroot_out = RB_ROOT;
436 
437         if (!symbol_conf.report_hierarchy)
438                 he->leaf = true;
439 
440         return 0;
441 }
442 
443 static void *hist_entry__zalloc(size_t size)
444 {
445         return zalloc(size + sizeof(struct hist_entry));
446 }
447 
448 static void hist_entry__free(void *ptr)
449 {
450         free(ptr);
451 }
452 
453 static struct hist_entry_ops default_ops = {
454         .new    = hist_entry__zalloc,
455         .free   = hist_entry__free,
456 };
457 
458 static struct hist_entry *hist_entry__new(struct hist_entry *template,
459                                           bool sample_self)
460 {
461         struct hist_entry_ops *ops = template->ops;
462         size_t callchain_size = 0;
463         struct hist_entry *he;
464         int err = 0;
465 
466         if (!ops)
467                 ops = template->ops = &default_ops;
468 
469         if (symbol_conf.use_callchain)
470                 callchain_size = sizeof(struct callchain_root);
471 
472         he = ops->new(callchain_size);
473         if (he) {
474                 err = hist_entry__init(he, template, sample_self);
475                 if (err) {
476                         ops->free(he);
477                         he = NULL;
478                 }
479         }
480 
481         return he;
482 }
483 
484 static u8 symbol__parent_filter(const struct symbol *parent)
485 {
486         if (symbol_conf.exclude_other && parent == NULL)
487                 return 1 << HIST_FILTER__PARENT;
488         return 0;
489 }
490 
491 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
492 {
493         if (!symbol_conf.use_callchain)
494                 return;
495 
496         he->hists->callchain_period += period;
497         if (!he->filtered)
498                 he->hists->callchain_non_filtered_period += period;
499 }
500 
501 static struct hist_entry *hists__findnew_entry(struct hists *hists,
502                                                struct hist_entry *entry,
503                                                struct addr_location *al,
504                                                bool sample_self)
505 {
506         struct rb_node **p;
507         struct rb_node *parent = NULL;
508         struct hist_entry *he;
509         int64_t cmp;
510         u64 period = entry->stat.period;
511         u64 weight = entry->stat.weight;
512 
513         p = &hists->entries_in->rb_node;
514 
515         while (*p != NULL) {
516                 parent = *p;
517                 he = rb_entry(parent, struct hist_entry, rb_node_in);
518 
519                 /*
520                  * Make sure that it receives arguments in a same order as
521                  * hist_entry__collapse() so that we can use an appropriate
522                  * function when searching an entry regardless which sort
523                  * keys were used.
524                  */
525                 cmp = hist_entry__cmp(he, entry);
526 
527                 if (!cmp) {
528                         if (sample_self) {
529                                 he_stat__add_period(&he->stat, period, weight);
530                                 hist_entry__add_callchain_period(he, period);
531                         }
532                         if (symbol_conf.cumulate_callchain)
533                                 he_stat__add_period(he->stat_acc, period, weight);
534 
535                         /*
536                          * This mem info was allocated from sample__resolve_mem
537                          * and will not be used anymore.
538                          */
539                         zfree(&entry->mem_info);
540 
541                         /* If the map of an existing hist_entry has
542                          * become out-of-date due to an exec() or
543                          * similar, update it.  Otherwise we will
544                          * mis-adjust symbol addresses when computing
545                          * the history counter to increment.
546                          */
547                         if (he->ms.map != entry->ms.map) {
548                                 map__put(he->ms.map);
549                                 he->ms.map = map__get(entry->ms.map);
550                         }
551                         goto out;
552                 }
553 
554                 if (cmp < 0)
555                         p = &(*p)->rb_left;
556                 else
557                         p = &(*p)->rb_right;
558         }
559 
560         he = hist_entry__new(entry, sample_self);
561         if (!he)
562                 return NULL;
563 
564         if (sample_self)
565                 hist_entry__add_callchain_period(he, period);
566         hists->nr_entries++;
567 
568         rb_link_node(&he->rb_node_in, parent, p);
569         rb_insert_color(&he->rb_node_in, hists->entries_in);
570 out:
571         if (sample_self)
572                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
573         if (symbol_conf.cumulate_callchain)
574                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
575         return he;
576 }
577 
578 static struct hist_entry*
579 __hists__add_entry(struct hists *hists,
580                    struct addr_location *al,
581                    struct symbol *sym_parent,
582                    struct branch_info *bi,
583                    struct mem_info *mi,
584                    struct perf_sample *sample,
585                    bool sample_self,
586                    struct hist_entry_ops *ops)
587 {
588         struct namespaces *ns = thread__namespaces(al->thread);
589         struct hist_entry entry = {
590                 .thread = al->thread,
591                 .comm = thread__comm(al->thread),
592                 .cgroup_id = {
593                         .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
594                         .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
595                 },
596                 .ms = {
597                         .map    = al->map,
598                         .sym    = al->sym,
599                 },
600                 .srcline = al->srcline ? strdup(al->srcline) : NULL,
601                 .socket  = al->socket,
602                 .cpu     = al->cpu,
603                 .cpumode = al->cpumode,
604                 .ip      = al->addr,
605                 .level   = al->level,
606                 .stat = {
607                         .nr_events = 1,
608                         .period = sample->period,
609                         .weight = sample->weight,
610                 },
611                 .parent = sym_parent,
612                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
613                 .hists  = hists,
614                 .branch_info = bi,
615                 .mem_info = mi,
616                 .transaction = sample->transaction,
617                 .raw_data = sample->raw_data,
618                 .raw_size = sample->raw_size,
619                 .ops = ops,
620         };
621 
622         return hists__findnew_entry(hists, &entry, al, sample_self);
623 }
624 
625 struct hist_entry *hists__add_entry(struct hists *hists,
626                                     struct addr_location *al,
627                                     struct symbol *sym_parent,
628                                     struct branch_info *bi,
629                                     struct mem_info *mi,
630                                     struct perf_sample *sample,
631                                     bool sample_self)
632 {
633         return __hists__add_entry(hists, al, sym_parent, bi, mi,
634                                   sample, sample_self, NULL);
635 }
636 
637 struct hist_entry *hists__add_entry_ops(struct hists *hists,
638                                         struct hist_entry_ops *ops,
639                                         struct addr_location *al,
640                                         struct symbol *sym_parent,
641                                         struct branch_info *bi,
642                                         struct mem_info *mi,
643                                         struct perf_sample *sample,
644                                         bool sample_self)
645 {
646         return __hists__add_entry(hists, al, sym_parent, bi, mi,
647                                   sample, sample_self, ops);
648 }
649 
650 static int
651 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
652                     struct addr_location *al __maybe_unused)
653 {
654         return 0;
655 }
656 
657 static int
658 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
659                         struct addr_location *al __maybe_unused)
660 {
661         return 0;
662 }
663 
664 static int
665 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
666 {
667         struct perf_sample *sample = iter->sample;
668         struct mem_info *mi;
669 
670         mi = sample__resolve_mem(sample, al);
671         if (mi == NULL)
672                 return -ENOMEM;
673 
674         iter->priv = mi;
675         return 0;
676 }
677 
678 static int
679 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
680 {
681         u64 cost;
682         struct mem_info *mi = iter->priv;
683         struct hists *hists = evsel__hists(iter->evsel);
684         struct perf_sample *sample = iter->sample;
685         struct hist_entry *he;
686 
687         if (mi == NULL)
688                 return -EINVAL;
689 
690         cost = sample->weight;
691         if (!cost)
692                 cost = 1;
693 
694         /*
695          * must pass period=weight in order to get the correct
696          * sorting from hists__collapse_resort() which is solely
697          * based on periods. We want sorting be done on nr_events * weight
698          * and this is indirectly achieved by passing period=weight here
699          * and the he_stat__add_period() function.
700          */
701         sample->period = cost;
702 
703         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
704                               sample, true);
705         if (!he)
706                 return -ENOMEM;
707 
708         iter->he = he;
709         return 0;
710 }
711 
712 static int
713 iter_finish_mem_entry(struct hist_entry_iter *iter,
714                       struct addr_location *al __maybe_unused)
715 {
716         struct perf_evsel *evsel = iter->evsel;
717         struct hists *hists = evsel__hists(evsel);
718         struct hist_entry *he = iter->he;
719         int err = -EINVAL;
720 
721         if (he == NULL)
722                 goto out;
723 
724         hists__inc_nr_samples(hists, he->filtered);
725 
726         err = hist_entry__append_callchain(he, iter->sample);
727 
728 out:
729         /*
730          * We don't need to free iter->priv (mem_info) here since the mem info
731          * was either already freed in hists__findnew_entry() or passed to a
732          * new hist entry by hist_entry__new().
733          */
734         iter->priv = NULL;
735 
736         iter->he = NULL;
737         return err;
738 }
739 
740 static int
741 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
742 {
743         struct branch_info *bi;
744         struct perf_sample *sample = iter->sample;
745 
746         bi = sample__resolve_bstack(sample, al);
747         if (!bi)
748                 return -ENOMEM;
749 
750         iter->curr = 0;
751         iter->total = sample->branch_stack->nr;
752 
753         iter->priv = bi;
754         return 0;
755 }
756 
757 static int
758 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
759                              struct addr_location *al __maybe_unused)
760 {
761         return 0;
762 }
763 
764 static int
765 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
766 {
767         struct branch_info *bi = iter->priv;
768         int i = iter->curr;
769 
770         if (bi == NULL)
771                 return 0;
772 
773         if (iter->curr >= iter->total)
774                 return 0;
775 
776         al->map = bi[i].to.map;
777         al->sym = bi[i].to.sym;
778         al->addr = bi[i].to.addr;
779         return 1;
780 }
781 
782 static int
783 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
784 {
785         struct branch_info *bi;
786         struct perf_evsel *evsel = iter->evsel;
787         struct hists *hists = evsel__hists(evsel);
788         struct perf_sample *sample = iter->sample;
789         struct hist_entry *he = NULL;
790         int i = iter->curr;
791         int err = 0;
792 
793         bi = iter->priv;
794 
795         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
796                 goto out;
797 
798         /*
799          * The report shows the percentage of total branches captured
800          * and not events sampled. Thus we use a pseudo period of 1.
801          */
802         sample->period = 1;
803         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
804 
805         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
806                               sample, true);
807         if (he == NULL)
808                 return -ENOMEM;
809 
810         hists__inc_nr_samples(hists, he->filtered);
811 
812 out:
813         iter->he = he;
814         iter->curr++;
815         return err;
816 }
817 
818 static int
819 iter_finish_branch_entry(struct hist_entry_iter *iter,
820                          struct addr_location *al __maybe_unused)
821 {
822         zfree(&iter->priv);
823         iter->he = NULL;
824 
825         return iter->curr >= iter->total ? 0 : -1;
826 }
827 
828 static int
829 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
830                           struct addr_location *al __maybe_unused)
831 {
832         return 0;
833 }
834 
835 static int
836 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
837 {
838         struct perf_evsel *evsel = iter->evsel;
839         struct perf_sample *sample = iter->sample;
840         struct hist_entry *he;
841 
842         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
843                               sample, true);
844         if (he == NULL)
845                 return -ENOMEM;
846 
847         iter->he = he;
848         return 0;
849 }
850 
851 static int
852 iter_finish_normal_entry(struct hist_entry_iter *iter,
853                          struct addr_location *al __maybe_unused)
854 {
855         struct hist_entry *he = iter->he;
856         struct perf_evsel *evsel = iter->evsel;
857         struct perf_sample *sample = iter->sample;
858 
859         if (he == NULL)
860                 return 0;
861 
862         iter->he = NULL;
863 
864         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
865 
866         return hist_entry__append_callchain(he, sample);
867 }
868 
869 static int
870 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
871                               struct addr_location *al __maybe_unused)
872 {
873         struct hist_entry **he_cache;
874 
875         callchain_cursor_commit(&callchain_cursor);
876 
877         /*
878          * This is for detecting cycles or recursions so that they're
879          * cumulated only one time to prevent entries more than 100%
880          * overhead.
881          */
882         he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
883         if (he_cache == NULL)
884                 return -ENOMEM;
885 
886         iter->priv = he_cache;
887         iter->curr = 0;
888 
889         return 0;
890 }
891 
892 static int
893 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
894                                  struct addr_location *al)
895 {
896         struct perf_evsel *evsel = iter->evsel;
897         struct hists *hists = evsel__hists(evsel);
898         struct perf_sample *sample = iter->sample;
899         struct hist_entry **he_cache = iter->priv;
900         struct hist_entry *he;
901         int err = 0;
902 
903         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
904                               sample, true);
905         if (he == NULL)
906                 return -ENOMEM;
907 
908         iter->he = he;
909         he_cache[iter->curr++] = he;
910 
911         hist_entry__append_callchain(he, sample);
912 
913         /*
914          * We need to re-initialize the cursor since callchain_append()
915          * advanced the cursor to the end.
916          */
917         callchain_cursor_commit(&callchain_cursor);
918 
919         hists__inc_nr_samples(hists, he->filtered);
920 
921         return err;
922 }
923 
924 static int
925 iter_next_cumulative_entry(struct hist_entry_iter *iter,
926                            struct addr_location *al)
927 {
928         struct callchain_cursor_node *node;
929 
930         node = callchain_cursor_current(&callchain_cursor);
931         if (node == NULL)
932                 return 0;
933 
934         return fill_callchain_info(al, node, iter->hide_unresolved);
935 }
936 
937 static int
938 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
939                                struct addr_location *al)
940 {
941         struct perf_evsel *evsel = iter->evsel;
942         struct perf_sample *sample = iter->sample;
943         struct hist_entry **he_cache = iter->priv;
944         struct hist_entry *he;
945         struct hist_entry he_tmp = {
946                 .hists = evsel__hists(evsel),
947                 .cpu = al->cpu,
948                 .thread = al->thread,
949                 .comm = thread__comm(al->thread),
950                 .ip = al->addr,
951                 .ms = {
952                         .map = al->map,
953                         .sym = al->sym,
954                 },
955                 .srcline = al->srcline ? strdup(al->srcline) : NULL,
956                 .parent = iter->parent,
957                 .raw_data = sample->raw_data,
958                 .raw_size = sample->raw_size,
959         };
960         int i;
961         struct callchain_cursor cursor;
962 
963         callchain_cursor_snapshot(&cursor, &callchain_cursor);
964 
965         callchain_cursor_advance(&callchain_cursor);
966 
967         /*
968          * Check if there's duplicate entries in the callchain.
969          * It's possible that it has cycles or recursive calls.
970          */
971         for (i = 0; i < iter->curr; i++) {
972                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
973                         /* to avoid calling callback function */
974                         iter->he = NULL;
975                         return 0;
976                 }
977         }
978 
979         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
980                               sample, false);
981         if (he == NULL)
982                 return -ENOMEM;
983 
984         iter->he = he;
985         he_cache[iter->curr++] = he;
986 
987         if (symbol_conf.use_callchain)
988                 callchain_append(he->callchain, &cursor, sample->period);
989         return 0;
990 }
991 
992 static int
993 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
994                              struct addr_location *al __maybe_unused)
995 {
996         zfree(&iter->priv);
997         iter->he = NULL;
998 
999         return 0;
1000 }
1001 
1002 const struct hist_iter_ops hist_iter_mem = {
1003         .prepare_entry          = iter_prepare_mem_entry,
1004         .add_single_entry       = iter_add_single_mem_entry,
1005         .next_entry             = iter_next_nop_entry,
1006         .add_next_entry         = iter_add_next_nop_entry,
1007         .finish_entry           = iter_finish_mem_entry,
1008 };
1009 
1010 const struct hist_iter_ops hist_iter_branch = {
1011         .prepare_entry          = iter_prepare_branch_entry,
1012         .add_single_entry       = iter_add_single_branch_entry,
1013         .next_entry             = iter_next_branch_entry,
1014         .add_next_entry         = iter_add_next_branch_entry,
1015         .finish_entry           = iter_finish_branch_entry,
1016 };
1017 
1018 const struct hist_iter_ops hist_iter_normal = {
1019         .prepare_entry          = iter_prepare_normal_entry,
1020         .add_single_entry       = iter_add_single_normal_entry,
1021         .next_entry             = iter_next_nop_entry,
1022         .add_next_entry         = iter_add_next_nop_entry,
1023         .finish_entry           = iter_finish_normal_entry,
1024 };
1025 
1026 const struct hist_iter_ops hist_iter_cumulative = {
1027         .prepare_entry          = iter_prepare_cumulative_entry,
1028         .add_single_entry       = iter_add_single_cumulative_entry,
1029         .next_entry             = iter_next_cumulative_entry,
1030         .add_next_entry         = iter_add_next_cumulative_entry,
1031         .finish_entry           = iter_finish_cumulative_entry,
1032 };
1033 
1034 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1035                          int max_stack_depth, void *arg)
1036 {
1037         int err, err2;
1038         struct map *alm = NULL;
1039 
1040         if (al && al->map)
1041                 alm = map__get(al->map);
1042 
1043         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1044                                         iter->evsel, al, max_stack_depth);
1045         if (err)
1046                 return err;
1047 
1048         iter->max_stack = max_stack_depth;
1049 
1050         err = iter->ops->prepare_entry(iter, al);
1051         if (err)
1052                 goto out;
1053 
1054         err = iter->ops->add_single_entry(iter, al);
1055         if (err)
1056                 goto out;
1057 
1058         if (iter->he && iter->add_entry_cb) {
1059                 err = iter->add_entry_cb(iter, al, true, arg);
1060                 if (err)
1061                         goto out;
1062         }
1063 
1064         while (iter->ops->next_entry(iter, al)) {
1065                 err = iter->ops->add_next_entry(iter, al);
1066                 if (err)
1067                         break;
1068 
1069                 if (iter->he && iter->add_entry_cb) {
1070                         err = iter->add_entry_cb(iter, al, false, arg);
1071                         if (err)
1072                                 goto out;
1073                 }
1074         }
1075 
1076 out:
1077         err2 = iter->ops->finish_entry(iter, al);
1078         if (!err)
1079                 err = err2;
1080 
1081         map__put(alm);
1082 
1083         return err;
1084 }
1085 
1086 int64_t
1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1088 {
1089         struct hists *hists = left->hists;
1090         struct perf_hpp_fmt *fmt;
1091         int64_t cmp = 0;
1092 
1093         hists__for_each_sort_list(hists, fmt) {
1094                 if (perf_hpp__is_dynamic_entry(fmt) &&
1095                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1096                         continue;
1097 
1098                 cmp = fmt->cmp(fmt, left, right);
1099                 if (cmp)
1100                         break;
1101         }
1102 
1103         return cmp;
1104 }
1105 
1106 int64_t
1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1108 {
1109         struct hists *hists = left->hists;
1110         struct perf_hpp_fmt *fmt;
1111         int64_t cmp = 0;
1112 
1113         hists__for_each_sort_list(hists, fmt) {
1114                 if (perf_hpp__is_dynamic_entry(fmt) &&
1115                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1116                         continue;
1117 
1118                 cmp = fmt->collapse(fmt, left, right);
1119                 if (cmp)
1120                         break;
1121         }
1122 
1123         return cmp;
1124 }
1125 
1126 void hist_entry__delete(struct hist_entry *he)
1127 {
1128         struct hist_entry_ops *ops = he->ops;
1129 
1130         thread__zput(he->thread);
1131         map__zput(he->ms.map);
1132 
1133         if (he->branch_info) {
1134                 map__zput(he->branch_info->from.map);
1135                 map__zput(he->branch_info->to.map);
1136                 free_srcline(he->branch_info->srcline_from);
1137                 free_srcline(he->branch_info->srcline_to);
1138                 zfree(&he->branch_info);
1139         }
1140 
1141         if (he->mem_info) {
1142                 map__zput(he->mem_info->iaddr.map);
1143                 map__zput(he->mem_info->daddr.map);
1144                 zfree(&he->mem_info);
1145         }
1146 
1147         zfree(&he->stat_acc);
1148         free_srcline(he->srcline);
1149         if (he->srcfile && he->srcfile[0])
1150                 free(he->srcfile);
1151         free_callchain(he->callchain);
1152         free(he->trace_output);
1153         free(he->raw_data);
1154         ops->free(he);
1155 }
1156 
1157 /*
1158  * If this is not the last column, then we need to pad it according to the
1159  * pre-calculated max lenght for this column, otherwise don't bother adding
1160  * spaces because that would break viewing this with, for instance, 'less',
1161  * that would show tons of trailing spaces when a long C++ demangled method
1162  * names is sampled.
1163 */
1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1165                                    struct perf_hpp_fmt *fmt, int printed)
1166 {
1167         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1168                 const int width = fmt->width(fmt, hpp, he->hists);
1169                 if (printed < width) {
1170                         advance_hpp(hpp, printed);
1171                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1172                 }
1173         }
1174 
1175         return printed;
1176 }
1177 
1178 /*
1179  * collapse the histogram
1180  */
1181 
1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1184                                        enum hist_filter type);
1185 
1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1187 
1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1189 {
1190         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1191 }
1192 
1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1194                                                 enum hist_filter type,
1195                                                 fmt_chk_fn check)
1196 {
1197         struct perf_hpp_fmt *fmt;
1198         bool type_match = false;
1199         struct hist_entry *parent = he->parent_he;
1200 
1201         switch (type) {
1202         case HIST_FILTER__THREAD:
1203                 if (symbol_conf.comm_list == NULL &&
1204                     symbol_conf.pid_list == NULL &&
1205                     symbol_conf.tid_list == NULL)
1206                         return;
1207                 break;
1208         case HIST_FILTER__DSO:
1209                 if (symbol_conf.dso_list == NULL)
1210                         return;
1211                 break;
1212         case HIST_FILTER__SYMBOL:
1213                 if (symbol_conf.sym_list == NULL)
1214                         return;
1215                 break;
1216         case HIST_FILTER__PARENT:
1217         case HIST_FILTER__GUEST:
1218         case HIST_FILTER__HOST:
1219         case HIST_FILTER__SOCKET:
1220         case HIST_FILTER__C2C:
1221         default:
1222                 return;
1223         }
1224 
1225         /* if it's filtered by own fmt, it has to have filter bits */
1226         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1227                 if (check(fmt)) {
1228                         type_match = true;
1229                         break;
1230                 }
1231         }
1232 
1233         if (type_match) {
1234                 /*
1235                  * If the filter is for current level entry, propagate
1236                  * filter marker to parents.  The marker bit was
1237                  * already set by default so it only needs to clear
1238                  * non-filtered entries.
1239                  */
1240                 if (!(he->filtered & (1 << type))) {
1241                         while (parent) {
1242                                 parent->filtered &= ~(1 << type);
1243                                 parent = parent->parent_he;
1244                         }
1245                 }
1246         } else {
1247                 /*
1248                  * If current entry doesn't have matching formats, set
1249                  * filter marker for upper level entries.  it will be
1250                  * cleared if its lower level entries is not filtered.
1251                  *
1252                  * For lower-level entries, it inherits parent's
1253                  * filter bit so that lower level entries of a
1254                  * non-filtered entry won't set the filter marker.
1255                  */
1256                 if (parent == NULL)
1257                         he->filtered |= (1 << type);
1258                 else
1259                         he->filtered |= (parent->filtered & (1 << type));
1260         }
1261 }
1262 
1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1264 {
1265         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1266                                             check_thread_entry);
1267 
1268         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1269                                             perf_hpp__is_dso_entry);
1270 
1271         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1272                                             perf_hpp__is_sym_entry);
1273 
1274         hists__apply_filters(he->hists, he);
1275 }
1276 
1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1278                                                  struct rb_root *root,
1279                                                  struct hist_entry *he,
1280                                                  struct hist_entry *parent_he,
1281                                                  struct perf_hpp_list *hpp_list)
1282 {
1283         struct rb_node **p = &root->rb_node;
1284         struct rb_node *parent = NULL;
1285         struct hist_entry *iter, *new;
1286         struct perf_hpp_fmt *fmt;
1287         int64_t cmp;
1288 
1289         while (*p != NULL) {
1290                 parent = *p;
1291                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1292 
1293                 cmp = 0;
1294                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1295                         cmp = fmt->collapse(fmt, iter, he);
1296                         if (cmp)
1297                                 break;
1298                 }
1299 
1300                 if (!cmp) {
1301                         he_stat__add_stat(&iter->stat, &he->stat);
1302                         return iter;
1303                 }
1304 
1305                 if (cmp < 0)
1306                         p = &parent->rb_left;
1307                 else
1308                         p = &parent->rb_right;
1309         }
1310 
1311         new = hist_entry__new(he, true);
1312         if (new == NULL)
1313                 return NULL;
1314 
1315         hists->nr_entries++;
1316 
1317         /* save related format list for output */
1318         new->hpp_list = hpp_list;
1319         new->parent_he = parent_he;
1320 
1321         hist_entry__apply_hierarchy_filters(new);
1322 
1323         /* some fields are now passed to 'new' */
1324         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1325                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1326                         he->trace_output = NULL;
1327                 else
1328                         new->trace_output = NULL;
1329 
1330                 if (perf_hpp__is_srcline_entry(fmt))
1331                         he->srcline = NULL;
1332                 else
1333                         new->srcline = NULL;
1334 
1335                 if (perf_hpp__is_srcfile_entry(fmt))
1336                         he->srcfile = NULL;
1337                 else
1338                         new->srcfile = NULL;
1339         }
1340 
1341         rb_link_node(&new->rb_node_in, parent, p);
1342         rb_insert_color(&new->rb_node_in, root);
1343         return new;
1344 }
1345 
1346 static int hists__hierarchy_insert_entry(struct hists *hists,
1347                                          struct rb_root *root,
1348                                          struct hist_entry *he)
1349 {
1350         struct perf_hpp_list_node *node;
1351         struct hist_entry *new_he = NULL;
1352         struct hist_entry *parent = NULL;
1353         int depth = 0;
1354         int ret = 0;
1355 
1356         list_for_each_entry(node, &hists->hpp_formats, list) {
1357                 /* skip period (overhead) and elided columns */
1358                 if (node->level == 0 || node->skip)
1359                         continue;
1360 
1361                 /* insert copy of 'he' for each fmt into the hierarchy */
1362                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1363                 if (new_he == NULL) {
1364                         ret = -1;
1365                         break;
1366                 }
1367 
1368                 root = &new_he->hroot_in;
1369                 new_he->depth = depth++;
1370                 parent = new_he;
1371         }
1372 
1373         if (new_he) {
1374                 new_he->leaf = true;
1375 
1376                 if (symbol_conf.use_callchain) {
1377                         callchain_cursor_reset(&callchain_cursor);
1378                         if (callchain_merge(&callchain_cursor,
1379                                             new_he->callchain,
1380                                             he->callchain) < 0)
1381                                 ret = -1;
1382                 }
1383         }
1384 
1385         /* 'he' is no longer used */
1386         hist_entry__delete(he);
1387 
1388         /* return 0 (or -1) since it already applied filters */
1389         return ret;
1390 }
1391 
1392 static int hists__collapse_insert_entry(struct hists *hists,
1393                                         struct rb_root *root,
1394                                         struct hist_entry *he)
1395 {
1396         struct rb_node **p = &root->rb_node;
1397         struct rb_node *parent = NULL;
1398         struct hist_entry *iter;
1399         int64_t cmp;
1400 
1401         if (symbol_conf.report_hierarchy)
1402                 return hists__hierarchy_insert_entry(hists, root, he);
1403 
1404         while (*p != NULL) {
1405                 parent = *p;
1406                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1407 
1408                 cmp = hist_entry__collapse(iter, he);
1409 
1410                 if (!cmp) {
1411                         int ret = 0;
1412 
1413                         he_stat__add_stat(&iter->stat, &he->stat);
1414                         if (symbol_conf.cumulate_callchain)
1415                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1416 
1417                         if (symbol_conf.use_callchain) {
1418                                 callchain_cursor_reset(&callchain_cursor);
1419                                 if (callchain_merge(&callchain_cursor,
1420                                                     iter->callchain,
1421                                                     he->callchain) < 0)
1422                                         ret = -1;
1423                         }
1424                         hist_entry__delete(he);
1425                         return ret;
1426                 }
1427 
1428                 if (cmp < 0)
1429                         p = &(*p)->rb_left;
1430                 else
1431                         p = &(*p)->rb_right;
1432         }
1433         hists->nr_entries++;
1434 
1435         rb_link_node(&he->rb_node_in, parent, p);
1436         rb_insert_color(&he->rb_node_in, root);
1437         return 1;
1438 }
1439 
1440 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1441 {
1442         struct rb_root *root;
1443 
1444         pthread_mutex_lock(&hists->lock);
1445 
1446         root = hists->entries_in;
1447         if (++hists->entries_in > &hists->entries_in_array[1])
1448                 hists->entries_in = &hists->entries_in_array[0];
1449 
1450         pthread_mutex_unlock(&hists->lock);
1451 
1452         return root;
1453 }
1454 
1455 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1456 {
1457         hists__filter_entry_by_dso(hists, he);
1458         hists__filter_entry_by_thread(hists, he);
1459         hists__filter_entry_by_symbol(hists, he);
1460         hists__filter_entry_by_socket(hists, he);
1461 }
1462 
1463 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1464 {
1465         struct rb_root *root;
1466         struct rb_node *next;
1467         struct hist_entry *n;
1468         int ret;
1469 
1470         if (!hists__has(hists, need_collapse))
1471                 return 0;
1472 
1473         hists->nr_entries = 0;
1474 
1475         root = hists__get_rotate_entries_in(hists);
1476 
1477         next = rb_first(root);
1478 
1479         while (next) {
1480                 if (session_done())
1481                         break;
1482                 n = rb_entry(next, struct hist_entry, rb_node_in);
1483                 next = rb_next(&n->rb_node_in);
1484 
1485                 rb_erase(&n->rb_node_in, root);
1486                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1487                 if (ret < 0)
1488                         return -1;
1489 
1490                 if (ret) {
1491                         /*
1492                          * If it wasn't combined with one of the entries already
1493                          * collapsed, we need to apply the filters that may have
1494                          * been set by, say, the hist_browser.
1495                          */
1496                         hists__apply_filters(hists, n);
1497                 }
1498                 if (prog)
1499                         ui_progress__update(prog, 1);
1500         }
1501         return 0;
1502 }
1503 
1504 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1505 {
1506         struct hists *hists = a->hists;
1507         struct perf_hpp_fmt *fmt;
1508         int64_t cmp = 0;
1509 
1510         hists__for_each_sort_list(hists, fmt) {
1511                 if (perf_hpp__should_skip(fmt, a->hists))
1512                         continue;
1513 
1514                 cmp = fmt->sort(fmt, a, b);
1515                 if (cmp)
1516                         break;
1517         }
1518 
1519         return cmp;
1520 }
1521 
1522 static void hists__reset_filter_stats(struct hists *hists)
1523 {
1524         hists->nr_non_filtered_entries = 0;
1525         hists->stats.total_non_filtered_period = 0;
1526 }
1527 
1528 void hists__reset_stats(struct hists *hists)
1529 {
1530         hists->nr_entries = 0;
1531         hists->stats.total_period = 0;
1532 
1533         hists__reset_filter_stats(hists);
1534 }
1535 
1536 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1537 {
1538         hists->nr_non_filtered_entries++;
1539         hists->stats.total_non_filtered_period += h->stat.period;
1540 }
1541 
1542 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1543 {
1544         if (!h->filtered)
1545                 hists__inc_filter_stats(hists, h);
1546 
1547         hists->nr_entries++;
1548         hists->stats.total_period += h->stat.period;
1549 }
1550 
1551 static void hierarchy_recalc_total_periods(struct hists *hists)
1552 {
1553         struct rb_node *node;
1554         struct hist_entry *he;
1555 
1556         node = rb_first(&hists->entries);
1557 
1558         hists->stats.total_period = 0;
1559         hists->stats.total_non_filtered_period = 0;
1560 
1561         /*
1562          * recalculate total period using top-level entries only
1563          * since lower level entries only see non-filtered entries
1564          * but upper level entries have sum of both entries.
1565          */
1566         while (node) {
1567                 he = rb_entry(node, struct hist_entry, rb_node);
1568                 node = rb_next(node);
1569 
1570                 hists->stats.total_period += he->stat.period;
1571                 if (!he->filtered)
1572                         hists->stats.total_non_filtered_period += he->stat.period;
1573         }
1574 }
1575 
1576 static void hierarchy_insert_output_entry(struct rb_root *root,
1577                                           struct hist_entry *he)
1578 {
1579         struct rb_node **p = &root->rb_node;
1580         struct rb_node *parent = NULL;
1581         struct hist_entry *iter;
1582         struct perf_hpp_fmt *fmt;
1583 
1584         while (*p != NULL) {
1585                 parent = *p;
1586                 iter = rb_entry(parent, struct hist_entry, rb_node);
1587 
1588                 if (hist_entry__sort(he, iter) > 0)
1589                         p = &parent->rb_left;
1590                 else
1591                         p = &parent->rb_right;
1592         }
1593 
1594         rb_link_node(&he->rb_node, parent, p);
1595         rb_insert_color(&he->rb_node, root);
1596 
1597         /* update column width of dynamic entry */
1598         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1599                 if (perf_hpp__is_dynamic_entry(fmt))
1600                         fmt->sort(fmt, he, NULL);
1601         }
1602 }
1603 
1604 static void hists__hierarchy_output_resort(struct hists *hists,
1605                                            struct ui_progress *prog,
1606                                            struct rb_root *root_in,
1607                                            struct rb_root *root_out,
1608                                            u64 min_callchain_hits,
1609                                            bool use_callchain)
1610 {
1611         struct rb_node *node;
1612         struct hist_entry *he;
1613 
1614         *root_out = RB_ROOT;
1615         node = rb_first(root_in);
1616 
1617         while (node) {
1618                 he = rb_entry(node, struct hist_entry, rb_node_in);
1619                 node = rb_next(node);
1620 
1621                 hierarchy_insert_output_entry(root_out, he);
1622 
1623                 if (prog)
1624                         ui_progress__update(prog, 1);
1625 
1626                 hists->nr_entries++;
1627                 if (!he->filtered) {
1628                         hists->nr_non_filtered_entries++;
1629                         hists__calc_col_len(hists, he);
1630                 }
1631 
1632                 if (!he->leaf) {
1633                         hists__hierarchy_output_resort(hists, prog,
1634                                                        &he->hroot_in,
1635                                                        &he->hroot_out,
1636                                                        min_callchain_hits,
1637                                                        use_callchain);
1638                         continue;
1639                 }
1640 
1641                 if (!use_callchain)
1642                         continue;
1643 
1644                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1645                         u64 total = he->stat.period;
1646 
1647                         if (symbol_conf.cumulate_callchain)
1648                                 total = he->stat_acc->period;
1649 
1650                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1651                 }
1652 
1653                 callchain_param.sort(&he->sorted_chain, he->callchain,
1654                                      min_callchain_hits, &callchain_param);
1655         }
1656 }
1657 
1658 static void __hists__insert_output_entry(struct rb_root *entries,
1659                                          struct hist_entry *he,
1660                                          u64 min_callchain_hits,
1661                                          bool use_callchain)
1662 {
1663         struct rb_node **p = &entries->rb_node;
1664         struct rb_node *parent = NULL;
1665         struct hist_entry *iter;
1666         struct perf_hpp_fmt *fmt;
1667 
1668         if (use_callchain) {
1669                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1670                         u64 total = he->stat.period;
1671 
1672                         if (symbol_conf.cumulate_callchain)
1673                                 total = he->stat_acc->period;
1674 
1675                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1676                 }
1677                 callchain_param.sort(&he->sorted_chain, he->callchain,
1678                                       min_callchain_hits, &callchain_param);
1679         }
1680 
1681         while (*p != NULL) {
1682                 parent = *p;
1683                 iter = rb_entry(parent, struct hist_entry, rb_node);
1684 
1685                 if (hist_entry__sort(he, iter) > 0)
1686                         p = &(*p)->rb_left;
1687                 else
1688                         p = &(*p)->rb_right;
1689         }
1690 
1691         rb_link_node(&he->rb_node, parent, p);
1692         rb_insert_color(&he->rb_node, entries);
1693 
1694         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1695                 if (perf_hpp__is_dynamic_entry(fmt) &&
1696                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1697                         fmt->sort(fmt, he, NULL);  /* update column width */
1698         }
1699 }
1700 
1701 static void output_resort(struct hists *hists, struct ui_progress *prog,
1702                           bool use_callchain, hists__resort_cb_t cb)
1703 {
1704         struct rb_root *root;
1705         struct rb_node *next;
1706         struct hist_entry *n;
1707         u64 callchain_total;
1708         u64 min_callchain_hits;
1709 
1710         callchain_total = hists->callchain_period;
1711         if (symbol_conf.filter_relative)
1712                 callchain_total = hists->callchain_non_filtered_period;
1713 
1714         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1715 
1716         hists__reset_stats(hists);
1717         hists__reset_col_len(hists);
1718 
1719         if (symbol_conf.report_hierarchy) {
1720                 hists__hierarchy_output_resort(hists, prog,
1721                                                &hists->entries_collapsed,
1722                                                &hists->entries,
1723                                                min_callchain_hits,
1724                                                use_callchain);
1725                 hierarchy_recalc_total_periods(hists);
1726                 return;
1727         }
1728 
1729         if (hists__has(hists, need_collapse))
1730                 root = &hists->entries_collapsed;
1731         else
1732                 root = hists->entries_in;
1733 
1734         next = rb_first(root);
1735         hists->entries = RB_ROOT;
1736 
1737         while (next) {
1738                 n = rb_entry(next, struct hist_entry, rb_node_in);
1739                 next = rb_next(&n->rb_node_in);
1740 
1741                 if (cb && cb(n))
1742                         continue;
1743 
1744                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1745                 hists__inc_stats(hists, n);
1746 
1747                 if (!n->filtered)
1748                         hists__calc_col_len(hists, n);
1749 
1750                 if (prog)
1751                         ui_progress__update(prog, 1);
1752         }
1753 }
1754 
1755 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1756 {
1757         bool use_callchain;
1758 
1759         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1760                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1761         else
1762                 use_callchain = symbol_conf.use_callchain;
1763 
1764         use_callchain |= symbol_conf.show_branchflag_count;
1765 
1766         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1767 }
1768 
1769 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1770 {
1771         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1772 }
1773 
1774 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1775                              hists__resort_cb_t cb)
1776 {
1777         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1778 }
1779 
1780 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1781 {
1782         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1783                 return false;
1784 
1785         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1786                 return true;
1787 
1788         return false;
1789 }
1790 
1791 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1792 {
1793         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1794 
1795         while (can_goto_child(he, HMD_NORMAL)) {
1796                 node = rb_last(&he->hroot_out);
1797                 he = rb_entry(node, struct hist_entry, rb_node);
1798         }
1799         return node;
1800 }
1801 
1802 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1803 {
1804         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1805 
1806         if (can_goto_child(he, hmd))
1807                 node = rb_first(&he->hroot_out);
1808         else
1809                 node = rb_next(node);
1810 
1811         while (node == NULL) {
1812                 he = he->parent_he;
1813                 if (he == NULL)
1814                         break;
1815 
1816                 node = rb_next(&he->rb_node);
1817         }
1818         return node;
1819 }
1820 
1821 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1822 {
1823         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1824 
1825         node = rb_prev(node);
1826         if (node)
1827                 return rb_hierarchy_last(node);
1828 
1829         he = he->parent_he;
1830         if (he == NULL)
1831                 return NULL;
1832 
1833         return &he->rb_node;
1834 }
1835 
1836 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1837 {
1838         struct rb_node *node;
1839         struct hist_entry *child;
1840         float percent;
1841 
1842         if (he->leaf)
1843                 return false;
1844 
1845         node = rb_first(&he->hroot_out);
1846         child = rb_entry(node, struct hist_entry, rb_node);
1847 
1848         while (node && child->filtered) {
1849                 node = rb_next(node);
1850                 child = rb_entry(node, struct hist_entry, rb_node);
1851         }
1852 
1853         if (node)
1854                 percent = hist_entry__get_percent_limit(child);
1855         else
1856                 percent = 0;
1857 
1858         return node && percent >= limit;
1859 }
1860 
1861 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1862                                        enum hist_filter filter)
1863 {
1864         h->filtered &= ~(1 << filter);
1865 
1866         if (symbol_conf.report_hierarchy) {
1867                 struct hist_entry *parent = h->parent_he;
1868 
1869                 while (parent) {
1870                         he_stat__add_stat(&parent->stat, &h->stat);
1871 
1872                         parent->filtered &= ~(1 << filter);
1873 
1874                         if (parent->filtered)
1875                                 goto next;
1876 
1877                         /* force fold unfiltered entry for simplicity */
1878                         parent->unfolded = false;
1879                         parent->has_no_entry = false;
1880                         parent->row_offset = 0;
1881                         parent->nr_rows = 0;
1882 next:
1883                         parent = parent->parent_he;
1884                 }
1885         }
1886 
1887         if (h->filtered)
1888                 return;
1889 
1890         /* force fold unfiltered entry for simplicity */
1891         h->unfolded = false;
1892         h->has_no_entry = false;
1893         h->row_offset = 0;
1894         h->nr_rows = 0;
1895 
1896         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1897 
1898         hists__inc_filter_stats(hists, h);
1899         hists__calc_col_len(hists, h);
1900 }
1901 
1902 
1903 static bool hists__filter_entry_by_dso(struct hists *hists,
1904                                        struct hist_entry *he)
1905 {
1906         if (hists->dso_filter != NULL &&
1907             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1908                 he->filtered |= (1 << HIST_FILTER__DSO);
1909                 return true;
1910         }
1911 
1912         return false;
1913 }
1914 
1915 static bool hists__filter_entry_by_thread(struct hists *hists,
1916                                           struct hist_entry *he)
1917 {
1918         if (hists->thread_filter != NULL &&
1919             he->thread != hists->thread_filter) {
1920                 he->filtered |= (1 << HIST_FILTER__THREAD);
1921                 return true;
1922         }
1923 
1924         return false;
1925 }
1926 
1927 static bool hists__filter_entry_by_symbol(struct hists *hists,
1928                                           struct hist_entry *he)
1929 {
1930         if (hists->symbol_filter_str != NULL &&
1931             (!he->ms.sym || strstr(he->ms.sym->name,
1932                                    hists->symbol_filter_str) == NULL)) {
1933                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1934                 return true;
1935         }
1936 
1937         return false;
1938 }
1939 
1940 static bool hists__filter_entry_by_socket(struct hists *hists,
1941                                           struct hist_entry *he)
1942 {
1943         if ((hists->socket_filter > -1) &&
1944             (he->socket != hists->socket_filter)) {
1945                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1946                 return true;
1947         }
1948 
1949         return false;
1950 }
1951 
1952 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1953 
1954 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1955 {
1956         struct rb_node *nd;
1957 
1958         hists->stats.nr_non_filtered_samples = 0;
1959 
1960         hists__reset_filter_stats(hists);
1961         hists__reset_col_len(hists);
1962 
1963         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1964                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1965 
1966                 if (filter(hists, h))
1967                         continue;
1968 
1969                 hists__remove_entry_filter(hists, h, type);
1970         }
1971 }
1972 
1973 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1974 {
1975         struct rb_node **p = &root->rb_node;
1976         struct rb_node *parent = NULL;
1977         struct hist_entry *iter;
1978         struct rb_root new_root = RB_ROOT;
1979         struct rb_node *nd;
1980 
1981         while (*p != NULL) {
1982                 parent = *p;
1983                 iter = rb_entry(parent, struct hist_entry, rb_node);
1984 
1985                 if (hist_entry__sort(he, iter) > 0)
1986                         p = &(*p)->rb_left;
1987                 else
1988                         p = &(*p)->rb_right;
1989         }
1990 
1991         rb_link_node(&he->rb_node, parent, p);
1992         rb_insert_color(&he->rb_node, root);
1993 
1994         if (he->leaf || he->filtered)
1995                 return;
1996 
1997         nd = rb_first(&he->hroot_out);
1998         while (nd) {
1999                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2000 
2001                 nd = rb_next(nd);
2002                 rb_erase(&h->rb_node, &he->hroot_out);
2003 
2004                 resort_filtered_entry(&new_root, h);
2005         }
2006 
2007         he->hroot_out = new_root;
2008 }
2009 
2010 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2011 {
2012         struct rb_node *nd;
2013         struct rb_root new_root = RB_ROOT;
2014 
2015         hists->stats.nr_non_filtered_samples = 0;
2016 
2017         hists__reset_filter_stats(hists);
2018         hists__reset_col_len(hists);
2019 
2020         nd = rb_first(&hists->entries);
2021         while (nd) {
2022                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2023                 int ret;
2024 
2025                 ret = hist_entry__filter(h, type, arg);
2026 
2027                 /*
2028                  * case 1. non-matching type
2029                  * zero out the period, set filter marker and move to child
2030                  */
2031                 if (ret < 0) {
2032                         memset(&h->stat, 0, sizeof(h->stat));
2033                         h->filtered |= (1 << type);
2034 
2035                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2036                 }
2037                 /*
2038                  * case 2. matched type (filter out)
2039                  * set filter marker and move to next
2040                  */
2041                 else if (ret == 1) {
2042                         h->filtered |= (1 << type);
2043 
2044                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2045                 }
2046                 /*
2047                  * case 3. ok (not filtered)
2048                  * add period to hists and parents, erase the filter marker
2049                  * and move to next sibling
2050                  */
2051                 else {
2052                         hists__remove_entry_filter(hists, h, type);
2053 
2054                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2055                 }
2056         }
2057 
2058         hierarchy_recalc_total_periods(hists);
2059 
2060         /*
2061          * resort output after applying a new filter since filter in a lower
2062          * hierarchy can change periods in a upper hierarchy.
2063          */
2064         nd = rb_first(&hists->entries);
2065         while (nd) {
2066                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2067 
2068                 nd = rb_next(nd);
2069                 rb_erase(&h->rb_node, &hists->entries);
2070 
2071                 resort_filtered_entry(&new_root, h);
2072         }
2073 
2074         hists->entries = new_root;
2075 }
2076 
2077 void hists__filter_by_thread(struct hists *hists)
2078 {
2079         if (symbol_conf.report_hierarchy)
2080                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2081                                         hists->thread_filter);
2082         else
2083                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2084                                       hists__filter_entry_by_thread);
2085 }
2086 
2087 void hists__filter_by_dso(struct hists *hists)
2088 {
2089         if (symbol_conf.report_hierarchy)
2090                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2091                                         hists->dso_filter);
2092         else
2093                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2094                                       hists__filter_entry_by_dso);
2095 }
2096 
2097 void hists__filter_by_symbol(struct hists *hists)
2098 {
2099         if (symbol_conf.report_hierarchy)
2100                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2101                                         hists->symbol_filter_str);
2102         else
2103                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2104                                       hists__filter_entry_by_symbol);
2105 }
2106 
2107 void hists__filter_by_socket(struct hists *hists)
2108 {
2109         if (symbol_conf.report_hierarchy)
2110                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2111                                         &hists->socket_filter);
2112         else
2113                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2114                                       hists__filter_entry_by_socket);
2115 }
2116 
2117 void events_stats__inc(struct events_stats *stats, u32 type)
2118 {
2119         ++stats->nr_events[0];
2120         ++stats->nr_events[type];
2121 }
2122 
2123 void hists__inc_nr_events(struct hists *hists, u32 type)
2124 {
2125         events_stats__inc(&hists->stats, type);
2126 }
2127 
2128 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2129 {
2130         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2131         if (!filtered)
2132                 hists->stats.nr_non_filtered_samples++;
2133 }
2134 
2135 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2136                                                  struct hist_entry *pair)
2137 {
2138         struct rb_root *root;
2139         struct rb_node **p;
2140         struct rb_node *parent = NULL;
2141         struct hist_entry *he;
2142         int64_t cmp;
2143 
2144         if (hists__has(hists, need_collapse))
2145                 root = &hists->entries_collapsed;
2146         else
2147                 root = hists->entries_in;
2148 
2149         p = &root->rb_node;
2150 
2151         while (*p != NULL) {
2152                 parent = *p;
2153                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2154 
2155                 cmp = hist_entry__collapse(he, pair);
2156 
2157                 if (!cmp)
2158                         goto out;
2159 
2160                 if (cmp < 0)
2161                         p = &(*p)->rb_left;
2162                 else
2163                         p = &(*p)->rb_right;
2164         }
2165 
2166         he = hist_entry__new(pair, true);
2167         if (he) {
2168                 memset(&he->stat, 0, sizeof(he->stat));
2169                 he->hists = hists;
2170                 if (symbol_conf.cumulate_callchain)
2171                         memset(he->stat_acc, 0, sizeof(he->stat));
2172                 rb_link_node(&he->rb_node_in, parent, p);
2173                 rb_insert_color(&he->rb_node_in, root);
2174                 hists__inc_stats(hists, he);
2175                 he->dummy = true;
2176         }
2177 out:
2178         return he;
2179 }
2180 
2181 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2182                                                     struct rb_root *root,
2183                                                     struct hist_entry *pair)
2184 {
2185         struct rb_node **p;
2186         struct rb_node *parent = NULL;
2187         struct hist_entry *he;
2188         struct perf_hpp_fmt *fmt;
2189 
2190         p = &root->rb_node;
2191         while (*p != NULL) {
2192                 int64_t cmp = 0;
2193 
2194                 parent = *p;
2195                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2196 
2197                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2198                         cmp = fmt->collapse(fmt, he, pair);
2199                         if (cmp)
2200                                 break;
2201                 }
2202                 if (!cmp)
2203                         goto out;
2204 
2205                 if (cmp < 0)
2206                         p = &parent->rb_left;
2207                 else
2208                         p = &parent->rb_right;
2209         }
2210 
2211         he = hist_entry__new(pair, true);
2212         if (he) {
2213                 rb_link_node(&he->rb_node_in, parent, p);
2214                 rb_insert_color(&he->rb_node_in, root);
2215 
2216                 he->dummy = true;
2217                 he->hists = hists;
2218                 memset(&he->stat, 0, sizeof(he->stat));
2219                 hists__inc_stats(hists, he);
2220         }
2221 out:
2222         return he;
2223 }
2224 
2225 static struct hist_entry *hists__find_entry(struct hists *hists,
2226                                             struct hist_entry *he)
2227 {
2228         struct rb_node *n;
2229 
2230         if (hists__has(hists, need_collapse))
2231                 n = hists->entries_collapsed.rb_node;
2232         else
2233                 n = hists->entries_in->rb_node;
2234 
2235         while (n) {
2236                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2237                 int64_t cmp = hist_entry__collapse(iter, he);
2238 
2239                 if (cmp < 0)
2240                         n = n->rb_left;
2241                 else if (cmp > 0)
2242                         n = n->rb_right;
2243                 else
2244                         return iter;
2245         }
2246 
2247         return NULL;
2248 }
2249 
2250 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2251                                                       struct hist_entry *he)
2252 {
2253         struct rb_node *n = root->rb_node;
2254 
2255         while (n) {
2256                 struct hist_entry *iter;
2257                 struct perf_hpp_fmt *fmt;
2258                 int64_t cmp = 0;
2259 
2260                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2261                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2262                         cmp = fmt->collapse(fmt, iter, he);
2263                         if (cmp)
2264                                 break;
2265                 }
2266 
2267                 if (cmp < 0)
2268                         n = n->rb_left;
2269                 else if (cmp > 0)
2270                         n = n->rb_right;
2271                 else
2272                         return iter;
2273         }
2274 
2275         return NULL;
2276 }
2277 
2278 static void hists__match_hierarchy(struct rb_root *leader_root,
2279                                    struct rb_root *other_root)
2280 {
2281         struct rb_node *nd;
2282         struct hist_entry *pos, *pair;
2283 
2284         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2285                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2286                 pair = hists__find_hierarchy_entry(other_root, pos);
2287 
2288                 if (pair) {
2289                         hist_entry__add_pair(pair, pos);
2290                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2291                 }
2292         }
2293 }
2294 
2295 /*
2296  * Look for pairs to link to the leader buckets (hist_entries):
2297  */
2298 void hists__match(struct hists *leader, struct hists *other)
2299 {
2300         struct rb_root *root;
2301         struct rb_node *nd;
2302         struct hist_entry *pos, *pair;
2303 
2304         if (symbol_conf.report_hierarchy) {
2305                 /* hierarchy report always collapses entries */
2306                 return hists__match_hierarchy(&leader->entries_collapsed,
2307                                               &other->entries_collapsed);
2308         }
2309 
2310         if (hists__has(leader, need_collapse))
2311                 root = &leader->entries_collapsed;
2312         else
2313                 root = leader->entries_in;
2314 
2315         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2316                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2317                 pair = hists__find_entry(other, pos);
2318 
2319                 if (pair)
2320                         hist_entry__add_pair(pair, pos);
2321         }
2322 }
2323 
2324 static int hists__link_hierarchy(struct hists *leader_hists,
2325                                  struct hist_entry *parent,
2326                                  struct rb_root *leader_root,
2327                                  struct rb_root *other_root)
2328 {
2329         struct rb_node *nd;
2330         struct hist_entry *pos, *leader;
2331 
2332         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2333                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2334 
2335                 if (hist_entry__has_pairs(pos)) {
2336                         bool found = false;
2337 
2338                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2339                                 if (leader->hists == leader_hists) {
2340                                         found = true;
2341                                         break;
2342                                 }
2343                         }
2344                         if (!found)
2345                                 return -1;
2346                 } else {
2347                         leader = add_dummy_hierarchy_entry(leader_hists,
2348                                                            leader_root, pos);
2349                         if (leader == NULL)
2350                                 return -1;
2351 
2352                         /* do not point parent in the pos */
2353                         leader->parent_he = parent;
2354 
2355                         hist_entry__add_pair(pos, leader);
2356                 }
2357 
2358                 if (!pos->leaf) {
2359                         if (hists__link_hierarchy(leader_hists, leader,
2360                                                   &leader->hroot_in,
2361                                                   &pos->hroot_in) < 0)
2362                                 return -1;
2363                 }
2364         }
2365         return 0;
2366 }
2367 
2368 /*
2369  * Look for entries in the other hists that are not present in the leader, if
2370  * we find them, just add a dummy entry on the leader hists, with period=0,
2371  * nr_events=0, to serve as the list header.
2372  */
2373 int hists__link(struct hists *leader, struct hists *other)
2374 {
2375         struct rb_root *root;
2376         struct rb_node *nd;
2377         struct hist_entry *pos, *pair;
2378 
2379         if (symbol_conf.report_hierarchy) {
2380                 /* hierarchy report always collapses entries */
2381                 return hists__link_hierarchy(leader, NULL,
2382                                              &leader->entries_collapsed,
2383                                              &other->entries_collapsed);
2384         }
2385 
2386         if (hists__has(other, need_collapse))
2387                 root = &other->entries_collapsed;
2388         else
2389                 root = other->entries_in;
2390 
2391         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2392                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2393 
2394                 if (!hist_entry__has_pairs(pos)) {
2395                         pair = hists__add_dummy_entry(leader, pos);
2396                         if (pair == NULL)
2397                                 return -1;
2398                         hist_entry__add_pair(pos, pair);
2399                 }
2400         }
2401 
2402         return 0;
2403 }
2404 
2405 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2406                           struct perf_sample *sample, bool nonany_branch_mode)
2407 {
2408         struct branch_info *bi;
2409 
2410         /* If we have branch cycles always annotate them. */
2411         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2412                 int i;
2413 
2414                 bi = sample__resolve_bstack(sample, al);
2415                 if (bi) {
2416                         struct addr_map_symbol *prev = NULL;
2417 
2418                         /*
2419                          * Ignore errors, still want to process the
2420                          * other entries.
2421                          *
2422                          * For non standard branch modes always
2423                          * force no IPC (prev == NULL)
2424                          *
2425                          * Note that perf stores branches reversed from
2426                          * program order!
2427                          */
2428                         for (i = bs->nr - 1; i >= 0; i--) {
2429                                 addr_map_symbol__account_cycles(&bi[i].from,
2430                                         nonany_branch_mode ? NULL : prev,
2431                                         bi[i].flags.cycles);
2432                                 prev = &bi[i].to;
2433                         }
2434                         free(bi);
2435                 }
2436         }
2437 }
2438 
2439 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2440 {
2441         struct perf_evsel *pos;
2442         size_t ret = 0;
2443 
2444         evlist__for_each_entry(evlist, pos) {
2445                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2446                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2447         }
2448 
2449         return ret;
2450 }
2451 
2452 
2453 u64 hists__total_period(struct hists *hists)
2454 {
2455         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2456                 hists->stats.total_period;
2457 }
2458 
2459 int parse_filter_percentage(const struct option *opt __maybe_unused,
2460                             const char *arg, int unset __maybe_unused)
2461 {
2462         if (!strcmp(arg, "relative"))
2463                 symbol_conf.filter_relative = true;
2464         else if (!strcmp(arg, "absolute"))
2465                 symbol_conf.filter_relative = false;
2466         else {
2467                 pr_debug("Invalid percentage: %s\n", arg);
2468                 return -1;
2469         }
2470 
2471         return 0;
2472 }
2473 
2474 int perf_hist_config(const char *var, const char *value)
2475 {
2476         if (!strcmp(var, "hist.percentage"))
2477                 return parse_filter_percentage(NULL, value, 0);
2478 
2479         return 0;
2480 }
2481 
2482 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2483 {
2484         memset(hists, 0, sizeof(*hists));
2485         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2486         hists->entries_in = &hists->entries_in_array[0];
2487         hists->entries_collapsed = RB_ROOT;
2488         hists->entries = RB_ROOT;
2489         pthread_mutex_init(&hists->lock, NULL);
2490         hists->socket_filter = -1;
2491         hists->hpp_list = hpp_list;
2492         INIT_LIST_HEAD(&hists->hpp_formats);
2493         return 0;
2494 }
2495 
2496 static void hists__delete_remaining_entries(struct rb_root *root)
2497 {
2498         struct rb_node *node;
2499         struct hist_entry *he;
2500 
2501         while (!RB_EMPTY_ROOT(root)) {
2502                 node = rb_first(root);
2503                 rb_erase(node, root);
2504 
2505                 he = rb_entry(node, struct hist_entry, rb_node_in);
2506                 hist_entry__delete(he);
2507         }
2508 }
2509 
2510 static void hists__delete_all_entries(struct hists *hists)
2511 {
2512         hists__delete_entries(hists);
2513         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2514         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2515         hists__delete_remaining_entries(&hists->entries_collapsed);
2516 }
2517 
2518 static void hists_evsel__exit(struct perf_evsel *evsel)
2519 {
2520         struct hists *hists = evsel__hists(evsel);
2521         struct perf_hpp_fmt *fmt, *pos;
2522         struct perf_hpp_list_node *node, *tmp;
2523 
2524         hists__delete_all_entries(hists);
2525 
2526         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2527                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2528                         list_del(&fmt->list);
2529                         free(fmt);
2530                 }
2531                 list_del(&node->list);
2532                 free(node);
2533         }
2534 }
2535 
2536 static int hists_evsel__init(struct perf_evsel *evsel)
2537 {
2538         struct hists *hists = evsel__hists(evsel);
2539 
2540         __hists__init(hists, &perf_hpp_list);
2541         return 0;
2542 }
2543 
2544 /*
2545  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2546  * stored in the rbtree...
2547  */
2548 
2549 int hists__init(void)
2550 {
2551         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2552                                             hists_evsel__init,
2553                                             hists_evsel__exit);
2554         if (err)
2555                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2556 
2557         return err;
2558 }
2559 
2560 void perf_hpp_list__init(struct perf_hpp_list *list)
2561 {
2562         INIT_LIST_HEAD(&list->fields);
2563         INIT_LIST_HEAD(&list->sorts);
2564 }
2565 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp